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Abstract 
The Biologically Inspired Robotics Group (BIRG) of the Swiss Federal Institute of 

Technology in Lausanne (EPFL) is currently developing new hardware and software for an 

experimental modular robotic platform. Modular robots are robots built of several similar 

building blocks called modules. Usually modules have one or two hinges that allow movement 
with one or two degrees of freedom. Locomotion of the robot, e.g. crawling, is possible when 

several modules are put together. By means of computer simulations, this study explores the 

self-organization of locomotion in various assemblage configuration of the BIRG’s robot. 

Locomotion is enabled by the regular oscillations of the robot’s servomotors, which are 

produced by Central Pattern Generators (CPG) inspired from the nervous system of 

vertebrates. Optimal oscillatory parameters are found using different numerical search 

methods: genetic algorithms, simulated annealing, particle swarm optimisation and random 
search. Although all these methods generate efficient locomotion patterns, the best results are 
obtained by particle swarm optimization. 
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1 Introduction 
From the outset, artificial intelligence was mainly concerned with logic and mathematical 

problems. When computers were first developed, researchers were theorists or mathematicians 

who were naturally interested into problems based on pure logic such as game playing 

programs. Within a short time, computers became able to outperform humans in logical 

operations, through their ability to achieve fast computations. Therefore, the scientists 

predicted that artificial intelligence would surpass human intelligence within decades. 

 In that euphoric time, problems such as locomotion and vision were considered auxiliary 

or trivial given that any child or animal can move about and see without even thinking about 

it. Scientists had successfully created intelligent programs that could outperform animals or 

humans in some particular tasks. The tasks that these computer programs were able to solve 

were of higher intellectual concern for the scientists and therefore they thought that the 

artificial intelligences they had just created were already superior to natural intelligence. 

 However, very soon, people started to think that artificial intelligence should also be 

used for purposes that were more practical. Controlling robots for industrial or domestic tasks, 

as seen in science fictions, was seen to be a real possibility. The first essential step for a useful 

robot is the ability to move about and therefore, research started to investigate locomotion. 

However, the first prototypes based on logical principles were not very successful. For 

example, like the famous Shakey, early mobile robots were programmed to build internal 2-d 

or 3-d geometrical representations of their surrounding environment. However, the poor 

processing performance of the processors of that time, were challenged by the complexity of 

the task. The robots spent most of the time computing and moved very slowly. The scientists 

realised that any animal could do better than their machines. They started to understand that 

the problems they considered the easiest were actually the most difficult. 

 With Rodney Brooks [Brooks, et al. 1989] came a groundbreaking period during which 

the rightfulness of the traditional sense-model-plan-act architecture was questioned. Legged 
robots based on his famous subsumption architecture appeared. They showed strikingly fast 
insect-like locomotion and behaviour. The subsumption architecture marked a turning point 

from traditional artificial intelligence to more bio-inspired concepts.  

 In the nineties, teams from the Swiss Federal Institute of Technology and University of 

Sussex [Harvey, et al. 1997] formulated the principles of a new field: evolutionary robotics. 
Artificial neurons inspired from their natural counterpart were used together with evolutionary 

techniques to develop artificial nervous systems. With evolutionary robotics, it became 

possible, without human design, to obtain efficient wheeled or legged locomotion, obstacle 

avoidance and other forms of behaviour in real or simulated robots. 

 Nevertheless, real robots are made of mechanical and electronic parts. Therefore, only 

the evolution of the control circuitry, implemented in software, could be experimented upon. 

However, in addition to the nervous systems, in nature, the animal morphologies are subject to 

evolution as well. It was therefore, interesting to see how morphologies would develop under 

artificial evolution. Therefore, Karl Sims [Sims 1994] developed the first computer simulation 

of the evolution of bodied creatures in a virtual physics environment. 
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1.1 Objectives 
The objective of this project is to explore locomotion in an experimental robotic platform 

developed at the Biologically Inspired Robotics Group (BIRG). Locomotion in modular robots 

is generally achieved through simple state automata. In this study, a radically different 

approach is investigated: the robot must discover efficient locomotion patterns autonomously 

in computer simulations. Non-linear oscillators are used as motor control signals. The 

oscillators’ parameters are optimized through numerical methods including genetic 
algorithms, simulated annealing and particle swarm optimization. In addition to obtaining 
efficient locomotion gaits, the objective is to compare the performance of these various search 

methods. For this reason, several predetermined configurations of the BIRG’s robot were 

designed and simulated in an ODE-based physics simulator. 

1.2 Modular robots 
Modular robots are robots build of multiple identical building blocks called modules. The idea 
behind modular robotics is freely inspired by cellular automata and by social insects. Through 

cooperation, social insects, such as ants, bees or termites, achieve feats that would be 

impossible to achieve by a single individual. For example, ants can use their own body as 

bridge to allow other ants to move safely above a crag (Figure 1). By using similar principles, 

modular robots perform self-reconfiguration, e.g. they autonomously change their shape and 
adapt to different kinds of terrain. For example, some modular robots can transform into a 

snake to tunnel through a pipe then later transform into a quadruped to go up stairs or even 

climb a fence. Often, the shapes are inspired by animals but loop and wheel configurations are 

also possible. 

  

 

Figure 1: Ants forming a bridge. 

Another advertised property of modular robots is self-reparation. Because the modules of 
modular robot are identical, it is possible to excise a damaged module and replace it with a 

spare one, if it is available. Like their biological counterparts, the modular robots 

accomplishments are made possible because they are built upon redundant and decentralized 

architectures. However, modular robots frequently are not fully decentralized and do not really 
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qualify as self-organized systems. This is because, in most cases, one module is used as the 
master and the others as slaves, although these roles are interchangeable.  

 Although this area has progressed rapidly since its beginning in the early nineties, 

modular robots have only reached their goal in very controlled laboratory environments. 

Potential future applications of modular robots include locomotion and self-assembly in 

human-unfriendly environments.  

1.3 Existing projects 

1.3.1 M-TRAN 
One of the most accomplished modular robotic projects is the M-TRAN (Figure 2) developed 

by the Distributed Systems Design Research Group of the AIST in Japan [Kamimura, et al. 

2001]. M-TRAN is a modular robot able to self-reconfigure without human intervention. M-

TRAN modules are docked through permanent magnets and disconnected from each other by 

heating a Shape Memory Alloy (SMA) coil that releases a force in the opposite direction as 

the permanent magnets. Each M-TRAN module has two motors which provide it with two 

degrees of freedom in the same 3d-plane. 

 

  

Figure 2: M-TRAN II configured as quadruped and caterpillar. 

1.3.2 PolyBot 
The XEROX Palo Alto Research Centre is running several research projects in modular 

robotics. Their PolyBot project (Figure 3, left) uses modules able to self-reconfigure and dock 

also using shape memory alloy. The modules are hermaphroditic and can be docked to each 

other at four different 90° rotation angles. However, each module has only two connection 

surfaces (Figure 3, right) and therefore mostly snake-like configurations are possible unless 

passive elements are used. PolyBot Generation 3 modules also have joint angle sensors, 

accelerometers and infrared proximity sensors used principally to aid in docking two modules. 

Control is centralized using gait tables. 
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Figure 3: Left: PolyBot Generation 1 with 16 modules in a four-legged spider configuration. 

Right: PolyBot Generation 3 module. 

1.3.3 CONRO 
The CONRO project is taking place at the Information Science Institute of the University of 

Southern California. Each CONRO modules has two degrees of freedom, in two different 

axes, which is particularly helpful for legged locomotion, but makes docking a challenge as 

compared to the M-TRAN and PolyBot. The docking of two modules is achieved through 

infrared communication; it requires several seconds. Unlike the other projects, CONRO 

modules do not have hermaphroditic connectors but rather one female and three male 

connectors. CONRO robots are able to discover autonomously the way they are connected 

though a hormone inspired decentralized communication system that supports servo-

commands and on-line reconfiguration [Shen, et al. 2002]. Much like natural hormones, 

artificial hormones allow different types of responses from different parts of the robot’s body. 

 

 

Figure 4: CONRO (USC Information Sciences Institute). 

Most of the research performed on modular robotics has focussed on self-reconfiguration or 

locomotion. Many of these robots do not have a large palette of sensory capability and 

therefore their use in investigating artificial intelligence is limited. 
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1.3.4 Other projects 
Lattice robots are also modular robots but are based on a very different architecture. They are 

built of square or cubic modules that use linear actuator to reconfigure or move, instead of 

rotational ones. Telecube [Suh, et al. 2002] is an example of cubic lattice robot. Telecube uses 

“telescoping-tube linear actuator”, which consist of motors and lead screw in a housing, to 

extend or collapse its six faces. Docking is accomplished using “switching permanent magnets 

latch”. 

 

    

Figure 5: Telecube module (Palo Alto Research Centre) 

Locomotion of lattice robots works either by sequences of contraction and extension or by a 

reconfiguration that shift the gravity centre. In both cases, it is quite slow compared to other 

types of modular robots. 

1.4 BIRG’s robot 
The BIRG’s modular robot is a recent project; it is not as technically advanced as the projects 

described above; in particular, no definitive docking mechanism has yet been designed. 

However, it does have some interesting features: First, inter-module communication is 

achieved through wireless communication via Bluetooth. This allows communication between 

modules that are neither connected nor visible to each other. 

 

   

Figure 6: Left: BIRG module. Right: the BIRG robot in a loop configuration. 

Thanks to the wireless communication, a new paradigm appears. It is potentially possible to 

disjoint the robot into several subunits which can still operate in accord and which can later 
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assemble and operate as whole again. In addition, the BIRG’s modules are controlled by Field 

Programmable Gate Arrays (FPGA). These allow faster and more generic computation than 

the usual micro-controllers. The dimensions of the BIRG's modules are 87 x 50 x 45 mm 

(height x width x depth, see Figure 6). A module weights around 250 grams, and its motor 
force is 73 Newton · cm, which is more than usually encountered in modular robots and 

roughly allows one module to lift two others. The hinge can turn in a range somewhat larger 

than 180º. 

 At the time of writing, the BIRG robot does not feature any sensing modality and 

therefore, the present discussion is restricted to the study of locomotion without sensory 

feedback. 

1.5 Locomotion by oscillations 
Locomotion is an essential skill in animals. It is required for hunting preys, escaping 

predators, or more generally, finding food and mates. Locomotion is achieved by applying 

forces on a terrestrial, aerial or aquatic environment. These forces are generated by the 

rhythmic contraction of muscles attached to limbs; wings, legs, fins and so on. 

 This document is concerned only with locomotion on a flat ground surface and under 

gravitational force. A locomotory gait is efficient when all the involved muscles contract and 

extend with the same frequency
1
. Typical terrestrial legged locomotion gaits are walk, trot and 

bound. According to the gait, different activation phases for the different limbs are required. 
For example, a quadruped’s walk consists normally of four different phases, e.g. the feet hit 
the ground at four different times. In the example (Figure 7a.): first the left hind leg (LH) hits 

the ground, then the left foreleg (LF), then the right hind leg (RH) and finally, the right foreleg 

(RF), then the sequence repeats. All legs share a common frequency but different phases.  

 

Figure 7: Three different quadruped gaits. 

Trot and bound have only two different phases (Figure 7b. and 1c.). Trotting is when the two 
diagonally opposed legs reach the ground simultaneously. Bounding is when in a first time the 

forelegs hit the ground together, then in the second time, the hind legs hit the ground, also 

together. In biped, quadruped, or hexapod robots, locomotory gaits are generated using these 

simple principles: same frequency, different phases. 

                                                 
1 Note that this is not always true; in some cases gaits can also be composed of muscle movements where 

frequencies are not equal but are multiples of each another. 

2 

LF 

 

1 

LH 

4 

RF 

 

3 

RH 

2 

LF 

 

1 

LH 

1 

RF 

 

2 

RH Direction 

of motion a. Walk  

(4 phases) 

b. Trot  

(2 phases) 

1 

LF 

 

2 

LH 

1 

RF 

 

2 

RH 

c. Bound  

(2 phases) 



 12

1.6 Controllers architectures 
Numerous different architectures have been tried for robotic locomotion. Let us review shortly 

the principal ones. 

1.6.1 Genetic programming 
In his pioneering work (Figure 1), Karl Sims' [Sims 1994] virtual creatures were controlled 

using a kind of genetic programming, where each neuron could carry out a different 

mathematical function. Some of the available function could produce oscillations from 

constant inputs and therefore this was very suitable for locomotion even though it was not a 

very biologically plausible approach. 

 

 

Figure 8: Virtual Creatures competing for the green block [Sims 1994]. 

1.6.2 Neural networks 
With evolutionary robotics, a new concept appeared, originating from both the University of 
Sussex [Harvey, et al. 1997] and the Swiss Federal Institute of Technology [Mondada, et al. 

1995].  In this approach, robots are controlled with neural networks whose parameters are 

optimised using genetic algorithms. Many different types of neural networks have been 

experimented upon, for example feed-forward or recurrent architectures using sigmoid transfer 

function. 

 Randall Beer [Beer 1996] introduced a new type of neuron using a time constant: 

Continuous Time Recurrent Neural Network (CTRNN). Beer and his team used CTRNNs for 

simulating cognitive behaviour and among other things for the control of an autonomous 

hexapod robot [Gallagher, et al. 1996]. In this article, CTRNN controllers were evolved in 

simulation using genetic algorithm and the results were transferred directly to a hardware 

robot. The controller’s neurons were implemented directly in electronic components such as 

amplifiers and resistors. 

 At Sussex, Nick Jacobi [Jacobi 1998] developed, in simulation, a control system for an 

octopod robot (Figure 9) using the CTRNN techniques. His “minimal simulation” 

methodology allowed the successful transition of the controller into a real robot able to 

wander around and avoid obstacles using infrared sensors, bumpers, whiskers and light 

sensors. 
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Figure 9: The Octopod robot. 

Plastic Neural Network (PNN) [Floreano, et al. 1996] changed the classical leaning concept of 

evolutionary robotics. With the PNN approach, a part of the learning process is transferred to 

the robot’s lifetime. More precisely, the genetic algorithm selects the neurons’ learning rules 

but not the synaptic connections weights, which are modified during the robot lifetime 

according to various genetically encoded leaning rules. 

 With GasNets [Husbands, et al. 1998] the concept of synaptic weights itself is turned 

upside down. A new mode of transmission based on simulated neurotransmitters is 

superimposed to the neural network. These neurotransmitters are able to change the intrinsic 

properties of the neurons and therefore a new kind of plasticity is enabled. 

1.6.3 Oscillators 
Although CTRNNs can be used to obtain the oscillations required for locomotion, an approach 

that consists in using non-linear oscillators seems simpler. With non-linear oscillators, the 

oscillatory behaviour can be assumed and it is possible to focus on the problem of the 

oscillators’ interconnection. 

 Furthermore, a lot of work has been carried out using oscillators. From Taga’s [Taga 

1994] research on bipedal locomotion to Kimura quadruped robots walking on irregular 

terrains [Kimura, et al. 1998] and with Ijspeert’s work on aquatic and terrestrial locomotion in 

salamander [Ijspeert 2001], non-linear oscillators have been applied many times successfully 

to locomotion problems.  

 However, we are aware of only two projects in which non-linear oscillator are applied to 

the locomotion of modular robots [Mesot 2004, Yoshida, et al. 2003]. In the latter article, the 

authors present two different methods based on genetic algorithms that explore locomotion in 

the M-TRAN robot. Their first method obtained locomotion by applying genetic algorithms to 

the robot reconfiguration sequence. Their second method is similar to this project; genetic 

algorithms are applied to the optimization of the parameters of non-linear oscillators to 

evolved locomotory gaits. 
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2 Methods 

2.1 Simulator 
The simulations of this study were carried out on a commercial robot simulator called 

Webots™ [Michel 2004], which is developed by Cyberbotics Ltd in collaboration with the 

EPFL. Webots™ is built on ODE (Open Dynamics Engine) and it allows therefore realistic 

physics simulation. With Webots™, the robots structure and its environment are built using a 

VRML editor. The robot controllers must be programmed in a high-level programming 

language such as C, C++ or Java. 

 

Figure 10: Software architecture. 

For the simulations described here, two controllers were developed. The first controller is the 

“optimizer”, which does most of the work: it runs the search algorithms, computes the 

oscillations, sends servomotor commands to the simulator and measures the performance. The 

second controller is the “supervisor” whose role is just to move robots to their start position at 
the beginning of each evaluation. 

2.2 Experimental morphologies 
A crucial point was the choice of good morphologies for the simulations. To ensure the 

robustness of the results, we decided to employ four different configurations. The initial 

thought was to investigate randomly assembled structures; however, after the first experiment, 

it became clear that bio-inspired morphologies would be more interesting because the 

resulting locomotion gaits can be compared with their natural counterparts. 

 The first morphology, the wheel (Figure 11, left), is a simple four-ways symmetrical 
robot made of five modules. The middle module is placed such that its mass centre is located 

in the same 3d-plane as the other ones; this decreases the robot's chances of tipping over. The 

second morphology, the caterpillar (Figure 11, right) is made up of six modules whose axes of 
rotation are all in a vertical plane.  

 

optimizer supervisor 

graphics engine 

X server 

ODE 

Webots 
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Figure 11: Wheel and caterpillar configurations. 

The tetrapod (Figure 12, left) is a four-ways symmetrical structure made of nine modules; it 
has four legs and a central passive module. Finally, the crawler (Figure 12, right) is built out 
of 12 modules. It is left/right symmetrical like real quadrupeds. The crawler’s "hip" joints 

move horizontally and the "knees" joints move vertically. Vertical “hips” and horizontal 

“knees” would have been another design option. The crawler’s body motors are deactivated 

and therefore its spine remains straight. 

 

 

Figure 12: Tetrapod and quadruped configurations. 

2.3 Oscillators 
The present chapter (2.3) summarizes the principles used for locomotion using non-linear 

oscillators, based on previous work at the BIRG. 

 In animal locomotion, the oscillations of the joint angles produced by the muscular 

activity can have different waveforms. These waveforms are usually smooth: brutal transitions 

are uncommon. In order to facilitate numerical simulations, a strong simplification is to model 

locomotion as sinusoidal variations of the robot’s joint angles. As seen before, these sine 

waves must have the same frequency but they can differ in phases and amplitude, according to 

the gait. In other words, a module’s motor activation can be controlled by this simple 

equation: 

0)sin()( xtAtx ++= ϕω    (1) 

 

 where x(t) is the desired servomotor angle of a module at time t, A is the amplitude of 
the oscillations, φ is the oscillation phase, and xo is the angular midpoint of the oscillations of 
the module. 
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 In practice, sinusoidal signals are not flexible enough, because they do not allow a soft 

transition from one gait to another. For example, if a walk gait in a robot is controlled by 

sinusoidal motor signals, the transition to a different gait, say trot, requires the activation of 

different oscillations’ phases, amplitudes and frequencies. However, with sinusoidal signals, 

the transition from one gait to another is brutal and therefore cannot be carried out 

satisfactorily by the robot’s motors. Consequently an uncontrolled transition appears, during 

which the robot performs an undesired brutal movement and is subject to fall. This is in 

contrast to gait transitions in nature, which always occur smoothly. Furthermore, with 

sinusoidal signals, there is no simple way to incorporate sensory feedback. 

2.3.1 CPGs 
The concept of using non-linear oscillators to control robotic locomotion is inspired from 

biology. Experiments [Shik, et al. 1966] showed that, in a decerebrated cat, the electrical 

stimulation of the brainstem is able to induce walking. Furthermore, an increase of the signal 

strength changes the walk velocity and the transition from a walking to a trotting gait happens 

autonomously. These experiments demonstrated that the brain is not involved in the 

generation of the rhythmic signals that produce locomotion in the cat.  

 Grillner [Grillner 1985] explained that the locomotory signals that produce sequences of 

muscle activation, such as walk, trot or gallop are generated by Central Pattern Generators 

(CPG) located in the spinal cord. These CPGs are neural circuits that generate oscillatory 

output from a tonic input coming from the brain. The brain appears to play a higher-level role 

such as regulating the initiation, velocity and termination of the locomotory activity. 

2.3.2 Non-linear oscillators 
As we have seen, the sine approach of equation (1) does not enable smooth gait transitions. To 

overcome this problem, non-linear oscillators were introduced as mathematical models of the 

natural CPGs [Ijspeert, et al. 2003]. The state of oscillators changes smoothly and therefore, 

gait transitions are soft. In addition, with oscillators, feedback can be incorporated in the 

simulation. For example, sensors can detect that a foot is in contact with the ground and a 

feedback signal can be injected into the oscillators. 

 The oscillator proposed in [Ijspeert, et al. 2003] is based on these differential equations: 

 

xv
E

Evx
v −−+−=

22

ατ &    (2) 

vx =&τ       (3) 

 

 where v and x represent the current state of the oscillator, E is a positive constant that 
represents the energy of the oscillator, α determines the rate of convergence towards the limit 
cycle and τ is the time constant that determines the oscillation’s frequency. This type of 
oscillator converges to a sinusoidal signal with amplitude √E and period 2πτ [Ijspeert, et al. 
2003]: 

)/sin()(~ φτ += tEtx     (4) 

 

 where φ depends on the initial conditions. This behaviour is illustrated by the limit cycle 
in Figure 13, which represent the results of 30 oscillations started with random initial 
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conditions x and v in the range [-2, 2]. The parameters used were α = 0.7 and E = 1. As it can 
be observed each run converges to the circular attractor of diameter 2√E=2 (see Matlab code 
in the appendix). 

-2 -1 0 1 2
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1
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Figure 13: Limit cycle of a standalone oscillator. 

2.3.3 Oscillator synchronization 
By choosing the E and τ parameters, it is possible to control the amplitude and frequency of 
the oscillations. However, locomotion is efficient only when the phase shifts between the 

oscillations stays constant through time and therefore, a strict synchronization is required. In 

the model proposed in [Ijspeert, et al. 2003], synchronization is obtained by coupling the 

oscillators; a signal proportional to the sum of the state of every other oscillator is added into 

each oscillator. Equation (2) seen earlier, is now completed into equation (5) [Ijspeert, et al. 

2003]: 

∑ ++−
−+

−=
N

j
jijjijii

ii
i vbxaxv

E

Evx
v )(

22

ατ &    (5) 

ii vx =&τ           (6) 

 

 where aij and bij represents the strength of the coupling of the x and v states of oscillator 
j into the oscillator i. 
 Synchronization happens only when the uncoupled frequencies match approximately 

[Pikovsky, et al. 2001]. Figure 14 illustrates this fact: the frequency difference ∆f of two 
uncoupled oscillators is plotted versus frequency detuning ∆F after coupling. If the uncoupled 
frequencies are too different, synchronization does not occur. 
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Figure 14: Frequency vs. detuning graph [Pikovsky, et al. 2001]. 

In order to facilitate synchronisation the same time constant τ is used for all the oscillators and 
therefore the uncoupled frequencies are similar. A frequency of 1Hz (τ = 1/(2π)) is chosen as 
baseline for all simulations. This is because it corresponds to the pace of an ordinary animal 

and it is slow enough for the physical robot's servomotors to go once 180° back and forth. A 

stabilization period is necessary before the frequencies become locked. The duration of the 

stabilization period depends on the coupling strength. 

 

Figure 15: Example of synchronized oscillations. 

Figure 15 shows an example of synchronized oscillations (see Matlab code in appendix). The 

x states of four coupled oscillators are plotted over a period of 32 seconds: the initial 
stabilization period is visible. This stabilization period is bad because it results in disorganized 

steps of the robot. Shorter stabilization periods are wished and can be obtained by increasing 

the coupling strength. However, unlike standalone oscillators, the signals produced by coupled 

oscillators are not exact sine waves. Discrepancy with the sine increases with the coupling 

strength and furthermore, when the coupling becomes too strong the signals turn out to be 

chaotic (Figure 16) and unsuitable for controlling locomotion. For that reason, coupling 

strengths are suitable only within an appropriate range that must be determined. 

  

∆f=f1-f2 

∆F 

Synchronization region 
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Figure 16: Chaotic oscillations resulting of too strong coupling. 

When multiple coupled oscillators are used, the resulting phase shifts between the oscillations 

is a function of the coupling strengths aij and bij, however several different combination of aij 

and bij can produce the same phase shift. In fact, the exact outcome of a particular coupling 

combination cannot be predicted by any general theory [Pikovsky, et al. 2001]. Consequently, 

the coupling strengths must be optimized by the search algorithms. 

 A slight variation (7) of the original oscillators' model seen above was proposed in 

[Mojon 2004]. With this modification, the inputs are normalized and therefore, the "strength 

of the signal carried by a particular connection does not depend on the energy of the emitting 

oscillators" [Mojon 2004]. This modified model (7) is used in this project. 
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At this point the coupled oscillators were simulated (see Matlab code in appendix) and the 

coupling strengths were experimentally determined to be satisfactory in the range [-0.7, 0.7]. 

2.4 Choice of free and fixed parameters 
To summarize, in order to obtain suitable oscillations, different combinations of the 

parameters τ, α, E, aij and bij, of equation (7) must be tried out. One option is to tune all 

parameters with the optimization algorithms. However, in order to increase the likelihood of 

convergence it is better to hold down the dimensionality of the search space. Therefore, it is 

favourable to fix some parameters whilst the most relevant ones are kept free. 

 As explained in the previous paragraph, the coupling strengths aij and bij must be free 

because the oscillators’ synchronization phase depends on them. The oscillation amplitudes 

controlled by E must also be free because it is not known beforehand how large joint 
movements should be. Small undulations are required in some modules while larger ones are 

necessary for others; it depends on the role, for example “hip”, “knee” or “ankle” of a 

particular module in the robot’s body.  
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 Oscillations in the region of the module’s 0°-angle (the horizontal position in Figure 17) 

are too restricted. For example in quadruped robots, it is obvious that the “knee” joints should 

oscillate in a region below the 0°-angle, somewhat downwards, in order to allow the foot to 

touch the ground and push the body forwards during retraction
2
, while staying off the ground 

during protraction. In fact, the optimal oscillation basis angle of most modules is not the 0°-

angle. In general, this angle is not known beforehand and should therefore be another free 

parameter, that we call here x0. 
 

 

Figure 17: Module's oscillations around x0. 

As discussed before, the oscillation period determined by τ must be common to every 
oscillator to facilitate synchronization; therefore τ is fixed. The convergence factor α can also 
be fixed because it influences only the stabilisation period and not the post-synchronization 

phase. 

 

Parameter Type Range/Value Controls 

E free [10
-8
, (π/2)

2
] Oscillation amplitude 

x0 free [-π/2, π/2] Oscillation central angle 

aij and bij free [-0.7, 0.7] Coupling strength 

τ fixed 1/(2π) Oscillation period 

α fixed 0.5 Convergence speed 

Table 1: Free and fixed parameters. 

The actual number of parameters in a controller depends not only on number of modules but 

also on the inter-oscillators connections. There are two free parameters (E and x0) for each 
module and two (aij and bij) for each inter-oscillator connection. The τ and α remain fixed. 
This is summarized in Table 1 together with the corresponding optimization ranges or fixed 

values that were used. 

2.5 Controller encoding 
In order to be independent of the actual optimisation method used, all the above-mentioned 

parameters are converted to floating-point numbers in the range [0, 1]. A specific controller is 

simply an array of floating point numbers initialized with random numbers taken from a 

uniform distribution in this range. Whatever optimization method is used, the parameters are 

not allowed to exceed the [0, 1] range later on. This restriction limits the diversity of the 

                                                 
2 Retraction: limb movement towards the rear. Protraction: limb movement towards the front. 

x0 

0° 

-180° 

180° 
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results but it also has the advantage of keeping the size of the search space constant. The 

encoding format is summarized below: 

 

x0,1 A1 a11 b11 a12 b12 … 
x0,2 A2 a21 b21 … … … 

… 
x0,N AN aN1 bN1 … … … 

Table 2: Parameters encoding. 

 where each row represents the parameters of a single module and the corresponding 

oscillator. The row length depends on the number of incoming connections. Ai is the module’s 

oscillation amplitude (Ai=√Ei). Note that only the genetic algorithm is dependent on the 
memory arrangement of the parameters because of the crossover operation. 

2.6 Coupling 
There are many possible ways of coupling the oscillators. Little biological data is available on 

that topic therefore; it is difficult to prefer a particular solution rather than another one. 

Intuition suggests that the oscillators must be connected between neighbouring modules, for 

example from the head down the spine with extensions to the limbs as in [Ijspeert, et al. 2003]. 

This seems to be the most biologically plausible solution. 

  

 

Figure 18: Unilateral vs. bilateral coupling. 

The choice between unidirectional or bidirectional connections is also difficult because 

synchronization can work in both situations. Two oscillators can synchronize as long as there 

is at least one connection between them. In the case of unilateral coupling (Figure 18, left), the 

frequency of oscillator 2 will shift towards the frequency of the oscillator 1. In bilaterally 

coupled oscillator (Figure 18, right), the frequency of both oscillators will shift to a value 

somewhere in the middle of the uncoupled frequencies of both oscillators. 

 A biologically inspired approach requires bidirectional connections because this allows 

feedback. For example, if the trajectory of a robot’s leg was impeded during its forward 

swing, with bi-directional connections, the whole robot body could respond. 

 On the other hand, unidirectional connections allow keeping the number of parameters 

low. In the end, it was arbitrarily decided use bidirectional coupling for the wheel and 

caterpillar robots and unidirectional coupling for the tetrapod and quadruped (Figure 19). The 

solid (black) circles represent the “hip” joint oscillators and the dashed (grey) circles represent 

the “knee” joints oscillators. Section 3.4 will compare the respective performance of 

unidirectional and bidirectional coupling in the tetrapod. 

 

1               2                             1               2 

ω1            ω2                           ω1            ω2 
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Figure 19: Oscillators coupling. 

2.7 Performance measurement 
In order to measure its performance

3
, every controller is tested during 32 simulated seconds. 

Throughout this period, a controller should move as far as possible away from its initial 

location. However, the performance could not be simply measured as the straight distance 

between the start and end location, because in some cases the robot makes a circle and stops 

close to where it started. In such cases, the performance evaluates poorly even though, only a 

tiny parameter change would be required in order to correct the robot’s bent trajectory. To 

overcome this problem, the cumulated or integrated ground distance was also integrated into 

the performance evaluation. 

 However, controllers moving in a straight line should still be favoured over zigzagging 

ones. Therefore, the performance needs to reflect both straight and the integrated distances. 

For this reason, in this project, the performance was calculated as the weighted sum of both, 

using this formula: 
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 where Ф represents the measured performance, where pi is the i
th
 point sampled on the 

robot trajectory, where N is the total number of sampled point, and where α and β are 
coefficients that allow balancing the respective weights of the absolute and integrated 

distances. In our simulations these coefficients were set to α=1 and β=1. In order to avoid 
granting the robots performance scores for plain vibrations, the trajectory points pi are 

sampled at 1.0 second intervals such that a robot is always approximately in the same posture 

when sampling occurs. 

 Alternatively, another idea was to measure performance as the absolute distance 

adjusted by a measure of the curvature of the trajectory. The curvature could be computed as 

the second derivative of the trajectory: 

 

                                                 
3 The word performance is preferred in this document, because fitness makes sense in the context of genetic 
algorithms but not with the other optimization methods used here. 
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However, this approach was not tried out due to the time limitation. 

2.8 Numerical optimization methods 
Tuning controllers parameters for locomotion is a multidimensional optimization problem that 

consists in finding the optimum of a function of several independent variable such that Ф = 
f(p1, p2, p3 … pN) and where Ф must be optimized. Some optimization problems can be solved 
analytically or by gradient descent methods. However, with many real world problems, these 

methods do not work because f(…) cannot be described by a simple formula. This is the case 
for the current problem where f(…) is computed by the complex algorithms of the physics 
simulator. 

 Some methods such as the downhill simplex can perform optimization without requiring 
gradient information. Unfortunately, such non-stochastic methods suffer from their inability to 

escape from local minima. Therefore, methods involving a random variable are preferred. 

Three such methods were chosen to optimize our controllers: genetic algorithms, simulated 
annealing and particles swarm optimization. In addition, random search is used as control 
technique to see how the other three methods compare with pure chance. 

2.8.1 Genetic algorithm 
Genetic algorithms are optimization techniques invented by John Holland in the seventies and 
inspired by the Darwinian theory of evolution. Darwin’s theory is based on three basic 

principles, which are variation, heredity and selection. In nature, these three principles 
combine into a powerful optimization mechanism that maximizes the chances of survival of 

genes and potentially explains the existence and the adaptation of complex life forms. The 

great idea of John Holland was to use the same Darwinian principles in computer simulations 

in order to solve engineering or mathematical problems. 

 A genetic algorithm is a kind of artificial evolution of a population throughout a number 

of simulated generations. The population is made of candidate solutions to a domain specific 

problem. At every generation, the fitness of the candidates is evaluated with respect to the 

domain specific objective. The best candidates are selected and allowed to reproduce; this is 

the selection principle. Reproduction generates new offspring based on the genetic material of 
two parents; this is the heredity principle. With a certain probability, the new offspring goes 
through mutations and therefore differ from its parents; this is the variation principle. 
 Throughout the rest of this document, the genetic algorithm referred to a population of 

100 individuals selected by linear rank. From one generation to the next, an elite composed of 

the 5% fittest individuals is preserved unchanged. From the remaining non-elite 95%, a 5% 

part is reproduced sexually, using single-point crossover and no mutation. The last remaining 

95% are reproduced asexually and mutated. The mutation probability of every parameter is 

0.06, which represents roughly two mutations per genome. The mutation amplitude is taken 

from a normal distribution with mean 0 and standard deviation 0.2. Section 3.5 describes a test 

in which crossover was disabled in order to compare the performance of sexual and asexual 

reproduction. 
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2.8.2 Simulated annealing 
Simulated annealing [Kirkpatrick, et al. 1983] is a numerical optimization technique whose 

name is an analogy with the way in which a metal cools and freezes into a crystalline structure 

that minimizes its internal energy. At high temperature, the molecules of a liquid move freely 

with respect to one another. When the liquid is cooled, the molecules’ thermal mobility is lost. 

If the cooling process is carried out slowly enough, the atoms line themselves up into a pure 

crystal, which is also the minimal energy state of the system. Otherwise, if the cooling is too 

quick the atoms organize in a less pure structure of higher energy. 

 With simulated annealing, a virtual cooling process is carried out. The wished final low 

energy state corresponds to the optimization objective to reach. The molecules’ being 

organized corresponds to the parameters being optimized. 

 Simulated annealing is a kind of random search with a single individual. At every step, a 

candidate solution is generated by randomly varying the current solution. Then, this candidate 

solution is evaluated to find out whether it corresponds to an increase or decrease of the 

current energy state of the system. If the energy would be decreased then the candidate 

solution is accepted and it replaces the current solution. If the energy would be increased, then 

the candidate is usually rejected. However, with some probability, decreasing throughout the 

cooling process, a candidate can also be accepted if an increase of the energy state results. 

 This annealing process is illustrated in Figure 20, where parameter changes are shown 

during a cooling period covering 60 different temperatures. One can observe that at the 

beginning of the annealing(left), when the temperature is still high, parameter changes take 

place frequently, whereas towards the end (right), as the temperature cools down, almost no 

change takes place. 
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Figure 20: Example of cooling (Tetrapod 32 parameters). 

Accepting an increase in energy with a diminishing probability is the main idea behind 

simulated annealing. When the cooling process terminates, a change that increases the energy 

level can only be accepted with an infinitesimal probability. Here is the formula: 
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 where p is the probability to accept a candidate solution, T is the temperature which 
decreases exponentially throughout the cooling process, k is the Boltzmann's constant,  ∆E is 
the energy difference between the candidate and the current solution: ∆E = Ecurrent – Ecandidate.  

 Simulated annealing works well for combinatorial problems such as the travelling 
salesman. In practice, it is used for example to find the arrangement of integrated circuits that 
minimizes the interferences between their connecting wires [Kirkpatrick, et al. 1983]. 

 This document refers to an annealing process where the temperature was initialized with 

1.0 and was reduced of 0.5 % after every fifth successful parameter change. Configuration 

changes were generated by the same type of mutation operation as used with the genetic 

algorithms. Each parameter is mutated with a probability of 0.06 and with amplitude chosen 

from a normal distribution with mean 0 and standard deviation 0.2. 

2.8.3 Particle Swarm optimisation 
Particle Swarm Optimisation (PSO) was originally developed in 1995 by James Kennedy and 

Russell Eberhart [Kennedy, et al. 1995]. Like genetic algorithms, PSO is based on a 

population that slowly converges towards one or more solutions. However, with PSO, the 

particles are preserved throughout the entire process; they do not die. Contrary to GA, which 

is based on competition for better chances of survival and reproduction, PSO uses a kind of 

cooperation between the particles. This is achieved through the exchange of the coordinates of 

the best solutions that have been encountered so far.  

 PSO’s particles are simple search agents that “fly” through the search space. Whilst 

moving, they record the best position that they have discovered so far. They communicate 

with their neighbours and learn, from them, the best local solution. PSO is based on the 

concepts of social interaction or more exactly, the tendency of an individual to go his own 

way, as opposed to his tendency to follow his group’s way. At every time step, a particle's 

flight direction is driven by three factors: first, its own inertial speed, second, its tendency to 

return to the best solution it has discovered so far, and third, the tendency to go towards the 

best solution discovered by its neighbours. This can be summarized in equation (12) which 

calculates the new flight speed of a particle at time t+1, and in equation (13) which calculates 

the new position a particle: 

 

))(()())(()()()1( 21 txprandtxprandtvtv idgdidididid −+−+=+ ϕϕω   (12) 
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 where v is the speed of a particle, i is a particle index, d represents the dth
 dimension in 

the parameter space, t is the discrete time index, ω is the particle speed inertia factor and 
where the function rand() returns a uniformly distributed random number in the range [0, 1]. 
The coefficients φ1 and φ2 control the individual and social levels of confidence, e.g., how 

much a particle should follow its own best solution or his group’s best solution. Finally pi is 

the best previous position of particle i, and pg is the best previous position in the 

neighbourhood of particle i. These principles are illustrated in Figure 7 below. 
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Figure 21: Principle of swarm particle optimization. 

In PSO, we speak about the particles' neighbourhood. A particle’s neighbourhood defines 
from which other particles the information will be received. The neighbourhood size can vary 

from a few particles to the entire swarm. The neighbourhood type does also vary: some PSO 

techniques are based on so-called social neighbourhood, while others use geometrical 
neighbourhood. In social neighbourhood, the particles are associated with other particles from 
the beginning and their relationship is maintained throughout the process. A geometrical 

neighbourhood is defined in accordance with the current particles “proximity” in the 

parameter space. In this case, the particle-to-particle distances needs to be recomputed at every 

iteration. The usually mentioned advantage of social neighbourhood is its lower computational 

burden compared to geometrical neighbourhood. However, in our case, geometrical 

neighbourhood was preferred, because the processing power required by the optimization 

algorithm are insignificant anyway compared to that of the physics simulation. 

 The speed inertia factor ω can either be fixed or decreased during the optimization 
process.  Some authors [Shi, et al. 1998] suggest that a decreasing inertia factor gives better 

results, and so this approach used here. 

 In this project, the neighbourhood was based on geometrical proximity with a size of 

either 50 (the whole swarm) or five particles, according to the experiment. The initial speed 

inertia was 1.0 and was decreased by 0.5% after every iteration. In every dimension, a 

particle's position was constrained in the range [0, 1] while its speed was limited to a maximal 

change of 0.2 per iteration. 

2.8.4 Random Search 
Random search is straightforward and used only as a method to compare other algorithms. In 

random search, controllers are generated and initialised with parameters from a random 

uniform distribution in the range [0, 1]. The generated controllers are tried in sequence. Each 

time a better controller is found, it replaces the current solution, which is deleted. 

2.8.5 Comparison methods 
For every optimization algorithm, the controllers' performance was measured using, the same 

method that was described earlier (Section 2.7). Yet, what is important is to compare the 

algorithms performance with each other, on a common scale representing the processor time. 

However, the various algorithms are based on different time bases: for example generations 
for GAs, annealing schedule for SA and iterations for PSO. As a result, every algorithm was 
implemented such as to terminate and deliver results after 12,000 controller evaluations and a 

time scale that represents the number of such evaluations between 0 and 12,000, was used. 

v (current speed) 

pg (best solution in neighbourhood) 

pi (own best solution) 

x(t) (current position) 

x(t+1) (next position) 
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2.9 Simulation 
Clearly, chaotic or unsynchronized oscillations tend to result in inefficient locomotion. In this 

project, the task of rejecting defective solutions was left entirely to the optimisation 

algorithms. No preliminary test, of the oscillations’ “quality” was performed before submitting 

a controller to the simulator. One can argue that this approach might slow down the 

optimization processes because many non-viable solutions are expensively simulated. 

However, it is also possible that poorly synchronized oscillators are very close to good 

solutions in parameter space. In which case, their premature removal would also be 

detrimental. 

2.9.1 Simulation parameters 
Within Webots, each controller was evaluated during 32 simulated seconds, which 

corresponds roughly to one second of processor time, depending on the complexity of the 

model. In the configuration used, new servomotor positions were transferred from the robot 

controller to the simulator every 64 milliseconds. The physics integration step was of 32 

milliseconds. The oscillators used Euler integration with a step of one millisecond. The ODE 

Coulomb friction was set to 0.9 for all robot modules and in every experiment. 

2.9.2 Noise 
The search algorithms used here are stochastic and as a result, obviously different results are 

obtained for every search. In the contrary, the behaviour of the oscillators is completely 

deterministic; if the same initial conditions and parameters are used, the controller generates 

the same sequence of servomotor commands every time. However, some noise was present in 

the simulations, produced by the simulator‘s underlying physics engine (ODE). Consequently, 

the measured performance of a controller varied. This is illustrated in Figure 22, which shows 

the performance of the four morphologies, tested 20 times with the same controller. 
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Figure 22: Discrepancy in performance due to noise. 

In this example, the performance divergence was a lot larger in the caterpillar than in the other 

morphologies. The reason for this is that the caterpillar robot sometimes falls over and, once 

on the side, it cannot move any further. In fact, falling over does also sometimes occurs to the 

wheel robot, but in this example, a robust controller was used and therefore, this did not 
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happen. Actually, the wheel robot is actually very sensitive to noise because is moves by a 

kind of vibrations, not using a proper gait like the others robots; therefore, its performance 

usually varies a lot. 

 Noise, in the performance measurement, delays the algorithms convergence. However, a 

certain amount of noise is representative of the real world, e.g. inaccuracy in the servomotors 

or irregular ground friction. Therefore, noise improves the robustness of the results and the 

chances that the simulation results can be transferred to a real robot. 

2.9.3 Numerical instabilities 
In addition to the noise, numerical instabilities appeared in the simulations. Some of these 

instabilities originated from the oscillators. They could be detected automatically in software; 

when the current state of an oscillator exceeded a specific security threshold or equalled Not-

a-Number (NaN), an arbitrary performance of zero was assigned to the corresponding 

controller. 

 Furthermore, sometimes a controller reported an outstanding result that could 

unfortunately not be reproduced afterwards. This type of situation was due to numerical 

instabilities in ODE. To overcome this kind of problem, the usual solution is to decrease the 

integration step of the physics simulator. However, a smaller integration steps considerably 

slows down ODE and therefore the whole search. Therefore, we rather chose to recheck all the 

results manually and to redo the searches that gave irreproducible results. 
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3 Results 
A series of 100 searches, representing around 300 hours of processor time in total, was carried 

out. The four described morphologies were tested with the different search methods, further 

denoted: GA for genetic algorithms, SA for simulated annealing, PSO5 for particle swarm 

optimization using a geometrical neighbourhood of five particles, PSO50 for particle swarm 

optimization with a “whole swarm” neighbourhood and finally RS for random search. In 

addition, each test was repeated five times for averaging the results. 

3.1 Main results 
In Figure 23 below, the learning curves of the search algorithms for all four morphologies are 

plotted. Each curve represents the current best solution of the corresponding algorithm 

throughout a search and it is computed as the average of five different searches.  

 

 

 

Figure 23: Compared learning curves of five search methods for each morphology  

(results are averaged over five searches). 

The horizontal axes indicate the number of controller evaluation between 0 and 12,000, which 

corresponds also to 120 generations for GA or 240 iterations for PSO. What is important to 

notice is that for any morphology, the best results were always obtained using PSO50. The 
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worst results were constantly obtained by random search, as expected. The small peak in the 

GA curve in the fourth diagram is due to a numerical instability, which disappeared in the 

subsequent generation, because the genotype evaluated then to a different performance. 
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Figure 24: Performance results, sorted by morphology (left) and algorithm (right). 

Figure 24 summarizes these results in another form: only the final best performances are 

compared. On the left, the results are grouped by morphology and on the right, by algorithm. 

Without considering the search methods, the caterpillar is usually the fastest morphology but 

is sometimes outperformed or equalled by the crawler. 

3.2 Gait description 
This paragraph will shortly go through the description of some of the most efficient gaits 

obtained. Video clips of precisely the same results that are described here are available for 

closer examination on the webpage: http://www.yvanbourquin.com/ModularWalkers. 

3.2.1 Wheel 
This sequence was obtained with the genetic algorithm; it represents a full "gait" cycle of the 

wheel robot. The interval between two images is 250 milliseconds. The wheel moves through 

vibrations while standing on two limbs. In most solutions, the upper rear limb is rather 

immobile and used as a swinging mass. 

 

 

Figure 25: Example of wheel vibrating "gait". 

The wheel did not develop a rotational motion, as was expected. The reason is probably that 

the oscillator’s frequency is fixed to 1 Hz, and 1 second is not enough for the motors to carry 

out a full rotation of the structure. 
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3.2.2 Caterpillar 
The results of the 25 best caterpillar controllers can be classified in three categories (Table 3). 

A first category corresponds to controllers that move as a kind of “rolling loop” similar to the 

caterpillars of tracked vehicles (Figure 26). A second category corresponds to controllers 

producing caterpillar-like motion, similar to real worms or caterpillars. The third category is 

made of robots moving by vibrations. Two subcategories a) and b) were also distinguished, 

whether to a controller chose to move in "head" or "tail" direction. 

 

 "Gait" category Number of results Mean performance 

1 Rolling loop, a) tail first, b) head first 7 (2 + 5) 25.0 

2 Caterpillar gait, a) tail first, b) head first 12 (9 + 3) 16.1 

3 Motion by vibration 6 10.5 

Table 3: Caterpillar "gait" categories. 

Note that, with an average performance of 25.0, the first category, the rolling loop, is by far 

the fastest caterpillar, and actually the overall best performance of all simulations. Another 

thing to notice is that categories 1 and 2 seem to have a preferred direction. This can be 

understood because the caterpillar robot model is not front-rear symmetrical. Unfortunately, 

the travelled distance is measured in the centre of the robot's tail and therefore, gaits showing 

large tail movements were artificially favoured. 

 Five results from each optimization method are not enough to make a conclusion 

whether one optimization method is more likely to converge towards a particular category, but 

there is no reason to think that this would be the case. 

  

 

Figure 26: Example of caterpillar's rolling "gait". 

In every rolling loop result (Figure 26), the caterpillar robots had a "gait" cycle lasting two 

seconds, therefore exactly twice duration of one period of oscillations. This surprising result is 

in fact the only possible outcome, because only two similar bending waves propagated along 

the body can provoke a full rotation. In Figure 26, the upper row of images corresponds to the 

first travelling wave, and the lower row of images corresponds to the second travelling wave, 

with the same motor activation angles. 

head 

head 
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 This rolling loop “gait” can be understood more easily by looking at the corresponding 

oscillations. In Figure 27, a small and regular phase shift, indicated by the oblique line, is 

propagated during one second from module 2 to module 6. 
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Figure 27: Example of caterpillar oscillations. 

In this example the "head" module activation does not take part to this travelling wave; it is 

actually in counter phase. The reason is that the head's hinge is not connected to another 

module, and therefore it behaviour is rather irrelevant in this type of locomotion. 

3.2.3 Tetrapod 
With the tetrapod morphology, the motors have enough power to lift the body above the 

ground during the whole gait cycle. Therefore, an upright posture (Figure 28, left) emerged 

even though in the initial position the robot is "sitting" on the ground. Independently of the 

algorithm used, most of the time the controllers developed a kind of "walk" similar to that 

found in animal quadrupeds.  

 

   

Figure 28: Upright tetrapod and axes of symmetry. 

Usually a kind of 2-phases gait appeared in which two diagonally opposed legs push 

simultaneously and propel the body while the two other legs swing forwards. However, these 

movements are not perfectly in phase and can therefore be considered as 4-phase gaits. 

26 27 28 29 30 31
Time [s]
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 Even though the tetrapod is 8-ways symmetrical (Figure 28, right), almost every 

examined solution evolved to walk diagonally with respect to the central module (large 

arrows). They use two legs on each side, like actual quadrupeds. From 25 examined results, 

only one evolved to take advantage of other axes of symmetry (small arrows). In that result, 

the front and hind legs remained immobile and the two side legs pushed in phase. 

 This sequence shown in Figure 29 was obtained with PSO50. It is very representative of 

the results. Three legs are used efficiently; the feet describe roughly elliptic trajectories in 

which the “knee” joints are bent downwards during the retraction and bent upwards during 

protraction in a way similar to that of many vertebrates. 

 

 

Figure 29: Example of tetrapod gait (oblique view). 

 

Figure 30: Example of tetrapod gait (top view). 

In Figure 31, the same result is shown in the form of oscillations. In the "hip" motors, a 

positive value corresponds to a forwards limbs orientation and a negative value corresponds to 

backwards. We can see that crosswise-opposed legs are in phase: the front left
4
 hip motor (1) 

is roughly in phase with the hind right hip motor (4). Similarly, motor (2) is roughly in phase 

with motor (3). 

                                                 
4 Since the tetrapod is actually a symmetrical morphology, the terms left, right, front and hind must here to be 
understood with respect to the actual direction of motion. 
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 However, the "knee" oscillations seem less efficient. In the "knee" motors, positive 

values mean upwards and negative values means downwards, null is the horizontal. An 

efficient quadruped gait corresponds to the knee pointing downwards during retraction and 

upwards during protraction. In our example, this corresponds to a counter-phase 

synchronization of each "knee" with the corresponding "hip". 

 

Front left hip (1) 

Front right hip (2) 

Hind left hip (3) 

Hind right hip (4) 

Front left knee (5) 

Front right knee (6) 

Hind left knee (7) 

Hind right knee (8) 

 

 

Figure 31: Example of tetrapod oscillations. 

Here, the solution is imperfect; one can observe that there is an approximate counter-phase, 

but unfortunately only between the hind hips and the corresponding hind knees. The two front 

legs are used inefficiently because they points downwards during protraction. However, the 

oscillation amplitude is small and therefore this is apparently not hindering the robot too 

much.  

3.2.4 Crawler 
It is hard to classify the crawler results, because they differ only by slight variations. All the 

results use three or four legs. As with the tetrapod above, more or less efficient gaits were 

found in which, usually, the “knee” joints point downwards during retraction and more or less 

horizontally or upwards during protraction. The next sequence represents a typical crawler 

result. It was optimized by simulated annealing. These images are taken at 160 milliseconds 

intervals. 

 

 

26 27 28 29 30 31
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Figure 32: Example of crawler gait. 

The gait shown here has 2-phases but is asymmetrical (Figure 32). The first row of images 

correspond to retraction, the second one corresponds to protraction. Three of the legs move in 

phase while the fourth one (left front leg), moves in counter phase. The crawler’s body lies on 

ground during the protraction but is lifted slightly during the retraction, much like a reptile's 

sprawling posture. This is different from the tetrapod, which is lighter and keeps its body off 

the ground during the complete cycle. 

 Note that from 25 results, 10 chose to start moving in the direction shown in Figure 32 

and the 15 others started in the opposite direction. There is no known advantage to either 

solution. Sometimes, the robots moved slightly sideways, not exactly parallel to the robot's 

spine.  

3.3 Genotype analysis 
At this point, it is interesting to compare the results of the various algorithms to see if there is 

convergence to a common solution. Figure 33 shows the 25 best crawler controllers obtained 

with various search methods. The thicker line shows the mean value of all the controllers. 

There is rather large diversity in the solutions and only a slight tendency towards a particular 

configuration. 

 

 

Figure 33: Parameters sets of the 25 best crawler controllers  

(the x-axis corresponds to the parameter numbers). 

When examining the standard deviation of these parameters (Figure 34), one can notice that 

the smallest variance correspond quite precisely to the controller’s x0 parameters (red bars), 
while the largest variance correspond to the oscillations amplitudes A (yellow bars) of the 
controllers. The x0 parameters correspond to the initial oscillation angles of the “knee” 
(parameters 17, 21, 25 and 29) and “hip” joints (parameters 1, 5, 9 and 13). Therefore, in the 

“knee” joints, this consistency of x0 indicates the standard downwards orientation of the “tibia” 
required to ensure contact with the ground. 
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Figure 34: Standard deviation of the 25 best crawler controllers  

(the x-axis corresponds to parameter numbers). 

In the “hip” joints, this corresponds to “femur” angles usually oriented perpendicularly to the 

spine, as is required to enable larger pushing movements. Clearly, the small variation in the x0 
parameters reflects the general posture required for the locomotion of the crawler. On the 

contrary, the larger variance in the aij and bij parameters (green bars) reflects the fact that 

several different combinations of coupling strengths can result in the same phase shifts. 

 A similar variance scheme was found in the tetrapod morphology. This result is obvious 

because it is also a quadruped. The reason why the oscillations’ amplitudes A are the most 
variable parameters is not clear. On the contrary, concerning the caterpillar, the most stable 

parameters correspond to the amplitude and not to the x0. 

3.4 Unidirectional vs. bidirectional connections 
In this test, the difference between unidirectional and bidirectional connections was tested 

using the tetrapod morphology and the genetic algorithm. The same GA parameters as 

specified in paragraph 2.8.1 are used. The only thing that was changed was the oscillators’ 

connections scheme.  

 

    

Figure 35: Compared performance of unidirectional and bidirectional tetrapods. 

The two upper curves represent the evolution of the best individuals of a population of 

unidirectional (solid line) and bidirectional tetrapod (dotted line). The two lower lines 

correspond to the mean individuals. Each curve is averaged over eight different runs of the 

Unidirectional 

Bidirectional 

A 

x0 
aij 
bij 
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genetic algorithm. The results are slightly better for the bidirectional tetrapod but the 

difference is not significant. 

3.5 Sexual vs. asexual genetic algorithm 
In this test, the objective was to compare the performance of sexual vs. asexual genetic 

algorithm. Sixteen GA optimizations were carried out, eight with crossover and eight without 

crossover. The results were averaged; they are shown in Figure 36. The two upper curves 

represent the best individuals of the sexual and asexual populations, and the two lower curves 

represent the corresponding mean individuals. The learning curves are almost identical for 

sexual and asexual. 

 We can deduce that the crossover operation employed here is inefficient. Apparently, the 

sequence of parameters described above (section 2.5) is not constituted of reusable building 

blocks. In fact, when a single coupling strength is modified in a controller, this can result in 

completely different phase shifts of the oscillators. Consequently, the crossover will usually 

produce the same effect as a large mutation resulting in an offspring which performance is 

unrelated to the one of its parents. 

 

 

Figure 36: Sexual vs. asexual GA. 

Still, it is possible that a crossover operation designed in a different way performs better. The 

version used here did not consider any building blocks and therefore the crossover points were 

set completely arbitrarily between any of the floating-point parameters. For example, it might 

be an improvement to use a crossover operation that does not split adjacent aij and bij and 

adjacent A and xo, because these parameters are closely related. 
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4 Discussion  

4.1 Algorithms comparison 
All these search methods have a lot in common. They start with a set of randomly generated 

candidate solutions, and then new candidates are generated by varying the current ones. The 

new candidates’ performances are evaluated and then, with some probability better solutions 

replace the previous ones. What differs is the size of the population, the way the variation is 

generated and the way replacement is carried out. 

 In simulated annealing and random search, the set size is one. On the contrary, in genetic 

algorithm and particle swarm optimization the set is a whole population. A population of 
individuals is generally superior to a single individual because this allows generating variation 

from several suitable starting points. With a population, the search is pursued in several 

directions; this explains why GA and PSO constantly delivered the best results. 

 Furthermore, there are many methods to produce variation. For GA and SA, single point 

mutations with a certain probability and with an amplitude chosen from a normal distribution 

were used. However, it would also have been possible to choose the mutation in a hypersphere 

around the current solutions as in [Slocum, et al. 2000]. Similarly, there are various ways to 

make use of random in PSO, but it is impossible to try them all. The annoying problem is that, 

most of the time, mutations give an uphill move that decrease performance. In [Press, et al. 

1988], a method is proposed that uses simulated annealing together with the downhill simplex 

method. This technique can increase the chance of a downhill mutation. In the same way, PSO 

“flight” speed plays the role of a momentum that potentially increases the chances of a 

downhill move. This is similar to the momentum used in neural networks to improve the speed 

of convergence by taking into account the current learning rate. In this aspect, PSO seems 

superior to GA because it does not simply generates variation from good past solutions, but it 

also takes into account the current improvement direction. Therefore, it increases the chances 

that the next mutation will be downhill. 

 Finally, it is worth noting that not only can the search algorithms can be infinitely 

varied, but also furthermore, they can be used in combination. For example, both genetic 

algorithm and particle swarm optimization are quite efficient alone, but eventually they could 

be more efficient when used together. Since they are both based on a population, it is possible 

to alternate the technique within the same search. Furthermore, for some GAs the mutation 

rate is too restrictive for the initial search but fine for the parameters fine-tuning. Therefore, an 

alternative is to start with a random search and finish the parameters fine-tuning with a GA or 

any of the other techniques described here. 

4.2 Conclusions 
Interestingly, the four search methods all produced similar and good results. The biggest 

surprise was that particle swarm optimization delivered constantly better results than genetic 

algorithms. The myth that genetic algorithms is a superior optimization technique is a bit 

broken. In fact, genetic algorithms are not superior but their popularity in evolutionary 

robotics is mostly due to their nature, inspired from phylogeny, which fits very well with the 

concept of artificial life or artificial intelligence. This project has shown that PSO works just 

as well, or even better than GAs, to optimize controllers. 
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 However, we should also avoid generalising the results from this experiment. GA, SA 

and PSO all use a number of control parameters, e.g. population size, swarm size, mutation 

rate and so on. These control parameters have a great influence on the results. In this project, 

the control parameters of the algorithms have been chosen intuitively by the author, but in 

fact, they would need to be optimized themselves. 

 Generally, locomotion developed beyond expectations. In the tetrapod and crawler, gaits 

similar to natural quadrupeds evolved and their performance is apparently close to the 

theoretical maximum. Although our results are good, when looking at the gaits obtained, one 

always has the impression that something can still be improved. It is possible that classical 

engineering methods, for example gait tables or predefined joint trajectories, reaches similar 

or better performance. It would be interested to compare the results of these two divergent 

methods. 

4.3 Future work 
The effectiveness of the generated locomotion gaits has not been verified in hardware. The 

logical continuation of the project is to transfer the simulation results into the real robot and 

carry out the calculation of the oscillations on-board. However, at the time of writing, the 

hardware was not completely ready and therefore this could not be tried out.  

 An interesting extension to the project would be to implement the control of direction in 

the tetrapod and crawler robots. If the left and right side CPGs are independent, and if the 

oscillations’ amplitude on one side is changed using the tonic input [Ijspeert, et al. 2000], then, 

the tetrapod and crawler robots could turn. 

 Our performance measurement involved only locomotion speed; however, in order to 

gain in autonomy, robots should also be energy efficient, just as their biological counterpart. 

This is especially critical for modular robots because, according to their creators’ claims, they 

are aimed at working outdoors. Therefore, the energy consumption should be incorporated in 

the performance measurement. However, this calculation is not necessarily easy because, a 

body has is own dynamics. During a gait, the energy can be temporary stored in elastic or 

gravitational form and restored later on. 

 Finally, the model used here was very limited compared to a real biological system. 

Only CPGs were modelled whereas animal locomotion is also controlled by the brain and by 

sensory feedback. Even though no sensors were implemented in the real robot, it would be 

interesting to include sensory perception in the simulation. One possibility is to simulate touch 

sensors in order to know when a foot is in contact with the ground. Another possibility is to 

implement proprioception and the feedback of the actual motor angles into the oscillators. 
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6 Appendix 

6.1 Matlab listings 

6.1.1 Limit cycle 
clear all; 
a=0.7; 
tau=10; 
E=1; 
T=500; 
hold on; 
 
for i=1:30 
    v(1)=rand*4-2; 
    x(1)=rand*4-2; 
    for t=1:T 
        v(t+1)=v(t)+(-a*((x(t)*x(t)+v(t)*v(t)-E)/E) *v(t)-x(t))/tau; 
        x(t+1)=x(t)+v(t)/tau; 
    end; 
    plot(x,v); 
end; 
 
axis([-2 2 -2 2]); 
set(gca,'FontSize',12); 
set(gca,'FontWeight','bold'); 
xlabel('x'); 
ylabel('v'); 

6.1.2 Oscillators coupling 
clear all; 
 
alpha=0.5;     % convergence factor 
f=1;           % oscillation frequency [Hz] 
tau=f/(2*pi);  % time constant [s] 
N=4;           % num oscillators 
dT=0.0001;     % integration step [s] 
D=32;          % duration of measurement [s] 
T=1000;        % num of samples 
K=D/dT/T;      % num dT per sample 
MINMAX=0.7;    % connection min max 
 
% random oscillation amplitudes 
E=(rand(N,1)*(pi/2-0.0001)+0.0001).^2; 
 
%  random initial conditions 
v=rand(1,N)*2-1; 
x=rand(1,N)*2-1; 
 
% random coupling strengths 
a=zeros(N,N); 
b=zeros(N,N); 
connections=[0 1; 1 0; 1 2; 2 1; 2 3; 3 2; 3 0; 0 3 ]; 
for i=1:size(connections,1) 
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    a(connections(i,2)+1,connections(i,1)+1)=rand*2 *MINMAX-MINMAX; 
    b(connections(i,2)+1,connections(i,1)+1)=rand*2 *MINMAX-MINMAX; 
end; 
 
for t=1:T            % for every measure sample 
    for k=1:K        % for every integration steps 
        for i=1:N    % for every oscillators 
            S=0; 
            for j=1:N 
                % sum of coupling inputs 
                S=S+(a(i,j)*x(j)+b(i,j)*v(j))/(x(j) ^2+v(j)^2); 
            end; 
            % main oscillator equations 
            v(i)=v(i)+dT*((-alpha*((x(i)^2+v(i)^2-E (i))/E(i))*v(i)-x(i)+S)/tau); 
            x(i)=x(i)+dT*v(i)/tau; 
        end; 
    end; 
    X(:,t)=x(:); 
end; 
 
% plot results 
for j=1:N 
    subplot(N,1,j); 
    plot([1:T]*K*dT, X(j,:)); 
    axis([0, D, -3, 3]); 
    xlabel('Time [s]'); 
    ylabel('x'); 
end; 

6.2 Example VRML listings: Tetrapod 
#VRML_SIM V4.0 utf8 
#000000 
WorldInfo { 
  info [ 
    "tetrapod walker" 
    "yvan bourquin <mail@yvanbourquin.com>" 
    "Date: 23 jun 2004" 
  ] 
  title "modular walker" 
  ERP 0.8 
} 
 
... 
 
DEF WALKER CustomRobot { 
  rotation 0 0 1 0 
  children [ 
    GPS { 
      name "gps" 
    } 
    DEF emitter Emitter { 
      name "emitter" 
      range 999 
    } 
    DEF QUAD_GROUP Group { 
      children [ 
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        Transform { 
          rotation 1 0 0 1.5708 
          children [ 
            DEF GREEN_BOX_SHAPE Shape { 
              appearance DEF PLASTIC Appearance { 
                material Material { 
                  diffuseColor 0 1 0 
                } 
              } 
              geometry Box { 
                size 0.05 0.045 0.062 
              } 
            } 
          ] 
        } 
        Transform { 
          translation 0 0.031 0 
          rotation 1 0 0 1.5708 
          children [ 
            DEF GREEN_CYLINDER_SHAPE Shape { 
              appearance USE PLASTIC 
              geometry Cylinder { 
                height 0.045 
                radius 0.025 
              } 
            } 
          ] 
        } 
        Transform { 
          translation 0.045 0 0 
          rotation 0 1 0 1.5708 
          children [ 
            DEF GREY_BOX_SHAPE Shape { 
              appearance DEF ALU_APPEARANCE Appeara nce { 
                material Material { 
                  shininess 0.8 
                } 
              } 
              geometry Box { 
                size 0.014 0.07 0.04 
              } 
            } 
          ] 
        } 
        Transform { 
          translation -0.045 0 0 
          rotation 0 1 0 1.5708 
          children [ 
            USE GREY_BOX_SHAPE 
          ] 
        } 
        Transform { 
          translation 0 0 -0.0425 
          children [ 
            USE GREY_BOX_SHAPE 
          ] 
        } 
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        Transform { 
          translation 0 0 0.0435 
          children [ 
            USE GREY_BOX_SHAPE 
          ] 
        } 
      ] 
    } 
    DEF servo0 Servo { 
      translation 0 0.0423 0 
      rotation 0 0 1 0 
      children [ 
        DEF GREY_BOX_TRANSFORM Transform { 
          rotation 1 0 0 1.5708 
          children [ 
            USE GREY_BOX_SHAPE 
          ] 
        } 
      ] 
      name "servo0" 
      boundingObject USE GREY_BOX_TRANSFORM 
      physics Physics { 
        density -1 
        mass 0.2 
        coulombFriction 0.9 
      } 
      joint Joint { 
        translation 0 -0.043 0 
      } 
      maxVelocity 6.54498 
      maxForce 0.73 
      maxPosition 1.5708 
      minPosition -1.5708 
    } 
    DEF hip0 Servo { 
      translation 0.089 0 0 
      children [ 
        DEF FEMUR_GROUP Group { 
          children [ 
            Transform { 
              translation -0.031 0 0 
              children [ 
                USE GREEN_CYLINDER_SHAPE 
              ] 
            } 
            Transform { 
              rotation 0 1 0 1.5708 
              children [ 
                USE GREEN_BOX_SHAPE 
              ] 
            } 
            Transform { 
              translation 0.051 0 0 
              rotation 1 0 0 0 
              children [ 
                Shape { 
                  appearance USE ALU_APPEARANCE 
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                  geometry Box { 
                    size 0.04 0.014 0.07 
                  } 
                } 
              ] 
            } 
          ] 
        } 
        DEF knee0 Servo { 
          translation 0.094 0 0 
          rotation 0 0 1 0 
          children [ 
            DEF TIBIA_GROUP Group { 
              children [ 
                Transform { 
                  translation -0.031 0 0 
                  rotation 1 0 0 1.5708 
                  children [ 
                    USE GREEN_CYLINDER_SHAPE 
                  ] 
                } 
                Transform { 
                  children [ 
                    Shape { 
                      appearance USE PLASTIC 
                      geometry Box { 
                        size 0.062 0.05 0.045 
                      } 
                    } 
                  ] 
                } 
              ] 
            } 
          ] 
          name "knee0" 
          boundingObject USE TIBIA_GROUP 
          physics DEF ELEMENT_PHYSICS Physics { 
            density -1 
            mass 0.22 
            coulombFriction 0.9 
          } 
          joint Joint { 
            translation -0.03 0 0 
          } 
          maxVelocity 6.54498 
          maxForce 0.73 
          maxPosition 1.5708 
          minPosition -1.5708 
        } 
      ] 
      name "hip0" 
      boundingObject USE FEMUR_GROUP 
      physics USE ELEMENT_PHYSICS 
      joint Joint { 
        translation -0.031 0 0 
      } 
      maxVelocity 6.54498 
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      maxForce 0.73 
      maxPosition 0.785 
      minPosition -0.785 
    } 
    DEF hip1 Servo { 
      translation 0 0 0.0855 
      children [ 
        DEF FEMUR3_GROUP Group { 
          children [ 
            Transform { 
              translation 0 0 -0.031 
              children [ 
                USE GREEN_CYLINDER_SHAPE 
              ] 
            } 
            Transform { 
              children [ 
                USE GREEN_BOX_SHAPE 
              ] 
            } 
            Transform { 
              translation 0 0 0.051 
              rotation 0 0 1 1.5708 
              children [ 
                USE GREY_BOX_SHAPE 
              ] 
            } 
          ] 
        } 
        DEF knee1 Servo { 
          translation 0 0 0.094 
          rotation 1 0 0 0 
          children [ 
            DEF TIBIA3_GROUP Group { 
              children [ 
                Transform { 
                  translation 0 0 -0.031 
                  rotation 0 0 1 1.5708 
                  children [ 
                    USE GREEN_CYLINDER_SHAPE 
                  ] 
                } 
                Transform { 
                  rotation 0 0 1 1.5708 
                  children [ 
                    USE GREEN_BOX_SHAPE 
                  ] 
                } 
              ] 
            } 
          ] 
          name "knee1" 
          boundingObject USE TIBIA3_GROUP 
          physics USE ELEMENT_PHYSICS 
          joint Joint { 
            translation 0 0 -0.031 
          } 
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          maxVelocity 6.54498 
          maxForce 0.73 
          maxPosition 1.5708 
          minPosition -1.5708 
        } 
      ] 
      name "hip1" 
      boundingObject USE FEMUR3_GROUP 
      physics USE ELEMENT_PHYSICS 
      joint Joint { 
        translation 0 0 -0.031 
      } 
      maxVelocity 6.54498 
      maxForce 0.73 
      maxPosition 0.785 
      minPosition -0.785 
    } 
    DEF hip2 Servo { 
      translation -0.089 0 0 
      children [ 
        DEF FEMUR_GROUP Group { 
          children [ 
            Transform { 
              translation 0.031 0 0 
              children [ 
                USE GREEN_CYLINDER_SHAPE 
              ] 
            } 
            Transform { 
              rotation 0 1 0 1.5708 
              children [ 
                USE GREEN_BOX_SHAPE 
              ] 
            } 
            Transform { 
              translation -0.051 0 0 
              rotation 1 0 0 0 
              children [ 
                Shape { 
                  appearance USE ALU_APPEARANCE 
                  geometry Box { 
                    size 0.04 0.014 0.07 
                  } 
                } 
              ] 
            } 
          ] 
        } 
        DEF knee2 Servo { 
          translation -0.094 0 0 
          rotation 0 0 1 0 
          children [ 
            DEF TIBIA_GROUP Group { 
              children [ 
                Transform { 
                  translation 0.031 0 0 
                  rotation 1 0 0 1.5708 
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                  children [ 
                    USE GREEN_CYLINDER_SHAPE 
                  ] 
                } 
                Transform { 
                  children [ 
                    Shape { 
                      appearance USE PLASTIC 
                      geometry Box { 
                        size 0.062 0.05 0.045 
                      } 
                    } 
                  ] 
                } 
              ] 
            } 
          ] 
          name "knee2" 
          boundingObject USE TIBIA_GROUP 
          physics USE ELEMENT_PHYSICS 
          joint Joint { 
            translation 0.03 0 0 
          } 
          maxVelocity 6.54498 
          maxForce 0.73 
          maxPosition 1.5708 
          minPosition -1.5708 
        } 
      ] 
      name "hip2" 
      boundingObject USE FEMUR_GROUP 
      physics USE ELEMENT_PHYSICS 
      joint Joint { 
        translation 0.031 0 0 
      } 
      maxVelocity 6.54498 
      maxForce 0.73 
      maxPosition 0.785 
      minPosition -0.785 
    } 
    DEF hip3 Servo { 
      translation 0 0 -0.0855 
      children [ 
        DEF FEMUR2_GROUP Group { 
          children [ 
            Transform { 
              translation 0 0 0.031 
              children [ 
                USE GREEN_CYLINDER_SHAPE 
              ] 
            } 
            Transform { 
              children [ 
                USE GREEN_BOX_SHAPE 
              ] 
            } 
            Transform { 
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              translation 0 0 -0.051 
              rotation 0 0 1 1.5708 
              children [ 
                USE GREY_BOX_SHAPE 
              ] 
            } 
          ] 
        } 
        DEF knee3 Servo { 
          translation 0 0 -0.094 
          rotation 1 0 0 0 
          children [ 
            DEF TIBIA2_GROUP Group { 
              children [ 
                Transform { 
                  translation 0 0 0.031 
                  rotation 0 0 1 1.5708 
                  children [ 
                    USE GREEN_CYLINDER_SHAPE 
                  ] 
                } 
                Transform { 
                  rotation 0 0 1 1.5708 
                  children [ 
                    USE GREEN_BOX_SHAPE 
                  ] 
                } 
              ] 
            } 
          ] 
          name "knee3" 
          boundingObject USE TIBIA2_GROUP 
          physics USE ELEMENT_PHYSICS 
          joint Joint { 
            translation 0 0 0.031 
          } 
          maxVelocity 6.54498 
          maxForce 0.73 
          maxPosition 1.5708 
          minPosition -1.5708 
        } 
      ] 
      name "hip3" 
      boundingObject USE FEMUR2_GROUP 
      physics USE ELEMENT_PHYSICS 
      joint Joint { 
        translation 0 0 0.031 
      } 
      maxVelocity 6.54498 
      maxForce 0.73 
      maxPosition 0.785 
      minPosition -0.785 
    } 
  ] 
  boundingObject USE QUAD_GROUP 
  physics USE ELEMENT_PHYSICS 
  controller "walker" 
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} 
Supervisor { 
  children [ 
    DEF receiver Receiver { 
      name "receiver" 
    } 
  ] 
  controller "walker_reset_supervisor" 
} 

6.3 Controller configuration file 
# configuration file for robot controller 
# author: mail@yvanbourquin.com 
 
# general 
max.trials = 12000 
robot.name = Tetrapod 
 
# optimization 
# 0 - parameters test 
# 1 - genetic algorithm 
# 2 - simulated annealing 
# 3 - swarm particles 
# 4 - random search 
numerical.method = 3 
 
#----- mutation parameters ----- 
#----- for both simulated annealing and genetic alg orithm 
genotype.mutation.probability = 0.06 
genotype.mutation.deviation = 0.2 
 
#----- genetic algorithm parameters ----- 
population.size = 100 
population.elite.part = 0.05 
population.sexual.part = 0.00 
 
#----- simulated annealing parameters ----- 
temperature.reduction.factor = 0.95 
temperature.required.successes = 5 
 
#----- particles swarm parameters ----- 
initial.inertia = 1.0 
inertia.reduction.factor = 0.995 
swarm.size = 50 
neighbourhood.size = 5 
particle.speed.max = 0.2 
particle.confidence.individual = 2.0 
particle.confidence.social = 2.0 
 
#----- Tetrapod ----- 
Tetrapod.servos.count = 8 
Tetrapod.connections.count = 8 
Tetrapod.start.z.rotation = 0 
 
Tetrapod.servo[0].name = hip0 
Tetrapod.servo[1].name = hip1 
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Tetrapod.servo[2].name = hip2 
Tetrapod.servo[3].name = hip3 
Tetrapod.servo[4].name = knee0 
Tetrapod.servo[5].name = knee1 
Tetrapod.servo[6].name = knee2 
Tetrapod.servo[7].name = knee3 
 
Tetrapod.servo[0].max = 0.785 
Tetrapod.servo[1].max = 0.785 
Tetrapod.servo[2].max = 0.785 
Tetrapod.servo[3].max = 0.785 
 
Tetrapod.connection[0].from = 0 
Tetrapod.connection[0].to   = 1 
Tetrapod.connection[1].from = 1 
Tetrapod.connection[1].to   = 2 
Tetrapod.connection[2].from = 2 
Tetrapod.connection[2].to   = 3 
Tetrapod.connection[3].from = 3 
Tetrapod.connection[3].to   = 0 
Tetrapod.connection[4].from = 0 
Tetrapod.connection[4].to   = 4 
Tetrapod.connection[5].from = 1 
Tetrapod.connection[5].to   = 5 
Tetrapod.connection[6].from = 2 
Tetrapod.connection[6].to   = 6 
Tetrapod.connection[7].from = 3 
Tetrapod.connection[7].to   = 7 
 
#----- Caterpillar ----- 
Caterpillar.servos.count = 6 
Caterpillar.connections.count = 10 
Caterpillar.start.z.rotation = 1.5708 
 
Caterpillar.servo[0].name = servo0 
Caterpillar.servo[1].name = servo1 
Caterpillar.servo[2].name = servo2 
Caterpillar.servo[3].name = servo3 
Caterpillar.servo[4].name = servo4 
Caterpillar.servo[5].name = servo5 
 
Caterpillar.connection[0].from = 0 
Caterpillar.connection[0].to   = 1 
Caterpillar.connection[1].from = 1 
Caterpillar.connection[1].to   = 0 
Caterpillar.connection[2].from = 1 
Caterpillar.connection[2].to   = 2 
Caterpillar.connection[3].from = 2 
Caterpillar.connection[3].to   = 1 
Caterpillar.connection[4].from = 2 
Caterpillar.connection[4].to   = 3 
Caterpillar.connection[5].from = 3 
Caterpillar.connection[5].to   = 2 
Caterpillar.connection[6].from = 3 
Caterpillar.connection[6].to   = 4 
Caterpillar.connection[7].from = 4 
Caterpillar.connection[7].to   = 3 
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Caterpillar.connection[8].from = 4 
Caterpillar.connection[8].to   = 5 
Caterpillar.connection[9].from = 5 
Caterpillar.connection[9].to   = 4 
 
#----- StiffCrawler ----- 
StiffCrawler.servos.count = 8 
StiffCrawler.connections.count = 8 
StiffCrawler.start.z.rotation = 0 
 
StiffCrawler.servo[0].name = hip0 
StiffCrawler.servo[1].name = hip1 
StiffCrawler.servo[2].name = hip2 
StiffCrawler.servo[3].name = hip3 
StiffCrawler.servo[4].name = knee0 
StiffCrawler.servo[5].name = knee1 
StiffCrawler.servo[6].name = knee2 
StiffCrawler.servo[7].name = knee3 
 
StiffCrawler.servo[1].invert = 1 
StiffCrawler.servo[3].invert = 1 
StiffCrawler.servo[5].invert = 1 
StiffCrawler.servo[7].invert = 1 
 
StiffCrawler.connection[0].from = 0 
StiffCrawler.connection[0].to   = 1 
StiffCrawler.connection[1].from = 1 
StiffCrawler.connection[1].to   = 3 
StiffCrawler.connection[2].from = 3 
StiffCrawler.connection[2].to   = 2 
StiffCrawler.connection[3].from = 2 
StiffCrawler.connection[3].to   = 0 
StiffCrawler.connection[4].from = 0 
StiffCrawler.connection[4].to   = 4 
StiffCrawler.connection[5].from = 1 
StiffCrawler.connection[5].to   = 5 
StiffCrawler.connection[6].from = 3 
StiffCrawler.connection[6].to   = 7 
StiffCrawler.connection[7].from = 2 
StiffCrawler.connection[7].to   = 6 
 
#----- Wheel ----- 
Wheel.servos.count = 4 
Wheel.connections.count = 8 
Wheel.start.z.rotation = 1.5708 
 
Wheel.servo[0].name = servo1 
Wheel.servo[1].name = servo2 
Wheel.servo[2].name = servo3 
Wheel.servo[3].name = servo4 
 
Wheel.servo[0].max = 0.95 
Wheel.servo[1].max = 0.95 
Wheel.servo[2].max = 0.95 
Wheel.servo[3].max = 0.95 
 
Wheel.connection[0].from = 0 
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Wheel.connection[0].to   = 1 
Wheel.connection[1].from = 1 
Wheel.connection[1].to   = 2 
Wheel.connection[2].from = 2 
Wheel.connection[2].to   = 3 
Wheel.connection[3].from = 3 
Wheel.connection[3].to   = 0 
 
Wheel.connection[4].from = 1 
Wheel.connection[4].to   = 0 
Wheel.connection[5].from = 2 
Wheel.connection[5].to   = 1 
Wheel.connection[6].from = 3 
Wheel.connection[6].to   = 2 
Wheel.connection[7].from = 0 
Wheel.connection[7].to   = 3 
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6.4 C++ listings of optimizer controller 
All the listing have been written exclusively by the author with the exception of the method 

for generating random Gaussian numbers in the file “Random.cpp” which was taken over 

from Dr. Everett. F. Carter Jr., Generating Gaussian Random Numbers: 

http://www.taygeta.com/random/gaussian.html 

The code of the files Genotype.h, Genotype.cpp Population.h, Population.cpp was adapted 

from the author’s previous work for the Adaptive System course at Sussex. 

6.4.1 Defaults.h 
#ifndef Defaults_H 
#define Defaults_H 
 
/* 
  Simple mechanism to configure an application usin g information from a file. 
  Defaults works like a dictionary, every object co ntained is 
  made of one key and its associated value. 
  Author: Yvan Bourquin 
*/ 
 
#include <stdio.h> 
 
class Default; 
 
class Defaults{ 
 public: 
  enum Maxs { 
    MAX_KEY   = 64, 
    MAX_VALUE = 1024, 
    MAX_LINE  = 1024 
  }; 
 
  // Load all tuples from the file "fileName" into the dictionary 
  // white space must separate every tokens includi ng the = (equal) sign. 
  static void loadFile(const char *fileName); 
 
  // Retrieves the value associated with <key> in t he dictionary. 
  // If <key> is not found, the argument specified as default (<def>) 
  // is returned. 
  static const char *get(const char *key, const cha r *def, ...); 
  static int         get(const char *key, int         def, ...); 
  static float       get(const char *key, float       def, ...); 
 
 protected: 
  // constructor/destructor 
  Defaults(); 
  ~Defaults(); 
 
 private: 
  // private functions 
  static Default *find(const char *, bool create = false); 
  static void copy(const char *source, char *&desti nation); 
  static bool compare(const char *a, const char *b) ; 
  static const char *restore(const char *key); 
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  // linked list 
  static int ourSize; 
  static Default *ourHead; 
  static Default *ourTail; 
 
  Defaults(const Defaults &); 
  Defaults & operator = (const Defaults &); 
  // disabled 
}; 
 
#endif 

6.4.2 Defaults.cpp 
#include "Defaults.h" 
#include <stdarg.h> 
#include <iostream> 
 
using namespace std; 
 
class Default { 
public: 
  // constructor 
  Default(const char *nkey) { 
    key     = new char[strlen(nkey) + 1]; 
    strcpy(key, nkey); 
    user    = NULL; 
    next    = NULL; 
  } 
 
public: 
  char *key; 
  char *user; 
  Default *next; 
}; 
 
int Defaults::ourSize = 0; 
Default *Defaults::ourHead = NULL; 
Default *Defaults::ourTail = NULL; 
 
// string copy with memory managment and NULL point ers allowed 
void Defaults::copy(const char *source, char *&dest ination) { 
  delete [] destination; 
 
  if (! source) { 
    destination = NULL; 
    return; 
  } 
   
  destination = new char[strlen(source) + 1]; 
  strcpy(destination, source); 
} 
 
// string compare with NULL pointers allowed. 
bool Defaults::compare(const char *a, const char *b ) { 
  if (! a && ! b) 
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    return true; 
   
  if (! a || ! b) 
    return false; 
 
  return strcmp(a, b) ? false : true; 
} 
 
// load dictionnary from file 
void Defaults::loadFile(const char *filename) { 
  FILE *file = fopen(filename, "r"); 
  if (file == NULL) { 
    cerr << "Defaults::loadFile(): failed to open f ile.\n"; 
    return; 
  } 
 
  while (! feof(file)) { 
    char line[MAX_LINE], *linep; 
 
    // read one line 
    fgets(line, sizeof(line), file); 
    linep = line; 
   
    // scan line forward skipping comments 
    while (*linep != '#' && *linep != '\n' && *line p != '\0') 
      linep++; 
   
    // scan line backward skipping trailing spaces 
    while (linep > line && isspace(*(linep - 1))) 
      linep--; 
   
    // mark end of line 
    *linep = '\0'; 
   
    // if line is not empty... 
    if (line[0] != '\0') {   
      linep = line; 
    
      // skip extra spaces 
      while (isspace(*linep)) 
 linep++; 
    
      // extract <key> 
      char *key = linep; 
      while (*linep != '=' && ! isspace(*linep) && *linep != '\0') 
 linep++; 
       
      *linep++ = '\0'; 
    
      // skip '=' and extra spaces and extract <val ue> 
      while (*linep == '=' || isspace(*linep)) 
 linep++; 
 
      char *value = linep; 
    
      // store value 
      Default *defp = find(key, true); 
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      copy(value, defp->user); 
    } 
  } 
 
  fclose(file); 
} 
 
// find tuple in dictionary 
Default *Defaults::find(const char *key, bool creat e) { 
  for (Default *defp = ourHead; defp; defp = defp-> next) 
    if (compare(key, defp->key)) 
      return defp; 
       
  if (create) { 
    Default *newp = new Default(key); 
    // append at the tail 
    if (ourTail) 
      ourTail->next = newp; 
    ourTail = newp; 
    if (! ourHead) 
      ourHead = newp; 
    ourSize++; 
    return newp; 
  } 
 
  return NULL; 
} 
 
const char *Defaults::get(const char *format, const  char *def, ...) { 
  va_list ap; 
  va_start(ap, def); 
 
  if (! format) 
    return def;  
 
  char key[MAX_KEY]; 
  vsprintf(key, format, ap); 
 
  const char *value = restore(key); 
  if (value) { 
    if (! strcmp(value, "NULL")) 
      def = NULL; 
    else 
      def = value; 
  } 
 
  va_end(ap); 
  return def; 
} 
 
int Defaults::get(const char *format, int def, ...)  { 
  va_list ap; 
  va_start(ap, def); 
  
  if (! format) 
    return def; 
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  char key[MAX_KEY]; 
  vsprintf(key, format, ap); 
 
  const char *value = restore(key); 
  if (value) 
    def = atoi(value); 
   
  va_end(ap); 
  return def; 
} 
 
float Defaults::get(const char *format, float def, ...) { 
  va_list ap; 
  va_start(ap, def); 
  
  if (! format) 
    return def; 
 
  char key[MAX_KEY]; 
  vsprintf(key, format, ap); 
 
  const char *value = restore(key); 
  if (value) 
    def = atof(value); 
   
  va_end(ap); 
  return def; 
} 
 
const char *Defaults::restore(const char *key) { 
  Default *defp = find(key); 
  if (! defp) 
    return NULL; 
   
  return defp->user; 
} 

6.4.3 GeneticAlgorithm.h 
#ifndef GeneticAlgorithm_H 
#define GeneticAlgorithm_H 
 
/* 
  Genetic algorithm for robotic locomotion optimiza tion 
  Author: Yvan Bourquin 
*/ 
 
class Population; 
class Robot; 
 
#include "Optimizer.h" 
 
class GeneticAlgorithm : public Optimizer { 
 public: 
  // constructor 
  GeneticAlgorithm(Robot *robot); 
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  // destructor 
  virtual ~GeneticAlgorithm(); 
 
  // run genetic algorithm 
  virtual void run(); 
 
 private: 
  Population *_population;    // genotype populatio n 
  char _filename[64];         // data file 
  int _popSize;               // population size 
 
  void save(const char *filename) const; 
}; 
 
#endif 

6.4.4 GeneticAlgorithm.cpp 
#include "GeneticAlgorithm.h" 
#include "Robot.h" 
#include "Population.h" 
#include "Defaults.h" 
#include <iostream> 
 
using namespace std; 
 
GeneticAlgorithm::GeneticAlgorithm(Robot *robot) 
  : Optimizer(robot) { 
  _popSize = Defaults::get("population.size", 100);  
 
  sprintf(_filename, "../../results/ga_%d_%s%d.m", _popSize,  
   robot->getName(), getNumParams()); 
 
  cout << "filename: " << _filename << endl; 
} 
 
GeneticAlgorithm::~GeneticAlgorithm() { 
  delete _population; 
} 
 
void GeneticAlgorithm::save(const char *filename) c onst { 
  FILE *file = fopen(filename, "w"); 
  if (! file) { 
    printf("could not write file: %s\n", filename);  
    return; 
  } 
 
  cout << "writing file: " << filename << endl; 
   
  Optimizer::save(file); 
  _population->save(file); 
 
  fclose(file); 
} 
 
void GeneticAlgorithm::run() { 
  _population = new Population(_popSize, getNumPara ms()); 
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  cout << "starting genetic algorithm ...\n" 
       << "population size is " 
       << _popSize << ", genome size is " 
       << getNumParams() << endl; 
 
  while (! isFinished()) { 
    for (int i = 0; i < _population->getSize(); i++ ) { 
 
      cout << "evaluating generation: " << _populat ion->getGeneration() 
    << " genotype: " << i << endl; 
 
      // evaluate genotype 
      const float *genome = _population->getGenome( i); 
      float fitness = Optimizer::evaluate(genome); 
      _population->setFitness(i, fitness); 
    } 
 
    _population->sort(); 
    Genotype *fittest = _population->getFittest(); 
    Optimizer::recordSolution(fittest->getFitness() , fittest->getGenes()); 
    save(_filename); 
    _population->reproduce(); 
  } 
} 

6.4.5 Genotype.h 
#ifndef Genotype_H 
#define Genotype_H 
 
/* 
  General-purpose genotype with mutation and crosso ver operations 
  Author: Yvan Bourquin 
*/ 
 
#include <stdio.h> 
#include <iostream> 
 
using namespace std; 
 
class Genotype { 
 public: 
 
  // constructor 
  Genotype(int size); 
 
  // copy constructor 
  Genotype(const Genotype &); 
 
  // destructor 
  virtual ~Genotype(); 
 
  // assignment operator 
  Genotype &operator = (const Genotype &); 
 
  // mutation 
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  void hypersphereMutate(); 
  void singleLocusMutate(); 
 
  // crossover 
  Genotype crossover(const Genotype &other) const; 
 
  // set/get fitness 
  void setFitness(float fitness) { _fitness = fitne ss; } 
  float getFitness() const { return _fitness; } 
 
  // get array of floating points 
  const float *getGenes() const { return _genes; } 
 
  // write genotype to file 
  void save(FILE *file) const; 
 
  // class wide mutation parameters 
  static float getMutationProbability(); 
  static float getMutationDeviation(); 
 
 private: 
  float *_genes;    // genome 
  int _size;        // genome length 
  float _fitness; 
 
  static float _mutationProbability; 
  static float _mutationDeviation; 
}; 
 
#endif 

6.4.6 Genotype.cpp 
#include "Genotype.h" 
#include "Random.h" 
#include "Defaults.h" 
#include <math.h> 
 
float Genotype::_mutationProbability = -1.0; 
float Genotype::_mutationDeviation = -1.0; 
 
float Genotype::getMutationProbability() { 
  if (_mutationProbability < 0.0) 
    _mutationProbability = Defaults::get("genotype. mutation.probability", 0.1f); 
 
  return _mutationProbability; 
} 
 
float Genotype::getMutationDeviation() { 
  if (_mutationDeviation < 0.0) 
    _mutationDeviation = Defaults::get("genotype.mu tation.deviation", 0.4f); 
 
  return _mutationDeviation; 
} 
 
Genotype::Genotype(int size) 
  : _size(size), _fitness(0.0) { 
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  _genes = new float[_size]; 
 
  // initialize with random uniform numbers in the range [0,1] 
  for (int i = 0; i < _size; i++) 
    _genes[i] = Random::getUniform(); 
} 
 
Genotype::Genotype(const Genotype &other) 
  : _size(other._size), _fitness(other._fitness) { 
  _genes = new float[_size]; 
 
  for (int i = 0; i < _size; i++) 
    _genes[i] = other._genes[i]; 
} 
 
Genotype &Genotype::operator = (const Genotype &oth er) { 
  // avoid crash in case of inadvertant: a = a 
  if (&other == this) 
    return *this; 
 
  delete [] _genes; 
 
  _size = other._size; 
  _genes = new float[_size]; 
  _fitness = other._fitness; 
 
  for (int i = 0; i < _size; i++) 
    _genes[i] = other._genes[i]; 
 
  return *this; 
} 
 
Genotype::~Genotype() { 
  delete [] _genes; 
} 
 
void Genotype::hypersphereMutate() { 
  float length = Random::getGaussian() * getMutatio nDeviation(); 
  float *mutation = new float[_size]; 
 
  float sum = 0.0; 
  for (int i = 0; i < _size; i++) { 
    mutation[i] = Random::getUniform(); 
    sum += mutation[i] * mutation[i]; 
  } 
 
  float ratio = length / (float)sqrt(sum); 
  for (int i = 0; i < _size; i++) { 
    _genes[i] += mutation[i] * ratio; 
          
    // check range 
    if (_genes[i] > 1.0) 
      _genes[i] = 1.0; 
    else if (_genes[i] < 0.0) 
      _genes[i] = 0.0; 
  } 
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  delete [] mutation; 
} 
 
// mutate a every gene with given probability and d eviation 
void Genotype::singleLocusMutate() { 
  for (int i = 0; i < _size; i++) 
    if (Random::getUniform() < getMutationProbabili ty()) { 
      _genes[i] += Random::getGaussian() * getMutat ionDeviation(); 
       
      // check range 
      if (_genes[i] > 1.0) 
 _genes[i] = 1.0; 
      else if (_genes[i] < 0.0) 
 _genes[i] = 0.0; 
    } 
} 
 
// single-point crossover 
Genotype Genotype::crossover(const Genotype &other)  const { 
  Genotype child(_size); 
 
  // make sure we don't always start with the same parent 
  const float *mom, *dad; 
  if (Random::getInteger(2) == 0) { 
    mom = this->_genes; 
    dad = other._genes; 
  } 
  else { 
    mom = other._genes; 
    dad = this->_genes; 
  } 
 
  int locus = Random::getInteger(_size); 
 
  for (int i = 0; i < _size; i++) 
    if (i < locus) 
      child._genes[i] = mom[i]; 
    else 
      child._genes[i] = dad[i]; 
   
  return child; 
} 
 
void Genotype::save(FILE *file) const { 
  fprintf(file, "%.3f ", _fitness); 
 
  for (int i = 0; i < _size; i++) 
    fprintf(file, "%.4f ", _genes[i]); 
 
  fprintf(file, ";\n"); 
} 

6.4.7 Main.cpp 
#include "Robot.h" 
#include "GeneticAlgorithm.h" 
#include "SimulatedAnnealing.h" 
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#include "ParticleSwarm.h" 
#include "RandomSearch.h" 
#include "Defaults.h" 
#include <device/robot.h> 
#include <stdlib.h> 
#include <time.h> 
#include <iostream> 
 
static Robot *robot = NULL; 
 
using namespace std; 
 
void parametersTest(Robot *robot) { 
  const char *paramString = Defaults::get("paramete rs", (const char*)NULL); 
  if (! paramString) { 
    cout << "missing test parameters ! exiting ...\ n"; 
    return; 
  } 
   
  float *params = new float[robot->getNumParams()];  
  int p = 0; 
  for (int i = 0; i < robot->getNumParams(); i++) {  
    int n; 
    sscanf(paramString + p, "%f%n", &params[i], &n) ; 
    p += n; 
  } 
 
  cout << "starting parameters test ...\nparameters : "; 
 
  for (int i = 0; i < robot->getNumParams(); i++) 
    cout << params[i] << " "; 
 
  cout << endl; 
 
  while (true) 
    robot->evaluate(params); 
 
  delete params; 
} 
 
void reset(void) { 
  const char *robotName = Defaults::get("robot.name ", "robot"); 
  robot = new Robot(robotName); 
} 
 
int main(int argc, char *argv[]) { 
  srand(time(NULL)); 
  Defaults::loadFile("../walker.ini"); 
 
  robot_live(reset); 
   
  int method = Defaults::get("numerical.method", -1 ); 
  if (method == 0) { 
    parametersTest(robot); 
  } 
  else if (method == 1) { 
    GeneticAlgorithm *ga = new GeneticAlgorithm(rob ot); 
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    ga->run(); 
    delete ga; 
  } 
  else if (method == 2) { 
    SimulatedAnnealing *sa = new SimulatedAnnealing (robot); 
    sa->run(); 
    delete sa; 
  } 
  else if (method == 3) { 
    ParticleSwarm *ps = new ParticleSwarm(robot); 
    ps->run(); 
    delete ps; 
  } 
  else if (method == 4) { 
    RandomSearch *rs = new RandomSearch(robot); 
    rs->run(); 
    delete rs; 
  } 
  else 
    cerr << "no numerical search method specified\n "; 
   
  delete robot; 
  return 0; 
} 

6.4.8 Module.h 
#ifndef Module_H 
#define Module_H 
 
/* 
  Module of modular robot 
  Author: Yvan Bourquin 
*/ 
 
class Oscillator; 
 
#include <device/robot.h> 
 
class Module { 
 public: 
  // constructor: construct module with "numInputs"  oscillator inputs 
  // for robot servo "devtag" 
  Module(const char *robotName,int servoNum, int nu mInputs); 
 
  // destructor 
  virtual ~Module(); 
 
  // add oscillator input from specified module 
  void addInput(const Module *module); 
 
  // reset oscillator and servo 
  const float *reset(const float *params); 
 
  // evaluate oscillator and update servo position 
  void step(); 
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  // return true if the oscialltor is chaotic 
  bool isCrazy() const; 
 
 private: 
  DeviceTag _servo;        // module's servo motor 
  Oscillator *_oscillator; // module's oscillator 
  float _x0;               // initial servo angle  
  float _maxx;             // maximal servo angle a llowed 
  float _invert;            // invert servo rotatio n angle 
}; 
 
#endif 

6.4.9 Module.cpp 
#include "Module.h" 
#include "Oscillator.h" 
#include "Defaults.h" 
#include <device/servo.h> 
#include <cmath> 
#include <iostream> 
 
using namespace std; 
 
static const float DEFAULT_MAX_ANGLE = M_PI / 2.0; // 90 degrees 
 
Module::Module(const char *robotName, int servoNum,  int numInputs) { 
 
  const char *servoName = 
    Defaults::get("%s.servo[%d].name", 
    (const char*)NULL, robotName, servoNum); 
 
  // get device tag from simulator 
  _servo = robot_get_device(servoName); 
  if (! _servo) { 
    cout << "ERROR: could not find servo: " << serv oName << endl; 
    exit(0); 
  } 
 
  cout << "found servo: " << servoName << endl; 
   
  // max servo angle according to physical robot pr operties 
  _maxx = Defaults::get("%s.servo[%d].max", 
   DEFAULT_MAX_ANGLE, robotName, servoNum); 
 
  _invert = Defaults::get("%s.servo[%d].invert", 
     0, robotName, servoNum) == 0 ? 1.0 : -1.0; 
 
  servo_set_velocity(_servo, 1.0); 
  servo_set_force(_servo, 100.0); 
 
  // create oscillator with max possible oscillatio n amplitude 
  _oscillator = new Oscillator(numInputs); 
  _x0 = 0.0; 
} 
 
Module::~Module() { 
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  delete _oscillator; 
} 
 
const float *Module::reset(const float *params) { 
  _x0 = *params++ * (2.0 * _maxx) - _maxx; 
  return _oscillator->reset(params); 
} 
 
void Module::step() { 
  _oscillator->step(); 
 
  if (_oscillator->isDiverging()) 
    return; 
 
  float x = (_oscillator->getX() + _x0) * _invert; 
   
  // constrict output to allowed range because we 
  // don't want to force the servo motors 
  if (x > _maxx) 
    x = _maxx; 
  else if (x < -_maxx) 
    x = -_maxx; 
   
  // now move servo to desired position 
  servo_set_position(_servo, x); 
} 
 
void Module::addInput(const Module *module) { 
  _oscillator->addInput(module->_oscillator); 
} 
 
bool Module::isCrazy() const { 
  return _oscillator->isDiverging(); 
} 

6.4.10 Optimizer.h 
#ifndef Optimizer_H 
#define Optimizer_H 
 
/* 
  Base class for numerical optimization methods 
  Author: Yvan Bourquin 
*/ 
 
#include <stdio.h> 
 
class Robot; 
 
class Optimizer { 
 public: 
 
  // number of simulation trials in an optimization  
  int getNumTrials() const { return _nTrials; } 
   
  // number of parameters of the robot controller 
  int getNumParams() const { return _nParams; } 
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  // the robot 
  Robot *getRobot() const { return _robot; } 
 
  // start the optimization (pure virtual method) 
  virtual void run() = 0; 
 
 protected: 
  // constructor: create optimization procedure 
  Optimizer(Robot *robot); 
 
  // destructor 
  virtual ~Optimizer(); 
 
  // return true when the max number of trials was reached 
  bool isFinished() const { return _finished; } 
 
  // evaluate robot controller parameters 
  // and return the corresponding fitness 
  float evaluate(const float *params); 
 
  // record the parameters as solution of the optim ization process 
  void recordSolution(float fitness, const float *p arams); 
 
  // save results to a file 
  void save(FILE *) const; 
 
 private: 
  int _maxTrials;     // max muber of evaluation tr ials 
  Robot *_robot;      // the robot 
  int _trials[1000];  // trial number of every fitn ess change 
  float _fitb[1000];  // fitness change versus tria l number 
  int _nData;         // number of fitness improvem ent data 
  int _nTrials;       // number of trials so far 
  int _nParams;       // number of parameters for t he robot controller 
  float *_best;       // best solution so far 
  bool _finished;     // optimization finished flag  
  int _nSolutions;    // number of recorded solutio ns 
  float *_solution;   // best solution 
  float _fits[1000];  // fitness of solutions 
  int _strials[1000]; // trial number of solutions 
 
  void recordTrial(float fitness, const float *para ms); 
}; 
 
#endif 

6.4.11 Optimizer.cpp 
#include "Optimizer.h" 
#include "Defaults.h" 
#include "Robot.h" 
 
Optimizer::Optimizer(Robot *robot) { 
  _maxTrials = Defaults::get("max.trials", 10000); 
  _robot = robot; 
  _nParams = robot->getNumParams(); 
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  _best = new float[_nParams]; 
  _solution = new float[_nParams]; 
  _nData = 0; 
  _nTrials = 0; 
  _finished = false; 
  _nSolutions = 0; 
} 
 
Optimizer::~Optimizer() { 
  delete [] _best; 
  delete [] _solution; 
} 
 
float Optimizer::evaluate(const float *params) { 
  float fitness = _robot->evaluate(params); 
  recordTrial(fitness, params); 
  return fitness; 
} 
 
void Optimizer::recordTrial(float fitness, const fl oat *params) { 
 
  _nTrials++; 
 
  if (_nData == 0 || fitness > _fitb[_nData - 1]) {  
    _trials[_nData] = _nTrials; 
    _fitb[_nData] = fitness; 
    _nData++; 
    for (int i = 0; i < _nParams; i++) 
      _best[i] = params[i]; 
  } 
 
  if (_nTrials >= _maxTrials) 
    _finished = true; 
} 
 
void Optimizer::recordSolution(float fitness, const  float *params) { 
  _fits[_nSolutions] = fitness; 
  _strials[_nSolutions] = _nTrials; 
  _nSolutions++; 
 
  for (int i = 0; i < _nParams; i++) 
    _solution[i] = params[i]; 
} 
 
void Optimizer::save(FILE *file) const { 
  fprintf(file, "nparams= %d ;\nntrials= %d ;\nnimp = %d ;\nfitimp=[ ", 
   _nParams, _nTrials, _nData); 
 
  for (int i = 0; i < _nData; i++) 
    fprintf(file, "%.3f ", _fitb[i]); 
 
  fprintf(file, "];\ntrialimp=[ "); 
 
  for (int i = 0; i < _nData; i++) 
    fprintf(file, "%d ", _trials[i]); 
 
  fprintf(file, "];\nbest=[ "); 
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  for (int i = 0; i < _nParams; i++) 
    fprintf(file, "%.6f ", _best[i]); 
 
  fprintf(file, "];\nnsolutions= %d ;\nfitsol=[ ", _nSolutions); 
   
  for (int i = 0; i < _nSolutions; i++) 
    fprintf(file, "%.3f ", _fits[i]); 
 
  fprintf(file, "];\ntrialsol= [ "); 
 
  for (int i = 0; i < _nSolutions; i++) 
    fprintf(file, "%d ", _strials[i]); 
 
  fprintf(file, "];\nsolution=[ "); 
 
  for (int i = 0; i < _nParams; i++) 
    fprintf(file, "%.6f ", _solution[i]); 
 
  fprintf(file, "];\n"); 
} 

6.4.12 Oscillator.h 
#ifndef Oscillator_H 
#define Oscillator_H 
 
/* 
  Non-linear oscillator for robot controller 
  Author: Yvan Bourquin 
*/ 
 
class Oscillator { 
 public: 
  // constructor 
  //Oscillator(int numInputs, float maxAmplitude); 
  Oscillator(int numInputs); 
 
  // destructor 
  virtual ~Oscillator(); 
 
  // connect output from other oscillators 
  void addInput(const Oscillator *connection); 
 
  // reset to initial parameters 
  const float *reset(const float *params); 
 
  // compute one step 
  void step(); 
 
  // current oscillator outputs 
  float getX() const { return _x; } 
  float getV() const { return _v; } 
 
  // is showing chaotic behaviour 
  bool isDiverging() const; 
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 private: 
  float _x;              // current x 
  float _v;              // current v 
  float _E;              // energy 
  int _numInputs;        // number of inputs 
  Oscillator **_inputs;  // inputs 
  float *_a;             // connection strength a 
  float *_b;             // connection strength b 
}; 
 
#endif 

6.4.13 Oscillator.cpp 
#include "Oscillator.h" 
#include "Random.h" 
#include <cmath> 
#include <stdio.h> 
 
using namespace std; 
 
static const float F = 1.0;                 // 1Hz 
static const float ALPHA = 0.5;             // conv ergence speed 
static const float TAU = F / (2.0 * M_PI);  // tend s to -> 1Hz 
static const float DT = 0.0001f;            // inte gration step [s] 
static const float ROBOT_SIMULATION_STEP = 0.064;   // [s] 
static const float SEQUENCE_SIZE = ROBOT_SIMULATION _STEP / DT; 
static const float AMPLITUDE_MIN = 0.0001f; 
static const float AMPLITUDE_MAX = M_PI / 2.0; 
static const float CONNECTION_MIN = -0.7;  // min c onnection strength 
static const float CONNECTION_MAX = +0.7;  // max c onnection strength 
 
Oscillator::Oscillator(int numInputs) { 
  //_maxAmplitude = maxAmplitude; 
  _numInputs = 0; 
  _v = 0.1; 
  _x = 0.1; 
  _E = 1.0; 
  _inputs = new Oscillator *[numInputs]; 
  _a = new float[numInputs]; 
  _b = new float[numInputs]; 
} 
 
Oscillator::~Oscillator() { 
  delete [] _b; 
  delete [] _a; 
  delete [] _inputs; 
} 
 
void Oscillator::step() {   
  for (int i = 0; i < SEQUENCE_SIZE; i++) { 
    // compute current sum of external inputs 
    float sum = 0.0; 
    for (int i = 0; i < _numInputs; i++) { 
      float x = _inputs[i]->getX(); 
      float v = _inputs[i]->getV(); 
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      // add normalized input 
      sum += (_a[i] * x + _b[i] * v) / (x * x + v *  v); 
    } 
     
    // compute new oscillator state according to di fference equation 
    _v = _v + DT * ((-ALPHA * ((_x * _x + _v * _v -  _E) / _E) * _v - _x + sum) / 
TAU); 
    _x = _x + DT * _v / TAU; 
  } 
} 
 
// setup oscillator according to given parameters 
// this is done once, at the beginning of every eva luation 
const float *Oscillator::reset(const float *params)  { 
 
  // reset oscillator state 
  _v = 0.1; 
  _x = 0.1; 
 
  // decode amplitude 
  float A = *params++ * (AMPLITUDE_MAX - AMPLITUDE_ MIN) + AMPLITUDE_MIN; 
  _E = A * A; 
 
  // decode a[] connections 
  for (int i = 0; i < _numInputs; i++) 
    _a[i] = *params++ * (CONNECTION_MAX - CONNECTIO N_MIN) + CONNECTION_MIN; 
 
  // decode b[] connections 
  for (int i = 0; i < _numInputs; i++) 
    _b[i] = *params++ * (CONNECTION_MAX - CONNECTIO N_MIN) + CONNECTION_MIN; 
 
  return params; 
} 
 
// add oscillator input 
// this is done only once per simulation 
void Oscillator::addInput(const Oscillator *input) { 
  _inputs[_numInputs++] = const_cast<Oscillator*>(i nput); 
} 
 
bool Oscillator::isDiverging() const { 
  return fabsf(_x) > 50.0f || fabsf(_v) > 50.0f || isnan(_x) || isnan(_v); 
} 

6.4.14 Particle.h 
#ifndef Particle_H 
#define Particle_H 
 
/* 
  Particle for Particle Swarm Optimization (PSO) 
  Author: Yvan Bourquin 
 */ 
 
#include <stdio.h> 
 
class Particle { 
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 public: 
  // constructor: create particle 
  Particle(int numParams); 
 
  // destructor 
  virtual ~Particle(); 
 
  // distance between 2 particles 
  float distanceTo(const Particle *particle) const;  
 
  // compute next position according to PSO paramet ers: 
  // best overall position and current inertia 
  void computeNextPosition(const float *bestNeighbo urParams, float inertia); 
 
  // the previously computed position becomes the c urrent position 
  void updatePosition(); 
   
  // set particle fitness after measurement 
  void setFitness(float fitness); 
  float getFitness() const { return _fitness; } 
 
  // return best fitness encountered so far by this  particle 
  float getBestFitness() const { return _bestFitnes s; } 
 
  // return current position 
  const float *getParams() const { return _params; } 
 
  // return best position encountered so far by thi s particle 
  const float *getBestParams() const { return _best Params; } 
 
  // write particle to file 
  void save(FILE *file) const; 
 
  // get class parameters 
  static float getMaxSpeed() { return _maxSpeed; } 
  static float getB1() { return _b1; } 
  static float getB2() { return _b2; } 
 
 private: 
  int _numParams;      // number of parameters in t he robot controller 
  float *_params;      // particle's current positi on 
  float _fitness;      // fitness of current positi on 
  float *_nextParams;  // position for next iterati on 
  float *_speed;       // current speed in paramete r space 
  float *_bestParams;  // best position encountered  so far 
  float _bestFitness;  // fitness of best position 
 
  static float _maxSpeed; 
  static float _b1; 
  static float _b2; 
}; 
 
#endif 

6.4.15 Particle.cpp 
#include "Particle.h" 
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#include "Random.h" 
#include "Defaults.h" 
#include <cmath> 
 
float Particle::_maxSpeed = -1.0;  // speed limit 
float Particle::_b1 = -1.0;        // individual co nfidence factor 
float Particle::_b2 = -1.0;        // social confid ence factor 
 
Particle::Particle(int numParams) { 
 
  // if not assigned yet ... 
  if (_maxSpeed < 0.0) { 
    // get data from configuration file 
    _maxSpeed = Defaults::get("particle.speed.max",  0.2f); 
    _b1 = Defaults::get("particle.confidence.indivi dual", 2.0f); 
    _b2 = Defaults::get("particle.confidence.social ", 2.0f); 
  } 
 
  _numParams = numParams; 
  _params = new float[numParams];     // current po sition 
  _nextParams = new float[numParams]; // position o f next time step 
  _bestParams = new float[numParams]; // best posit ion so far 
  _speed = new float[numParams]; 
 
  // start initializing positions and speed at rand om 
  for (int i = 0; i < numParams; i++) { 
    _params[i] = Random::getUniform(); 
    _bestParams[i] = _params[i]; 
    _speed[i] = Random::getUniform() * 2.0 * _maxSp eed - _maxSpeed; 
  } 
 
  _fitness = 0.0; 
  _bestFitness = 0.0; 
} 
 
Particle::~Particle() { 
  delete [] _params; 
  delete [] _nextParams; 
  delete [] _bestParams; 
  delete [] _speed; 
} 
 
void Particle::save(FILE *file) const { 
  fprintf(file, "%.3f %.3f ", _fitness, _bestFitnes s); 
 
  for (int i = 0; i < _numParams; i++) 
    fprintf(file, "%.4f ", _params[i]); 
 
  for (int i = 0; i < _numParams; i++) 
    fprintf(file, "%.4f ", _speed[i]); 
} 
 
void Particle::setFitness(float fitness) { 
  _fitness = fitness; 
 
  if (fitness > _bestFitness) { 
    _bestFitness = fitness; 
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    for (int i = 0; i < _numParams; i++) 
      _bestParams[i] = _params[i]; 
  } 
} 
 
// compute distance between 2 particles in the para meter space 
float Particle::distanceTo(const Particle *particle ) const { 
  float distance = 0.0; 
  for (int i = 0; i < _numParams; i++) { 
    float diff = this->_params[i] - particle->_para ms[i]; 
    distance += diff * diff; 
  } 
     
  return sqrt(distance); 
} 
 
// compute next particle speed and position accordi ng to basic PSO rules 
void Particle::computeNextPosition(const float *bes tNeighbourParams, 
       float inertia) { 
 
  for (int i = 0; i < _numParams; i++) { 
 
    // compute new speed 
    float c1 = Random::getUniform() * _b1; 
    float c2 = Random::getUniform() * _b2; 
    _speed[i] = inertia * _speed[i] + c1 * (_bestPa rams[i] - _params[i])  
      + c2 * (bestNeighbourParams[i] - _params[i]);  
 
    // constrict speed 
    if (_speed[i] > _maxSpeed) 
      _speed[i] = _maxSpeed; 
    else if (_speed[i] < -_maxSpeed) 
      _speed[i] = -_maxSpeed; 
  } 
   
  // next position 
  for (int i = 0; i < _numParams; i++) { 
 
    // constrict position 
    _nextParams[i] = _params[i] + _speed[i]; 
    if (_nextParams[i] < 0.0) { 
      _nextParams[i] = 0.0; 
      _speed[i] = -_speed[i]; 
    } 
    else if (_nextParams[i] > 1.0) { 
      _nextParams[i] = 1.0; 
      _speed[i] = -_speed[i]; 
    } 
  } 
} 
 
// current position = next position 
void Particle::updatePosition() { 
  for (int i = 0; i < _numParams; i++) 
    _params[i] = _nextParams[i]; 
} 
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6.4.16 ParticleSwarm.h 
#ifndef ParticleSwarm_H 
#define ParticleSwarm_H 
 
/* 
  Particle Swarm Optimization for robot locomotion 
  Author: Yvan Bourquin 
*/ 
 
#include "Optimizer.h" 
 
class Robot; 
class Particle; 
 
class ParticleSwarm : public Optimizer { 
 public: 
 
  // constructior: setup particle swarm optimizatio n procedure 
  ParticleSwarm(Robot *robot); 
 
  // desctructor 
  virtual ~ParticleSwarm(); 
 
  // run particle swarm optimization 
  virtual void run(); 
   
 private: 
  int _neighbourhoodSize;  // particle neighbourhoo d size 
  float _reductionFactor;  // inertia reduction fac tor 
  float _maxSpeed;         // max particle speed in  parameter n-space 
  int _iteration;          // current algorithm ite ration 
  char _filename[64];      // file name 
  int _size;               // num particles in swar m 
  Particle **_particles;   // particles 
  float **_distances;      // inter-particle distan ce matrix 
  float _inertia;          // current inertia 
  float *_bests;           // record of best fitnes s 
  float *_means;           // record of mean fitnes s 
 
  void save(const char *fileName) const; 
  Particle *findBestNeighbourOf(int particleIndex) const; 
  Particle *findBestOverall() const; 
  void evaluateSwarm(); 
  void computeDistances(); 
}; 
 
#endif 

6.4.17 ParticleSwarm.cpp 
#include "ParticleSwarm.h" 
#include "Particle.h" 
#include "Robot.h" 
#include "Defaults.h" 
#include <limits> 
#include <iostream> 
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using namespace std; 
 
ParticleSwarm::ParticleSwarm(Robot *robot) 
  : Optimizer(robot) { 
   
  _size = Defaults::get("swarm.size", 50); 
  _particles = new Particle*[_size]; 
  _bests = new float[2000]; 
  _means = new float[2000]; 
  _inertia = Defaults::get("initial.inertia", 1.0f) ; 
 
  for (int i = 0; i < _size; i++) 
    _particles[i] = new Particle(getNumParams()); 
 
  _distances = new float*[_size]; 
  for (int i = 0; i < _size; i++) 
    _distances[i] = new float[_size]; 
 
  _neighbourhoodSize = Defaults::get("neighbourhood .size", 5); 
  _reductionFactor = Defaults::get("inertia.reducti on.factor", 0.995f); 
 
  sprintf(_filename, "../../results/pso_%d_%d_%s%d. m", _size, 
   _neighbourhoodSize, robot->getName(), getNumPara ms()); 
 
  cout << "filename: " << _filename << endl; 
} 
 
ParticleSwarm::~ParticleSwarm() { 
  for (int i = 0; i < _size; i++) 
    delete _particles[i]; 
 
  delete [] _particles; 
 
  for (int i = 0; i < _size; i++) 
    delete [] _distances[i]; 
   
  delete [] _distances; 
  delete [] _bests; 
  delete [] _means; 
} 
 
void ParticleSwarm::save(const char *filename) cons t { 
  FILE *file = fopen(filename, "w"); 
  if (! file) { 
    printf("could not write file: %s\n", filename);  
    return; 
  } 
 
  cout << "writing file: " << filename << endl; 
   
  Optimizer::save(file); 
 
  fprintf(file, "inertia= %.5f ;\nnparticles= %d ;\ n" 
   "maxspeed= %.2f ;\nb1= %.2f ;\nb2= %.2f ;\nbests =[ ",  
   _inertia, _size, Particle::getMaxSpeed(), 
   Particle::getB1(), Particle::getB2()); 
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  for (int i = 0; i < _iteration + 1; i++) 
    fprintf(file, "%.3f ", _bests[i]); 
 
  fprintf(file, "];\nmeans=[ "); 
 
  for (int i = 0; i < _iteration + 1; i++) 
    fprintf(file, "%.3f ", _means[i]); 
 
  fprintf(file, "];\nparticles=[\n"); 
 
  for (int i = 0; i < _size; i++) { 
    _particles[i]->save(file); 
    fprintf(file, ";\n"); 
  } 
 
  fprintf(file, "];\n"); 
  fclose(file); 
} 
 
void ParticleSwarm::run() { 
 
  cout << "starting swarm particle optimization ... \n"; 
 
  // PSO main loop 
  for (_iteration = 0; ! isFinished(); _iteration++ ) { 
 
    // evaluate fitness of every particle 
    evaluateSwarm(); 
 
    // compute new inter-particle distances 
    computeDistances(); 
 
    // PSO update step for all particles 
    for (int i = 0; i < _size; i++) { 
 
      // find neighbour with best fitness 
      Particle *bestNeighbour = findBestNeighbourOf (i); 
     
      // compute next position 
      _particles[i]->computeNextPosition(bestNeighb our->getBestParams(), 
_inertia); 
    } 
 
    Particle *best = findBestOverall(); 
    recordSolution(best->getBestFitness(), best->ge tBestParams()); 
    save(_filename); 
 
    // apply next position synchronously 
    for (int i = 0; i < _size; i++) 
      _particles[i]->updatePosition(); 
 
    _inertia *= _reductionFactor; 
  } 
} 
 
Particle *ParticleSwarm::findBestOverall() const { 
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  Particle *bestParticle = _particles[0]; 
 
  for (int i = 1; i < _size; i++) 
    if (_particles[i]->getBestFitness() > bestParti cle->getBestFitness()) 
      bestParticle = _particles[i]; 
     
  return bestParticle; 
} 
 
Particle *ParticleSwarm::findBestNeighbourOf(int pa rticleIndex) const { 
  Particle *neighbours[_neighbourhoodSize]; 
 
  cout << "minDistances: "; 
 
  // find closest neighbours ... 
  for (int j = 0; j < _neighbourhoodSize; j++) { 
  
    // find closest neighbour ... 
    float min = numeric_limits<float>::max(); 
    int minIndex = 0; 
    for (int k = 0; k < _size; k++) { 
      if (_distances[particleIndex][k] < min) { 
 min = _distances[particleIndex][k]; 
 minIndex = k; 
      } 
    }  
 
    cout << min << " "; 
  
    neighbours[j] = _particles[minIndex]; 
    _distances[particleIndex][minIndex] = numeric_l imits<float>::max(); 
  } 
 
  cout << endl; 
 
  // find neighbour with best fitness 
  Particle *bestNeighbour = neighbours[0]; 
  for (int j = 1; j < _neighbourhoodSize; j++) 
    if (_particles[j]->getFitness() > bestNeighbour ->getBestFitness()) 
      bestNeighbour = _particles[j]; 
 
  return bestNeighbour; 
} 
 
void ParticleSwarm::evaluateSwarm() { 
 
  _bests[_iteration] = numeric_limits<float>::min() ; 
  _means[_iteration] = 0.0; 
  for (int i = 0; i < _size; i++) { 
 
    cout << "iteration: " << _iteration 
  << " inertia: " << _inertia 
  << " particle: " << i << endl; 
 
    float fitness = Optimizer::evaluate(_particles[ i]->getParams()); 
    _particles[i]->setFitness(fitness); 
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    if (fitness > _bests[_iteration]) 
      _bests[_iteration] = fitness; 
 
    _means[_iteration] += fitness; 
  } 
 
  _means[_iteration] /= _size; 
} 
 
void ParticleSwarm::computeDistances() { 
  // compute inter-particle distances 
  for (int i = 0; i < _size; i++) { 
    for (int j = 0; j < i; j++) { 
      float distance = _particles[i]->distanceTo(_p articles[j]); 
      _distances[i][j] = distance; 
      _distances[j][i] = distance; 
    } 
     
    _distances[i][i] = 0.0; 
  } 
} 

6.4.18 Population.h 
#ifndef Population_H 
#define Population_H 
 
/* 
  Genotype population with selection and crossover for genetic algorithm 
  Author: Yvan Bourquin 
*/ 
 
#include "Genotype.h" 
 
class Population 
{ 
 public: 
  // constructor: create population with specified size and genome size 
  Population(int popSize, int genSize); 
 
  // destructor 
  virtual ~Population(); 
 
  // population size 
  int getSize() const { return _size; } 
 
  // save to file 
  void save(FILE *file) const; 
 
  // sort population from most fit to least fit ind ividual 
  void sort(); 
 
  // fittest 
  Genotype *getFittest() const 
    { return _genotypes[0]; } 
 
  // change generation 
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  // precondition: population must be sorted before  this function is called 
  void reproduce(); 
 
  // current generation number 
  int getGeneration() const { return _generation; }  
 
  // get genetic code 
  const float *getGenome(int index) const 
    { return _genotypes[index]->getGenes(); } 
 
  // get/set fitness 
  void setFitness(int index, float fitness) 
    { _genotypes[index]->setFitness(fitness); } 
 
  float getFitness(int index) const 
    { return _genotypes[index]->getFitness(); } 
 
 private: 
  float _elitePart;      // propotion of population  cloned (no mutation) 
  float _sexualPart;     // proportion of populatio n reproducing sexually 
  Genotype **_genotypes; // genotypes 
  int _size;             // population size 
  int _genotypeSize;     // size of each genotype 
  int _generation;       // current generation 
  float *_meanFitness;   // record of mean fitness 
  float *_bestFitness;   // record of best fitness 
 
  const Genotype *selectParent() const; 
}; 
 
#endif 

6.4.19 Population.cpp 
#include "Population.h" 
#include "Random.h" 
#include "Defaults.h" 
#include <stdlib.h> 
#include <cassert> 
#include <iostream> 
 
Population::Population(int populationSize, int geno typeSize) { 
 
  _elitePart = Defaults::get("population.elite.part ", 0.05f); 
  _sexualPart = Defaults::get("population.sexual.pa rt", 0.05f); 
  _size = populationSize; 
  _genotypeSize = genotypeSize; 
  _generation = 0; 
  _genotypes = new Genotype*[_size]; 
  _meanFitness = new float[1000]; 
  _bestFitness = new float[1000]; 
 
  for (int i = 0; i < _size; i++) 
    _genotypes[i] = new Genotype(genotypeSize); 
} 
 
Population::~Population() { 
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  delete [] _bestFitness; 
  delete [] _meanFitness; 
 
  for (int i = 0; i < _size; i++) 
    delete _genotypes[i]; 
 
  delete [] _genotypes; 
} 
 
void Population::save(FILE *file) const { 
 
  fprintf(file, "generation= %d ;\nbests=[ ", _gene ration + 1); 
 
  for (int i = 0; i < _generation + 1; i++) 
    fprintf(file, "%.3f ", _bestFitness[i]); 
 
  fprintf(file, "];\nmeans=[ "); 
  
  for (int i = 0; i < _generation + 1; i++) 
    fprintf(file, "%.3f ", _meanFitness[i]); 
 
  fprintf(file, "];\npopsize= %d ;\nnparams= %d ;\n elitepart= %.2f ;\n" 
   "sexualpart= %.2f ;\nmutprob= %.2f ;\nmutsdev= % .2f ;\n" 
   "population=[\n",  
   _size, _genotypeSize, _elitePart, _sexualPart, 
   Genotype::getMutationProbability(), Genotype::ge tMutationDeviation()); 
 
  for (int i = 0; i < _size; i++) 
    _genotypes[i]->save(file); 
 
  fprintf(file, "];\n"); 
} 
 
static int compare(const void *a, const void *b) { 
  return (*(Genotype**)a)->getFitness() > 
    (*(Genotype**)b)->getFitness() ? -1 : +1; 
} 
 
const Genotype *Population::selectParent() const { 
  while (true) { 
    int index = Random::getInteger(_size); 
    if (index <= Random::getInteger(_size)) 
      return _genotypes[index]; 
  } 
} 
 
void Population::sort() { 
  // sort for rank selection 
  qsort(_genotypes, _size, sizeof(Genotype*), &comp are); 
 
  for (int k = 0; k < _size; k++) 
    cout << _genotypes[k]->getFitness() << " "; 
 
  cout << endl; 
 
  _bestFitness[_generation] = _genotypes[0]->getFit ness(); 
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  float sum = 0.0; 
  for (int i = 0; i < _size; i++) 
    sum += _genotypes[i]->getFitness(); 
 
  _meanFitness[_generation] = sum / _size; 
} 
 
void Population::reproduce() { 
  Genotype **_nextGeneration = new Genotype*[_size] ; 
  for (int i = 0; i < _size; i++) { 
    Genotype *child = new Genotype(_genotypeSize); 
     
    if (i < _elitePart * _size) 
      *child = *_genotypes[i];  // cloned elite 
    else { 
      const Genotype *mom = selectParent(); 
      if (Random::getUniform() < _sexualPart) { 
 const Genotype *dad; 
 do { 
   dad = selectParent(); 
 } 
 while (dad == mom); 
 *child = mom->crossover(*dad); // sexual reproduct ion 
      } 
      else { 
 *child = *mom;  // asexual reproduction 
 child->singleLocusMutate(); 
      } 
    } 
 
    child->setFitness(0.0); 
    _nextGeneration[i] = child; 
  } 
 
  for (int j = 0; j < _size; j++) 
    delete _genotypes[j]; 
 
  delete [] _genotypes; 
 
  _genotypes = _nextGeneration; 
  _generation++; 
} 

6.4.20 Random.h 
#ifndef Random_H 
#define Random_H 
 
/* 
  Random number functions 
  Implementation of getGaussian() 
  taken over from Dr. Everett F. Carter Jr. 
  http://www.taygeta.com/random/gaussian.htm 
*/ 
 
class Random { 
 public: 
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  // return random number between [0;1] from a unif orm 
  // distribution 
  static float getUniform(); 
 
  // return random integer number between [0;max-1]  from a 
  // uniform distribution 
  static int getInteger(int max); 
 
  // return random number from a Gaussian distribut ion with 
  // mean 0 and standard deviation 1 
  static float getGaussian(); 
 
 private: 
  Random() {} // disabled constructor 
}; 
 
#endif 

6.4.21 Random.cpp 
#include "Random.h" 
#include <math.h> 
#include <stdlib.h> 
 
const float PI = 3.1415926535f; 
 
float Random::getUniform() { 
  return (float)rand() / (float)RAND_MAX; 
} 
 
float Random::getGaussian() { 
  static bool flag = true; 
  static float y2; 
 
  if (flag) { 
    float x1, x2, w; 
    do { 
      x1 = 2.0f * getUniform() - 1.0f; 
      x2 = 2.0f * getUniform() - 1.0f; 
      w = x1 * x1 + x2 * x2; 
    } while (w >= 1.0f); 
 
    w = (float)sqrt((-2.0f * (float)log(w)) / w); 
    float y1 = x1 * w; 
    y2 = x2 * w; 
   
    flag = false; 
 
    return y1; 
  } 
 
  flag = true; 
 
  return y2; 
} 
 
int Random::getInteger(int max) { 
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  return rand() % max; 
} 

6.4.22 RandomSearch.h 
#ifndef RandomSearch_H 
#define RandomSearch_H 
 
/* 
  Random search for locomotion parameters for modul ar robot 
  Author: Yvan Bourquin 
*/ 
 
class Robot; 
 
#include "Optimizer.h" 
 
class RandomSearch : public Optimizer { 
 public: 
  // constructor: create random search 
  RandomSearch(Robot *robot); 
 
  // destructor 
  virtual ~RandomSearch(); 
 
  // run random search 
  virtual void run(); 
 
 private: 
  float *_params;     // current best solution 
  char _filename[64]; // data file 
  float _fitness;     // current solution fitness 
 
  void save(const char *filename) const; 
}; 
 
#endif 

6.4.23 RandomSearch.cpp 
#include "RandomSearch.h" 
#include "Random.h" 
#include "Robot.h" 
#include <iostream> 
 
using namespace std; 
 
RandomSearch::RandomSearch(Robot *robot) 
  : Optimizer(robot)  { 
 
  _params = new float[getNumParams()]; 
  sprintf(_filename, "../../results/rs_%s%d.m", rob ot->getName(), 
getNumParams()); 
  cout << "filename: " << _filename << endl; 
} 
 
RandomSearch::~RandomSearch() { 
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  delete [] _params; 
} 
 
void RandomSearch::save(const char *filename) const  { 
  FILE *file = fopen(filename, "w"); 
  if (! file) { 
    printf("could not write file: %s\n", filename);  
    return; 
  } 
   
  cout << "writing file: " << filename << endl; 
 
  Optimizer::save(file); 
 
  fclose(file); 
} 
 
void RandomSearch::run() { 
   
  _fitness = 0.0; 
 
  cout << "starting random search ... \n"; 
 
  while (! isFinished()) { 
  
    cout << "trial: " << getNumTrials()  
  << " fitness: " << _fitness << endl; 
 
    // generate new random controller 
    float *candidate = new float[getNumParams()]; 
    for (int j = 0; j < getNumParams(); j++) 
      candidate[j] = Random::getUniform(); 
 
    float candidateFitness = Optimizer::evaluate(ca ndidate); 
     
    if (candidateFitness > _fitness) { 
      cout << "***ACCEPTED*** candidate with fitnes s: "  
    << candidateFitness << endl; 
      _fitness = candidateFitness; 
      delete [] _params; 
      _params = candidate; 
      Optimizer::recordSolution(_fitness, _params);  
    } 
    else { 
      cout << "refused candidate with fitness: " <<  candidateFitness << endl; 
      delete [] candidate; 
    } 
 
    if (getNumTrials() % 100 == 0) 
      save(_filename); 
  } 
} 

6.4.24 Robot.h 
#ifndef Robot_H 
#define Robot_H 



 89

 
/*  
   Modular robot implementation for Webots simulato r 
   Author: Yvan Bourquin 
*/ 
 
#include <device/gps.h> 
 
class Module; 
 
class Robot { 
 public: 
  // constructor: create robot according to specifi cation 
  Robot(const char *path); 
 
  // destructor 
  virtual ~Robot(); 
 
  const char *getName() const { return _name; } 
  int getNumParams() const; 
  int getNumModules() const { return _numModules; }  
 
  // evaluation trial, returns fitness 
  float evaluate(const float *params); 
 
  // return true is the robot oscillators are chaot ic 
  bool isOver() const { return _over; } 
 
 private: 
  int _maxSteps;       // duration of a simulation trial 
  const char *_name;   // robot name 
  int _numModules;     // number of modules 
  int _numConnections; // number of oscillator conn ections 
  Module **_modules;   // robot's modules 
  DeviceTag _gps;      // for measuring the current  position 
  DeviceTag _emitter;  // emitter device for commun icating with supervisor 
  float *_sendBuffer;  // buffer for communicating with supervisor 
  bool _over;          // is this evaluation over 
  int _simulationStep; // simulation step size in m illiseconds 
  float _x;            // current x position   
  float _z;            // current z position 
  float _distance;     // integrated distance 
  int _stepCount;      // number of simulation step s so far 
 
  const float *reset(const float params[]); 
  float getFitness() const; 
  float getAbsoluteDistance() const; 
  float getIntegratedDistance() const; 
  void step(); 
}; 
 
#endif 

6.4.25 Robot.cpp 
#include "Robot.h" 
#include "Module.h" 
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#include "Defaults.h" 
#include <device/robot.h> 
#include <device/custom_robot.h> 
#include <device/emitter.h> 
#include <device/gps.h> 
#include <string> 
#include <iostream> 
#include <cassert> 
 
using namespace std; 
 
Robot::Robot(const char *path) { 
 
  _maxSteps = Defaults::get("simulation.max.steps",  500); 
  _name = path; 
  _over = false; 
  _simulationStep = Defaults::get("simulation.step. duration", 64); 
  _stepCount = 0; 
  _x = 0.0; 
  _z = 0.0; 
  _distance = 0; 
  _numModules = Defaults::get("%s.servos.count", 0,  path); 
  assert(_numModules > 0); 
  _modules = new Module*[_numModules]; 
 
  // create one module for each servo 
  for (int i = 0; i < _numModules; i++) 
    _modules[i] = new Module(_name, i, _numModules) ; 
 
  // create oscillator connections 
  _numConnections = Defaults::get("%s.connections.c ount", -1, path); 
  if (_numConnections < 0) { 
    cerr << "ERROR: number of connections not speci fied.\n"; 
    exit(0); 
  } 
 
  for (int i = 0; i < _numConnections; i++) { 
    int from = Defaults::get("%s.connection[%d].fro m", -1, path, i); 
    int to   = Defaults::get("%s.connection[%d].to" ,   -1, path, i); 
    if (from < 0 || to < 0) 
      cerr << "ERROR: connection " << i << " is bad ly configured.\n"; 
    else 
      _modules[from]->addInput(_modules[to]); 
  } 
 
  // set up emitter and gps 
  _emitter = robot_get_device("emitter"); 
  _gps = robot_get_device("gps"); 
  gps_enable(_gps, _simulationStep); 
  cout << "emitter device tag is " << (int)_emitter  << endl; 
  cout << "gps device tag is " << (int)_gps << endl ; 
} 
 
Robot::~Robot() { 
  for (int i = 0; i < _numModules; i++) 
    delete _modules[i]; 
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  delete [] _modules; 
} 
 
int Robot::getNumParams() const { 
  return 2 * _numConnections + 2 * _numModules; 
} 
 
const float *Robot::reset(const float *params) { 
 
  _over = false; 
  _stepCount = 0; 
  _x = 0.0; 
  _z = 0.0; 
  _distance = 0.0; 
 
  // send message to supervisor so that he moves 
  // the robot to its initial position 
  cout << "sending reset message ..." << flush; 
  _sendBuffer = (float*)emitter_get_buffer(_emitter ); 
  _sendBuffer[0] = 0; 
  _sendBuffer[1] = 0; 
  _sendBuffer[2] = 0; 
  emitter_send(_emitter, 3 * sizeof(float)); 
 
  // make sure the supervisor has time to reset bef ore we continue ... 
  robot_step(2 *_simulationStep); 
 
  // reset modules also 
  for (int i = 0; i < _numModules; i++) 
    params = _modules[i]->reset(params); 
   
  return params; 
} 
 
// straight distance between initial and final posi tion 
// assuming that initial position was [0, ?, 0] 
float Robot::getAbsoluteDistance() const { 
 
  if (_over) 
    return 0.0; 
 
  const float *matrix = gps_get_matrix(_gps); 
  float dx = gps_position_x(matrix); 
  float dz = gps_position_z(matrix); 
 
  return sqrt(dx * dx + dz * dz); 
} 
 
 
float Robot::getIntegratedDistance() const  { 
  if (_over) 
    return 0.0; 
 
  return _distance; 
} 
 
float Robot::getFitness() const { 
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  float ad = getAbsoluteDistance(); 
  float id = getIntegratedDistance(); 
  float fitness = ad + id; 
 
  cout << "absolute distance: " << ad << " integrat ed distance: "  
       << id << " tfitness: " << fitness << endl; 
 
  return fitness; 
} 
 
void Robot::step() { 
  // simulater step 
  robot_step(_simulationStep); 
 
  // uptdate module positions 
  for (int i = 0; i < _numModules; i++) { 
    _modules[i]->step(); 
    if (_modules[i]->isCrazy()) 
      _over = true; 
  } 
 
  _stepCount++; 
   
  // every second 
  if (_stepCount % (1000 / _simulationStep) == 0) {  
    const float *matrix = gps_get_matrix(_gps); 
    float x = gps_position_x(matrix); 
    float z = gps_position_z(matrix); 
    float dx = x - _x; 
    float dz = z - _z; 
    _distance += sqrt(dx * dx + dz * dz); 
    _x = x; 
    _z = z; 
  } 
} 
 
// evaluate robot performance during _maxStep steps  
// and return fitness result 
float Robot::evaluate(const float *params) { 
 
  const float *p = reset(params); 
  assert(p - params == getNumParams()); // self-tes t 
   
  for (int j = 0; j < _maxSteps && ! isOver(); j++)  
    step(); 
   
  return getFitness(); 
} 

6.4.26 SimulatedAnnealing.h 
#ifndef SimulatedAnnealing_H 
#define SimulatedAnnealing_H 
 
/*  
   Simulated Annealing for optimizing robot locomot ion 
   Author: Yvan Bourquin 
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*/ 
 
#include "Optimizer.h" 
 
class Robot; 
class Genotype; 
 
class SimulatedAnnealing : public Optimizer { 
 public: 
  // constructor: create simulated annealing for ro bot 
  SimulatedAnnealing(Robot *robot); 
 
  // destructor 
  virtual ~SimulatedAnnealing(); 
 
  // run simulated annealing 
  virtual void run(); 
   
 private: 
  float _initialTemperature; // initial temperature  
  float _reductionFactor;    // temperature reducti on factor 
  int _requiredSuccesses;    // num successes befor e temperature reduction 
  float _temperature;        // current temperature  
  float _fitness;            // fitness of current parameter set 
  Genotype *_params;         // current parameter s et 
  int _temperatureIndex;     // temperature index 
  int _nsucc;                // num successes so fa r for current temperature 
  char _filename[64];        // data file 
  Genotype **_cooling;       // cooling record 
 
  bool metropolis(float de, float t) const; 
  void save(const char *filename) const; 
}; 
 
#endif 

6.4.27 SimulatedAnnealing.cpp 
#include "SimulatedAnnealing.h" 
#include "Robot.h" 
#include "Random.h" 
#include "Defaults.h" 
#include "Genotype.h" 
#include <cmath> 
#include <cassert> 
#include <iostream> 
 
using namespace std; 
 
static const int MAX_TEMPERATURES = 1000; 
 
SimulatedAnnealing::SimulatedAnnealing(Robot *robot ) 
  : Optimizer(robot) { 
 
  _reductionFactor = Defaults::get("temperature.red uction.factor", 0.95f); 
  _requiredSuccesses = Defaults::get("temperature.r equired.successes", 5); 
  _initialTemperature = Defaults::get("temperature. initial", 1.0f); 
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  _params = new Genotype(getNumParams()); 
  _cooling = new (Genotype*)[MAX_TEMPERATURES]; 
  _nsucc = 0; 
   
  sprintf(_filename, "../../results/sa_%d_%s%d.m",  
   _requiredSuccesses, robot->getName(), getNumPara ms()); 
 
  cout << "filename: " << _filename << endl; 
} 
 
SimulatedAnnealing::~SimulatedAnnealing() { 
  delete _params; 
 
  for (int i = 0; i < MAX_TEMPERATURES; i++) 
    delete [] _cooling[i]; 
 
  delete [] _cooling; 
} 
 
bool SimulatedAnnealing::metropolis(float cost, flo at temperature) const { 
  return cost < 0.0 || Random::getUniform() < exp(- cost / temperature); 
} 
 
void SimulatedAnnealing::save(const char *filename)  const { 
  FILE *file = fopen(filename, "w"); 
  if (! file) { 
    printf("could not write file: %s\n", filename);  
    return; 
  } 
   
  cout << "writing file: " << filename << endl; 
 
  Optimizer::save(file); 
 
  fprintf(file, "initemp= %.2f ;\nredfact= %.3f ;\n mutprob= %.2f ;\nmutdev= %.2f 
;\n" 
   "temp= %f ;\nnsucc= %d ;\ntindex= %d ;\ncooling= [\n",  
   _initialTemperature, _reductionFactor, 
Genotype::getMutationProbability(), 
   Genotype::getMutationDeviation(), _temperature, _nsucc, 
_temperatureIndex); 
 
  for (int i = 0; i < _temperatureIndex; i++) 
    _cooling[i]->save(file); 
 
  fprintf(file, "];\n"); 
  fclose(file); 
} 
 
void SimulatedAnnealing::run() { 
 
  // initialize 
  _temperatureIndex = 0; 
  _temperature = _initialTemperature; 
  _nsucc = 0; 
   
  while (_temperatureIndex < MAX_TEMPERATURES && ! isFinished()) { 
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    while (_nsucc < _requiredSuccesses && ! isFinis hed()) { 
       
      // generate new configuration 
      Genotype *candidate = new Genotype(*_params);  
      candidate->singleLocusMutate(); 
 
      float candidateFitness = Optimizer::evaluate( candidate->getGenes()); 
      float cost = _fitness - candidateFitness; 
       
      cout << "trial: " << getNumTrials()  
    << " temperature: " << _temperature 
    << " fitness: " << _fitness 
    << " nsucc: " << _nsucc << endl; 
 
      if (metropolis(cost, _temperature)) { 
 delete _params; 
 _params = candidate; 
 _fitness = candidateFitness; 
 _params->setFitness(_fitness); 
 Optimizer::recordSolution(_fitness, _params->getGe nes()); 
 _nsucc++; 
 
 cout << "***ACCEPTED*** candidate with fitness: " 
      << candidateFitness << " cost: "<< cost << en dl; 
      } 
      else { 
 cout << "refused candidate with fitness: "  
      << candidateFitness << " cost:"<< cost << end l; 
 
 delete candidate; 
      } 
 
     if (getNumTrials() % 100 == 0) 
 save(_filename); 
    } 
 
    cout << "***REDUCING TEMPERATURE*** ..." << end l; 
     
    _cooling[_temperatureIndex] = new Genotype(*_pa rams);    
    _temperature *= _reductionFactor; 
    _temperatureIndex++; 
    _nsucc = 0; 
  } 
}   

6.5 C++ listings of supervisor controller 
#include "Defaults.h" 
#include <device/robot.h> 
#include <device/supervisor.h> 
#include <device/receiver.h> 
#include <stdio.h> 
#include <iostream> 
 
using namespace std; 
 
static int numServos = -1; 
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static DeviceTag receiver; 
static float (*servo_current_positions)[7]; 
static float robot_initial_position[7] = { 0, 0, 0,  0, 0, 1, 0 }; 
static float (*servo_initial_positions)[7]; 
static NodeRef servos[99]; 
static NodeRef robot; 
 
void reset(void) { 
  receiver = robot_get_device("receiver"); 
  cout << "supervisor: receiver device tag is " << (int)receiver << endl; 
} 
 
int run(int ms) { 
  int length = receiver_get_buffer_size(receiver); 
  if (length) {    
    (float*)receiver_get_buffer(receiver); 
 
    cout << "supervisor: resetting ..." << endl; 
 
    supervisor_simulation_physics_reset(); 
 
    supervisor_field_set(robot, 
    SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION, 
    robot_initial_position); 
 
    for (int i = 0; i < numServos; i++) { 
      supervisor_field_set(servos[i], 
      SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION, 
      servo_initial_positions[i]); 
    } 
 
    supervisor_simulation_physics_reset(); 
  } 
 
  return 64; 
} 
 
int main(int argc, char * argv[]) { 
 
  Defaults::loadFile("../walker.ini"); 
  const char *robotName = Defaults::get("robot.name ", (const char*)NULL); 
  if (! robotName) { 
    cerr << "supervisor: error: robot name not spec ified !\n"; 
    return 0; 
  } 
 
  numServos = Defaults::get("%s.servos.count", -1, robotName); 
  if (numServos < 0) { 
    cerr << "supervisor: error: number of servos no t specified !\n"; 
    return 0; 
  } 
 
  robot_initial_position[6] =  
    Defaults::get("%s.start.z.rotation", 0.0, robot Name); 
 
  robot_live(reset); 
  receiver_enable(receiver, 64); 
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  robot = supervisor_node_get_from_def("WALKER"); 
 
  for (int i = 0; i < numServos; i++) { 
    const char *servoName = Defaults::get("%s.servo [%d].name",  
       (const char*)NULL, robotName, i); 
    cout << "supervisor: looking for " << servoName  << " ... "; 
    servos[i] = supervisor_node_get_from_def(servoN ame); 
    if (servos[i]) 
      cout << "found" << endl; 
    else { 
      cout << "NOT FOUND !" << endl; 
      break; 
    } 
  } 
 
  servo_current_positions = new float [numServos][7 ]; 
  servo_initial_positions = new float [numServos][7 ]; 
 
  for (int i = 0; i < numServos; i++) 
    supervisor_field_get(servos[i], 
    SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION, 
    (void*)servo_current_positions[i], 128); 
 
  robot_step(128); 
 
  for (int i = 0; i < numServos; i++) 
    for (int j = 0; j < 7; j++) 
      servo_initial_positions[i][j] = servo_current _positions[i][j]; 
 
  robot_run(run); 
 
  return 0; 
} 


