BIOLOGICALLY INSPIRED
ROBOTICS GROUP (BIRG)

Sony Aibo ERS-210: Quickstart Manual

Lukas Hohl, semester 7

BIRG, Logic Systems Laboratory (LSL)
School of Computer and Communication Sciences
Swiss Federal Institute of Technology Lausanne

February 8, 2004

Contents

7

8

Introduction

Where to start?

Files to download
Documents to read

Setting everything up
Understanding OPEN-R
Writing your own programs

Hints

References



1 Introduction

This document summarizes the basic technical and practical knowledge that
was gained during the first EPFL semester project using Sony’s robotic dog
Aibo ERS-210. Tt is intended for other students doing a project with Aibo and
provides help to get started quickly and to avoid certain pitfalls.

The starting point of every Aibo project should be the official web page
[OPEN-R]. The first goal of the project will certainly be to get Aibo up and
running and to install the OPEN-R SDK on a PC. For the first EPFL Aibo
project an Aibo ERS-210A equipped with an ERA-201-D1 wireless LAN card
was used. The workstation was a Linuz PC with an IEEE 802.11b compliant
wireless LAN card installed. Working with the OPEN-R SDK is more straight-
forward in a Linux environment, because on Windows platforms Cygwin has to
be used in plus. Development is also possible with the Mac OS X operating
system, but there are some limitations, i.e. Remote Processing OPEN-R will
not work. [Install] provides more information on supported platforms.

The OPEN-R SDK allows the cross-compilation of programs that will be
executed on Aibo. The resulting binary files have to be transfered on a special
Sony Memory Stick which is then plugged into Aibo. Despite the fact that
Aibo is principally sold as an entertainment robot system, it has powerful ca-
pabilities such as wireless network communication, a wide range of input and
output devices such as speaker and microphone, color camera, distance sensor,
acceleration sensors, various touch sensors and of course controllable joints and
LEDs.

The procedure applied to set up everything thats is necessary for OPEN-
R development on a Linux system is described in the following paragraphs and
links to useful documents are provided. Installation on Mac OS X is very similar.
Detailed instructions for the installation on a Windows system can be found in
[Install]. Nevertheless, this document still contains a lot of useful information
valid for all development environments.

2 Where to start?

As already mentioned in the introduction, the first thing to do is a visit on the
[OPEN-R] web page. You must provide some personal information to obtain
a login, but no other conditions have to be met to become a member of the
OPEN-R developers community.

Go to [Download] where everything necessary on the software side (including
the documentation) can be found.

3 Files to download

Depending on your operating system, it is not necessary to download everything
in [Download]. There’s a tiny flag next to every downloadable file. It indicates
the operating system(s) the file can be used with. Before clicking on everything
marked “Linux”, consult the following list of files you really need:

¢ OPEN-R SDK Documents English [Docs]
e OPEN-R SDK [SDK]



Sample Programs [Samples]

Shell script for building cross development tools [Script]

e gce source files [gec]

binutils source files [binutils]

newlib source files [newlib]

FlashUpdater for ERS-210 [Updater]

You don’t need to download all files at once. In any case, start with the
first one on the list (the official documentation). When you start reading the
enclosed PDF files, you will soon discover, what the different files on the above
list are good for.

The last file is of no importance for you when you are working with an Aibo
ERS-210A or an ERS-210 that has been updated via the “220 transform kit
(ERS-220E1)”. If you have an ERS-210, you must update the flash memory in
your ERS-210 by the means of the tool contained in this file (see [Install] for
detailed instructions).

4 Documents to read

The file [Docs] contains all the official documentation available for OPEN-R in
PDF format. The most important and useful files are:

e Installation Guide [Install]

e Programmer’s Guide [Prog]

e Model Information for ERS-210 [Model]
e Level2 Reference Guide [Ref]

e OPEN-R Internet Protocol Version4 [IP]

5 Setting everything up

Start by reading [Install] and [Prog] in parallel. This will allow you to install the
development environment and to try out the first sample programs in [Samples].
You can also start by just reading [Install] and then try out the samples that are
mentioned there, but you will probably not understand much of the programs’
concept without reading [Prog]. This document also explains the directory
structure on the Memory Stick. [Install] and [Prog] are easy to understand in
general. It follows a list of a few additions that might be useful:

e Skip paragraphs mentioning installation files you haven’t downloaded.

e The Memory Stick reader/writer will perfectly work without any addi-
tional drivers on Mac OS X. For Windows systems there is a driver CD
coming with the reader/writer. The following passage was taken from
[BBS] and explains the usage of the Memory Stick reader/writer on a
Linux system:



MOUNTING THE MEMORYSTICK

It is recommended to plug the usb reader into the USB port
before turn on the power of the computer, although most of
the linux distributions support hotplug technology for USB
devices. Make sure the Sony AIBO Memorystick is correctly
plugged into the usb reader.

After log into the bash shell, make sure that the usb reader
is recognized by the system. You can check it by typing:

$ cat /proc/bus/usb/devices | grep S:
and you will probably see something like this:

Product=USB OHCI Root Hub
SerialNumber=ccacb000
Manufacturer=SCM Microsystems Inc.
Product=eUSB MemoryStick Reader
SerialNumber=0000000011CF

0 N wn n n

Now we can mount the memorystick into the system by the
following steps:

1. Create a empty directory to which be mounted,
ex. /mnt/usb:
$ mkdir /mnt/usb

2. And then mount the memorystick
(You must have supervisor privilege first):
$ mount /dev/sdal /mnt/usb

USING THE MEMORYSTICK

After mount the memorystick to the specified directory
(/mnt/usb), you can use it just like other storage device,
such as harddrive. Most of the filesystem command, such as
1s, mkdir, cat, etc., can be applied.

When you "ls" the memorystick for the firsttime, you will
find a file names memstick.ind already existing in the
memorystick. DO NOT delete it, since this memorystick

is to be used by the Sony AIBO robotic dog.

In the following explanations it is assumed that the Memory Stick is ac-
cessible at /mnt/usb.

If you do not plan to use Remote Processing OPEN-R, it is sufficient to
copy the directory
/usr/local/0OPEN_R_SDK/OPEN_R/MS/WCONSOLE/memprot/OPEN-R to the



Memory Stick once and for all (OPEN-R has to be at the top level of the
Memory Stick, e.g cp -r OPEN-R /mnt/usb). This configuration enables
the wireless console and memory protection and most samples will per-
fectly work with it. Only use other configurations when they are needed
by the samples you want to try out.

e Aibo’s wireless LAN configuration file WLANCONF . TXT is located in
/mnt/usb/0PEN-R/SYSTEM/CONF/ (was copied with the configuration).
The easiest way to get wireless communication between Aibo and your PC
is to do only minor changes in the configuration file and to set up your
PC according to the settings in WLANCONF.TXT. In that case you define a
net consisting only of Aibo and your PC by default. You only have to
modify Aibo’s IP_GATEWAY entry and set it to Aibo’s IP. You might have
to experiment with different settings of APMODE. The default setting did
perfectly work in our case.

Note: # comments out a line.

e The running of (non Remote Processing OPEN-R) sample programs al-
ways works the same way: Change the working directory to the directory
SampleName. Type make install. This will build the source code in the
directory SampleName/SampleName. All kinds of intermediate files will
be generated there. This process can also be started with a simple call to
make. make install however causes the generation of the binary files that
will actually be executed on Aibo. These files are built using the interme-
diate files and are then placed into SampleName/MS/OPEN-R/MW/0BJS. If
a sample program builds and includes other samples (e.g. PowerMonitor
is built with every other sample), the final binary files will only be placed
in the directory of the sample where the command was given. The in-
termediate files are created in the directory of the included sample. It
is the SampleName/MS/OPEN-R directory than then has to be copied to
the Memory Stick. This one must not replace the already existing direc-
tory (copied with the configuration)! The contents of the two directories
need to be merged. This is automatically ensured by giving the command
cp -r MS/0PEN-R /mnt/usb when working in SampleName.

e It is possible to have the binary files of multiple sample programs on the
Memory Stick. Only those of the last one copied to the Memory Stick
will be executed because the O0BJECT.CFG file is replaced each time. But
be sure to remove the CONNECT.CFG file of any previous sample if the new
one doesn’t have it’s own instance of this file. Both files can be found in
OPEN-R/MW/CONF.

6 Understanding OPEN-R

Despite the fact that [Ref] is mainly a reference guide, it is good for the overall
understanding of OPEN-R to have a first look at this document very early. Read
mainly the descriptions of classes and methods. This will greatly improve your
comprehension of the sample programs. The same is true for [IP]. Read the
general chapters and those treating the network services you find useful.



A main source of information are the [Samples|. [Info] offers links to training
courses and tutorials which often contain detailed explanations of certain sam-
ples. Here is a list of samples that have proven their usefulness for the indicated
topics (the samples are presented in order of increasing difficulty):

ObjectComm inter-object communication
PowerMonitor robot status, boot conditions, shutdown
BlinkingLED LED and ear control

MovingHead joint control

MovingLegs joint control

SensorObserver sensor reading

LMasterRSlave sensor reading, joint control

EchoServer TCP/IP communication with PC
(see echo_client/echo_client.c for the PC client side)

TinyFTPD file transfer between Aibo and PC using FTP protocol (TCP/IP)
util/mstreeput did not work properly (following instructions in [FAQ)]).

MoNet playback of MTN files

7 Writing your own programs

The best way to obtain a first result obtain relatively fast is to adapt one of
the sample programs to your needs. Several [Samples| can be combined and
exchange information using inter-object communication. The basic software
designing rule is: One object per concurrent task on Aibo. All the samples use
a finite state automaton to describe the working cycle of an object. When an
object is commanding others, the Ready method contains an important part of
the automaton. This seems to be the best approach to deal with OPEN-R’s
subject-observer architecture.

To combine multiple adapted samples to a new product, copy the directo-
ries of the samples you want to use to a new directory (the main directory
of your product). Include the PowerMonitor sample in any case. Choose a
main object for your product. Its Makefile in the directory MainSampleName
must be adapted to compile the other objects. Just add the other samples’
directory names as it has already be done by Sony for PowerMonitor. The
modified file will then build all the samples in the specified directories and put
the final binary files into MainSampleName/MS/0PEN-R/MW/0BJS. OBJECT.CFG
and CONNECT.CFG in MainSampleName/MS/0PEN-R/MW/CONF must be modified
accordingly (add the content of the corresponding files of the added samples).

Soon you will probably want to change the name of a sample program (let’s
say to SampleName). First of all you must change all the filenames and directory
names (do make clean to remove generated files first, respect initial upper and
lower case when doing the renaming). The two Makefile in MainSampleName
and SampleName must be adapted (change the name of the component). Re-
place the old name everywhere in the Makefile in SampleName/SampleName



(again respect initial upper and lower case). The name of the final binary can
have at most 8 characters (plus .BIN) and must be upper case. OBJECT.CFG
and CONNECT.CFG in MainSampleName/MS/OPEN-R/MW/CONF must be modified
according to the name changes. To keep consistency, also modify O0BJECT.CFG
and CONNECT.CFG in SampleName/MS/OPEN-R/MW/CONF. The last two files to
modify are stub.cfg and sampleName.ocf in SampleName/SampleName. This
last file could remain unchanged, the name change just guarantees that the
correct object name will be displayed in the wireless console when Aibo boots.

Additional source code files are best places into SampleName/SampleName.
By default, all source code files with the correct name ending are compiled, so
the Makefile in the same directory only needs minor changes: For every added
filename.cc you just have to add filename.o in the line sampleName.bin:.
This guarantees correct linking.

8 Hints

e To have a good overview of Aibo’s capabilities (physical limits, return
values of sensors, output devices) consult [Model].

e Doing a telnet on Aibo will significantly slow down the overall network
performance when a lot of characters are printed to the wireless console.
Even when the printouts are not displayed on the PC by telnet and do
not affect the network performance, execution on Aibo will be slower when
large amounts of characters are printed to the console.

e The most common error on Aibo is “segmentation fault” (not displayed
on the wireless console). This causes Aibo to shut down immediately. Use
OSYSPRINT for debugging, but often not all messages up to the point of
failure are displayed on the wireless console. Test your programs often
to track down errors early. No experience with other low level debugging
techniques was made.

e It is good practice to always execute make clean after any modification
in any of the *.h files. Often an untraceable segmentation fault will dis-
appear afterwards.

e When Aibo takes a long time to shut down after pushing the pause button,
plug in the battery charger. This will cause Aibo to crash (when using
the default PowerMonitor).

e No indication on speed and acceleration limits is given in the documen-
tation. In [Notes] there is a direct link to a [FAQ] entry where at least
angular speed limits for Aibo’s joints are listed:

The 1imit of angle speed for ERS-210

Primitive Locator angle speed limit
(degree/frame 1frame=16msec)

/r1l/cl-Joint2:j1 1.93

/r1l/cl/c2-Joint2:j2 2.76



/r1/c1/c2/c3-Joint2:j3
/r1/c1/c2/c3/c4-Joint2: j4
/r2/c1-Joint2:j1
/r2/cl/c2-Joint2:j2
/r2/c1/c2/c3-Joint2:j3
/r3/c1-Joint2:j1
/r3/cl/c2-Joint2:j2
/r3/c1/c2/c3-Joint2:j3
/r4/cl-Joint2:j1
/r4/cl/c2-Joint2: j2
/r4/cl/c2/c3-Joint2:j3
/r5/c1-Joint2:j1
/r5/c1/c2-Joint2:j2
/r5/c1/c2/c3-Joint2:j3
/r6/cl-Joint2:j1
/r6/c2-Joint2: j2

S BE NN NDNDNDNNDNDNDNDNDNDDNSDN
o
[0¢]

NOTE: The motion file (*.mtn) which is created by AIBO
Master Studio has 1 frame = 16msec. But minimum interval of
motion of AIBO(ERS-210/220) is S8msec.

(Time of one frame that AIBO recognizes actually is 8msec)

Before setting joint gains using OPENR::SetJointGain, a valid Command-
Vector must have been passed to OVirtualRobotComm. In the sample
programs this is done using AdjustDiffJointValue which fills a Command-
Vector with the current position. If no CommandVector is provided, Aibo
will jump to a standing position as soon as OPENR::SetJointGain is called.

Aibo’s MIPS processor is little-endian. This has to be considered when
transferring data to systems working in big-endian mode.



References

[OPEN-R] Official Sony OPEN-R web page:
http://openr.aibo.com/
Direct link to the English web page:
http://openr.aibo.com/openr/eng/index.php4

[BBS] Section “Bulletin Board” on [OPEN-R]

[Download] Section “Download” on [OPEN-R]

[FAQ] Section “Frequently Asked Questions (FAQ)” on [OPEN-R]

[Info) Section “Information of OPEN-R SDK” on [OPEN-R|

[Notes] Section “Important notes when using the OPEN-R SDK” on
[OPEN-R]

[Docs] File “OPEN-R SDK Documents English”:
OPEN_R_SDK-docE-XXX.tar.gz! in [Download]

[Install] Document “Installation Guide”:
InstallationGuide_E.pdf in [Docs]

[Prog] Document “Programmer’s Guide”:
ProgrammersGuide_E.pdf in [Docs]

[Model] Document “Model Information for ERS-210”:
ModelInformation_210_E.pdf in [Docs]

[Ref] Document “Level2 Reference Guide”:
Level2ReferenceGuide_E.pdf in [Docs]

[IP] Document “OPEN-R Internet Protocol Version4”:
InternetProtocolVersiond_E.pdf in [Docs]

[SDK] File “OPEN-R SDK”:
OPEN_R_SDK-XXX.tar.gz in [Download]

[Samples] File “Sample Programs”:
OPEN_R_SDK-sample-XXX.tar.gz in [Download]

[Script) File “Shell script for building cross development tools”:
build-devtools-XXX.sh in [Download]

[gec] File “gec source files”:
gcc-XXX.tar.gz in [Download]

[binutils] File “binutils source files”:
binutils-XXX.tar.gz in [Download]

[newlib] File “newlib source files”:

newlib-XXX.tar.gz in [Download]

[Updater] File “FlashUpdater for ERS-210":
upgrade-0PEN_R-XXX.tar.gz in [Download]

1«XXX” in a filename stands for the current version number of the file (not the same for
all files)



