Biorobotics Laboratory BioRob

Project Database

This page contains the database of possible research projects for master and bachelor students in the Biorobotics Laboratory (BioRob). Visiting students are also welcome to join BioRob, but it should be noted that no funding is offered for those projects. To enroll for a project, please directly contact one of the assistants (directly in his/her office, by phone or by mail). Spontaneous propositions for projects are also welcome, if they are related to the research topics of BioRob, see the BioRob Research pages and the results of previous student projects.

Search filter: only projects matching the keyword Robotics are shown here. Remove filter

Amphibious robotics
Computational Neuroscience
Dynamical systems
Human-exoskeleton dynamics and control
Humanoid robotics
Miscellaneous
Mobile robotics
Modular robotics
Neuro-muscular modelling
Quadruped robotics


Amphibious robotics

721 – Development of a compact motor module with torque feedback control
Category:semester project
Keywords:C, C++, Communication, Control, Electronics, Embedded Systems, Feedback, Firmware, Programming, Prototyping, Robotics
Type:40% theory, 30% hardware, 30% software
Responsible: (MED 1 1626, phone: 38676)
Description:[Application closed] This project aims to develop a compact motor module for a salamander robot. The module is expected to have the following features: (1) A compact size to fit into the trunk and the legs of the robot. (2) Direct measurement and closed-loop control of output torque. (3) Easy-to-use embedded microcontroller that can be daisy-chained and communicate with the single board computer. This project will mainly focus on the control system design and embedded system programming. Mechanical design and manufacturing may be involved but not compulsory. Students with relevant project experience or a solid background in control theory are preferred. Students who are interested in this project could send CV, transcripts, and materials that can demonstrate project experience (videos, slides, reports, etc.), if possible, to qiyuan.fu@epfl.ch.

Last edited: 18/12/2023
724 – Control of a salamander robot using a CPG controller with virtual muscles
Category:semester project, master project (full-time)
Keywords:C, C++, Control, Embedded Systems, Firmware, Linux, Locomotion, Muscle modeling, Programming, Quadruped Locomotion, Robotics
Type:10% theory, 20% hardware, 70% software
Responsibles: (MED 1 1611, phone: 36620)
(MED 1 1626, phone: 38676)
Description:The spinal cord in many vertebrates contains a central pattern generator (CPG) that can control the physical body to interact with the environment and produce diverse rhythmic motor patterns, such as walking and swimming. The salamander is a great model organism to study the transition between different motor patterns because it is the closest extant representative of the first tetrapods that transitioned from aquatic to terrestrial environments. To understand the mechanism of such pattern generation and transition, our lab has been developing numerical models of the neuromechanical system for decades. We have also developed multiple salamander robots to verify these models against the real-world environment, the physics of which can not be fully captured by numerical simulations. This project will focus on implementing new CPG controllers on a salamander robot with 27 degrees of freedom (https://www.epfl.ch/labs/biorob/research/amphibious/pleurobot/). The controller will run on a single-board Linux computer (Ordroid) to communicate with the motors through serial communication and with the operator's computer through Wi-Fi. A student who plans to use this project for a master's thesis additionally needs to implement virtual muscles in the controller to reflect the biomechanical properties of the body. To do so, the student will need to characterize the dynamic response of the servo motors and consider them in the controller. With sufficient time, the student will perform systematic experiments to study the performance of these controllers. Students who have taken the Computational Motion Control course are preferred. Students who are interested in this project could send CV, transcripts, and materials that can demonstrate project experience (videos, slides, reports, etc.), if possible, to astha.gupta@epfl.ch and qiyuan.fu@epfl.ch.

Last edited: 05/12/2023

Human-exoskeleton dynamics and control

735 – Hip exoskeleton to assist walking - multiple projects
Category:semester project, master project (full-time), bachelor semester project, internship
Keywords:Bio-inspiration, C, C++, Communication, Compliance, Control, Data Processing, Dynamics Model, Electronics, Experiments, Inverse Dynamics, Kinematics Model, Learning, Locomotion, Machine learning, Optimization, Programming, Python, Robotics, Treadmill
Type:30% theory, 35% hardware, 35% software
Responsible: (MED 3 1015, phone: 31153)
Description:Exoskeletons have experienced an unprecedented growth in recent years and hip-targeting active devices have demonstrated their potential in assisting walking activities. Portable exoskeletons are designed to provide assistive torques while taking off the added weight, with the overall goal of increasing the endurance, reducing the energetic expenditure and increase the performance during walking. The design of exoskeletons involves the development of the sensing, the actuation, the control, and the human-robot interface. In our lab, a hip-joint active hip orthosis (“eWalk”) has been prototyped and tested in recent years. Currently, multiple projects are available to address open research questions. Does the exoskeleton reduce the effort while walking? How can we model human-exoskeleton interaction? How can we design effective controls? How can we optimize the interfaces and the control? Which movements can we assist with exoskeletons? To address these challenges, the field necessitates knowledge in biology, mechanics, electronics, physiology, informatics (programming, learning algorithms), and human-robot interaction. If you are interested in collaborating in one of these topics, please send an email to giulia.ramella@epfl.ch with your CV, previous experiences that could be relevant to the project, and what interests you the most about this research topic (to be discussed during the interview).

Last edited: 19/04/2024

Quadruped robotics

A small excerpt of possible projects is listed here. Highly interested students may also propose projects, or continue an existing topic.

652 – Integrating Learning-Based Control with MPC and CPGs
Category:semester project, master project (full-time), internship
Keywords:Bio-inspiration, Control, Learning, Locomotion, Optimization, Robotics
Type:40% theory, 60% software
Responsible: (MED 1 1024, phone: 37506)
Description:Recent years have shown impressive locomotion control of dynamic systems through a variety of methods, for example with optimal control (MPC), machine learning (deep reinforcement learning), and bio-inspired approaches (CPGs). Given a system for which two or more of these methods exist: how should we choose which to use at run time? Should this depend on environmental factors, i.e. the expected value of a given state? Can this help with explainability of what exactly our deep reinforcement learning policy has learned? In this project, the student will use machine learning to answer these questions, as well as integrate CPGs and MPC into the deep reinforcement learning framework. The methods will be validated on systems including quadrupeds and model cars first in simulation, with the goal of transferring the method to hardware. To apply, please email Guillaume with your motivation, CV, and briefly describe your relevant experience (i.e. with machine learning, software engineering, etc.).

Last edited: 09/01/2024

4 projects found.