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1 Introduction

Locomotion is one of the primary characteristics of animals which separates
them from plants. Locomotion enables animals to find their food and to move
from one place to another. This importance of locomotion makes it extremely
important to study various mechanisms underlying locomotion. A study
of these mechanisms can help tremendously to develop robots which can
locomote in the same way as animals do. Amphibians are vertebrates which
can swim in water as well as walk on ground. The salamander is an amphibian
of great interest to the neurobiologists for studying the mechanisms which
aid in locomotion. The importance of the salamander arises due to the fact
that it is one of the most primitive creatures which made transition from
swimming to walking. Therefore, the study of mechanisms responsible for the
swimming and walking of salamander can provide useful information which
could be used for developing robots which can swim as well as walk on ground.
Moreover, the salamander has a simple body framework which facilitates an
easier fabrication of a model similar to the actual salamander. At the same
time, the mechanisms are adequately complex to get a detailed information
about the movement patterns in many similar creatures. The aim of this
report is to investigate the hydrodynamic forces on a salamander model and
to ascertain various factors which affect the swimming of salamander model.
The model was subjected to different kinds of forces and a detailed study of
the swimming motion of salamander model will be presented in the following
sections of this report.

2 Mechanical simulation of the salamander

The salamander model used for analysis had the dimensions of a salamander
robot currently under construction; to be used for experimentation in near
future. The mechanical model of salamander consisted of a 70 cm long body
which was made up of 10 rigid links representing the trunk and the tail. The
links were connected by one-degree-of-freedom hinge joints. The length of
each link was 7 cm and each link had a rectangular cross section of 3.5 cm
width and 5.5 cm height. The density of salamander model was assumed to
be equal to that of water (i.e.1000 kg/m3). The model was approximately
three times bigger than most salamander species as this study is supposed
to be used for the design of robots which could locomote like a salamander
on the provision of necessary input. The salamanders are very small in size
whereas the model was made keeping in mind the dimensions of the robot
whose swimming motion will be compared with the results of this report.
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The model was implemented with the help of ODE (Open Dynamics En-
gine) software which is very useful for the dynamic simulations of articulated
rigid bodies. Alessandro Crespi of the Biologically Inspired Robotics Group
at the Logic Systems Laboratory, EPFL developed the code for generating
the salamander model. I applied hydrodynamic forces on the model and
analysed its response to these forces. A swimming salamander is subjected
to inertial as well as the viscous forces which will be discussed in the next
section of this report. This project was undertaken with the view to realize
certain goals.

1. To invoke maximum possible realism in experimental simulation by
using the results of this analysis.

2. To make predictions about the behaviour of salamander robot subject
to hydrodynamic forces.

3. To help designing the robot by finding out the number of body links
and the size of limbs which aid in proper swimming of the salamander
robot.

4. To check the supposition that it is inertial forces which play a major
role in the swimming of salamander model at high swimming speeds.

Keeping these objective in mind, certain schemes were developed which sug-
gested the formulations for inertial and viscous forces and the model was
subjected to forces calculated from these formulations. First, the motion
of salamander model was studied for forces in 2-D and the study was then
extended to the scheme in which the model was subjected to forces in 3-D.

3 Concept of inertial and viscous forces

When there is relative motion between a solid object and a fluid, certain
forces come into play which retard the relative motion between solid and
fluid. These forces are termed as drag forces. There are two kind of drag
forces: Inertial and Viscous.

1. Inertial Drag: It is the resistance to relative motion caused by inertia
i.e the tendency of a particle may it be solid or fluid, to remain in its
state of rest or of uniform motion. If a solid object moves through a
fluid, it disturbs the state of rest of surrounding fluid particles which
in turn exert normal resistive forces on the solid surface which retard
the motion of solid through the fluid medium.
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2. Viscous Drag: It is the resistance to relative motion caused by no
slipping condition at the solid-liquid interface. No slipping implies
that the relative speed at solid-liquid interface is zero. All real fluids
satisfy no slipping condition at the solid-liquid interface. When a solid
object advances through a fluid, it tends to carry the fluid particles
at the surface along with it whereas the fluid particles tend to retard
the motion of solid object. This results into the development of shear
stress at the solid-liquid interface which retards the moving object and
acts tangentially on the solid surface, resulting into viscous drag.

Formulations for inertial and viscous forces will be discussed later in this
report.

4 Analysis of salamander model under the in-

fluence of forces in 2-D

This section investigates the magnitude of inertial forces versus viscous forces
to ascertain their influence over the motion of salamander model. We dealt
with the problem initially in 2-D as the biological salamander exhibits planar
swimming. Planar swimming implies that the general swimming pattern of
a salamander can be considered as the movement in a plane in a particular
direction and that there is no movement of the center of mass of salamander
in the direction normal to that plane. The attributes of planar swimming
in the salamander model were included through the inclusion of hinge joints
between consecutive links. Thus, by construction, all the undulations were
in a plane as all hinges had their axis of rotation aligned. But the plane
in which undulations were taking place had the freedom to rotate upon the
application of external moments or forces. Analysis of the model in 3-D
will be done later in this report to ascertain if the model exhibits planar
swimming.

4.1 Inertial force approximation

Figure 1 shows the simulated salamander model. This snap can be useful in
understanding the concepts used for analysis, later in this report. It is nec-
essary to have a knowledge of the coordinate frames which were used for the
analysis of motion of the salamander model. Figure 2 shows the coordinate
frames. x-y-z represent the frame in which we investigated the swimming
motion of salamander model and x’-y’ represent the body coordinate frame
i.e. the frame in which forces were applied to the links. X-Y-Z represents
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Figure 1: This picture presents a view of the simulated salamander model.

the global coordinate frame fixed to the enclosure in which the model was
confined but it was not of much use in illustrating the motion of salamander
model. The x-y-z frame represents a plane in which the model undergoes
swimming motion at any instant and there is no movement of the model
perpendicular to the plane at that time instant. To establish if the model
exhibited planar swimming motion, the motion of salamander model was ob-
served over a period of time and the position of center of mass of the model
was recorded at some definite time instants. It was found out that the unit
vectors between any two locations pointed almost in the same direction. This
observation suggests that the motion of center of mass takes place along a
particular direction. The approximate linear motion of the center of mass
enabled us to assume a plane in which the motion of center of mass of the
model took place. The average of unit vectors found above was taken as the
longitudinal direction of motion of the model. The longitudinal component
of velocity was calculated by taking dot product of the velocity of center of
mass of the model in global coordinate frame, with the averaged unit vector
which represented longitudinal direction of motion of the model.

To explain mathematically, if �v is a vector in global coordinate frame with
vx,vy,vz as its components and �a is the averaged unit vector, then longitudinal
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Figure 2: Depiction of coordinate frames encountered in the analysis of swimming
motion of the salamander model. X-Y-Z is the global coordinate frame fixed to
the domain in which the model undergoes swimming motion. x-y-z represents the
coordinate frame which suggests the direction of motion of model at any instant.
x’-y’ signifies the body coordinate frame of the links i.e the frame attached to
individual links and x’ axis for a link represents the body axis of corresponding
link at that instant.
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component of velocity of the model is given by:

vlong = �v · �a (1)

and the magnitude of lateral component of velocity of the model is given by:

|vlat| =
√

v2
x + v2

y + v2
z − v2

long (2)

This formulation was used extensively to calculate the longitudinal and
lateral components of the position and velocity of the center of mass along
with the components of forces acting on the model.

Now, we will have a look at the formulations used for the calculation of
inertial forces acting on the links. The inertial model of force is attributed
to the study by Ekeberg [1] of lamprey motion and the study by Ijspeert [2]
of salamander motion who assumed that the speed of water relative to the
salamander’s body is very high for forces experienced by the creature to be
mainly inertial (i.e. high Reynolds number). It was also assumed that the
parallel and perpendicular components of forces can be calculated separately
for each link (i=1,. . . ,10) according to the formula:

Fi,‖ = λi,‖v
2
i,‖ (3)

Fi,⊥ = λi,⊥v2
i,⊥ (4)

where

λi,‖ =
1

2
Ci,‖Siρ (5)

λi,⊥ =
1

2
Ci,⊥Siρ (6)

vi,‖ and vi,⊥ are the components of velocity of link i relative to water. λi,‖
and λi,⊥ are the coefficients that depend on density of the fluid ρ, the area
perpendicular to movement Si, and the drag coefficients Ci,⊥ and Ci,‖ that
are dependent on the shape of link i. The links in our case were cuboidal in
shape. Body x’ direction (refer to Figure 2) represented parallel direction in
the coefficients mentioned above and y’ and z’ directions were the perpen-
dicular directions for which the drag coefficients were computed.

The values of drag coefficients in Table 1 were chosen for a particular case
to get the representative plots of kinematics of the model and the dependence
of swimming pattern of the model on drag coefficients will be demonstrated
later in this report.

Before discussing the solution scheme for inertial model, it is very im-
portant to discuss the mechanism of swimming in biological salamander.
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Travelling waves are produced in a salamander’s body which propagate from
its head to its tail. The changing shape of creature’s body interacts with the
surrounding water which exerts inertial and viscous forces on the body of
salamander. These forces add up vectorially to provide propulsive force to
the creature.

For the simulation of swimming motion in the model, we superimposed a
sinusoidal travelling wave on the model by means of Proportional Derivative
(PD) control functions. Equation of the travelling wave is given by Equation
7:

θi
∗ = AMP ∗ sin[2π(f.t + (i-1).φ)] (7)

where

• θi
∗ is the desired angle at hinge i.

• AMP is the maximum possible value of θi
∗.

• f is the frequency of travelling wave.

• t is the time instant at which θi
∗ is computed.

• φ is the phase difference between two successive hinges.

A PD controller produce the torque to be applied on a joint to follow a
desired angle trajectory. The value of applied torque is calculated with the
use of Equation 8.

Ti = α(θi
∗ − θi) − β.ωi (8)

where

• Ti is the applied torque at hinge i.

• α is the Proportional gain of PD controller.

• θi
∗ is the desired angle at hinge i.

• θi is the actual angle at hinge i.

• β is the Derivative gain of PD controller.

• ωi is the rate of change of angle at hinge i.

The value of Proportional Gain was taken as 5.0 and the Derivative Gain
was taken as 0.029. The frequency of travelling wave was taken as 0.8 Hz with
its wavelength being equal to one body length of the model. The amplitude
of travelling wave was taken as 0.4 radian i.e 22.91 ◦ which is a measure of
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maximum angle at the hinge joint between two successive links. At this
juncture, it will be very useful to have a look at the comparison of plots
obtained for the angle desired between links at the hinge locations and the
angle actually obtained by application of the PD Control functions with a
set of parameters. There were 9 hinge joints between 10 links and for the
purpose of analysis, we studied the angles obtained at first two hinges and
at the middle hinge. Let θi be the actual angle at hinge i and θi

∗ be the
desired angle at hinge i.

Figure 3(a), 3(b) and 3(c) give the comparison between θ and θ∗ for hinges
1, 2 and 5 respectively. Figure 3(a) shows that the angle obtained at hinge
1 is same as the desired angle and the plot for θ1 coincides with that of θ1

∗.
Figure 3(b) shows that the values for θ2 are same as that for θ2

∗ except for a
transient period in the beginning of motion of the model. It was important to
study the behaviour of θ5 as hinge 5 lies in the middle of body of the model
and the highest torques are needed at the middle hinge. The results for θ5
will therefore, represent the degree of coincidence of θi

∗ and θi for the entire
model. As can be seen from Figure 3(c), there is a high degree of coincidence
between the plot for θ5 and the plot for θ5

∗ except at the extreme values.
But this degree of coincidence in the plots is the best possible considering
the fact that we used same values of the Proportional and Derivatives gains
for PD control of all the hinges.

Figure 4 represents variation in the torques applied to hinges 1, 2 and
5 respectively. It is clear from the plot that the applied torque had the
maximum magnitude for hinge 5 which was quite apparent as we obtained
the maximum degree of non-coincidence between the plots of θ and θ∗ for
hinge 5. Hence the torque required to bring the hinge angle to desired value
was found to be maximum for hinge 5.

Now we proceed towards the description of solution scheme used for gen-
erating the motion of model when subjected to inertial forces in 2-D. The
solution scheme consisted of the following sequence of operations:

1. Determination of components of velocity of the links in global coordi-
nate frame i.e the X-Y-Z frame (refer to Figure 2).

2. Transformation of velocity obtained in step 1 to the coordinate frame
linked to body of the links i.e the x’-y’ frame (refer to Figure 2).

3. Calculation of inertial forces acting on the links (using Equations 3 and
4).

4. Applying inertial forces to respective links in their body coordinate
frames using the functions provided by ODE software.
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Figure 3: Plots for comparison between the desired angle at a hinge and the angle
actually obtained between the links. Figures a, b and c present comparative plots
for hinges 1, 2 and 5 respectively. The dotted curve denotes θi

∗ i.e the desired
angle between the links at hinge i and the solid curve denotes θi i.e the angle
actually obtained at hinge i.
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Link i λi,‖ (kg/m) λi,⊥ (kg/m)

1 0.3 1.925
2 0.2 1.925
3 0.1 1.925
4 0.0 1.925
5 0.0 1.925
6 0.0 1.925
7 0.0 1.925
8 0.0 1.925
9 0.0 1.925
10 0.0 1.925

Table 1: Parameters for the mechanical simulation. Column 1 identifies the link
for which drag coefficients are mentioned in subsequent columns. Column 2 gives
the value of parallel drag coefficient whereas Column 3 mentions the perpendicular
drag coefficient for corresponding link.
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Figure 4: This figure gives the plot of applied torques at hinges 1, 2 and 5 respec-
tively. The solid curve denotes the torque applied at hinge 1 i.e T1. The dashed
curve denotes T2 and the dotted curve represents T5.
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5. Determination of velocity of the links and repetition of steps 2, 3 and
4.

ODE uses Euler integration technique for simulating a rigid body system
through time. Each integration step advances the current time by a given
step size, adjusting the state of all rigid bodies for the new time value.The
specified step size in our case was 1 ms and the process was carried out for
some time after which the velocity of model approached an asymptotic state
at which the mean value of velocity components attained a steady value.

Figures 5(a) and 5(b) demonstrate the motion of center of mass of the
salamander model in the frame of global coordinates where x-direction (refer
to Figure 2) is the longitudinal direction of swimming. The x-coordinate
of center of mass increases continuously and there is a fluctuation observed
in the value of lateral displacement around zero. Inertial forces keep the
salamander model on a straight line path with only a little deviation taking
place in lateral direction. Figure 5(b) demonstrates fluctuations in the lateral
position of center of mass of the model.

Figure 5(c) is the plot of longitudinal and lateral components of velocity
of center of mass of the salamander model. The longitudinal component
i.e. the x-component increases in the beginning when the travelling wave is
initially superimposed on the model and goes on to attain a steady mean
value of 0.24 m/s although there are small perturbations in its instantaneous
value. There is a fluctuation observed in the magnitude of y-component and
its mean value remains close to zero from the beginning of motion explaining
why there was not an appreciable displacement in the lateral direction.

The linearity of longitudinal displacement motivates us to compare ap-
proximate slope of the plot of longitudinal displacement with the mean value
of X-component of velocity. The approximate value of slope turns out to be
0.2384 m/s whereas the mean value of longitudinal component of velocity is
0.2394 m/s. This was expected observing a nearly linear pattern of motion
of the simulated creature.

Figures 6(a) and 6(b) demonstrate the variation in forces on the center
of mass in the lateral and longitudinal direction respectively. These forces
were calculated using the following scheme:

1. Forces on the link i computed using Equations 3 and 4 were transformed
to FX and FY i.e the force components in global coordinate frame using
the functions provided by ODE software.

2. Forces for links i = 1 · · · 10 were added vectorially to obtain the force
components on center of mass of the model in global coordinate frame
i.e FX

cm and FY
cm.
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Figure 5: Kinematic description of the motion of salamander model subject only to
inertial forces. Figure a represents the position of center of mass of the model. The
solid curve gives the value of x-displacement or the longitudinal displacement and
dotted curve provides the magnitude of y-displacement or the lateral displacement
of center of mass. Figure b represents the magnitude of lateral displacement of the
center of mass. This figure demonstrates the fluctuations in lateral position of the
center of mass which is not very prominent against the longitudinal displacement
of center of mass of the model. Figure c gives the velocity plot of center of mass of
the model. The solid curve gives the value of Vx i.e the longitudinal component of
velocity whereas the dotted curve provides the absolute value of lateral component
of velocity, Vy.

14



2 3 4 5 6 7 8 9
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (s)

|F
y| (

N
)

(a)

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

F
x (

N
)

(b)

Figure 6: Figure a demonstrates fluctuations in the magnitude of lateral force on
center of mass of the model i.e the force on the model in y-direction. Figure b
represents the variation in longitudinal component of the force acting on center of
mass of the model.

3. Flong and Flat i.e the longitudinal and lateral components of force were
obtained by subjecting FX

cm and FY
cm to the techniques described in

Equations 1 and 2.

Fluctuation in the forces can be attributed to the travelling wave super-
imposed on the salamander model.

4.2 Demonstration of swimming motion of the model.

Figure 7 demonstrates the swimming motion of salamander model under the
influence of inertial forces. The travelling wave is superimposed on the model
and inertial forces acting on the model due to subsequent motion of the model
provide propulsive force to the model which takes it ahead. The travelling
wave can be identified from Figure 7 by observing curvature in the body of
salamander model. It is evident from Figure that the model advances in
longitudinal direction with hardly any displacement in lateral direction.

After this analysis, we proceeded towards an approach in which we con-
sidered both inertial as well as viscous forces.

4.3 Incorporation of viscous forces in the analysis

The Reynolds number for a flow characterises the ratio of inertial forces
acting on the flow to viscous forces developed in the flow. High Reynolds
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Figure 7: Mechanical simulation of swimming of the salamander model. Succes-
sive snaps of the motion of salamander model demonstrate longitudinal advance of
the model with a little lateral deflection. The curvature in the body of salamander
model signifies the travelling wave superimposed on the model.
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number flow signifies greater inertial forces in comparison to viscous forces.
Formally, the Reynolds number can be expressed as:

ReL = ρ ∗ V ∗ L/µ (9)

where L is the characteristic length of flow phenomena which in this case
is the length of body and V is the characteristic velocity of flow. µ is the
dynamic viscosity of fluid (Nsm−2). The Reynolds number for swimming
movement of salamander model in inertial case corresponding to the maxi-
mum value of longitudinal component of velocity and length of the model,
taken as the characteristic length, came out be 1.88 × 105 which was fairly
high. For flow over a flat plate, Reynolds number of 105 signifies higher
inertial forces as compared to viscous forces. Although the problem is not
similar to a flat plate problem, the value of Reynolds number calculated for
inertial problem probably indicates higher inertial forces as compared to vis-
cous forces. The analysis done in coming sections might help us to predict
the relative magnitudes of inertial and viscous forces. The calculation of
viscous forces (i.e. shear forces) on the links was done using three different
schemes. One schemes involved the calculation of forces from a linear model
in which the shear stress is proportional to velocity of the link. The other two
schemes were developed using the formulations for laminar boundary layer
flow over a flat plate. Main motivation for the use of three schemes was to
obtain the variation of viscous forces with the degree of velocity used in the
formulations for viscous forces, as will be discussed in the following sections.

4.3.1 Linear model of viscous forces

The magnitude of shear stress at a point on the surface of an object moving
through a fluid depends upon the value of velocity gradient at that point in
the normal direction. If x is the direction of movement of the object, then
the shear stress is found from Muralidhar [3] as:

τ = µ(du/dy) (10)

where τ is the shear stress, µ is the coefficient of dynamic viscosity and du/dy
is the velocity gradient in normal direction. For the linear approximation,
the gradient can be approximated as V /δ where V is the velocity of center of
mass of the link and δ is the boundary layer thickness. δ can be approximated
as L/

√
ReL where L is the length of body and the same can be put into

Equation 10. The viscous force acting on each surface of the link will then
be given by:

Fv = τA ≈ µ(V/δ)A ≈ µVA(
√

ReL/L) (11)

17



where Fv is the viscous force and A is the area of surface on which the viscous
force is acting. The Reynolds number value used in Equation 11 was the one
mentioned in previous section of this report.

Figure 8(a) gives a comparison between the inertial and viscous compo-
nents of the longitudinal force acting on center of mass of the salamander
model. Similarly, Figure 8(b) provides a comparison between the magnitude
of inertial and viscous components of the lateral force acting on center of
mass of the salamander model. These force components were computed us-
ing the scheme mentioned for computing the components of inertial force in
Section 4.1. The striking aspect of above plots is the dominance of inertial
forces over viscous forces.

Figure 8(c) presents the fluctuations in velocity components of the sala-
mander model with time. The mean longitudinal component came out to be
0.1997 m/s. Here, the mean value is less as compared to the purely inertial
case due to viscous forces coming into play but viscous forces do not bring
about a very large change in the velocity plot as compared to the one ob-
tained for purely inertial scheme. This fact will be highlighted by the study
of swimming motion of the model when subjected to viscous forces according
to the other two schemes.

4.3.2 Quadratic scheme of viscous forces

This model was worked out making the assumption that the fluid flow over
the links lies in the laminar regime. Treating the flow over the links as
a laminar boundary layer flow over a flat plate, we used the formulations
for shear forces in a flat plate boundary layer problem. The average drag
coefficient for flow over an object is defined as:

CD = τ/(
1

2
ρV 2) (12)

where

• τ is the shear stress exerted by the fluid at solid surface.

• ρ is the density of fluid.

• V is the relative velocity between the two medium.

For a flat plate problem, the average drag coefficient over the length of
plate is found out from Muralidhar [3] as:

CD = 1.328/
√

ReL (13)
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Figure 8: Plots for linear scheme: Figure a demonstrates the contribution of
inertial and viscous forces to the longitudinal force acting on center of mass of the
model. The solid curve represents inertial contribution to the longitudinal force
whereas dotted curve represents the contribution of viscous forces to the force
on center of mass in the longitudinal direction. Figure b gives the contribution
of inertial and viscous forces to the lateral force acting on center of mass of the
model. The solid curve represents the magnitude of inertial contribution to the
lateral force whereas dotted curve represents the contribution of viscous forces
to the force in z-direction. Figure c gives velocity plot of the model with solid
line representing Vx i.e the longitudinal component of velocity and dotted line
representing abs(Vy) i.e the magnitude of lateral component of velocity of center
of mass of the model.
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In this case, ReL was calculated using the maximum velocity of inertial
case and V took the value of components of velocity of center of mass of the
link for the computation of viscous forces in x’ and y’ directions of the body
coordinate frame. Viscous force acting on each surface of the link is given
by:

Fv = CD(
1

2
ρV 2)A = 1.328(

1

2
ρV 2)A/

√
ReL (14)

where A is area of the surface for which viscous force is calculated.
Figures 9(a) and 9(b) demonstrate fluctuations in the value of inertial

and viscous components of the longitudinal and lateral forces respectively,
acting on center of mass of the salamander model. These plots also show
that inertial forces are much higher in magnitude than viscous forces and so
the movement of salamander model in this case, was primarily influenced by
inertial forces.

Figure 9(c) gives fluctuations in the velocity components of center of mass
of the model. The mean longitudinal velocity in this case turned out to be
0.1776 m/s which was less as compared to mean longitudinal velocity for the
linear model of viscous forces.

4.3.3 Extension of quadratic scheme of viscous forces

This model was an extension of previous model in the sense that in this model,
we used same formulations as presented in the previous section for calculating
viscous forces. Using the formulations for CD as mentioned in Equations 12
and 13 and the formulation for Fv (Equation 14), the expression for viscous
force on a surface turned out to be:

Fv = CD(
1

2
ρV 2)A = 1.328(

1

2
ρV 2)A/

√
Rel (15)

where
Rel = ρ ∗ V ∗ l/µ (16)

This method was different from previous analysis in the sense that we put
the formulation for Reynolds number (Equation 16) in Equation 15 rather
than using a constant value for Reynolds number, as we have been doing in
previous two schemes of viscous forces. V in this case was the instantaneous
velocity component of center of mass of the link and l was the significant di-
mension of link for computing the shear stress which was length or breadth of
the link depending upon the surface for which shear stresses were computed.
Therefore,

Fv = 0.664ρV 3/2A/
√

ρl/µ (17)
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Figure 9: Plots for quadratic scheme: Figure a demonstrates the contribution
of inertial and viscous forces to the longitudinal force acting on center of mass
of the model. The solid curve represents inertial contribution to the longitudinal
force whereas dotted curve represents the contribution of viscous forces to force
on the center of mass in x-direction. Figure b gives the contribution of inertial
and viscous forces to the lateral force acting on center of mass of the model. The
solid curve represents the magnitude of inertial contribution to the lateral force
whereas dotted curve represents the contribution of viscous forces to the force in
y-direction. Figure c gives velocity plot of the model with solid curve representing
Vx i.e the longitudinal component of velocity and dotted line representing abs(Vy)
i.e the absolute value of lateral component of velocity of center of mass of the
model.
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Figure 10: Plots for power 3/2 scheme: Figure a demonstrates the contribution of
inertial and viscous forces to the longitudinal force acting on center of mass of the
model. The solid curve represents inertial contribution to the longitudinal force
whereas dotted curve represents the contribution of viscous forces to the force on
center of mass in the x-direction. Figure b gives the contribution of inertial and
viscous forces to the lateral force acting on center of mass of the model. The solid
curve represents the magnitude of inertial contribution to the lateral force whereas
dotted curve represents the contribution of viscous forces to the force in y-direction.
Figure c gives velocity plot of the model with solid curve representing Vx i.e the
longitudinal component of velocity and dotted curve representing abs(Vy) i.e the
absolute value of lateral component of velocity of center of mass of the model.
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Figures 10(a) and 10(b) present variations in inertial and viscous com-
ponents of the lateral and longitudinal forces experienced by center of mass
of the salamander model. In this case too, we find the magnitude of inertial
forces being much higher than that of viscous forces.

Figure 10(c) exhibits fluctuations in the components of velocity of center
of mass of the salamander model. The mean value of x-component came
out to be 0.1926 m/s which lies between the values, we found for mean
longitudinal component of velocity for the purely inertial scheme and linear
viscous scheme on one side and the quadratic viscous scheme on other side.

4.4 Comparison of schemes suggested for the compu-
tation of inertial and viscous forces

In this section, we will try to bring about a comparison between the be-
haviour of salamander model when subjected to different schemes of force
computation, we have discussed so far. This is essential from the point of
view of assessing the relative importance of inertial and viscous forces.

Figure 11 gives a comparative plot of the longitudinal component of veloc-
ity of the salamander model with respect to time for four schemes discussed
so far.

The plot at the top corresponds to purely inertial scheme whereas the
plots below are the one which envisage both inertial as well as viscous forces.
The relative nature of plots came out as predicted since introduction of vis-
cous forces to the model was certain to bring about a reduction in the magni-
tude of velocity of progression of the model. It was interesting to analyse the
relative nature of plots for the schemes envisaging viscous forces. From the
plot, it is evident that among the schemes involving the viscous forces, the
mean longitudinal component of velocity was greatest for the linear scheme
and least for the quadratic scheme of viscous forces. This was expected as
for high speed flows, v2 term dominates the term which is linear in v and
so the quadratic scheme involving viscous forces proportional to v2 damped
motion of the model to a greater extent as compared to the linear model of
viscous forces, which involved the application of viscous forces proportional
to v. Experimentation with the salamander robot will determine real veloc-
ity plot for the model and will also help to ascertain the relative influence of
various inertial and viscous forces on the swimming model.

Out of the three schemes suggested for viscous forces, we consider the lin-
ear viscous scheme as the most realistic as it was obtained from the basic laws
governing boundary layer formation over an object moving through a fluid.
The other two schemes were obtained by bringing about some modifications
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Figure 11: This figure gives plots of the longitudinal component of velocity for four
schemes. Vx represents the longitudinal component of velocity of center of mass
of the model. The solid curve gives Vx plot for purely inertial case. The dashed
curve lies immediately below the inertial curve and it represents the linear scheme
for viscous force computation. The dash-dot curve representing power 3/2 viscous
model, lies below the plot of linear viscous model and the dotted curve representing
the quadratic model of viscous force computation, lies below the other three plots.
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Figure 12: Figure a presents velocity plot for the model subject to purely viscous
forces: This figure represents the case in which only viscous forces were applied
on the model from the beginning of its motion. Vx is the longitudinal component
of velocity of the model. Figure b compares the longitudinal speed attained by
the model for purely viscous case with the longitudinal speed attained in purely
inertial case, discussed in Section 4.1. The solid curve represents Vx for inertial
case whereas dotted curve denotes Vx for viscous case.

in the formulations for viscous drag for laminar boundary layer flow over a
flat plate which was a very strong assumption for relative motion between
the model and surrounding fluid. The main motive behind the inclusion of
viscous forces of higher degree of v was to show that for high speed flows,
drag acting on the flow increases with increase in the degree of v present in
the formulation for viscous forces.

4.5 Analysis of swimming motion of the model in a
purely viscous medium

This analysis was done with the aim of gaining insight into the motion of
salamander model when it encounters a medium where it is subjected to
purely viscous forces.

Figure 12(a) represents the case in which the model was subjected only
to viscous forces from the beginning of its motion. The mean longitudinal
velocity came out to be 0.0733 m/s. Figure 12(b) presents the comparison
which can be done between the velocity plot for purely viscous case and the
plot obtained for Vx, for purely inertial case. Figure 12(b) shows that the
transient time interval after which the salamander model attains a stable
value of Vx when subjected to only viscous forces was about 17 seconds
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whereas the time taken in the scheme involving only inertial forces was about
5 seconds. This large difference in the time intervals gives an indication of the
probable dominance of inertial forces over viscous forces for the swimming
motion of salamander model driven by travelling waves of high frequency.

4.6 Sensitivity of swimming motion of the model to
parallel drag coefficient λi,‖

In this section, dependence of the velocity of salamander model on the parallel
drag coefficient i.e. λi,‖ will be demonstrated. The scheme for analysis centers
around drag coefficient for the first link as it is the first link which directly
faces the fluid. The remaining links are exposed to the fluid later so that they
do not experience the same resistance as experienced by first link. The value
of drag coefficients are determined experimentally for different geometries and
we did not have the data for parallel drag coefficient of different links. We
worked upon five different schemes, each one of them sugggesting a certain
variation in the value of drag coefficients for different links. For this analysis,
the value of λ1,‖ was varied from 0.1 to 0.9 in steps of 0.05. The five schemes
mentioned above can be understood by defining a ratio ri where

ri = λi,‖/λ1,‖ (18)

Table 2 shows the five schemes used for representing variation in the value
of parallel drag coefficient of the links relative to λ1,‖.

The drag coefficients were set to the values mentioned in Table 2 and
the variation in longitudinal component of velocity was obtained. The mean
values of longitudinal component of velocity were plotted against the corre-
sponding value of λ1,‖.

Figure 13(a) shows the five schemes suggested for obtaining variation
in the value of parallel drag coefficient of the links. The value of ri for a
particular scheme for a particular link signifies the parallel drag coefficient
of that link with respect to λ1,‖. Figure 13(b) shows the variation of mean
value of the longitudinal component of velocity with respect to λ1,‖ for all
five schemes. λ1,‖ was chosen as the parameter for analysis.

All plots in Figure 13(b) suggest that the mean value of longitudinal com-
ponent of velocity of the model decreases as we proceed towards the higher
values of drag coefficients which is obvious as high values of drag coefficients
signify greater opposition to the motion of salamander model. As compared
to the other four schemes, the third scheme showed a relatively higher values
of the mean x-component of velocity for same values of λ1,‖. This happened
because drag coefficients of the links 2 to 10 experienced a sharper decrease
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Link i (ri,1) (ri,2) (ri,3) (ri,4) (ri,5)
1 1.000 1.0000 1.000 1.0 1.0
2 0.667 0.5000 0.333 0.9 1.0
3 0.333 0.2500 0.111 0.8 1.0
4 0.167 0.1250 0.037 0.7 1.0
5 0.083 0.0625 0.020 0.6 1.0
6 0.083 0.0625 0.020 0.5 1.0
7 0.083 0.0625 0.020 0.4 1.0
8 0.083 0.0625 0.020 0.3 1.0
9 0.083 0.0625 0.020 0.2 1.0
10 0.083 0.0625 0.020 0.1 1.0

Table 2: This table provides the information about five different schemes consid-
ered for analysis of sensitivity of the model to parallel drag coefficient of the links.
ri,j is the ratio of parallel drag coefficient of link i with respect to λ1,‖, for the
Scheme j. Column 1 identifies the link for which value of ri will be mentioned
in the same row. The other five columns depict variations in the value of parallel
drag coefficients present in five different schemes.
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Figure 13: Figure a graphically represents five different schemes. The link number
i is mentioned as x-coordinate of the plot and ri is plotted on the y-axis. The five
different schemes are shown by ·, + , * , x and o respectively. Figure b demonstrates
variations in Vx,mean, the mean value of longitudinal component of velocity with
respect to λ1,‖ which was chosen as the reference for sensitivity analysis. The
results of five different schemes have been shown by ·, + , * , x and o respectively,
for the corresponding scheme in Figure a.
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in value with respect to λ1,‖ in the third scheme as compared to that in the
other four schemes. Thus relatively lower values of drag coefficients for links
2 to 10 for same value of λ1,‖ amounted to a lower overall drag and hence
higher values of the mean longitudinal component of velocity.

5 Analysis of slow swimming motion of the

salamander model

In this section, slow swimming motion of the salamander model will be dis-
cussed. Slow swimming denotes low Reynolds number associated with the
relative motion between the model and surrounding fluid. This analysis is,
therefore more of a qualitative analysis in which we will compare the influ-
ence of inertial and viscous forces over the motion of model at slow swimming
speeds. At low swimming speeds, inertial forces acting on the moving model
are not very important and so it was very difficult to correctly ascertain the
drag coefficients necessary for computing inertial forces as described in Sec-
tion 4.1. Moreover, we intended to use the linear scheme of viscous forces as
the formulations determining viscous forces as defined in Section 4.3.1. The
formulation of viscous forces was given in Section 4.3.1 as:

Fv = τA ≈ µ(V/δ)A (19)

This equation can be written as:

Fv ≈ k(V)A (20)

where k is a constant whose value was approximated using the value of dy-
namic viscosity (µ) of water and the typical value of boundary layer thickness
δ for a slow speed problem. For slow speed of relative motion between an
object and a fluid, the boundary layer thickness δ is very small. Hence for
the linear case, we took the boundary layer thickness to be of the order of
0.01 mm to get the value of k to calculate viscous forces.

As the swimming speed of salamander model depends largely upon the
frequency of travelling wave superimposed on the model, the frequency of
travelling wave was brought down from 0.8 Hz to 0.2 Hz.

The slow speed problem was addressed by considering three cases:

1. Model subjected to only inertial forces.

2. Model subjected to inertial as well as viscous forces.

3. Model subjected to only viscous forces.
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The value of drag coefficients for calculating inertial forces were kept the
same as that in Section 4.1 and are mentioned in Table 3. At low Reynolds
number, inertial terms in the Navier-Stokes equation are relatively unimpor-
tant; the flow pattern is determined by viscous forces. As a consequence,
the expressions for velocity, drag forces, and the like do not involve the fluid
density directly. However, the value of drag coefficients were kept the same
as in previous cases as we did not have explicit formulations for calculating
the drag coefficients at low swimming speeds.

Link i λi,‖ (kg/m) λi,⊥ (kg/m)

1 0.3 1.925
2 0.2 1.925
3 0.1 1.925
4 0.0 1.925
5 0.0 1.925
6 0.0 1.925
7 0.0 1.925
8 0.0 1.925
9 0.0 1.925
10 0.0 1.925

Table 3: Parameters for mechanical simulation in the slow swimming problem.
Column 1 identifies the link for which drag coefficients are mentioned in subsequent
columns. Column 2 gives the value of parallel drag coefficient whereas Column 3
mentions the perpendicular drag coefficient for corresponding link.

5.1 Analysis involving only inertial forces.

Figure 14 represents the motion of model under slow swimming conditions
and subjected only to inertial forces calculated using Equations 3 and 4
described in Section 4.1 and the values of drag coefficients mentioned earlier
in this section. The longitudinal component of velocity i.e Vx attained a mean
value of 0.0542 m/s. This plot alone does not convey much information about
the extent of influence of inertial forces on the swimming of salamandet model
at low swimming speeds. So we proceed to next section in which the model
will be subjected to both inertial as well as viscous forces.
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Figure 14: This figure gives the velocity plot of the slow swimming motion of
salamander model subject only to inertial forces with the solid curve representing
Vx i.e the longitudinal component of velocity and dotted curve representing abs(Vy)
i.e the magnitude of lateral component of velocity of center of mass of the model.
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Figure 15: This figure gives the velocity plot of slow swimming motion of the
model subject to inertial as well as viscous forces with the solid curve representing
Vx i.e the longitudinal component of velocity and dotted curve representing Vy i.e
the lateral component of velocity.
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Figure 16: Plots for slow speed swimming of the model subject to both inertial
as well as viscous forces: Figure a demonstrates the contribution of inertial and
viscous forces to the longitudinal force acting on center of mass of the model. The
solid curve represents inertial contribution to the longitudinal force whereas dotted
curve represents the contribution of viscous forces to the force on center of mass,
in the longitudinal direction. Figure b gives the contribution of inertial and viscous
forces to the lateral force acting on center of mass of the model. The solid curve
represents inertial contribution to the lateral force whereas dotted curve represents
the contribution of viscous forces to the force in lateral direction.

5.2 Application of inertial as well as viscous forces to
the model.

In this case, the model was subjected simultaneously to inertial and viscous
forces. The viscous forces were calculated using the formulations described
earlier in this section. Figure 15 shows variation in the components of velocity
of center of mass of the model. The longitudinal component of velocity, Vx

had a mean value of 0.0152 m/s and this value was lower compared to values
obtained in Section 5.1. The lateral component of velocity, Vy fluctuates
around zero and the mean value of Vy stays very close to zero.

Figures 16(a) and 16(b) give the contribution of inertial and viscous forces
to the forces acting on center of mass of the model. Both the plots demon-
strate that viscous forces make a greater contribution to the longitudinal and
lateral forces acting on center of mass of the model. In next section, we will
study the motion of model subject only to viscous forces.

31



0 10 20 30 40 50
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Time (s)

V
x , 

V
y (

m
/s

)

Figure 17: This figure gives the velocity plot of slow swimming motion of the
model subject only to viscous forces with the solid curve representing Vx i.e the
longitudinal component of velocity and dotted curve representing Vy i.e the lateral
component of velocity of center of mass of the model.

5.3 Analysis of swimming motion of the model subject
only to viscous forces.

This section aims at studying the motion of salamander model subject only
to viscous forces. Figure 17 shows the velocity plot for motion of the model
when only viscous forces were applied to it. The longitudinal velocity, Vx had
a mean value of 0.0132 m/s which is lowest of all the three cases discussed
so far. The lateral component of velocity, as in the earlier cases had a mean
value very close to zero. In next section, we cmparatively analyse the results
obtained for three cases discussed for the slow speed problem.

5.4 Comparison of force schemes used for analysing
slow swimming motion of the salamander model.

This section aims at the comparative analysis of three force schemes discussed
earlier in this section and used for the analysis of slow swimming motion of
the salamander model. Figure 18 demonstrates variations in the longitudinal
component of velocity for three force schemes discussed in Sections 5.1, 5.2
and 5.3 respectively. Figure 18 shows that inertial forces might not be very
prominent in determining the slow swimming motion as the plot correspond-
ing to purely inertial case attains a higher value of the velocity as compared
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Figure 18: This figure gives the plot of longitudinal component of velocity for three
force schemes. Vx represents the longitudinal component of velocity of center of
mass of the model. The solid curve gives Vx plot for purely inertial case. The
dotted curve lies below the inertial curve and it represents the scheme in which
the model was subjected to inertial as well as viscous forces. The dashed curve
represents the results for purely viscous scheme and it lies below the plots for other
two schemes.
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to the other two schemes. Plots for the other two schemes discussed in Sec-
tions 5.2 and 5.3 almost coincide, indicating the dominant role which viscous
forces might play over inertial forces, in determining slow swimming motion
of the salamander model.

As mentioned earlier, this study does not accurately reflect the promi-
nence of one type of force over another force. Intuitively, at slow swimming
speeds, viscous forces must dominate the motion of model. This study can
be considered as a qualitative analysis of various forces at low swimming
speeds. Experiments performed on a salamander robot will help to analyse
the quantitative influence of inertial and viscous forces and those results can
also be compared with the results of this analysis to ascertain the accuracy
of this analysis, both qualitatively and quantitatively.

6 Analysis of salamander model under the in-

fluence of forces in 3-D

In Section 4, we studied the motion of salamander model subject to inertial
and viscous forces in 2-D. This section extends that analysis by incorporating
forces in the 3 rd dimension and then studying the motion of model under
the influence of forces in 3-D. With the motive to study 3-D motion of the
model, we applied initial external forces and torques to the model to give
initial translational and rotational accelerations respectively to the plane in
which the model swims and analysed the motion of plane with respect to
time. We used two schemes to impart initial accelerations (translational and
rotational) to the plane which were as follows:

1. Translational Perturbations: All the body links were subjected to an
initial force of −0.1 N in the -ve Z (refer to Figure 2) direction at the
beginning of motion for a time span of 5 seconds and the applied forces
were removed after the mentioned time span. The subsequent motion
of model was studied to analyse the influence of initial forces.

2. Rotational Perturbations: All the body links were subjected to an ini-
tial torque of 0.001 Nm about the x’ axis which was the body coordinate
axis of a link as explained in Figure 2, for a time span of 5 seconds and
the applied moments were then removed. The effect of initial torques
on the model was then analysed.

Figures 19(a) and 19(b) respectively depict the application of initial
translational and rotational perturbations to the salamander model. Hav-
ing worked out the nature of initial forces and torques required to render
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Figure 19: This figure depicts the application of initial perturbations to the sala-
mander model. Figure a depicts the application of initial forces on the links in -ve
Z direction. Figure b depicts the application of initial torques on the links about
the direction of their body axis i.e x’ axis.
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3-dimensional motion to the salamander model, the model was subjected to
two different schemes of force application, one incorporating the application
of only inertial forces and the other including application of both inertial as
well as viscous forces.

Having understood the procedure used for simulating the motion of model
in 3-D, we can now proceed to the analysis of motion of the model upon the
application of forces according to two schemes of forces used for analysis in
2-D in Section 4.1 and Section 4.3.1.

6.1 Application of inertial forces to the model

For calculating inertial forces, the basic formulation remains the same as in
Section 4.1, only addition being the inertial force in z’-direction of the body
coordinate frame of links.

Fi,‖ = λi,‖v
2
i,‖ (21)

Fi,⊥y′ = λi,⊥y′v
2
i,⊥y′ (22)

Fi,⊥z′ = λi,⊥z′v
2
i,⊥z′ (23)

where

λi,‖ =
1

2
Ci,‖Siρ (24)

λi,⊥y′ =
1

2
Ci,⊥y′Siρ (25)

λi,⊥z′ =
1

2
Ci,⊥z′Siρ (26)

vi,‖, vi,⊥y′ and vi,⊥z′are the components of velocity of link i relative to water.
The force structure is same as that in Section 4.1, only difference being that
in this case force in the direction of z’-axis of the body coordinate frame (refer
to Figure 2) attached to the links also becomes significant as motion of the
model takes place in 3-D. λi,‖, λi,⊥y′ and λi,⊥z′ are drag coefficients identical
to the ones discussed in Section 4.1 of this report. The shape of link used for
calculating the drag coefficients was that of a cuboid of the dimensions of a
body link. For calculating λi,⊥y′ , the value for Si was area of the cuboidal
face whose normal was in y’ direction. Similarly, we calculated λi,⊥z′ using
the area of cuboidal face whose normal was in z’ direction.

Table 4 suggests the parameters used for simulating the swimming motion
of salamander model in 3-D.

The parameters for travelling wave superimposed on the model were kept
the same as that for 2-D case. The scheme for generating the motion of
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salamander model in 3-D is described for the two kinds of perturbations
mentioned earlier in this section.

6.1.1 Translational Perturbations

The scheme for applying translational perturbations was as following:

1. Application of initial force of −0.1 N for 5 seconds, on the links in
the -ve Z-direction (refer to Figure 2). These initial forces were meant
to impart an initial translational acceleration to the model in -ve Z-
direction.

2. Determination of components of velocity of the links in global coordi-
nate frame i.e X-Y-Z frame (refer to Figure 2).

3. Transformation of velocity obtained in step 2 to coordinate frame linked
to the body of links i.e x’-y’ frame (refer to Figure 2).

4. Calculation of inertial forces acting on the links (using Equations 21,
22 and 23).

5. Applying forces to respective links in their body coordinate frames
using the functions provided by ODE software.

6. Determination of velocity of links and repetition of steps 3, 4 and 5.

Figure 20 depicts a plot of variation in VZ , i.e the component of velocity
of center of mass of the model in global Z-direction. This plot shows that
the magnitude of VZ increases under the influence of initial forces and then
attains a terminal velocity. After the forces are removed, the magnitude of
VZ starts decreasing and the rate of this decrease can be used as a basis to
compare the influence of various drag forces on the motion of model which we
will be doing in this report once we analyse the results for schemes involving
viscous forces as well.

6.1.2 Rotational Perturbations

The scheme for applying rotational perturbations was as following:

1. Application of initial torques of −0.001 Nm for 5 seconds, on the links
about the x′-direction (refer to Figure 2). These initial torques were
meant to impart an initial rotational acceleration to the links about
their body axis i.e x’ axis.
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Link i λi,‖ (kg/m) λi,⊥y′ (kg/m) λi,⊥z′ (kg/m)

1 0.3 1.925 1.225
2 0.2 1.925 1.225
3 0.1 1.925 1.225
4 0.0 1.925 1.225
5 0.0 1.925 1.225
6 0.0 1.925 1.225
7 0.0 1.925 1.225
8 0.0 1.925 1.225
9 0.0 1.925 1.225
10 0.0 1.925 1.225

Table 4: Parameters for mechanical simulation of the swimming motion of sala-
mander model in 3-D. Column 1 identifies the link for which coefficients are men-
tioned in the same row. Column 2 gives the value of parallel drag coefficient
whereas Column 3 and Column 4 mention the perpendicular drag coefficients for
corresponding link.
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Figure 20: Plot for VZ , i.e the component of velocity of the model in global Z-
direction. It signifies the rate of downward motion of model under the influence
of initial downward forces on the body links.
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2. Determination of components of velocity of the links in global coordi-
nate frame i.e X-Y-Z frame (refer to Figure 2).

3. Transformation of velocity obtained in step 2 to the coordinate frame
linked to the body of links i.e x’-y’ frame (refer to Figure 2).

4. Calculation of inertial forces acting on the links (using Equations 21,
22 and 23).

5. Applying forces to respective links in their body coordinate frames
using the functions provided by ODE software.

6. Determination of velocity of links and repetition of steps 3, 4 and 5.

This analysis was performed with the motive of analysing the angular
velocity of plane in which the model swims, about the longitudinal direction
of motion of the model. The longitudinal direction was obtained by the
scheme illustarted in Section 4.1. Rather than analysing angular velocity
of all the links, we chose to perform the analysis for one of the links as all
the links were connected by hinge joints, with the hinge axes in direction
of normal to the plane in question. So the analysis of rotational motion of
one link can convey the required information about rotation of the plane of
swimming of the model. We chose the angular velocity of link 5 (ω5) as the
basis of our analysis. The angular velocity was obtained for link 5, in the
global coordinate frame with the help of function provided by ODE software.
The component of angular velocity (ωx,5) in the longitudinal direction i.e x-
direction (refer to Figure 2) was obtained by the use of Equation 1.

Figure 21 depicts ωx,5, i.e the component of angular velocity of the body
link 5 about the longitudinal direction of motion of the model. The plot
depicts that angular velocity of the plane increases in the beginning under
the influence of initial torque on the links but starts to decrease as soon
as the torque is withdrawn. This decrease can be attributed to the inertial
drag acting on the model. As was mentioned in the case of translational
perturbations, it will be an interesting proposition to analyse and compare
the rotation rates for other force schemes.

6.2 Incorporation of viscous forces in the analysis

In this section, we study the motion of model subject to simultaneous appli-
cation of both inertial as well as viscous forces. For computation of viscous
forces, we adhered to the linear model of viscous forces presented in Section
4.3.1 with the formulation being:

Fv = τA ≈ µ(V/δ)A (27)
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Figure 21: Plot for ωx,5, i.e the component of angular velocity of body link 5 in
longitudinal direction. It signifies the rate of rotation of plane of swimming of the
model under the influence of initial torques on the body links.

Equation 27 was used to calculate the viscous forces in all the three axis
directions of the body coordinate frame attached to the links. Viscous forces
so computed were applied to the model along with inertial forces computed
according to the formulations presented in Section 6.1 and subsequent motion
of the model was observed.

Figure 22 depicts the influence of initial downward forces on the model
subjected to both inertial and viscous forces. We find that the plot is similar
to that obtained in the previous case involving only inertial forces (refer to
Figure 20).

Figure 23 depicts ωx,5, i.e the angular velocity component of the body
link 5 about the longitudinal direction of motion of the model and the model
was subjected to both inertial as well as viscous forces. The plot depicts that
ωx,5 obtained using this force scheme had the same profile as that obtained
for the inertial force scheme discussed in Section 6.1. In next section, we
will make a comparative analysis of the results obtained for the two forces
schemes discussed in Sections 6.1 and 6.2.

6.3 Comparison of results obatined for the two force
schemes

The motive of applying initial perturbations to the model was to ascertain
the influence of external forces and torques on the model. We used different
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Figure 22: Plot for VZ , i.e the component of velocity of the model in global Z-
direction. This plot was obtained for the scheme in which the model was subject
to both inertial as well as viscous forces. It signifies the rate of downward motion
of model under the influence of initial downward forces on the body links.
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Figure 23: Plot for ωx,5, i.e the component of angular velocity of body link 5 in
longitudinal direction. This plot was obtained for the scheme in which the model
was subjected to inertial as well as viscous forces. It signifies the rate of rotation
of plane of swimming of the model under the influence of initial torques on the
body links.
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Figure 24: Figure a presents a comparison between the values obtained for VZ for
two force schemes discussed in the previous two sections. The solid curve represents
the plot for inertial scheme whereas dotted curve presents the plot for the scheme
involving inertial as well as viscous forces. Figure b presents a comparison between
the values obtained for ωx,5 for two force schemes. The solid curve represents the
plot for inertial scheme whereas dotted curve presents the plot for scheme involving
inertial as well as viscous forces.

force schemes to find out the extent to which various force schemes resist the
influence of external perturbations on the motion of model. Figures 24(a) and
24(b) depict the comparison between the results obtained for two schemes
used in Sections 6.1 and 6.2. Both the figures indicate that plots obtained for
the two schemes almost coincide indicating that the addition of viscous forces
in second scheme did not bring about much change in the results obtained.
However, we need the help of results of experimentations on a salamander
robot to ascertain if it is inertial forces which hold the key to movement of
the salamander model at high swimming speeds.

6.4 Demonstration of swimming motion of the model
in 3-D

Figure 25 demonstrates swimming motion of the model when forces were ap-
plied on the links in 3-D. The figure helps in sustaining the concept of planar
swimming. The motion of salamander model as shown in Figure 25, can be
considered as a plane which is moving in a particular direction. This plane
signifies the motion of center of mass of the model with the aforementioned
direction being the longitudinal direction of motion of the model.
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Figure 25: Mechanical simulation of swimming of the salamander model in 3-
D. Successive snaps of motion of the model highlight a direction along which the
model progressed with time. This direction is the longitudinal direction of motion
of the model.
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7 Analysis of swimming motion of the legged

salamander model

Having analysed the motion of a snake i.e.non-legged model of the salamander
in previous sections, we considered it important to analyse the influence of
presence of limbs on the motion of salamander model. The necessity of this
analysis arose from the fact that the design proposed for construction of the
robot which could emulate the swimming motion of a biological salamander,
possessed limbs. The code for legged model was developed by Simon Capern,
an undergraduate student at EPFL as a part of his semester project and I
analysed the influence of hydrodynamic forces on the model generated by his
code.

The body framework of salamander model was same as that described in
Section 2 with the exception of four limbs which were added to the body of
salamander model. Each of these limbs had a construction which consisted
of three capped cylinders of dimensions indicated in the Table 5. A capped
cylinder is a cylinder with hemispherical end faces. A pair of these limbs was
attached to body links 3 and 8 respectively, by one degree of freedom hinge
joint with hinge axis set in the direction of local y’ axis of the body links
described in Section 4.1. These legs were special in the sense that they had
the attributes of both limbs as well as wheels.

Cylinder i Radius(ri) (m) Length(li) (m)
1 0.015 0.06
2 0.015 0.04
3 0.021 0.001

Table 5: Dimensions for capped cylinders which constituted the limbs of legged
model. Column 1 identifies the cylinder number and the subsequent columns
provide dimensions of that cylinder.

To describe the relative orientation of three capped cylinders in a limb
structure, capped cylinder1 was linked on one longitudinal end, to a body
link by one degree of freedom hinge joint and was linked to cylinder 2 by one
degree of freedom hinge joint on other longitudinal end. Capped cylinder
2 was linked to cylinders 1 and 3 on its longitudinal ends by one degree of
freedom hinge joints. Capped cylinder 3 was free at one end. In our analysis,
all hinge joints described above except the joint of Cylinder 1 with the body
link, were locked. The orientation and structure of the limbs was as shown in
Figure 26. This structure and orientation was in accordance with the design
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Figure 26: This figure depicts the structure of limbs along with the relative ori-
entation of three capped cylinders in the configuration of limbs.

proposed for construction of the salamander robot, mentioned earlier in this
section.

Having fixed the structure and orientation of limbs, we analysed the in-
fluence of limbs on various aspects of motion of the salamander model. The
attributes of travelling wave superimposed on the model were the same as
described in Section 4.1 of the report.

7.1 Influence of limbs on the speed of salamander model.

We applied the inertial force scheme described in Section 4.1 as the basis
of comparative analysis between the motion of snake and legged salamander
model. The need to analyse the influence of size of limbs on the motion of
model motivated us to compute the velocity of model for four sets of values
of drag coefficients for the limbs corresponding to limbs of different radii,
described in Table 6.

The methods of computation and application of inertial forces to the
legged salamander model were the same as that described in Section 4.1.
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Intuitively the speed of center of mass of the model was bound to decrease
with the addition of greater inertia to the snake model in form of limbs,
accompanied by an increase in inertial drag encountered by the model due
to the presence of limbs. It was however, an interesting proposition to find
out the influence of limbs on the speed of salamander model. Figures 27(a),
27(b), 27(c) and 27(d) give velocity plots for the four sets of values of drag
coefficients for the limbs, presented in Table 6.

The mean value of longitudinal component of velocity for four schemes
of drag coefficients has been presented in Table 7. It can be easily noticed
in Table 7 that the lowest value of mean longitudinal speed was obtained
for scheme suggesting the largest value for drag coefficients among all the
proposed schemes for drag coefficients. There was a great difference between
the values obtained for different schemes suggesting the fact that the struc-
ture and orientation of the limbs can play a crucial role in determining the
swimming speed of salamander model. It was an interesting proposition to
compare variations in the longitudinal speeds for the legged model with the
plot obtained for longitudinal speed of the snake model, presented in Section
4.1 of the report.

Figure 28 clearly depicts the influence of presence of limbs on the motion
of salamander model. The mean longitudinal speed of the legged model
for different values of drag coefficients was considerably lesser than that for
the snake model. For the legged model, the schemes with lower values of
drag coefficients resulted into a higher value of mean longitudinal speed as
compared to schemes proposing a higher value of drag coefficients. Since the
drag coefficients are also dependent upon the orientation of limbs relative to
the flow of surrounding fluid, the figure suggests that the orientation of limbs
should be the one resulting into lesser values of drag coefficients and hence,
lesser drag encountered by the model during its motion.

Scheme i λi,‖ (kg/m) λi,⊥y′ (kg/m) λi,⊥z′ (kg/m)

1 0.04 0.1 0.1
2 0.1 0.3 0.3
3 0.2 0.6 0.6
4 0.353 0.9 0.9

Table 6: This table presents four schemes representing drag coefficients for the
limbs. Column 1 identifies the scheme for which coefficients are mentioned in the
same row. Column 2 gives the value of parallel drag coefficient of a limb whereas
Column 3 and Column 4 mention perpendicular drag coefficients for the limb.
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Figure 27: Plots of components of velocity of the legged salamander model when
only inertial forces were applied to the model. The velocity plots in this figure
represent the results obtained for the schemes of drag coefficients mentioned in
Table 6. Figures a, b, c and d show the results obatined for Scheme 1, 2, 3 and
4 respectively, of the drag coefficients mentioned in Table 6. The solid curve
represents the longitudinal component of velocity of center of mass of the model
and dotted curve represents the magnitude of component of velocity in the lateral
direction. x-y axis represent the longitudinal and lateral direction respectively
of motion of the model, hence the longitudinal component of velocity has been
represented as Vx and the lateral component of velocity has been represented as
Vy.
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Scheme i Vx,mean (m/s)
1 0.2064
2 0.1729
3 0.1399
4 0.1182

Snake model 0.2394

Table 7: Mean value of the longitudinal component of velocity for four schemes of
drag coefficients and for the snake model. Column 1 identifies the scheme of drag
coefficients (refer to Table 6) and Column 2 mentions the value of Vx,mean.
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Figure 28: This figure presents a comparison between plots of the longitudinal
component of velocity of the snake and legged model of the salamander. The solid
curve represents the longitudinal component of velocity of the snake model for the
scheme in which only inertial forces were applied to the model. The dotted curve
lies below the solid curve and it corresponds to the longitudinal speed of the legged
model for the 1st set of values of drag coefficients mentioned in Table 6. The dash-
dot curve corresponds to the longitudinal speed of the legged model for the 2nd set
of values of drag coefficients and this curve lies below the the dotted curve. Below
this curve, is the dashed curve which represents the results obtained for Scheme 3
of the drag coefficients. Finally, there is a solid curve below all the other curves
and it denotes the longitudinal velocity for Scheme 4 of the drag coefficients.
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Figure 29: Figure a represents the plot for VZ , i.e the component of velocity of
legged model in global Z-direction. It signifies the rate of downward motion of
model under the influence of initial downward forces on the body links. Figure b
depicts the plot for ωx,5, i.e the component of angular velocity of body link 5 in
longitudinal direction. It signifies the rate of rotation of plane of swimming of the
model under the influence of initial torques on the body links.

7.2 Influence of limbs on the resistance of salamander
model to external perturbations

This analysis was motivated by the analysis done for the snake model in which
the snake model was subjected to initial forces and torques to trigger the
motion of model in 3rd dimension(refer to Section 6). We were motivated to
analyse the motion of legged model under the influence of applied forces and
moments, to ascertain if the limbs play any role in determining the motion
of salamander model under such initial conditions. The applied forces and
moments were of the same nature as described in Section 6 and the motion
of legged model was studied to compare the results for legged model with
those obtained for the snake model.

Figure 29(a) depicts the plot for Z-component of velocity of the legged
model when subjected to initial downward forces. Figure 29(b) shows the plot
for angular velocity of swimming plane of the model about the longitudinal
direction of motion, when subjected to initial torques about the body axis
of links. These figures do not convey a great deal of information about the
influence of limbs on the translational and rotational stability of the model.
The influence of limbs, will perhaps be evident from Figures 30(a) and 30(b)
in which we compare the results for legged model with that obtained for the
snake model when subjected to similar external disturbances. Figure 30(a)
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Figure 30: Figure a presents a comparison between the values obtained for VZ

for the snake and legged model. The solid curve represents the plot for snake
model whereas dotted curve presents the plot for legged model. Figure b presents
a comparison between the values obtained for ωx,5 for the snake and legged model.
The solid curve represents the plot for snake model whereas dotted curve presents
the plot for legged model.

shows that the maximum value of VZ for a legged model is lesser than that
attained for a snake model. Similarly, Figure 30(b) shows that the legged
model attains a lower value of ωx,5 as compared to that obtained for a snake
model. These plots therefore, qualitatively present the view that the presence
of limbs improves the stability of salamander model. However, these plots
may not be representing the exact difference between the behaviour of snake
and legged salamander model under the influence of external perturbations.
Experimentations on a salamander robot will bring out the difference between
the behavour of snake and legged salamander model.

8 Acknowledgements

I am thankful to Prof. Auke Jan Ijspeert for the invaluable guidance given
by him to me during the course of this Project. I gratefully acknowledge
the contributions made by Alessandro Crespi and Jonas Buchli in the imple-
mentation of this Project. I am thankful to Alessandro Crespi and Simon
Capern for developing the code for simulation of the salamander model. I
am also grateful to the Logic Systems Laboratory, EPFL for making my stay
and project work in Switzerland a memorable one.

50



References
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