

MSc Dissertation

Self-Organization of Locomotion

in Modular Robots

Yvan Bourquin

Candidate No 81214 for MSc in Evolutionary and Adaptive Systems

Department of Informatics
University of Sussex, Brighton, United Kingdom

EPFL/BIRG Supervisor
Prof. Auke Jan Ijspeert

Swiss Federal Institute of Technology

Sussex Supervisor
Dr. Inman Harvey

University of Sussex

 2

Abstract
The Biologically Inspired Robotics Group (BIRG) of the Swiss Federal Institute of

Technology in Lausanne (EPFL) is currently developing new hardware and software for an

experimental modular robotic platform. Modular robots are robots built of several similar

building blocks called modules. Usually modules have one or two hinges that allow movement
with one or two degrees of freedom. Locomotion of the robot, e.g. crawling, is possible when

several modules are put together. By means of computer simulations, this study explores the

self-organization of locomotion in various assemblage configuration of the BIRG’s robot.

Locomotion is enabled by the regular oscillations of the robot’s servomotors, which are

produced by Central Pattern Generators (CPG) inspired from the nervous system of

vertebrates. Optimal oscillatory parameters are found using different numerical search

methods: genetic algorithms, simulated annealing, particle swarm optimisation and random
search. Although all these methods generate efficient locomotion patterns, the best results are
obtained by particle swarm optimization.

 3

Acknowledgements
I would like to thank the staff from the Biologically Inspired Robotics Group of the EPFL for

their help with this project. Especially I would like to thank my supervisor Auke Ijspeert for

his ideas, for the time he spent in my supervision and in the correction of my draft. Thanks

also to Olivier Michel for his constant improvements in the robot simulator Webots. Thanks to

Joel for the discussions on PSO and other stuff. Thanks to Alessandro for being the most

attending system administrator of all time. Thanks to Jonas for his explanations on oscillators,

his Matlab hints and the discussions about other bio-inspired subjects. Thanks very much to

Tasneem for proofreading this manuscript. Thanks to Rico and Elmar for their work on the

robot’s hardware and for the good mood in the lab. Thanks also to Inman Harvey for the

“remote” supervision, comments and review of the draft. Finally, thanks to Larisa for

tolerating my boring computer geek’s discussions, my late work schedules and my computer

humming 24 hours a day during simulations.

 4

Table of content
Abstract ... 2

Acknowledgements... 3

Table of content .. 4

1 Introduction... 6

1.1 Objectives ... 7

1.2 Modular robots.. 7

1.3 Existing projects.. 8

1.3.1 M-TRAN... 8

1.3.2 PolyBot ... 8

1.3.3 CONRO... 9

1.3.4 Other projects.. 10

1.4 BIRG’s robot... 10

1.5 Locomotion by oscillations... 11

1.6 Controllers architectures ... 12

1.6.1 Genetic programming ... 12

1.6.2 Neural networks .. 12

1.6.3 Oscillators ... 13

2 Methods... 14

2.1 Simulator... 14

2.2 Experimental morphologies .. 14

2.3 Oscillators ... 15

2.3.1 CPGs ... 16

2.3.2 Non-linear oscillators.. 16

2.3.3 Oscillator synchronization .. 17

2.4 Choice of free and fixed parameters ... 19

2.5 Controller encoding .. 20

2.6 Coupling.. 21

2.7 Performance measurement.. 22

2.8 Numerical optimization methods.. 23

2.8.1 Genetic algorithm.. 23

2.8.2 Simulated annealing.. 24

2.8.3 Particle Swarm optimisation ... 25

2.8.4 Random Search ... 26

2.8.5 Comparison methods .. 26

2.9 Simulation ... 27

2.9.1 Simulation parameters .. 27

2.9.2 Noise ... 27

2.9.3 Numerical instabilities .. 28

3 Results... 29

3.1 Main results... 29

3.2 Gait description... 30

3.2.1 Wheel .. 30

3.2.2 Caterpillar ... 31

3.2.3 Tetrapod .. 32

 5

3.2.4 Crawler.. 34

3.3 Genotype analysis ... 35

3.4 Unidirectional vs. bidirectional connections... 36

3.5 Sexual vs. asexual genetic algorithm.. 37

4 Discussion ... 38

4.1 Algorithms comparison... 38

4.2 Conclusions... 38

4.3 Future work... 39

5 References... 40

6 Appendix... 43

6.1 Matlab listings... 43

6.1.1 Limit cycle .. 43

6.1.2 Oscillators coupling .. 43

6.2 Example VRML listings: Tetrapod... 44

6.3 Controller configuration file ... 52

6.4 C++ listings of optimizer controller.. 56

6.4.1 Defaults.h .. 56

6.4.2 Defaults.cpp .. 57

6.4.3 GeneticAlgorithm.h .. 60

6.4.4 GeneticAlgorithm.cpp... 61

6.4.5 Genotype.h .. 62

6.4.6 Genotype.cpp .. 63

6.4.7 Main.cpp ... 65

6.4.8 Module.h ... 67

6.4.9 Module.cpp ... 68

6.4.10 Optimizer.h ... 69

6.4.11 Optimizer.cpp.. 70

6.4.12 Oscillator.h.. 72

6.4.13 Oscillator.cpp .. 73

6.4.14 Particle.h ... 74

6.4.15 Particle.cpp.. 75

6.4.16 ParticleSwarm.h .. 78

6.4.17 ParticleSwarm.cpp .. 78

6.4.18 Population.h .. 82

6.4.19 Population.cpp .. 83

6.4.20 Random.h .. 85

6.4.21 Random.cpp .. 86

6.4.22 RandomSearch.h ... 87

6.4.23 RandomSearch.cpp ... 87

6.4.24 Robot.h.. 88

6.4.25 Robot.cpp.. 89

6.4.26 SimulatedAnnealing.h... 92

6.4.27 SimulatedAnnealing.cpp... 93

6.5 C++ listings of supervisor controller .. 95

 6

1 Introduction
From the outset, artificial intelligence was mainly concerned with logic and mathematical

problems. When computers were first developed, researchers were theorists or mathematicians

who were naturally interested into problems based on pure logic such as game playing

programs. Within a short time, computers became able to outperform humans in logical

operations, through their ability to achieve fast computations. Therefore, the scientists

predicted that artificial intelligence would surpass human intelligence within decades.

 In that euphoric time, problems such as locomotion and vision were considered auxiliary

or trivial given that any child or animal can move about and see without even thinking about

it. Scientists had successfully created intelligent programs that could outperform animals or

humans in some particular tasks. The tasks that these computer programs were able to solve

were of higher intellectual concern for the scientists and therefore they thought that the

artificial intelligences they had just created were already superior to natural intelligence.

 However, very soon, people started to think that artificial intelligence should also be

used for purposes that were more practical. Controlling robots for industrial or domestic tasks,

as seen in science fictions, was seen to be a real possibility. The first essential step for a useful

robot is the ability to move about and therefore, research started to investigate locomotion.

However, the first prototypes based on logical principles were not very successful. For

example, like the famous Shakey, early mobile robots were programmed to build internal 2-d

or 3-d geometrical representations of their surrounding environment. However, the poor

processing performance of the processors of that time, were challenged by the complexity of

the task. The robots spent most of the time computing and moved very slowly. The scientists

realised that any animal could do better than their machines. They started to understand that

the problems they considered the easiest were actually the most difficult.

 With Rodney Brooks [Brooks, et al. 1989] came a groundbreaking period during which

the rightfulness of the traditional sense-model-plan-act architecture was questioned. Legged
robots based on his famous subsumption architecture appeared. They showed strikingly fast
insect-like locomotion and behaviour. The subsumption architecture marked a turning point

from traditional artificial intelligence to more bio-inspired concepts.

 In the nineties, teams from the Swiss Federal Institute of Technology and University of

Sussex [Harvey, et al. 1997] formulated the principles of a new field: evolutionary robotics.
Artificial neurons inspired from their natural counterpart were used together with evolutionary

techniques to develop artificial nervous systems. With evolutionary robotics, it became

possible, without human design, to obtain efficient wheeled or legged locomotion, obstacle

avoidance and other forms of behaviour in real or simulated robots.

 Nevertheless, real robots are made of mechanical and electronic parts. Therefore, only

the evolution of the control circuitry, implemented in software, could be experimented upon.

However, in addition to the nervous systems, in nature, the animal morphologies are subject to

evolution as well. It was therefore, interesting to see how morphologies would develop under

artificial evolution. Therefore, Karl Sims [Sims 1994] developed the first computer simulation

of the evolution of bodied creatures in a virtual physics environment.

 7

1.1 Objectives
The objective of this project is to explore locomotion in an experimental robotic platform

developed at the Biologically Inspired Robotics Group (BIRG). Locomotion in modular robots

is generally achieved through simple state automata. In this study, a radically different

approach is investigated: the robot must discover efficient locomotion patterns autonomously

in computer simulations. Non-linear oscillators are used as motor control signals. The

oscillators’ parameters are optimized through numerical methods including genetic
algorithms, simulated annealing and particle swarm optimization. In addition to obtaining
efficient locomotion gaits, the objective is to compare the performance of these various search

methods. For this reason, several predetermined configurations of the BIRG’s robot were

designed and simulated in an ODE-based physics simulator.

1.2 Modular robots
Modular robots are robots build of multiple identical building blocks called modules. The idea
behind modular robotics is freely inspired by cellular automata and by social insects. Through

cooperation, social insects, such as ants, bees or termites, achieve feats that would be

impossible to achieve by a single individual. For example, ants can use their own body as

bridge to allow other ants to move safely above a crag (Figure 1). By using similar principles,

modular robots perform self-reconfiguration, e.g. they autonomously change their shape and
adapt to different kinds of terrain. For example, some modular robots can transform into a

snake to tunnel through a pipe then later transform into a quadruped to go up stairs or even

climb a fence. Often, the shapes are inspired by animals but loop and wheel configurations are

also possible.

Figure 1: Ants forming a bridge.

Another advertised property of modular robots is self-reparation. Because the modules of
modular robot are identical, it is possible to excise a damaged module and replace it with a

spare one, if it is available. Like their biological counterparts, the modular robots

accomplishments are made possible because they are built upon redundant and decentralized

architectures. However, modular robots frequently are not fully decentralized and do not really

 8

qualify as self-organized systems. This is because, in most cases, one module is used as the
master and the others as slaves, although these roles are interchangeable.

 Although this area has progressed rapidly since its beginning in the early nineties,

modular robots have only reached their goal in very controlled laboratory environments.

Potential future applications of modular robots include locomotion and self-assembly in

human-unfriendly environments.

1.3 Existing projects

1.3.1 M-TRAN
One of the most accomplished modular robotic projects is the M-TRAN (Figure 2) developed

by the Distributed Systems Design Research Group of the AIST in Japan [Kamimura, et al.

2001]. M-TRAN is a modular robot able to self-reconfigure without human intervention. M-

TRAN modules are docked through permanent magnets and disconnected from each other by

heating a Shape Memory Alloy (SMA) coil that releases a force in the opposite direction as

the permanent magnets. Each M-TRAN module has two motors which provide it with two

degrees of freedom in the same 3d-plane.

Figure 2: M-TRAN II configured as quadruped and caterpillar.

1.3.2 PolyBot
The XEROX Palo Alto Research Centre is running several research projects in modular

robotics. Their PolyBot project (Figure 3, left) uses modules able to self-reconfigure and dock

also using shape memory alloy. The modules are hermaphroditic and can be docked to each

other at four different 90° rotation angles. However, each module has only two connection

surfaces (Figure 3, right) and therefore mostly snake-like configurations are possible unless

passive elements are used. PolyBot Generation 3 modules also have joint angle sensors,

accelerometers and infrared proximity sensors used principally to aid in docking two modules.

Control is centralized using gait tables.

 9

Figure 3: Left: PolyBot Generation 1 with 16 modules in a four-legged spider configuration.

Right: PolyBot Generation 3 module.

1.3.3 CONRO
The CONRO project is taking place at the Information Science Institute of the University of

Southern California. Each CONRO modules has two degrees of freedom, in two different

axes, which is particularly helpful for legged locomotion, but makes docking a challenge as

compared to the M-TRAN and PolyBot. The docking of two modules is achieved through

infrared communication; it requires several seconds. Unlike the other projects, CONRO

modules do not have hermaphroditic connectors but rather one female and three male

connectors. CONRO robots are able to discover autonomously the way they are connected

though a hormone inspired decentralized communication system that supports servo-

commands and on-line reconfiguration [Shen, et al. 2002]. Much like natural hormones,

artificial hormones allow different types of responses from different parts of the robot’s body.

Figure 4: CONRO (USC Information Sciences Institute).

Most of the research performed on modular robotics has focussed on self-reconfiguration or

locomotion. Many of these robots do not have a large palette of sensory capability and

therefore their use in investigating artificial intelligence is limited.

 10

1.3.4 Other projects
Lattice robots are also modular robots but are based on a very different architecture. They are

built of square or cubic modules that use linear actuator to reconfigure or move, instead of

rotational ones. Telecube [Suh, et al. 2002] is an example of cubic lattice robot. Telecube uses

“telescoping-tube linear actuator”, which consist of motors and lead screw in a housing, to

extend or collapse its six faces. Docking is accomplished using “switching permanent magnets

latch”.

Figure 5: Telecube module (Palo Alto Research Centre)

Locomotion of lattice robots works either by sequences of contraction and extension or by a

reconfiguration that shift the gravity centre. In both cases, it is quite slow compared to other

types of modular robots.

1.4 BIRG’s robot
The BIRG’s modular robot is a recent project; it is not as technically advanced as the projects

described above; in particular, no definitive docking mechanism has yet been designed.

However, it does have some interesting features: First, inter-module communication is

achieved through wireless communication via Bluetooth. This allows communication between

modules that are neither connected nor visible to each other.

Figure 6: Left: BIRG module. Right: the BIRG robot in a loop configuration.

Thanks to the wireless communication, a new paradigm appears. It is potentially possible to

disjoint the robot into several subunits which can still operate in accord and which can later

 11

assemble and operate as whole again. In addition, the BIRG’s modules are controlled by Field

Programmable Gate Arrays (FPGA). These allow faster and more generic computation than

the usual micro-controllers. The dimensions of the BIRG's modules are 87 x 50 x 45 mm

(height x width x depth, see Figure 6). A module weights around 250 grams, and its motor
force is 73 Newton · cm, which is more than usually encountered in modular robots and

roughly allows one module to lift two others. The hinge can turn in a range somewhat larger

than 180º.

 At the time of writing, the BIRG robot does not feature any sensing modality and

therefore, the present discussion is restricted to the study of locomotion without sensory

feedback.

1.5 Locomotion by oscillations
Locomotion is an essential skill in animals. It is required for hunting preys, escaping

predators, or more generally, finding food and mates. Locomotion is achieved by applying

forces on a terrestrial, aerial or aquatic environment. These forces are generated by the

rhythmic contraction of muscles attached to limbs; wings, legs, fins and so on.

 This document is concerned only with locomotion on a flat ground surface and under

gravitational force. A locomotory gait is efficient when all the involved muscles contract and

extend with the same frequency
1
. Typical terrestrial legged locomotion gaits are walk, trot and

bound. According to the gait, different activation phases for the different limbs are required.
For example, a quadruped’s walk consists normally of four different phases, e.g. the feet hit
the ground at four different times. In the example (Figure 7a.): first the left hind leg (LH) hits

the ground, then the left foreleg (LF), then the right hind leg (RH) and finally, the right foreleg

(RF), then the sequence repeats. All legs share a common frequency but different phases.

Figure 7: Three different quadruped gaits.

Trot and bound have only two different phases (Figure 7b. and 1c.). Trotting is when the two
diagonally opposed legs reach the ground simultaneously. Bounding is when in a first time the

forelegs hit the ground together, then in the second time, the hind legs hit the ground, also

together. In biped, quadruped, or hexapod robots, locomotory gaits are generated using these

simple principles: same frequency, different phases.

1 Note that this is not always true; in some cases gaits can also be composed of muscle movements where

frequencies are not equal but are multiples of each another.

2

LF

1

LH

4

RF

3

RH

2

LF

1

LH

1

RF

2

RH Direction

of motion a. Walk

(4 phases)

b. Trot

(2 phases)

1

LF

2

LH

1

RF

2

RH

c. Bound

(2 phases)

 12

1.6 Controllers architectures
Numerous different architectures have been tried for robotic locomotion. Let us review shortly

the principal ones.

1.6.1 Genetic programming
In his pioneering work (Figure 1), Karl Sims' [Sims 1994] virtual creatures were controlled

using a kind of genetic programming, where each neuron could carry out a different

mathematical function. Some of the available function could produce oscillations from

constant inputs and therefore this was very suitable for locomotion even though it was not a

very biologically plausible approach.

Figure 8: Virtual Creatures competing for the green block [Sims 1994].

1.6.2 Neural networks
With evolutionary robotics, a new concept appeared, originating from both the University of
Sussex [Harvey, et al. 1997] and the Swiss Federal Institute of Technology [Mondada, et al.

1995]. In this approach, robots are controlled with neural networks whose parameters are

optimised using genetic algorithms. Many different types of neural networks have been

experimented upon, for example feed-forward or recurrent architectures using sigmoid transfer

function.

 Randall Beer [Beer 1996] introduced a new type of neuron using a time constant:

Continuous Time Recurrent Neural Network (CTRNN). Beer and his team used CTRNNs for

simulating cognitive behaviour and among other things for the control of an autonomous

hexapod robot [Gallagher, et al. 1996]. In this article, CTRNN controllers were evolved in

simulation using genetic algorithm and the results were transferred directly to a hardware

robot. The controller’s neurons were implemented directly in electronic components such as

amplifiers and resistors.

 At Sussex, Nick Jacobi [Jacobi 1998] developed, in simulation, a control system for an

octopod robot (Figure 9) using the CTRNN techniques. His “minimal simulation”

methodology allowed the successful transition of the controller into a real robot able to

wander around and avoid obstacles using infrared sensors, bumpers, whiskers and light

sensors.

 13

Figure 9: The Octopod robot.

Plastic Neural Network (PNN) [Floreano, et al. 1996] changed the classical leaning concept of

evolutionary robotics. With the PNN approach, a part of the learning process is transferred to

the robot’s lifetime. More precisely, the genetic algorithm selects the neurons’ learning rules

but not the synaptic connections weights, which are modified during the robot lifetime

according to various genetically encoded leaning rules.

 With GasNets [Husbands, et al. 1998] the concept of synaptic weights itself is turned

upside down. A new mode of transmission based on simulated neurotransmitters is

superimposed to the neural network. These neurotransmitters are able to change the intrinsic

properties of the neurons and therefore a new kind of plasticity is enabled.

1.6.3 Oscillators
Although CTRNNs can be used to obtain the oscillations required for locomotion, an approach

that consists in using non-linear oscillators seems simpler. With non-linear oscillators, the

oscillatory behaviour can be assumed and it is possible to focus on the problem of the

oscillators’ interconnection.

 Furthermore, a lot of work has been carried out using oscillators. From Taga’s [Taga

1994] research on bipedal locomotion to Kimura quadruped robots walking on irregular

terrains [Kimura, et al. 1998] and with Ijspeert’s work on aquatic and terrestrial locomotion in

salamander [Ijspeert 2001], non-linear oscillators have been applied many times successfully

to locomotion problems.

 However, we are aware of only two projects in which non-linear oscillator are applied to

the locomotion of modular robots [Mesot 2004, Yoshida, et al. 2003]. In the latter article, the

authors present two different methods based on genetic algorithms that explore locomotion in

the M-TRAN robot. Their first method obtained locomotion by applying genetic algorithms to

the robot reconfiguration sequence. Their second method is similar to this project; genetic

algorithms are applied to the optimization of the parameters of non-linear oscillators to

evolved locomotory gaits.

 14

2 Methods

2.1 Simulator
The simulations of this study were carried out on a commercial robot simulator called

Webots™ [Michel 2004], which is developed by Cyberbotics Ltd in collaboration with the

EPFL. Webots™ is built on ODE (Open Dynamics Engine) and it allows therefore realistic

physics simulation. With Webots™, the robots structure and its environment are built using a

VRML editor. The robot controllers must be programmed in a high-level programming

language such as C, C++ or Java.

Figure 10: Software architecture.

For the simulations described here, two controllers were developed. The first controller is the

“optimizer”, which does most of the work: it runs the search algorithms, computes the

oscillations, sends servomotor commands to the simulator and measures the performance. The

second controller is the “supervisor” whose role is just to move robots to their start position at
the beginning of each evaluation.

2.2 Experimental morphologies
A crucial point was the choice of good morphologies for the simulations. To ensure the

robustness of the results, we decided to employ four different configurations. The initial

thought was to investigate randomly assembled structures; however, after the first experiment,

it became clear that bio-inspired morphologies would be more interesting because the

resulting locomotion gaits can be compared with their natural counterparts.

 The first morphology, the wheel (Figure 11, left), is a simple four-ways symmetrical
robot made of five modules. The middle module is placed such that its mass centre is located

in the same 3d-plane as the other ones; this decreases the robot's chances of tipping over. The

second morphology, the caterpillar (Figure 11, right) is made up of six modules whose axes of
rotation are all in a vertical plane.

optimizer supervisor

graphics engine

X server

ODE

Webots

 15

Figure 11: Wheel and caterpillar configurations.

The tetrapod (Figure 12, left) is a four-ways symmetrical structure made of nine modules; it
has four legs and a central passive module. Finally, the crawler (Figure 12, right) is built out
of 12 modules. It is left/right symmetrical like real quadrupeds. The crawler’s "hip" joints

move horizontally and the "knees" joints move vertically. Vertical “hips” and horizontal

“knees” would have been another design option. The crawler’s body motors are deactivated

and therefore its spine remains straight.

Figure 12: Tetrapod and quadruped configurations.

2.3 Oscillators
The present chapter (2.3) summarizes the principles used for locomotion using non-linear

oscillators, based on previous work at the BIRG.

 In animal locomotion, the oscillations of the joint angles produced by the muscular

activity can have different waveforms. These waveforms are usually smooth: brutal transitions

are uncommon. In order to facilitate numerical simulations, a strong simplification is to model

locomotion as sinusoidal variations of the robot’s joint angles. As seen before, these sine

waves must have the same frequency but they can differ in phases and amplitude, according to

the gait. In other words, a module’s motor activation can be controlled by this simple

equation:

0)sin()(xtAtx ++= ϕω (1)

 where x(t) is the desired servomotor angle of a module at time t, A is the amplitude of
the oscillations, φ is the oscillation phase, and xo is the angular midpoint of the oscillations of
the module.

 16

 In practice, sinusoidal signals are not flexible enough, because they do not allow a soft

transition from one gait to another. For example, if a walk gait in a robot is controlled by

sinusoidal motor signals, the transition to a different gait, say trot, requires the activation of

different oscillations’ phases, amplitudes and frequencies. However, with sinusoidal signals,

the transition from one gait to another is brutal and therefore cannot be carried out

satisfactorily by the robot’s motors. Consequently an uncontrolled transition appears, during

which the robot performs an undesired brutal movement and is subject to fall. This is in

contrast to gait transitions in nature, which always occur smoothly. Furthermore, with

sinusoidal signals, there is no simple way to incorporate sensory feedback.

2.3.1 CPGs
The concept of using non-linear oscillators to control robotic locomotion is inspired from

biology. Experiments [Shik, et al. 1966] showed that, in a decerebrated cat, the electrical

stimulation of the brainstem is able to induce walking. Furthermore, an increase of the signal

strength changes the walk velocity and the transition from a walking to a trotting gait happens

autonomously. These experiments demonstrated that the brain is not involved in the

generation of the rhythmic signals that produce locomotion in the cat.

 Grillner [Grillner 1985] explained that the locomotory signals that produce sequences of

muscle activation, such as walk, trot or gallop are generated by Central Pattern Generators

(CPG) located in the spinal cord. These CPGs are neural circuits that generate oscillatory

output from a tonic input coming from the brain. The brain appears to play a higher-level role

such as regulating the initiation, velocity and termination of the locomotory activity.

2.3.2 Non-linear oscillators
As we have seen, the sine approach of equation (1) does not enable smooth gait transitions. To

overcome this problem, non-linear oscillators were introduced as mathematical models of the

natural CPGs [Ijspeert, et al. 2003]. The state of oscillators changes smoothly and therefore,

gait transitions are soft. In addition, with oscillators, feedback can be incorporated in the

simulation. For example, sensors can detect that a foot is in contact with the ground and a

feedback signal can be injected into the oscillators.

 The oscillator proposed in [Ijspeert, et al. 2003] is based on these differential equations:

xv
E

Evx
v −−+−=

22

ατ & (2)

vx =&τ (3)

 where v and x represent the current state of the oscillator, E is a positive constant that
represents the energy of the oscillator, α determines the rate of convergence towards the limit
cycle and τ is the time constant that determines the oscillation’s frequency. This type of
oscillator converges to a sinusoidal signal with amplitude √E and period 2πτ [Ijspeert, et al.
2003]:

)/sin()(~ φτ += tEtx (4)

 where φ depends on the initial conditions. This behaviour is illustrated by the limit cycle
in Figure 13, which represent the results of 30 oscillations started with random initial

 17

conditions x and v in the range [-2, 2]. The parameters used were α = 0.7 and E = 1. As it can
be observed each run converges to the circular attractor of diameter 2√E=2 (see Matlab code
in the appendix).

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

v

Figure 13: Limit cycle of a standalone oscillator.

2.3.3 Oscillator synchronization
By choosing the E and τ parameters, it is possible to control the amplitude and frequency of
the oscillations. However, locomotion is efficient only when the phase shifts between the

oscillations stays constant through time and therefore, a strict synchronization is required. In

the model proposed in [Ijspeert, et al. 2003], synchronization is obtained by coupling the

oscillators; a signal proportional to the sum of the state of every other oscillator is added into

each oscillator. Equation (2) seen earlier, is now completed into equation (5) [Ijspeert, et al.

2003]:

∑ ++−
−+

−=
N

j
jijjijii

ii
i vbxaxv

E

Evx
v)(

22

ατ & (5)

ii vx =&τ (6)

 where aij and bij represents the strength of the coupling of the x and v states of oscillator
j into the oscillator i.
 Synchronization happens only when the uncoupled frequencies match approximately

[Pikovsky, et al. 2001]. Figure 14 illustrates this fact: the frequency difference ∆f of two
uncoupled oscillators is plotted versus frequency detuning ∆F after coupling. If the uncoupled
frequencies are too different, synchronization does not occur.

 18

Figure 14: Frequency vs. detuning graph [Pikovsky, et al. 2001].

In order to facilitate synchronisation the same time constant τ is used for all the oscillators and
therefore the uncoupled frequencies are similar. A frequency of 1Hz (τ = 1/(2π)) is chosen as
baseline for all simulations. This is because it corresponds to the pace of an ordinary animal

and it is slow enough for the physical robot's servomotors to go once 180° back and forth. A

stabilization period is necessary before the frequencies become locked. The duration of the

stabilization period depends on the coupling strength.

Figure 15: Example of synchronized oscillations.

Figure 15 shows an example of synchronized oscillations (see Matlab code in appendix). The

x states of four coupled oscillators are plotted over a period of 32 seconds: the initial
stabilization period is visible. This stabilization period is bad because it results in disorganized

steps of the robot. Shorter stabilization periods are wished and can be obtained by increasing

the coupling strength. However, unlike standalone oscillators, the signals produced by coupled

oscillators are not exact sine waves. Discrepancy with the sine increases with the coupling

strength and furthermore, when the coupling becomes too strong the signals turn out to be

chaotic (Figure 16) and unsuitable for controlling locomotion. For that reason, coupling

strengths are suitable only within an appropriate range that must be determined.

∆f=f1-f2

∆F

Synchronization region

 19

Figure 16: Chaotic oscillations resulting of too strong coupling.

When multiple coupled oscillators are used, the resulting phase shifts between the oscillations

is a function of the coupling strengths aij and bij, however several different combination of aij

and bij can produce the same phase shift. In fact, the exact outcome of a particular coupling

combination cannot be predicted by any general theory [Pikovsky, et al. 2001]. Consequently,

the coupling strengths must be optimized by the search algorithms.

 A slight variation (7) of the original oscillators' model seen above was proposed in

[Mojon 2004]. With this modification, the inputs are normalized and therefore, the "strength

of the signal carried by a particular connection does not depend on the energy of the emitting

oscillators" [Mojon 2004]. This modified model (7) is used in this project.

∑ +
+

+−−+−=
N

j jj

jijjij
ii

ii
i

vx

vbxa
xv

E
Evx

v
22

22

ατ & (7)

ii vx =&τ (8)

At this point the coupled oscillators were simulated (see Matlab code in appendix) and the

coupling strengths were experimentally determined to be satisfactory in the range [-0.7, 0.7].

2.4 Choice of free and fixed parameters
To summarize, in order to obtain suitable oscillations, different combinations of the

parameters τ, α, E, aij and bij, of equation (7) must be tried out. One option is to tune all

parameters with the optimization algorithms. However, in order to increase the likelihood of

convergence it is better to hold down the dimensionality of the search space. Therefore, it is

favourable to fix some parameters whilst the most relevant ones are kept free.

 As explained in the previous paragraph, the coupling strengths aij and bij must be free

because the oscillators’ synchronization phase depends on them. The oscillation amplitudes

controlled by E must also be free because it is not known beforehand how large joint
movements should be. Small undulations are required in some modules while larger ones are

necessary for others; it depends on the role, for example “hip”, “knee” or “ankle” of a

particular module in the robot’s body.

 20

 Oscillations in the region of the module’s 0°-angle (the horizontal position in Figure 17)

are too restricted. For example in quadruped robots, it is obvious that the “knee” joints should

oscillate in a region below the 0°-angle, somewhat downwards, in order to allow the foot to

touch the ground and push the body forwards during retraction
2
, while staying off the ground

during protraction. In fact, the optimal oscillation basis angle of most modules is not the 0°-

angle. In general, this angle is not known beforehand and should therefore be another free

parameter, that we call here x0.

Figure 17: Module's oscillations around x0.

As discussed before, the oscillation period determined by τ must be common to every
oscillator to facilitate synchronization; therefore τ is fixed. The convergence factor α can also
be fixed because it influences only the stabilisation period and not the post-synchronization

phase.

Parameter Type Range/Value Controls

E free [10
-8
, (π/2)

2
] Oscillation amplitude

x0 free [-π/2, π/2] Oscillation central angle

aij and bij free [-0.7, 0.7] Coupling strength

τ fixed 1/(2π) Oscillation period

α fixed 0.5 Convergence speed

Table 1: Free and fixed parameters.

The actual number of parameters in a controller depends not only on number of modules but

also on the inter-oscillators connections. There are two free parameters (E and x0) for each
module and two (aij and bij) for each inter-oscillator connection. The τ and α remain fixed.
This is summarized in Table 1 together with the corresponding optimization ranges or fixed

values that were used.

2.5 Controller encoding
In order to be independent of the actual optimisation method used, all the above-mentioned

parameters are converted to floating-point numbers in the range [0, 1]. A specific controller is

simply an array of floating point numbers initialized with random numbers taken from a

uniform distribution in this range. Whatever optimization method is used, the parameters are

not allowed to exceed the [0, 1] range later on. This restriction limits the diversity of the

2 Retraction: limb movement towards the rear. Protraction: limb movement towards the front.

x0

0°

-180°

180°

 21

results but it also has the advantage of keeping the size of the search space constant. The

encoding format is summarized below:

x0,1 A1 a11 b11 a12 b12 …
x0,2 A2 a21 b21 … … …

…
x0,N AN aN1 bN1 … … …

Table 2: Parameters encoding.

 where each row represents the parameters of a single module and the corresponding

oscillator. The row length depends on the number of incoming connections. Ai is the module’s

oscillation amplitude (Ai=√Ei). Note that only the genetic algorithm is dependent on the
memory arrangement of the parameters because of the crossover operation.

2.6 Coupling
There are many possible ways of coupling the oscillators. Little biological data is available on

that topic therefore; it is difficult to prefer a particular solution rather than another one.

Intuition suggests that the oscillators must be connected between neighbouring modules, for

example from the head down the spine with extensions to the limbs as in [Ijspeert, et al. 2003].

This seems to be the most biologically plausible solution.

Figure 18: Unilateral vs. bilateral coupling.

The choice between unidirectional or bidirectional connections is also difficult because

synchronization can work in both situations. Two oscillators can synchronize as long as there

is at least one connection between them. In the case of unilateral coupling (Figure 18, left), the

frequency of oscillator 2 will shift towards the frequency of the oscillator 1. In bilaterally

coupled oscillator (Figure 18, right), the frequency of both oscillators will shift to a value

somewhere in the middle of the uncoupled frequencies of both oscillators.

 A biologically inspired approach requires bidirectional connections because this allows

feedback. For example, if the trajectory of a robot’s leg was impeded during its forward

swing, with bi-directional connections, the whole robot body could respond.

 On the other hand, unidirectional connections allow keeping the number of parameters

low. In the end, it was arbitrarily decided use bidirectional coupling for the wheel and

caterpillar robots and unidirectional coupling for the tetrapod and quadruped (Figure 19). The

solid (black) circles represent the “hip” joint oscillators and the dashed (grey) circles represent

the “knee” joints oscillators. Section 3.4 will compare the respective performance of

unidirectional and bidirectional coupling in the tetrapod.

1 2 1 2

ω1 ω2 ω1 ω2

 22

Figure 19: Oscillators coupling.

2.7 Performance measurement
In order to measure its performance

3
, every controller is tested during 32 simulated seconds.

Throughout this period, a controller should move as far as possible away from its initial

location. However, the performance could not be simply measured as the straight distance

between the start and end location, because in some cases the robot makes a circle and stops

close to where it started. In such cases, the performance evaluates poorly even though, only a

tiny parameter change would be required in order to correct the robot’s bent trajectory. To

overcome this problem, the cumulated or integrated ground distance was also integrated into

the performance evaluation.

 However, controllers moving in a straight line should still be favoured over zigzagging

ones. Therefore, the performance needs to reflect both straight and the integrated distances.

For this reason, in this project, the performance was calculated as the weighted sum of both,

using this formula:

∑
−

=
+ −+−=Φ

1

1

11

N

i
iiN pppp
rrrr βα (9)

 where Ф represents the measured performance, where pi is the i
th
 point sampled on the

robot trajectory, where N is the total number of sampled point, and where α and β are
coefficients that allow balancing the respective weights of the absolute and integrated

distances. In our simulations these coefficients were set to α=1 and β=1. In order to avoid
granting the robots performance scores for plain vibrations, the trajectory points pi are

sampled at 1.0 second intervals such that a robot is always approximately in the same posture

when sampling occurs.

 Alternatively, another idea was to measure performance as the absolute distance

adjusted by a measure of the curvature of the trajectory. The curvature could be computed as

the second derivative of the trajectory:

3 The word performance is preferred in this document, because fitness makes sense in the context of genetic
algorithms but not with the other optimization methods used here.

Quadruped

Caterpillar

Tetrapod

Wheel

 23

dt
dt

pd
ppN ∫

+−=Φ

2

2

0 βα rr
 (10)

However, this approach was not tried out due to the time limitation.

2.8 Numerical optimization methods
Tuning controllers parameters for locomotion is a multidimensional optimization problem that

consists in finding the optimum of a function of several independent variable such that Ф =
f(p1, p2, p3 … pN) and where Ф must be optimized. Some optimization problems can be solved
analytically or by gradient descent methods. However, with many real world problems, these

methods do not work because f(…) cannot be described by a simple formula. This is the case
for the current problem where f(…) is computed by the complex algorithms of the physics
simulator.

 Some methods such as the downhill simplex can perform optimization without requiring
gradient information. Unfortunately, such non-stochastic methods suffer from their inability to

escape from local minima. Therefore, methods involving a random variable are preferred.

Three such methods were chosen to optimize our controllers: genetic algorithms, simulated
annealing and particles swarm optimization. In addition, random search is used as control
technique to see how the other three methods compare with pure chance.

2.8.1 Genetic algorithm
Genetic algorithms are optimization techniques invented by John Holland in the seventies and
inspired by the Darwinian theory of evolution. Darwin’s theory is based on three basic

principles, which are variation, heredity and selection. In nature, these three principles
combine into a powerful optimization mechanism that maximizes the chances of survival of

genes and potentially explains the existence and the adaptation of complex life forms. The

great idea of John Holland was to use the same Darwinian principles in computer simulations

in order to solve engineering or mathematical problems.

 A genetic algorithm is a kind of artificial evolution of a population throughout a number

of simulated generations. The population is made of candidate solutions to a domain specific

problem. At every generation, the fitness of the candidates is evaluated with respect to the

domain specific objective. The best candidates are selected and allowed to reproduce; this is

the selection principle. Reproduction generates new offspring based on the genetic material of
two parents; this is the heredity principle. With a certain probability, the new offspring goes
through mutations and therefore differ from its parents; this is the variation principle.
 Throughout the rest of this document, the genetic algorithm referred to a population of

100 individuals selected by linear rank. From one generation to the next, an elite composed of

the 5% fittest individuals is preserved unchanged. From the remaining non-elite 95%, a 5%

part is reproduced sexually, using single-point crossover and no mutation. The last remaining

95% are reproduced asexually and mutated. The mutation probability of every parameter is

0.06, which represents roughly two mutations per genome. The mutation amplitude is taken

from a normal distribution with mean 0 and standard deviation 0.2. Section 3.5 describes a test

in which crossover was disabled in order to compare the performance of sexual and asexual

reproduction.

 24

2.8.2 Simulated annealing
Simulated annealing [Kirkpatrick, et al. 1983] is a numerical optimization technique whose

name is an analogy with the way in which a metal cools and freezes into a crystalline structure

that minimizes its internal energy. At high temperature, the molecules of a liquid move freely

with respect to one another. When the liquid is cooled, the molecules’ thermal mobility is lost.

If the cooling process is carried out slowly enough, the atoms line themselves up into a pure

crystal, which is also the minimal energy state of the system. Otherwise, if the cooling is too

quick the atoms organize in a less pure structure of higher energy.

 With simulated annealing, a virtual cooling process is carried out. The wished final low

energy state corresponds to the optimization objective to reach. The molecules’ being

organized corresponds to the parameters being optimized.

 Simulated annealing is a kind of random search with a single individual. At every step, a

candidate solution is generated by randomly varying the current solution. Then, this candidate

solution is evaluated to find out whether it corresponds to an increase or decrease of the

current energy state of the system. If the energy would be decreased then the candidate

solution is accepted and it replaces the current solution. If the energy would be increased, then

the candidate is usually rejected. However, with some probability, decreasing throughout the

cooling process, a candidate can also be accepted if an increase of the energy state results.

 This annealing process is illustrated in Figure 20, where parameter changes are shown

during a cooling period covering 60 different temperatures. One can observe that at the

beginning of the annealing(left), when the temperature is still high, parameter changes take

place frequently, whereas towards the end (right), as the temperature cools down, almost no

change takes place.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Temperature index

P
ar

am
et

er
 s

pa
ce

Figure 20: Example of cooling (Tetrapod 32 parameters).

Accepting an increase in energy with a diminishing probability is the main idea behind

simulated annealing. When the cooling process terminates, a change that increases the energy

level can only be accepted with an infinitesimal probability. Here is the formula:

<∆

>∆∆−
=

01

0)exp(

Eif

Eif
kT

E
p (11)

 25

 where p is the probability to accept a candidate solution, T is the temperature which
decreases exponentially throughout the cooling process, k is the Boltzmann's constant, ∆E is
the energy difference between the candidate and the current solution: ∆E = Ecurrent – Ecandidate.

 Simulated annealing works well for combinatorial problems such as the travelling
salesman. In practice, it is used for example to find the arrangement of integrated circuits that
minimizes the interferences between their connecting wires [Kirkpatrick, et al. 1983].

 This document refers to an annealing process where the temperature was initialized with

1.0 and was reduced of 0.5 % after every fifth successful parameter change. Configuration

changes were generated by the same type of mutation operation as used with the genetic

algorithms. Each parameter is mutated with a probability of 0.06 and with amplitude chosen

from a normal distribution with mean 0 and standard deviation 0.2.

2.8.3 Particle Swarm optimisation
Particle Swarm Optimisation (PSO) was originally developed in 1995 by James Kennedy and

Russell Eberhart [Kennedy, et al. 1995]. Like genetic algorithms, PSO is based on a

population that slowly converges towards one or more solutions. However, with PSO, the

particles are preserved throughout the entire process; they do not die. Contrary to GA, which

is based on competition for better chances of survival and reproduction, PSO uses a kind of

cooperation between the particles. This is achieved through the exchange of the coordinates of

the best solutions that have been encountered so far.

 PSO’s particles are simple search agents that “fly” through the search space. Whilst

moving, they record the best position that they have discovered so far. They communicate

with their neighbours and learn, from them, the best local solution. PSO is based on the

concepts of social interaction or more exactly, the tendency of an individual to go his own

way, as opposed to his tendency to follow his group’s way. At every time step, a particle's

flight direction is driven by three factors: first, its own inertial speed, second, its tendency to

return to the best solution it has discovered so far, and third, the tendency to go towards the

best solution discovered by its neighbours. This can be summarized in equation (12) which

calculates the new flight speed of a particle at time t+1, and in equation (13) which calculates

the new position a particle:

))(()())(()()()1(21 txprandtxprandtvtv idgdidididid −+−+=+ ϕϕω (12)

)()()1(tvtxtx ididid +=+ (13)

 where v is the speed of a particle, i is a particle index, d represents the dth
 dimension in

the parameter space, t is the discrete time index, ω is the particle speed inertia factor and
where the function rand() returns a uniformly distributed random number in the range [0, 1].
The coefficients φ1 and φ2 control the individual and social levels of confidence, e.g., how

much a particle should follow its own best solution or his group’s best solution. Finally pi is

the best previous position of particle i, and pg is the best previous position in the

neighbourhood of particle i. These principles are illustrated in Figure 7 below.

 26

Figure 21: Principle of swarm particle optimization.

In PSO, we speak about the particles' neighbourhood. A particle’s neighbourhood defines
from which other particles the information will be received. The neighbourhood size can vary

from a few particles to the entire swarm. The neighbourhood type does also vary: some PSO

techniques are based on so-called social neighbourhood, while others use geometrical
neighbourhood. In social neighbourhood, the particles are associated with other particles from
the beginning and their relationship is maintained throughout the process. A geometrical

neighbourhood is defined in accordance with the current particles “proximity” in the

parameter space. In this case, the particle-to-particle distances needs to be recomputed at every

iteration. The usually mentioned advantage of social neighbourhood is its lower computational

burden compared to geometrical neighbourhood. However, in our case, geometrical

neighbourhood was preferred, because the processing power required by the optimization

algorithm are insignificant anyway compared to that of the physics simulation.

 The speed inertia factor ω can either be fixed or decreased during the optimization
process. Some authors [Shi, et al. 1998] suggest that a decreasing inertia factor gives better

results, and so this approach used here.

 In this project, the neighbourhood was based on geometrical proximity with a size of

either 50 (the whole swarm) or five particles, according to the experiment. The initial speed

inertia was 1.0 and was decreased by 0.5% after every iteration. In every dimension, a

particle's position was constrained in the range [0, 1] while its speed was limited to a maximal

change of 0.2 per iteration.

2.8.4 Random Search
Random search is straightforward and used only as a method to compare other algorithms. In

random search, controllers are generated and initialised with parameters from a random

uniform distribution in the range [0, 1]. The generated controllers are tried in sequence. Each

time a better controller is found, it replaces the current solution, which is deleted.

2.8.5 Comparison methods
For every optimization algorithm, the controllers' performance was measured using, the same

method that was described earlier (Section 2.7). Yet, what is important is to compare the

algorithms performance with each other, on a common scale representing the processor time.

However, the various algorithms are based on different time bases: for example generations
for GAs, annealing schedule for SA and iterations for PSO. As a result, every algorithm was
implemented such as to terminate and deliver results after 12,000 controller evaluations and a

time scale that represents the number of such evaluations between 0 and 12,000, was used.

v (current speed)

pg (best solution in neighbourhood)

pi (own best solution)

x(t) (current position)

x(t+1) (next position)

 27

2.9 Simulation
Clearly, chaotic or unsynchronized oscillations tend to result in inefficient locomotion. In this

project, the task of rejecting defective solutions was left entirely to the optimisation

algorithms. No preliminary test, of the oscillations’ “quality” was performed before submitting

a controller to the simulator. One can argue that this approach might slow down the

optimization processes because many non-viable solutions are expensively simulated.

However, it is also possible that poorly synchronized oscillators are very close to good

solutions in parameter space. In which case, their premature removal would also be

detrimental.

2.9.1 Simulation parameters
Within Webots, each controller was evaluated during 32 simulated seconds, which

corresponds roughly to one second of processor time, depending on the complexity of the

model. In the configuration used, new servomotor positions were transferred from the robot

controller to the simulator every 64 milliseconds. The physics integration step was of 32

milliseconds. The oscillators used Euler integration with a step of one millisecond. The ODE

Coulomb friction was set to 0.9 for all robot modules and in every experiment.

2.9.2 Noise
The search algorithms used here are stochastic and as a result, obviously different results are

obtained for every search. In the contrary, the behaviour of the oscillators is completely

deterministic; if the same initial conditions and parameters are used, the controller generates

the same sequence of servomotor commands every time. However, some noise was present in

the simulations, produced by the simulator‘s underlying physics engine (ODE). Consequently,

the measured performance of a controller varied. This is illustrated in Figure 22, which shows

the performance of the four morphologies, tested 20 times with the same controller.

1 2 3 4
0

5

10

15

20

25

30

Wheel Caterpilar Tetrapod Crawler

P
er

fo
rm

an
ce

Figure 22: Discrepancy in performance due to noise.

In this example, the performance divergence was a lot larger in the caterpillar than in the other

morphologies. The reason for this is that the caterpillar robot sometimes falls over and, once

on the side, it cannot move any further. In fact, falling over does also sometimes occurs to the

wheel robot, but in this example, a robust controller was used and therefore, this did not

 28

happen. Actually, the wheel robot is actually very sensitive to noise because is moves by a

kind of vibrations, not using a proper gait like the others robots; therefore, its performance

usually varies a lot.

 Noise, in the performance measurement, delays the algorithms convergence. However, a

certain amount of noise is representative of the real world, e.g. inaccuracy in the servomotors

or irregular ground friction. Therefore, noise improves the robustness of the results and the

chances that the simulation results can be transferred to a real robot.

2.9.3 Numerical instabilities
In addition to the noise, numerical instabilities appeared in the simulations. Some of these

instabilities originated from the oscillators. They could be detected automatically in software;

when the current state of an oscillator exceeded a specific security threshold or equalled Not-

a-Number (NaN), an arbitrary performance of zero was assigned to the corresponding

controller.

 Furthermore, sometimes a controller reported an outstanding result that could

unfortunately not be reproduced afterwards. This type of situation was due to numerical

instabilities in ODE. To overcome this kind of problem, the usual solution is to decrease the

integration step of the physics simulator. However, a smaller integration steps considerably

slows down ODE and therefore the whole search. Therefore, we rather chose to recheck all the

results manually and to redo the searches that gave irreproducible results.

 29

3 Results
A series of 100 searches, representing around 300 hours of processor time in total, was carried

out. The four described morphologies were tested with the different search methods, further

denoted: GA for genetic algorithms, SA for simulated annealing, PSO5 for particle swarm

optimization using a geometrical neighbourhood of five particles, PSO50 for particle swarm

optimization with a “whole swarm” neighbourhood and finally RS for random search. In

addition, each test was repeated five times for averaging the results.

3.1 Main results
In Figure 23 below, the learning curves of the search algorithms for all four morphologies are

plotted. Each curve represents the current best solution of the corresponding algorithm

throughout a search and it is computed as the average of five different searches.

Figure 23: Compared learning curves of five search methods for each morphology

(results are averaged over five searches).

The horizontal axes indicate the number of controller evaluation between 0 and 12,000, which

corresponds also to 120 generations for GA or 240 iterations for PSO. What is important to

notice is that for any morphology, the best results were always obtained using PSO50. The

 30

worst results were constantly obtained by random search, as expected. The small peak in the

GA curve in the fourth diagram is due to a numerical instability, which disappeared in the

subsequent generation, because the genotype evaluated then to a different performance.

1 2 3 4
0

5

10

15

20

25

 Wheel Caterpillar Tretrapod Crawler

P
er

fo
rm

an
ce

GA
SA
PSO5
PSO50
RS

1 2 3 4 5
0

5

10

15

20

25

P
er

fo
rm

an
ce

 GA SA PSO5 PSO50 RS

Wheel
Caterpillar
Tetrapod
Crawler

Figure 24: Performance results, sorted by morphology (left) and algorithm (right).

Figure 24 summarizes these results in another form: only the final best performances are

compared. On the left, the results are grouped by morphology and on the right, by algorithm.

Without considering the search methods, the caterpillar is usually the fastest morphology but

is sometimes outperformed or equalled by the crawler.

3.2 Gait description
This paragraph will shortly go through the description of some of the most efficient gaits

obtained. Video clips of precisely the same results that are described here are available for

closer examination on the webpage: http://www.yvanbourquin.com/ModularWalkers.

3.2.1 Wheel
This sequence was obtained with the genetic algorithm; it represents a full "gait" cycle of the

wheel robot. The interval between two images is 250 milliseconds. The wheel moves through

vibrations while standing on two limbs. In most solutions, the upper rear limb is rather

immobile and used as a swinging mass.

Figure 25: Example of wheel vibrating "gait".

The wheel did not develop a rotational motion, as was expected. The reason is probably that

the oscillator’s frequency is fixed to 1 Hz, and 1 second is not enough for the motors to carry

out a full rotation of the structure.

 31

3.2.2 Caterpillar
The results of the 25 best caterpillar controllers can be classified in three categories (Table 3).

A first category corresponds to controllers that move as a kind of “rolling loop” similar to the

caterpillars of tracked vehicles (Figure 26). A second category corresponds to controllers

producing caterpillar-like motion, similar to real worms or caterpillars. The third category is

made of robots moving by vibrations. Two subcategories a) and b) were also distinguished,

whether to a controller chose to move in "head" or "tail" direction.

 "Gait" category Number of results Mean performance

1 Rolling loop, a) tail first, b) head first 7 (2 + 5) 25.0

2 Caterpillar gait, a) tail first, b) head first 12 (9 + 3) 16.1

3 Motion by vibration 6 10.5

Table 3: Caterpillar "gait" categories.

Note that, with an average performance of 25.0, the first category, the rolling loop, is by far

the fastest caterpillar, and actually the overall best performance of all simulations. Another

thing to notice is that categories 1 and 2 seem to have a preferred direction. This can be

understood because the caterpillar robot model is not front-rear symmetrical. Unfortunately,

the travelled distance is measured in the centre of the robot's tail and therefore, gaits showing

large tail movements were artificially favoured.

 Five results from each optimization method are not enough to make a conclusion

whether one optimization method is more likely to converge towards a particular category, but

there is no reason to think that this would be the case.

Figure 26: Example of caterpillar's rolling "gait".

In every rolling loop result (Figure 26), the caterpillar robots had a "gait" cycle lasting two

seconds, therefore exactly twice duration of one period of oscillations. This surprising result is

in fact the only possible outcome, because only two similar bending waves propagated along

the body can provoke a full rotation. In Figure 26, the upper row of images corresponds to the

first travelling wave, and the lower row of images corresponds to the second travelling wave,

with the same motor activation angles.

head

head

 32

 This rolling loop “gait” can be understood more easily by looking at the corresponding

oscillations. In Figure 27, a small and regular phase shift, indicated by the oblique line, is

propagated during one second from module 2 to module 6.

Head: Module 1

Module 2

Module 3

Module 4

Module 5

Tail: Module 6

Figure 27: Example of caterpillar oscillations.

In this example the "head" module activation does not take part to this travelling wave; it is

actually in counter phase. The reason is that the head's hinge is not connected to another

module, and therefore it behaviour is rather irrelevant in this type of locomotion.

3.2.3 Tetrapod
With the tetrapod morphology, the motors have enough power to lift the body above the

ground during the whole gait cycle. Therefore, an upright posture (Figure 28, left) emerged

even though in the initial position the robot is "sitting" on the ground. Independently of the

algorithm used, most of the time the controllers developed a kind of "walk" similar to that

found in animal quadrupeds.

Figure 28: Upright tetrapod and axes of symmetry.

Usually a kind of 2-phases gait appeared in which two diagonally opposed legs push

simultaneously and propel the body while the two other legs swing forwards. However, these

movements are not perfectly in phase and can therefore be considered as 4-phase gaits.

26 27 28 29 30 31
Time [s]

 33

 Even though the tetrapod is 8-ways symmetrical (Figure 28, right), almost every

examined solution evolved to walk diagonally with respect to the central module (large

arrows). They use two legs on each side, like actual quadrupeds. From 25 examined results,

only one evolved to take advantage of other axes of symmetry (small arrows). In that result,

the front and hind legs remained immobile and the two side legs pushed in phase.

 This sequence shown in Figure 29 was obtained with PSO50. It is very representative of

the results. Three legs are used efficiently; the feet describe roughly elliptic trajectories in

which the “knee” joints are bent downwards during the retraction and bent upwards during

protraction in a way similar to that of many vertebrates.

Figure 29: Example of tetrapod gait (oblique view).

Figure 30: Example of tetrapod gait (top view).

In Figure 31, the same result is shown in the form of oscillations. In the "hip" motors, a

positive value corresponds to a forwards limbs orientation and a negative value corresponds to

backwards. We can see that crosswise-opposed legs are in phase: the front left
4
 hip motor (1)

is roughly in phase with the hind right hip motor (4). Similarly, motor (2) is roughly in phase

with motor (3).

4 Since the tetrapod is actually a symmetrical morphology, the terms left, right, front and hind must here to be
understood with respect to the actual direction of motion.

 34

 However, the "knee" oscillations seem less efficient. In the "knee" motors, positive

values mean upwards and negative values means downwards, null is the horizontal. An

efficient quadruped gait corresponds to the knee pointing downwards during retraction and

upwards during protraction. In our example, this corresponds to a counter-phase

synchronization of each "knee" with the corresponding "hip".

Front left hip (1)

Front right hip (2)

Hind left hip (3)

Hind right hip (4)

Front left knee (5)

Front right knee (6)

Hind left knee (7)

Hind right knee (8)

Figure 31: Example of tetrapod oscillations.

Here, the solution is imperfect; one can observe that there is an approximate counter-phase,

but unfortunately only between the hind hips and the corresponding hind knees. The two front

legs are used inefficiently because they points downwards during protraction. However, the

oscillation amplitude is small and therefore this is apparently not hindering the robot too

much.

3.2.4 Crawler
It is hard to classify the crawler results, because they differ only by slight variations. All the

results use three or four legs. As with the tetrapod above, more or less efficient gaits were

found in which, usually, the “knee” joints point downwards during retraction and more or less

horizontally or upwards during protraction. The next sequence represents a typical crawler

result. It was optimized by simulated annealing. These images are taken at 160 milliseconds

intervals.

26 27 28 29 30 31
Time [s]

 35

Figure 32: Example of crawler gait.

The gait shown here has 2-phases but is asymmetrical (Figure 32). The first row of images

correspond to retraction, the second one corresponds to protraction. Three of the legs move in

phase while the fourth one (left front leg), moves in counter phase. The crawler’s body lies on

ground during the protraction but is lifted slightly during the retraction, much like a reptile's

sprawling posture. This is different from the tetrapod, which is lighter and keeps its body off

the ground during the complete cycle.

 Note that from 25 results, 10 chose to start moving in the direction shown in Figure 32

and the 15 others started in the opposite direction. There is no known advantage to either

solution. Sometimes, the robots moved slightly sideways, not exactly parallel to the robot's

spine.

3.3 Genotype analysis
At this point, it is interesting to compare the results of the various algorithms to see if there is

convergence to a common solution. Figure 33 shows the 25 best crawler controllers obtained

with various search methods. The thicker line shows the mean value of all the controllers.

There is rather large diversity in the solutions and only a slight tendency towards a particular

configuration.

Figure 33: Parameters sets of the 25 best crawler controllers

(the x-axis corresponds to the parameter numbers).

When examining the standard deviation of these parameters (Figure 34), one can notice that

the smallest variance correspond quite precisely to the controller’s x0 parameters (red bars),
while the largest variance correspond to the oscillations amplitudes A (yellow bars) of the
controllers. The x0 parameters correspond to the initial oscillation angles of the “knee”
(parameters 17, 21, 25 and 29) and “hip” joints (parameters 1, 5, 9 and 13). Therefore, in the

“knee” joints, this consistency of x0 indicates the standard downwards orientation of the “tibia”
required to ensure contact with the ground.

 36

Figure 34: Standard deviation of the 25 best crawler controllers

(the x-axis corresponds to parameter numbers).

In the “hip” joints, this corresponds to “femur” angles usually oriented perpendicularly to the

spine, as is required to enable larger pushing movements. Clearly, the small variation in the x0
parameters reflects the general posture required for the locomotion of the crawler. On the

contrary, the larger variance in the aij and bij parameters (green bars) reflects the fact that

several different combinations of coupling strengths can result in the same phase shifts.

 A similar variance scheme was found in the tetrapod morphology. This result is obvious

because it is also a quadruped. The reason why the oscillations’ amplitudes A are the most
variable parameters is not clear. On the contrary, concerning the caterpillar, the most stable

parameters correspond to the amplitude and not to the x0.

3.4 Unidirectional vs. bidirectional connections
In this test, the difference between unidirectional and bidirectional connections was tested

using the tetrapod morphology and the genetic algorithm. The same GA parameters as

specified in paragraph 2.8.1 are used. The only thing that was changed was the oscillators’

connections scheme.

Figure 35: Compared performance of unidirectional and bidirectional tetrapods.

The two upper curves represent the evolution of the best individuals of a population of

unidirectional (solid line) and bidirectional tetrapod (dotted line). The two lower lines

correspond to the mean individuals. Each curve is averaged over eight different runs of the

Unidirectional

Bidirectional

A

x0
aij
bij

 37

genetic algorithm. The results are slightly better for the bidirectional tetrapod but the

difference is not significant.

3.5 Sexual vs. asexual genetic algorithm
In this test, the objective was to compare the performance of sexual vs. asexual genetic

algorithm. Sixteen GA optimizations were carried out, eight with crossover and eight without

crossover. The results were averaged; they are shown in Figure 36. The two upper curves

represent the best individuals of the sexual and asexual populations, and the two lower curves

represent the corresponding mean individuals. The learning curves are almost identical for

sexual and asexual.

 We can deduce that the crossover operation employed here is inefficient. Apparently, the

sequence of parameters described above (section 2.5) is not constituted of reusable building

blocks. In fact, when a single coupling strength is modified in a controller, this can result in

completely different phase shifts of the oscillators. Consequently, the crossover will usually

produce the same effect as a large mutation resulting in an offspring which performance is

unrelated to the one of its parents.

Figure 36: Sexual vs. asexual GA.

Still, it is possible that a crossover operation designed in a different way performs better. The

version used here did not consider any building blocks and therefore the crossover points were

set completely arbitrarily between any of the floating-point parameters. For example, it might

be an improvement to use a crossover operation that does not split adjacent aij and bij and

adjacent A and xo, because these parameters are closely related.

 38

4 Discussion

4.1 Algorithms comparison
All these search methods have a lot in common. They start with a set of randomly generated

candidate solutions, and then new candidates are generated by varying the current ones. The

new candidates’ performances are evaluated and then, with some probability better solutions

replace the previous ones. What differs is the size of the population, the way the variation is

generated and the way replacement is carried out.

 In simulated annealing and random search, the set size is one. On the contrary, in genetic

algorithm and particle swarm optimization the set is a whole population. A population of
individuals is generally superior to a single individual because this allows generating variation

from several suitable starting points. With a population, the search is pursued in several

directions; this explains why GA and PSO constantly delivered the best results.

 Furthermore, there are many methods to produce variation. For GA and SA, single point

mutations with a certain probability and with an amplitude chosen from a normal distribution

were used. However, it would also have been possible to choose the mutation in a hypersphere

around the current solutions as in [Slocum, et al. 2000]. Similarly, there are various ways to

make use of random in PSO, but it is impossible to try them all. The annoying problem is that,

most of the time, mutations give an uphill move that decrease performance. In [Press, et al.

1988], a method is proposed that uses simulated annealing together with the downhill simplex

method. This technique can increase the chance of a downhill mutation. In the same way, PSO

“flight” speed plays the role of a momentum that potentially increases the chances of a

downhill move. This is similar to the momentum used in neural networks to improve the speed

of convergence by taking into account the current learning rate. In this aspect, PSO seems

superior to GA because it does not simply generates variation from good past solutions, but it

also takes into account the current improvement direction. Therefore, it increases the chances

that the next mutation will be downhill.

 Finally, it is worth noting that not only can the search algorithms can be infinitely

varied, but also furthermore, they can be used in combination. For example, both genetic

algorithm and particle swarm optimization are quite efficient alone, but eventually they could

be more efficient when used together. Since they are both based on a population, it is possible

to alternate the technique within the same search. Furthermore, for some GAs the mutation

rate is too restrictive for the initial search but fine for the parameters fine-tuning. Therefore, an

alternative is to start with a random search and finish the parameters fine-tuning with a GA or

any of the other techniques described here.

4.2 Conclusions
Interestingly, the four search methods all produced similar and good results. The biggest

surprise was that particle swarm optimization delivered constantly better results than genetic

algorithms. The myth that genetic algorithms is a superior optimization technique is a bit

broken. In fact, genetic algorithms are not superior but their popularity in evolutionary

robotics is mostly due to their nature, inspired from phylogeny, which fits very well with the

concept of artificial life or artificial intelligence. This project has shown that PSO works just

as well, or even better than GAs, to optimize controllers.

 39

 However, we should also avoid generalising the results from this experiment. GA, SA

and PSO all use a number of control parameters, e.g. population size, swarm size, mutation

rate and so on. These control parameters have a great influence on the results. In this project,

the control parameters of the algorithms have been chosen intuitively by the author, but in

fact, they would need to be optimized themselves.

 Generally, locomotion developed beyond expectations. In the tetrapod and crawler, gaits

similar to natural quadrupeds evolved and their performance is apparently close to the

theoretical maximum. Although our results are good, when looking at the gaits obtained, one

always has the impression that something can still be improved. It is possible that classical

engineering methods, for example gait tables or predefined joint trajectories, reaches similar

or better performance. It would be interested to compare the results of these two divergent

methods.

4.3 Future work
The effectiveness of the generated locomotion gaits has not been verified in hardware. The

logical continuation of the project is to transfer the simulation results into the real robot and

carry out the calculation of the oscillations on-board. However, at the time of writing, the

hardware was not completely ready and therefore this could not be tried out.

 An interesting extension to the project would be to implement the control of direction in

the tetrapod and crawler robots. If the left and right side CPGs are independent, and if the

oscillations’ amplitude on one side is changed using the tonic input [Ijspeert, et al. 2000], then,

the tetrapod and crawler robots could turn.

 Our performance measurement involved only locomotion speed; however, in order to

gain in autonomy, robots should also be energy efficient, just as their biological counterpart.

This is especially critical for modular robots because, according to their creators’ claims, they

are aimed at working outdoors. Therefore, the energy consumption should be incorporated in

the performance measurement. However, this calculation is not necessarily easy because, a

body has is own dynamics. During a gait, the energy can be temporary stored in elastic or

gravitational form and restored later on.

 Finally, the model used here was very limited compared to a real biological system.

Only CPGs were modelled whereas animal locomotion is also controlled by the brain and by

sensory feedback. Even though no sensors were implemented in the real robot, it would be

interesting to include sensory perception in the simulation. One possibility is to simulate touch

sensors in order to know when a foot is in contact with the ground. Another possibility is to

implement proprioception and the feedback of the actual motor angles into the oscillators.

 40

5 References
R. D. Beer (1996). Toward the evolution of dynamical neural networks for minimally

cognitive behavior. Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior (pp. 421-429). MIT Press.

R. A. Brooks, A. M. Flynn (1989). Fast, Cheap and Out of Control: A Robot Invasion of the
Solar System. Journal of the British Interplanetary Society, Vol. 42, pp 478-485, 1989.

D. Floreano, F. Mondada (1996). Evolution of Plastic Neurocontrollers for Situated Agents.
Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior,

Cambridge, MA: MIT Press.

J. C. Gallagher, R. D. Beer, K. S. Espenschied, R. D. Quinn (1996). Application of evolved
locomotion controllers to a hexapod robot. Robotics and Autonomous Systems 19:95-
103.

S. Grillner (1985). Neurobiological Bases of Rhythmic Motor Acts in Vertebrates. Science,
New Series, Vol. 228, No. 4696 (Apr. 12, 1985), 143-149.

I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi (1997). Evolutionary Robotics: the
Sussex Approach. In Robotics and Autonomous Systems, v. 20 (1997) pp. 205--224.

P. Husbands, T. M. C. Smith, M. O'Shea, N. Jakobi, J. Anderson, A. Philippides (1998).

Brains, Gases and Robots. In Niklasson, L., Boden, M. and Ziemke, T., editors,
Proceedings of the 8th International Conference on Artificial Neural Networks:

ICANN98, pages 51-64.

A. J. Ijspeert, M. Arbib (2000). Visual tracking in simulated salamander locomotion.
Proceedings of the Sixth International Conference on the Simulation of Adaptive

Behavior, MIT Press, 2000. pp 88-97.

A. J. Ijspeert (2001). A connectionist central pattern generator for the aquatic and terrestrial
gaits of a simulated salamander. Biological Cybernetics, Vol. 84:5, 2001, pp 331-348.

A. J. Ijspeert (2002). Vertebrate locomotion. In the Handbook of Brain Theory and Neural
Networks, Second Edition, M.A. Arbib (Ed.), Cambridge, MA: The MIT Press, 2002. pp

649-654. The MIT Press.

A. J. Ijspeert, J.-M. Cabelguen (2003). Gait transition from swimming to walking:
investigation of salamander locomotion control using non-linear oscillators. In
Proceedings of Adaptive Motion in Animals and Machines, 2003.

N. Jakobi (1998). Running Across the Reality Gap: Octopod Locomotion Evolved in Minimal
Simulation. In P. Husbands and J-A Meyer, editors, Proceedings of Evorobot. Springer
Verlag, 1998.

 41

A. Kamimura, S. Murata, E Yoshida, H. Kurokawa, K. Tomita and S Kokaji (2001). Self-
Reconfigurable Modular Robot – Experiments on Reconfiguration and Locomotion. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 606--612,

2001.

J. Kennedy, R. Eberhart (1995). Particle Swarm Optimization. Proceedings of the 1995 IEEE
International Conference on Neural Networks, pp. 1942-1948, IEEE Press.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi (1983). Optimization by Simulated Annealing.
Science, vol. 220, No. 4598, pp. 671-680.

H. Kimura, K. Sakurama, S. Akiyama (1998). Dynamic Walking and Running of the
Quadruped Using Neural Oscillator. Proceeding of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS1998), Victoria, pp.50-57, 1998.

O. Michel (2004). Webots: Professional Mobile Robot Simulation. International Journal of
Advanced Robotic Systems, Volume 1 Number 1 (2004), pp 39-42.

B. Mesot (2004). Self-Organization of Locomotion in Modular Robots. Unpublished Diploma
Thesis. http://birg.epfl.ch/page42735.html

S. Mojon (2004). Using nonlinear oscillators to control the locomotion of a simulated biped
robot. Unpublished Diploma Thesis. http://birg.epfl.ch/page44565.html

F. Mondada, D. Floreano (1995). Evolution of neural control structures: Some experiments on
mobile robots. Robotics and Autonomous Systems, 16, 183-195.

A. Pikovsky, M. Rosenblum and J. Kurths (2001). Synchronization, a universal concept in
nonlinear sciences. Cambridge Nonlinear Sciences Series 12.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling (1988). Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, on-line book:
http://www.library.cornell.edu/nr/cbookcpdf.html

K. Sims (1994). Evolving Virtual Creatures. In SIGGRAPH '94 Proceedings, pages 15-22,
July 1994.

W. Shen, B. Salemi, P. Will (2002). Hormone Inspired Adaptive Communication and
Distributed Control for Self-Reconfigurable Robots. IEEE Transactions on Robotics and
Automation 18(5):1-12, 2002.

Y. Shi and R. C. Eberhart (1998). Parameter selection in particle swarm optimization. In
Evolutionary Programming VII: Proc. EP98, New York: Springer-Verlag, pp. 591-600.

 42

M. L. Shik, F. V. Severin, G. N. Orlovskii (1966). Control of Walking and Running by Means
of Electrical Stimulation of the Mid-Brain. Biophysics, 11:756-765, 1966.

A. C. Slocum, D. C. Downey, R. D. Beer (2000). Further Experiments in the Evolution of
Minimally Cognitive Behavior: From Perceiving Affordances to Selective Attention.
Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior.

Cambridge, MA: MIT Press.

J. Suh, S. Homans, M. Yim (2002). Telecubes: Mechanical Design of a Module for Self-
Reconfigurable Robotics. Proceeding of the 2002 IEEE International Conference on
Robotics and Automation (ICRA).

G. Taga (1994). Emergence of bipedal locomotion through entrainment among the neuro-
musculo-skeletal system and the environment. Physica D: Nonlinear Phenomena, 75(1-
3):190-208, 1994.

E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, S. Kokaji (2003).

Evolutionary Synthesis of Dynamic Motion and Reconfiguration Process for Modular
Robot M-TRAN. Proceeding 2003 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, July 16-20, 2003, Kobe, Japan.

 43

6 Appendix

6.1 Matlab listings

6.1.1 Limit cycle
clear all;
a=0.7;
tau=10;
E=1;
T=500;
hold on;

for i=1:30
 v(1)=rand*4-2;
 x(1)=rand*4-2;
 for t=1:T
 v(t+1)=v(t)+(-a*((x(t)*x(t)+v(t)*v(t)-E)/E) *v(t)-x(t))/tau;
 x(t+1)=x(t)+v(t)/tau;
 end;
 plot(x,v);
end;

axis([-2 2 -2 2]);
set(gca,'FontSize',12);
set(gca,'FontWeight','bold');
xlabel('x');
ylabel('v');

6.1.2 Oscillators coupling
clear all;

alpha=0.5; % convergence factor
f=1; % oscillation frequency [Hz]
tau=f/(2*pi); % time constant [s]
N=4; % num oscillators
dT=0.0001; % integration step [s]
D=32; % duration of measurement [s]
T=1000; % num of samples
K=D/dT/T; % num dT per sample
MINMAX=0.7; % connection min max

% random oscillation amplitudes
E=(rand(N,1)*(pi/2-0.0001)+0.0001).^2;

% random initial conditions
v=rand(1,N)*2-1;
x=rand(1,N)*2-1;

% random coupling strengths
a=zeros(N,N);
b=zeros(N,N);
connections=[0 1; 1 0; 1 2; 2 1; 2 3; 3 2; 3 0; 0 3];
for i=1:size(connections,1)

 44

 a(connections(i,2)+1,connections(i,1)+1)=rand*2 *MINMAX-MINMAX;
 b(connections(i,2)+1,connections(i,1)+1)=rand*2 *MINMAX-MINMAX;
end;

for t=1:T % for every measure sample
 for k=1:K % for every integration steps
 for i=1:N % for every oscillators
 S=0;
 for j=1:N
 % sum of coupling inputs
 S=S+(a(i,j)*x(j)+b(i,j)*v(j))/(x(j) ^2+v(j)^2);
 end;
 % main oscillator equations
 v(i)=v(i)+dT*((-alpha*((x(i)^2+v(i)^2-E (i))/E(i))*v(i)-x(i)+S)/tau);
 x(i)=x(i)+dT*v(i)/tau;
 end;
 end;
 X(:,t)=x(:);
end;

% plot results
for j=1:N
 subplot(N,1,j);
 plot([1:T]*K*dT, X(j,:));
 axis([0, D, -3, 3]);
 xlabel('Time [s]');
 ylabel('x');
end;

6.2 Example VRML listings: Tetrapod
#VRML_SIM V4.0 utf8
#000000
WorldInfo {
 info [
 "tetrapod walker"
 "yvan bourquin <mail@yvanbourquin.com>"
 "Date: 23 jun 2004"
]
 title "modular walker"
 ERP 0.8
}

...

DEF WALKER CustomRobot {
 rotation 0 0 1 0
 children [
 GPS {
 name "gps"
 }
 DEF emitter Emitter {
 name "emitter"
 range 999
 }
 DEF QUAD_GROUP Group {
 children [

 45

 Transform {
 rotation 1 0 0 1.5708
 children [
 DEF GREEN_BOX_SHAPE Shape {
 appearance DEF PLASTIC Appearance {
 material Material {
 diffuseColor 0 1 0
 }
 }
 geometry Box {
 size 0.05 0.045 0.062
 }
 }
]
 }
 Transform {
 translation 0 0.031 0
 rotation 1 0 0 1.5708
 children [
 DEF GREEN_CYLINDER_SHAPE Shape {
 appearance USE PLASTIC
 geometry Cylinder {
 height 0.045
 radius 0.025
 }
 }
]
 }
 Transform {
 translation 0.045 0 0
 rotation 0 1 0 1.5708
 children [
 DEF GREY_BOX_SHAPE Shape {
 appearance DEF ALU_APPEARANCE Appeara nce {
 material Material {
 shininess 0.8
 }
 }
 geometry Box {
 size 0.014 0.07 0.04
 }
 }
]
 }
 Transform {
 translation -0.045 0 0
 rotation 0 1 0 1.5708
 children [
 USE GREY_BOX_SHAPE
]
 }
 Transform {
 translation 0 0 -0.0425
 children [
 USE GREY_BOX_SHAPE
]
 }

 46

 Transform {
 translation 0 0 0.0435
 children [
 USE GREY_BOX_SHAPE
]
 }
]
 }
 DEF servo0 Servo {
 translation 0 0.0423 0
 rotation 0 0 1 0
 children [
 DEF GREY_BOX_TRANSFORM Transform {
 rotation 1 0 0 1.5708
 children [
 USE GREY_BOX_SHAPE
]
 }
]
 name "servo0"
 boundingObject USE GREY_BOX_TRANSFORM
 physics Physics {
 density -1
 mass 0.2
 coulombFriction 0.9
 }
 joint Joint {
 translation 0 -0.043 0
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 1.5708
 minPosition -1.5708
 }
 DEF hip0 Servo {
 translation 0.089 0 0
 children [
 DEF FEMUR_GROUP Group {
 children [
 Transform {
 translation -0.031 0 0
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 rotation 0 1 0 1.5708
 children [
 USE GREEN_BOX_SHAPE
]
 }
 Transform {
 translation 0.051 0 0
 rotation 1 0 0 0
 children [
 Shape {
 appearance USE ALU_APPEARANCE

 47

 geometry Box {
 size 0.04 0.014 0.07
 }
 }
]
 }
]
 }
 DEF knee0 Servo {
 translation 0.094 0 0
 rotation 0 0 1 0
 children [
 DEF TIBIA_GROUP Group {
 children [
 Transform {
 translation -0.031 0 0
 rotation 1 0 0 1.5708
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 children [
 Shape {
 appearance USE PLASTIC
 geometry Box {
 size 0.062 0.05 0.045
 }
 }
]
 }
]
 }
]
 name "knee0"
 boundingObject USE TIBIA_GROUP
 physics DEF ELEMENT_PHYSICS Physics {
 density -1
 mass 0.22
 coulombFriction 0.9
 }
 joint Joint {
 translation -0.03 0 0
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 1.5708
 minPosition -1.5708
 }
]
 name "hip0"
 boundingObject USE FEMUR_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation -0.031 0 0
 }
 maxVelocity 6.54498

 48

 maxForce 0.73
 maxPosition 0.785
 minPosition -0.785
 }
 DEF hip1 Servo {
 translation 0 0 0.0855
 children [
 DEF FEMUR3_GROUP Group {
 children [
 Transform {
 translation 0 0 -0.031
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 children [
 USE GREEN_BOX_SHAPE
]
 }
 Transform {
 translation 0 0 0.051
 rotation 0 0 1 1.5708
 children [
 USE GREY_BOX_SHAPE
]
 }
]
 }
 DEF knee1 Servo {
 translation 0 0 0.094
 rotation 1 0 0 0
 children [
 DEF TIBIA3_GROUP Group {
 children [
 Transform {
 translation 0 0 -0.031
 rotation 0 0 1 1.5708
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 rotation 0 0 1 1.5708
 children [
 USE GREEN_BOX_SHAPE
]
 }
]
 }
]
 name "knee1"
 boundingObject USE TIBIA3_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation 0 0 -0.031
 }

 49

 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 1.5708
 minPosition -1.5708
 }
]
 name "hip1"
 boundingObject USE FEMUR3_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation 0 0 -0.031
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 0.785
 minPosition -0.785
 }
 DEF hip2 Servo {
 translation -0.089 0 0
 children [
 DEF FEMUR_GROUP Group {
 children [
 Transform {
 translation 0.031 0 0
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 rotation 0 1 0 1.5708
 children [
 USE GREEN_BOX_SHAPE
]
 }
 Transform {
 translation -0.051 0 0
 rotation 1 0 0 0
 children [
 Shape {
 appearance USE ALU_APPEARANCE
 geometry Box {
 size 0.04 0.014 0.07
 }
 }
]
 }
]
 }
 DEF knee2 Servo {
 translation -0.094 0 0
 rotation 0 0 1 0
 children [
 DEF TIBIA_GROUP Group {
 children [
 Transform {
 translation 0.031 0 0
 rotation 1 0 0 1.5708

 50

 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 children [
 Shape {
 appearance USE PLASTIC
 geometry Box {
 size 0.062 0.05 0.045
 }
 }
]
 }
]
 }
]
 name "knee2"
 boundingObject USE TIBIA_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation 0.03 0 0
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 1.5708
 minPosition -1.5708
 }
]
 name "hip2"
 boundingObject USE FEMUR_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation 0.031 0 0
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 0.785
 minPosition -0.785
 }
 DEF hip3 Servo {
 translation 0 0 -0.0855
 children [
 DEF FEMUR2_GROUP Group {
 children [
 Transform {
 translation 0 0 0.031
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 children [
 USE GREEN_BOX_SHAPE
]
 }
 Transform {

 51

 translation 0 0 -0.051
 rotation 0 0 1 1.5708
 children [
 USE GREY_BOX_SHAPE
]
 }
]
 }
 DEF knee3 Servo {
 translation 0 0 -0.094
 rotation 1 0 0 0
 children [
 DEF TIBIA2_GROUP Group {
 children [
 Transform {
 translation 0 0 0.031
 rotation 0 0 1 1.5708
 children [
 USE GREEN_CYLINDER_SHAPE
]
 }
 Transform {
 rotation 0 0 1 1.5708
 children [
 USE GREEN_BOX_SHAPE
]
 }
]
 }
]
 name "knee3"
 boundingObject USE TIBIA2_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation 0 0 0.031
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 1.5708
 minPosition -1.5708
 }
]
 name "hip3"
 boundingObject USE FEMUR2_GROUP
 physics USE ELEMENT_PHYSICS
 joint Joint {
 translation 0 0 0.031
 }
 maxVelocity 6.54498
 maxForce 0.73
 maxPosition 0.785
 minPosition -0.785
 }
]
 boundingObject USE QUAD_GROUP
 physics USE ELEMENT_PHYSICS
 controller "walker"

 52

}
Supervisor {
 children [
 DEF receiver Receiver {
 name "receiver"
 }
]
 controller "walker_reset_supervisor"
}

6.3 Controller configuration file
configuration file for robot controller
author: mail@yvanbourquin.com

general
max.trials = 12000
robot.name = Tetrapod

optimization
0 - parameters test
1 - genetic algorithm
2 - simulated annealing
3 - swarm particles
4 - random search
numerical.method = 3

#----- mutation parameters -----
#----- for both simulated annealing and genetic alg orithm
genotype.mutation.probability = 0.06
genotype.mutation.deviation = 0.2

#----- genetic algorithm parameters -----
population.size = 100
population.elite.part = 0.05
population.sexual.part = 0.00

#----- simulated annealing parameters -----
temperature.reduction.factor = 0.95
temperature.required.successes = 5

#----- particles swarm parameters -----
initial.inertia = 1.0
inertia.reduction.factor = 0.995
swarm.size = 50
neighbourhood.size = 5
particle.speed.max = 0.2
particle.confidence.individual = 2.0
particle.confidence.social = 2.0

#----- Tetrapod -----
Tetrapod.servos.count = 8
Tetrapod.connections.count = 8
Tetrapod.start.z.rotation = 0

Tetrapod.servo[0].name = hip0
Tetrapod.servo[1].name = hip1

 53

Tetrapod.servo[2].name = hip2
Tetrapod.servo[3].name = hip3
Tetrapod.servo[4].name = knee0
Tetrapod.servo[5].name = knee1
Tetrapod.servo[6].name = knee2
Tetrapod.servo[7].name = knee3

Tetrapod.servo[0].max = 0.785
Tetrapod.servo[1].max = 0.785
Tetrapod.servo[2].max = 0.785
Tetrapod.servo[3].max = 0.785

Tetrapod.connection[0].from = 0
Tetrapod.connection[0].to = 1
Tetrapod.connection[1].from = 1
Tetrapod.connection[1].to = 2
Tetrapod.connection[2].from = 2
Tetrapod.connection[2].to = 3
Tetrapod.connection[3].from = 3
Tetrapod.connection[3].to = 0
Tetrapod.connection[4].from = 0
Tetrapod.connection[4].to = 4
Tetrapod.connection[5].from = 1
Tetrapod.connection[5].to = 5
Tetrapod.connection[6].from = 2
Tetrapod.connection[6].to = 6
Tetrapod.connection[7].from = 3
Tetrapod.connection[7].to = 7

#----- Caterpillar -----
Caterpillar.servos.count = 6
Caterpillar.connections.count = 10
Caterpillar.start.z.rotation = 1.5708

Caterpillar.servo[0].name = servo0
Caterpillar.servo[1].name = servo1
Caterpillar.servo[2].name = servo2
Caterpillar.servo[3].name = servo3
Caterpillar.servo[4].name = servo4
Caterpillar.servo[5].name = servo5

Caterpillar.connection[0].from = 0
Caterpillar.connection[0].to = 1
Caterpillar.connection[1].from = 1
Caterpillar.connection[1].to = 0
Caterpillar.connection[2].from = 1
Caterpillar.connection[2].to = 2
Caterpillar.connection[3].from = 2
Caterpillar.connection[3].to = 1
Caterpillar.connection[4].from = 2
Caterpillar.connection[4].to = 3
Caterpillar.connection[5].from = 3
Caterpillar.connection[5].to = 2
Caterpillar.connection[6].from = 3
Caterpillar.connection[6].to = 4
Caterpillar.connection[7].from = 4
Caterpillar.connection[7].to = 3

 54

Caterpillar.connection[8].from = 4
Caterpillar.connection[8].to = 5
Caterpillar.connection[9].from = 5
Caterpillar.connection[9].to = 4

#----- StiffCrawler -----
StiffCrawler.servos.count = 8
StiffCrawler.connections.count = 8
StiffCrawler.start.z.rotation = 0

StiffCrawler.servo[0].name = hip0
StiffCrawler.servo[1].name = hip1
StiffCrawler.servo[2].name = hip2
StiffCrawler.servo[3].name = hip3
StiffCrawler.servo[4].name = knee0
StiffCrawler.servo[5].name = knee1
StiffCrawler.servo[6].name = knee2
StiffCrawler.servo[7].name = knee3

StiffCrawler.servo[1].invert = 1
StiffCrawler.servo[3].invert = 1
StiffCrawler.servo[5].invert = 1
StiffCrawler.servo[7].invert = 1

StiffCrawler.connection[0].from = 0
StiffCrawler.connection[0].to = 1
StiffCrawler.connection[1].from = 1
StiffCrawler.connection[1].to = 3
StiffCrawler.connection[2].from = 3
StiffCrawler.connection[2].to = 2
StiffCrawler.connection[3].from = 2
StiffCrawler.connection[3].to = 0
StiffCrawler.connection[4].from = 0
StiffCrawler.connection[4].to = 4
StiffCrawler.connection[5].from = 1
StiffCrawler.connection[5].to = 5
StiffCrawler.connection[6].from = 3
StiffCrawler.connection[6].to = 7
StiffCrawler.connection[7].from = 2
StiffCrawler.connection[7].to = 6

#----- Wheel -----
Wheel.servos.count = 4
Wheel.connections.count = 8
Wheel.start.z.rotation = 1.5708

Wheel.servo[0].name = servo1
Wheel.servo[1].name = servo2
Wheel.servo[2].name = servo3
Wheel.servo[3].name = servo4

Wheel.servo[0].max = 0.95
Wheel.servo[1].max = 0.95
Wheel.servo[2].max = 0.95
Wheel.servo[3].max = 0.95

Wheel.connection[0].from = 0

 55

Wheel.connection[0].to = 1
Wheel.connection[1].from = 1
Wheel.connection[1].to = 2
Wheel.connection[2].from = 2
Wheel.connection[2].to = 3
Wheel.connection[3].from = 3
Wheel.connection[3].to = 0

Wheel.connection[4].from = 1
Wheel.connection[4].to = 0
Wheel.connection[5].from = 2
Wheel.connection[5].to = 1
Wheel.connection[6].from = 3
Wheel.connection[6].to = 2
Wheel.connection[7].from = 0
Wheel.connection[7].to = 3

 56

6.4 C++ listings of optimizer controller
All the listing have been written exclusively by the author with the exception of the method

for generating random Gaussian numbers in the file “Random.cpp” which was taken over

from Dr. Everett. F. Carter Jr., Generating Gaussian Random Numbers:

http://www.taygeta.com/random/gaussian.html

The code of the files Genotype.h, Genotype.cpp Population.h, Population.cpp was adapted

from the author’s previous work for the Adaptive System course at Sussex.

6.4.1 Defaults.h
#ifndef Defaults_H
#define Defaults_H

/*
 Simple mechanism to configure an application usin g information from a file.
 Defaults works like a dictionary, every object co ntained is
 made of one key and its associated value.
 Author: Yvan Bourquin
*/

#include <stdio.h>

class Default;

class Defaults{
 public:
 enum Maxs {
 MAX_KEY = 64,
 MAX_VALUE = 1024,
 MAX_LINE = 1024
 };

 // Load all tuples from the file "fileName" into the dictionary
 // white space must separate every tokens includi ng the = (equal) sign.
 static void loadFile(const char *fileName);

 // Retrieves the value associated with <key> in t he dictionary.
 // If <key> is not found, the argument specified as default (<def>)
 // is returned.
 static const char *get(const char *key, const cha r *def, ...);
 static int get(const char *key, int def, ...);
 static float get(const char *key, float def, ...);

 protected:
 // constructor/destructor
 Defaults();
 ~Defaults();

 private:
 // private functions
 static Default *find(const char *, bool create = false);
 static void copy(const char *source, char *&desti nation);
 static bool compare(const char *a, const char *b) ;
 static const char *restore(const char *key);

 57

 // linked list
 static int ourSize;
 static Default *ourHead;
 static Default *ourTail;

 Defaults(const Defaults &);
 Defaults & operator = (const Defaults &);
 // disabled
};

#endif

6.4.2 Defaults.cpp
#include "Defaults.h"
#include <stdarg.h>
#include <iostream>

using namespace std;

class Default {
public:
 // constructor
 Default(const char *nkey) {
 key = new char[strlen(nkey) + 1];
 strcpy(key, nkey);
 user = NULL;
 next = NULL;
 }

public:
 char *key;
 char *user;
 Default *next;
};

int Defaults::ourSize = 0;
Default *Defaults::ourHead = NULL;
Default *Defaults::ourTail = NULL;

// string copy with memory managment and NULL point ers allowed
void Defaults::copy(const char *source, char *&dest ination) {
 delete [] destination;

 if (! source) {
 destination = NULL;
 return;
 }

 destination = new char[strlen(source) + 1];
 strcpy(destination, source);
}

// string compare with NULL pointers allowed.
bool Defaults::compare(const char *a, const char *b) {
 if (! a && ! b)

 58

 return true;

 if (! a || ! b)
 return false;

 return strcmp(a, b) ? false : true;
}

// load dictionnary from file
void Defaults::loadFile(const char *filename) {
 FILE *file = fopen(filename, "r");
 if (file == NULL) {
 cerr << "Defaults::loadFile(): failed to open f ile.\n";
 return;
 }

 while (! feof(file)) {
 char line[MAX_LINE], *linep;

 // read one line
 fgets(line, sizeof(line), file);
 linep = line;

 // scan line forward skipping comments
 while (*linep != '#' && *linep != '\n' && *line p != '\0')
 linep++;

 // scan line backward skipping trailing spaces
 while (linep > line && isspace(*(linep - 1)))
 linep--;

 // mark end of line
 *linep = '\0';

 // if line is not empty...
 if (line[0] != '\0') {
 linep = line;

 // skip extra spaces
 while (isspace(*linep))
 linep++;

 // extract <key>
 char *key = linep;
 while (*linep != '=' && ! isspace(*linep) && *linep != '\0')
 linep++;

 *linep++ = '\0';

 // skip '=' and extra spaces and extract <val ue>
 while (*linep == '=' || isspace(*linep))
 linep++;

 char *value = linep;

 // store value
 Default *defp = find(key, true);

 59

 copy(value, defp->user);
 }
 }

 fclose(file);
}

// find tuple in dictionary
Default *Defaults::find(const char *key, bool creat e) {
 for (Default *defp = ourHead; defp; defp = defp-> next)
 if (compare(key, defp->key))
 return defp;

 if (create) {
 Default *newp = new Default(key);
 // append at the tail
 if (ourTail)
 ourTail->next = newp;
 ourTail = newp;
 if (! ourHead)
 ourHead = newp;
 ourSize++;
 return newp;
 }

 return NULL;
}

const char *Defaults::get(const char *format, const char *def, ...) {
 va_list ap;
 va_start(ap, def);

 if (! format)
 return def;

 char key[MAX_KEY];
 vsprintf(key, format, ap);

 const char *value = restore(key);
 if (value) {
 if (! strcmp(value, "NULL"))
 def = NULL;
 else
 def = value;
 }

 va_end(ap);
 return def;
}

int Defaults::get(const char *format, int def, ...) {
 va_list ap;
 va_start(ap, def);

 if (! format)
 return def;

 60

 char key[MAX_KEY];
 vsprintf(key, format, ap);

 const char *value = restore(key);
 if (value)
 def = atoi(value);

 va_end(ap);
 return def;
}

float Defaults::get(const char *format, float def, ...) {
 va_list ap;
 va_start(ap, def);

 if (! format)
 return def;

 char key[MAX_KEY];
 vsprintf(key, format, ap);

 const char *value = restore(key);
 if (value)
 def = atof(value);

 va_end(ap);
 return def;
}

const char *Defaults::restore(const char *key) {
 Default *defp = find(key);
 if (! defp)
 return NULL;

 return defp->user;
}

6.4.3 GeneticAlgorithm.h
#ifndef GeneticAlgorithm_H
#define GeneticAlgorithm_H

/*
 Genetic algorithm for robotic locomotion optimiza tion
 Author: Yvan Bourquin
*/

class Population;
class Robot;

#include "Optimizer.h"

class GeneticAlgorithm : public Optimizer {
 public:
 // constructor
 GeneticAlgorithm(Robot *robot);

 61

 // destructor
 virtual ~GeneticAlgorithm();

 // run genetic algorithm
 virtual void run();

 private:
 Population *_population; // genotype populatio n
 char _filename[64]; // data file
 int _popSize; // population size

 void save(const char *filename) const;
};

#endif

6.4.4 GeneticAlgorithm.cpp
#include "GeneticAlgorithm.h"
#include "Robot.h"
#include "Population.h"
#include "Defaults.h"
#include <iostream>

using namespace std;

GeneticAlgorithm::GeneticAlgorithm(Robot *robot)
 : Optimizer(robot) {
 _popSize = Defaults::get("population.size", 100);

 sprintf(_filename, "../../results/ga_%d_%s%d.m", _popSize,
 robot->getName(), getNumParams());

 cout << "filename: " << _filename << endl;
}

GeneticAlgorithm::~GeneticAlgorithm() {
 delete _population;
}

void GeneticAlgorithm::save(const char *filename) c onst {
 FILE *file = fopen(filename, "w");
 if (! file) {
 printf("could not write file: %s\n", filename);
 return;
 }

 cout << "writing file: " << filename << endl;

 Optimizer::save(file);
 _population->save(file);

 fclose(file);
}

void GeneticAlgorithm::run() {
 _population = new Population(_popSize, getNumPara ms());

 62

 cout << "starting genetic algorithm ...\n"
 << "population size is "
 << _popSize << ", genome size is "
 << getNumParams() << endl;

 while (! isFinished()) {
 for (int i = 0; i < _population->getSize(); i++) {

 cout << "evaluating generation: " << _populat ion->getGeneration()
 << " genotype: " << i << endl;

 // evaluate genotype
 const float *genome = _population->getGenome(i);
 float fitness = Optimizer::evaluate(genome);
 _population->setFitness(i, fitness);
 }

 _population->sort();
 Genotype *fittest = _population->getFittest();
 Optimizer::recordSolution(fittest->getFitness() , fittest->getGenes());
 save(_filename);
 _population->reproduce();
 }
}

6.4.5 Genotype.h
#ifndef Genotype_H
#define Genotype_H

/*
 General-purpose genotype with mutation and crosso ver operations
 Author: Yvan Bourquin
*/

#include <stdio.h>
#include <iostream>

using namespace std;

class Genotype {
 public:

 // constructor
 Genotype(int size);

 // copy constructor
 Genotype(const Genotype &);

 // destructor
 virtual ~Genotype();

 // assignment operator
 Genotype &operator = (const Genotype &);

 // mutation

 63

 void hypersphereMutate();
 void singleLocusMutate();

 // crossover
 Genotype crossover(const Genotype &other) const;

 // set/get fitness
 void setFitness(float fitness) { _fitness = fitne ss; }
 float getFitness() const { return _fitness; }

 // get array of floating points
 const float *getGenes() const { return _genes; }

 // write genotype to file
 void save(FILE *file) const;

 // class wide mutation parameters
 static float getMutationProbability();
 static float getMutationDeviation();

 private:
 float *_genes; // genome
 int _size; // genome length
 float _fitness;

 static float _mutationProbability;
 static float _mutationDeviation;
};

#endif

6.4.6 Genotype.cpp
#include "Genotype.h"
#include "Random.h"
#include "Defaults.h"
#include <math.h>

float Genotype::_mutationProbability = -1.0;
float Genotype::_mutationDeviation = -1.0;

float Genotype::getMutationProbability() {
 if (_mutationProbability < 0.0)
 _mutationProbability = Defaults::get("genotype. mutation.probability", 0.1f);

 return _mutationProbability;
}

float Genotype::getMutationDeviation() {
 if (_mutationDeviation < 0.0)
 _mutationDeviation = Defaults::get("genotype.mu tation.deviation", 0.4f);

 return _mutationDeviation;
}

Genotype::Genotype(int size)
 : _size(size), _fitness(0.0) {

 64

 _genes = new float[_size];

 // initialize with random uniform numbers in the range [0,1]
 for (int i = 0; i < _size; i++)
 _genes[i] = Random::getUniform();
}

Genotype::Genotype(const Genotype &other)
 : _size(other._size), _fitness(other._fitness) {
 _genes = new float[_size];

 for (int i = 0; i < _size; i++)
 _genes[i] = other._genes[i];
}

Genotype &Genotype::operator = (const Genotype &oth er) {
 // avoid crash in case of inadvertant: a = a
 if (&other == this)
 return *this;

 delete [] _genes;

 _size = other._size;
 _genes = new float[_size];
 _fitness = other._fitness;

 for (int i = 0; i < _size; i++)
 _genes[i] = other._genes[i];

 return *this;
}

Genotype::~Genotype() {
 delete [] _genes;
}

void Genotype::hypersphereMutate() {
 float length = Random::getGaussian() * getMutatio nDeviation();
 float *mutation = new float[_size];

 float sum = 0.0;
 for (int i = 0; i < _size; i++) {
 mutation[i] = Random::getUniform();
 sum += mutation[i] * mutation[i];
 }

 float ratio = length / (float)sqrt(sum);
 for (int i = 0; i < _size; i++) {
 _genes[i] += mutation[i] * ratio;

 // check range
 if (_genes[i] > 1.0)
 _genes[i] = 1.0;
 else if (_genes[i] < 0.0)
 _genes[i] = 0.0;
 }

 65

 delete [] mutation;
}

// mutate a every gene with given probability and d eviation
void Genotype::singleLocusMutate() {
 for (int i = 0; i < _size; i++)
 if (Random::getUniform() < getMutationProbabili ty()) {
 _genes[i] += Random::getGaussian() * getMutat ionDeviation();

 // check range
 if (_genes[i] > 1.0)
 _genes[i] = 1.0;
 else if (_genes[i] < 0.0)
 _genes[i] = 0.0;
 }
}

// single-point crossover
Genotype Genotype::crossover(const Genotype &other) const {
 Genotype child(_size);

 // make sure we don't always start with the same parent
 const float *mom, *dad;
 if (Random::getInteger(2) == 0) {
 mom = this->_genes;
 dad = other._genes;
 }
 else {
 mom = other._genes;
 dad = this->_genes;
 }

 int locus = Random::getInteger(_size);

 for (int i = 0; i < _size; i++)
 if (i < locus)
 child._genes[i] = mom[i];
 else
 child._genes[i] = dad[i];

 return child;
}

void Genotype::save(FILE *file) const {
 fprintf(file, "%.3f ", _fitness);

 for (int i = 0; i < _size; i++)
 fprintf(file, "%.4f ", _genes[i]);

 fprintf(file, ";\n");
}

6.4.7 Main.cpp
#include "Robot.h"
#include "GeneticAlgorithm.h"
#include "SimulatedAnnealing.h"

 66

#include "ParticleSwarm.h"
#include "RandomSearch.h"
#include "Defaults.h"
#include <device/robot.h>
#include <stdlib.h>
#include <time.h>
#include <iostream>

static Robot *robot = NULL;

using namespace std;

void parametersTest(Robot *robot) {
 const char *paramString = Defaults::get("paramete rs", (const char*)NULL);
 if (! paramString) {
 cout << "missing test parameters ! exiting ...\ n";
 return;
 }

 float *params = new float[robot->getNumParams()];
 int p = 0;
 for (int i = 0; i < robot->getNumParams(); i++) {
 int n;
 sscanf(paramString + p, "%f%n", ¶ms[i], &n) ;
 p += n;
 }

 cout << "starting parameters test ...\nparameters : ";

 for (int i = 0; i < robot->getNumParams(); i++)
 cout << params[i] << " ";

 cout << endl;

 while (true)
 robot->evaluate(params);

 delete params;
}

void reset(void) {
 const char *robotName = Defaults::get("robot.name ", "robot");
 robot = new Robot(robotName);
}

int main(int argc, char *argv[]) {
 srand(time(NULL));
 Defaults::loadFile("../walker.ini");

 robot_live(reset);

 int method = Defaults::get("numerical.method", -1);
 if (method == 0) {
 parametersTest(robot);
 }
 else if (method == 1) {
 GeneticAlgorithm *ga = new GeneticAlgorithm(rob ot);

 67

 ga->run();
 delete ga;
 }
 else if (method == 2) {
 SimulatedAnnealing *sa = new SimulatedAnnealing (robot);
 sa->run();
 delete sa;
 }
 else if (method == 3) {
 ParticleSwarm *ps = new ParticleSwarm(robot);
 ps->run();
 delete ps;
 }
 else if (method == 4) {
 RandomSearch *rs = new RandomSearch(robot);
 rs->run();
 delete rs;
 }
 else
 cerr << "no numerical search method specified\n ";

 delete robot;
 return 0;
}

6.4.8 Module.h
#ifndef Module_H
#define Module_H

/*
 Module of modular robot
 Author: Yvan Bourquin
*/

class Oscillator;

#include <device/robot.h>

class Module {
 public:
 // constructor: construct module with "numInputs" oscillator inputs
 // for robot servo "devtag"
 Module(const char *robotName,int servoNum, int nu mInputs);

 // destructor
 virtual ~Module();

 // add oscillator input from specified module
 void addInput(const Module *module);

 // reset oscillator and servo
 const float *reset(const float *params);

 // evaluate oscillator and update servo position
 void step();

 68

 // return true if the oscialltor is chaotic
 bool isCrazy() const;

 private:
 DeviceTag _servo; // module's servo motor
 Oscillator *_oscillator; // module's oscillator
 float _x0; // initial servo angle
 float _maxx; // maximal servo angle a llowed
 float _invert; // invert servo rotatio n angle
};

#endif

6.4.9 Module.cpp
#include "Module.h"
#include "Oscillator.h"
#include "Defaults.h"
#include <device/servo.h>
#include <cmath>
#include <iostream>

using namespace std;

static const float DEFAULT_MAX_ANGLE = M_PI / 2.0; // 90 degrees

Module::Module(const char *robotName, int servoNum, int numInputs) {

 const char *servoName =
 Defaults::get("%s.servo[%d].name",
 (const char*)NULL, robotName, servoNum);

 // get device tag from simulator
 _servo = robot_get_device(servoName);
 if (! _servo) {
 cout << "ERROR: could not find servo: " << serv oName << endl;
 exit(0);
 }

 cout << "found servo: " << servoName << endl;

 // max servo angle according to physical robot pr operties
 _maxx = Defaults::get("%s.servo[%d].max",
 DEFAULT_MAX_ANGLE, robotName, servoNum);

 _invert = Defaults::get("%s.servo[%d].invert",
 0, robotName, servoNum) == 0 ? 1.0 : -1.0;

 servo_set_velocity(_servo, 1.0);
 servo_set_force(_servo, 100.0);

 // create oscillator with max possible oscillatio n amplitude
 _oscillator = new Oscillator(numInputs);
 _x0 = 0.0;
}

Module::~Module() {

 69

 delete _oscillator;
}

const float *Module::reset(const float *params) {
 _x0 = *params++ * (2.0 * _maxx) - _maxx;
 return _oscillator->reset(params);
}

void Module::step() {
 _oscillator->step();

 if (_oscillator->isDiverging())
 return;

 float x = (_oscillator->getX() + _x0) * _invert;

 // constrict output to allowed range because we
 // don't want to force the servo motors
 if (x > _maxx)
 x = _maxx;
 else if (x < -_maxx)
 x = -_maxx;

 // now move servo to desired position
 servo_set_position(_servo, x);
}

void Module::addInput(const Module *module) {
 _oscillator->addInput(module->_oscillator);
}

bool Module::isCrazy() const {
 return _oscillator->isDiverging();
}

6.4.10 Optimizer.h
#ifndef Optimizer_H
#define Optimizer_H

/*
 Base class for numerical optimization methods
 Author: Yvan Bourquin
*/

#include <stdio.h>

class Robot;

class Optimizer {
 public:

 // number of simulation trials in an optimization
 int getNumTrials() const { return _nTrials; }

 // number of parameters of the robot controller
 int getNumParams() const { return _nParams; }

 70

 // the robot
 Robot *getRobot() const { return _robot; }

 // start the optimization (pure virtual method)
 virtual void run() = 0;

 protected:
 // constructor: create optimization procedure
 Optimizer(Robot *robot);

 // destructor
 virtual ~Optimizer();

 // return true when the max number of trials was reached
 bool isFinished() const { return _finished; }

 // evaluate robot controller parameters
 // and return the corresponding fitness
 float evaluate(const float *params);

 // record the parameters as solution of the optim ization process
 void recordSolution(float fitness, const float *p arams);

 // save results to a file
 void save(FILE *) const;

 private:
 int _maxTrials; // max muber of evaluation tr ials
 Robot *_robot; // the robot
 int _trials[1000]; // trial number of every fitn ess change
 float _fitb[1000]; // fitness change versus tria l number
 int _nData; // number of fitness improvem ent data
 int _nTrials; // number of trials so far
 int _nParams; // number of parameters for t he robot controller
 float *_best; // best solution so far
 bool _finished; // optimization finished flag
 int _nSolutions; // number of recorded solutio ns
 float *_solution; // best solution
 float _fits[1000]; // fitness of solutions
 int _strials[1000]; // trial number of solutions

 void recordTrial(float fitness, const float *para ms);
};

#endif

6.4.11 Optimizer.cpp
#include "Optimizer.h"
#include "Defaults.h"
#include "Robot.h"

Optimizer::Optimizer(Robot *robot) {
 _maxTrials = Defaults::get("max.trials", 10000);
 _robot = robot;
 _nParams = robot->getNumParams();

 71

 _best = new float[_nParams];
 _solution = new float[_nParams];
 _nData = 0;
 _nTrials = 0;
 _finished = false;
 _nSolutions = 0;
}

Optimizer::~Optimizer() {
 delete [] _best;
 delete [] _solution;
}

float Optimizer::evaluate(const float *params) {
 float fitness = _robot->evaluate(params);
 recordTrial(fitness, params);
 return fitness;
}

void Optimizer::recordTrial(float fitness, const fl oat *params) {

 _nTrials++;

 if (_nData == 0 || fitness > _fitb[_nData - 1]) {
 _trials[_nData] = _nTrials;
 _fitb[_nData] = fitness;
 _nData++;
 for (int i = 0; i < _nParams; i++)
 _best[i] = params[i];
 }

 if (_nTrials >= _maxTrials)
 _finished = true;
}

void Optimizer::recordSolution(float fitness, const float *params) {
 _fits[_nSolutions] = fitness;
 _strials[_nSolutions] = _nTrials;
 _nSolutions++;

 for (int i = 0; i < _nParams; i++)
 _solution[i] = params[i];
}

void Optimizer::save(FILE *file) const {
 fprintf(file, "nparams= %d ;\nntrials= %d ;\nnimp = %d ;\nfitimp=[",
 _nParams, _nTrials, _nData);

 for (int i = 0; i < _nData; i++)
 fprintf(file, "%.3f ", _fitb[i]);

 fprintf(file, "];\ntrialimp=[");

 for (int i = 0; i < _nData; i++)
 fprintf(file, "%d ", _trials[i]);

 fprintf(file, "];\nbest=[");

 72

 for (int i = 0; i < _nParams; i++)
 fprintf(file, "%.6f ", _best[i]);

 fprintf(file, "];\nnsolutions= %d ;\nfitsol=[", _nSolutions);

 for (int i = 0; i < _nSolutions; i++)
 fprintf(file, "%.3f ", _fits[i]);

 fprintf(file, "];\ntrialsol= [");

 for (int i = 0; i < _nSolutions; i++)
 fprintf(file, "%d ", _strials[i]);

 fprintf(file, "];\nsolution=[");

 for (int i = 0; i < _nParams; i++)
 fprintf(file, "%.6f ", _solution[i]);

 fprintf(file, "];\n");
}

6.4.12 Oscillator.h
#ifndef Oscillator_H
#define Oscillator_H

/*
 Non-linear oscillator for robot controller
 Author: Yvan Bourquin
*/

class Oscillator {
 public:
 // constructor
 //Oscillator(int numInputs, float maxAmplitude);
 Oscillator(int numInputs);

 // destructor
 virtual ~Oscillator();

 // connect output from other oscillators
 void addInput(const Oscillator *connection);

 // reset to initial parameters
 const float *reset(const float *params);

 // compute one step
 void step();

 // current oscillator outputs
 float getX() const { return _x; }
 float getV() const { return _v; }

 // is showing chaotic behaviour
 bool isDiverging() const;

 73

 private:
 float _x; // current x
 float _v; // current v
 float _E; // energy
 int _numInputs; // number of inputs
 Oscillator **_inputs; // inputs
 float *_a; // connection strength a
 float *_b; // connection strength b
};

#endif

6.4.13 Oscillator.cpp
#include "Oscillator.h"
#include "Random.h"
#include <cmath>
#include <stdio.h>

using namespace std;

static const float F = 1.0; // 1Hz
static const float ALPHA = 0.5; // conv ergence speed
static const float TAU = F / (2.0 * M_PI); // tend s to -> 1Hz
static const float DT = 0.0001f; // inte gration step [s]
static const float ROBOT_SIMULATION_STEP = 0.064; // [s]
static const float SEQUENCE_SIZE = ROBOT_SIMULATION _STEP / DT;
static const float AMPLITUDE_MIN = 0.0001f;
static const float AMPLITUDE_MAX = M_PI / 2.0;
static const float CONNECTION_MIN = -0.7; // min c onnection strength
static const float CONNECTION_MAX = +0.7; // max c onnection strength

Oscillator::Oscillator(int numInputs) {
 //_maxAmplitude = maxAmplitude;
 _numInputs = 0;
 _v = 0.1;
 _x = 0.1;
 _E = 1.0;
 _inputs = new Oscillator *[numInputs];
 _a = new float[numInputs];
 _b = new float[numInputs];
}

Oscillator::~Oscillator() {
 delete [] _b;
 delete [] _a;
 delete [] _inputs;
}

void Oscillator::step() {
 for (int i = 0; i < SEQUENCE_SIZE; i++) {
 // compute current sum of external inputs
 float sum = 0.0;
 for (int i = 0; i < _numInputs; i++) {
 float x = _inputs[i]->getX();
 float v = _inputs[i]->getV();

 74

 // add normalized input
 sum += (_a[i] * x + _b[i] * v) / (x * x + v * v);
 }

 // compute new oscillator state according to di fference equation
 _v = _v + DT * ((-ALPHA * ((_x * _x + _v * _v - _E) / _E) * _v - _x + sum) /
TAU);
 _x = _x + DT * _v / TAU;
 }
}

// setup oscillator according to given parameters
// this is done once, at the beginning of every eva luation
const float *Oscillator::reset(const float *params) {

 // reset oscillator state
 _v = 0.1;
 _x = 0.1;

 // decode amplitude
 float A = *params++ * (AMPLITUDE_MAX - AMPLITUDE_ MIN) + AMPLITUDE_MIN;
 _E = A * A;

 // decode a[] connections
 for (int i = 0; i < _numInputs; i++)
 _a[i] = *params++ * (CONNECTION_MAX - CONNECTIO N_MIN) + CONNECTION_MIN;

 // decode b[] connections
 for (int i = 0; i < _numInputs; i++)
 _b[i] = *params++ * (CONNECTION_MAX - CONNECTIO N_MIN) + CONNECTION_MIN;

 return params;
}

// add oscillator input
// this is done only once per simulation
void Oscillator::addInput(const Oscillator *input) {
 _inputs[_numInputs++] = const_cast<Oscillator*>(i nput);
}

bool Oscillator::isDiverging() const {
 return fabsf(_x) > 50.0f || fabsf(_v) > 50.0f || isnan(_x) || isnan(_v);
}

6.4.14 Particle.h
#ifndef Particle_H
#define Particle_H

/*
 Particle for Particle Swarm Optimization (PSO)
 Author: Yvan Bourquin
 */

#include <stdio.h>

class Particle {

 75

 public:
 // constructor: create particle
 Particle(int numParams);

 // destructor
 virtual ~Particle();

 // distance between 2 particles
 float distanceTo(const Particle *particle) const;

 // compute next position according to PSO paramet ers:
 // best overall position and current inertia
 void computeNextPosition(const float *bestNeighbo urParams, float inertia);

 // the previously computed position becomes the c urrent position
 void updatePosition();

 // set particle fitness after measurement
 void setFitness(float fitness);
 float getFitness() const { return _fitness; }

 // return best fitness encountered so far by this particle
 float getBestFitness() const { return _bestFitnes s; }

 // return current position
 const float *getParams() const { return _params; }

 // return best position encountered so far by thi s particle
 const float *getBestParams() const { return _best Params; }

 // write particle to file
 void save(FILE *file) const;

 // get class parameters
 static float getMaxSpeed() { return _maxSpeed; }
 static float getB1() { return _b1; }
 static float getB2() { return _b2; }

 private:
 int _numParams; // number of parameters in t he robot controller
 float *_params; // particle's current positi on
 float _fitness; // fitness of current positi on
 float *_nextParams; // position for next iterati on
 float *_speed; // current speed in paramete r space
 float *_bestParams; // best position encountered so far
 float _bestFitness; // fitness of best position

 static float _maxSpeed;
 static float _b1;
 static float _b2;
};

#endif

6.4.15 Particle.cpp
#include "Particle.h"

 76

#include "Random.h"
#include "Defaults.h"
#include <cmath>

float Particle::_maxSpeed = -1.0; // speed limit
float Particle::_b1 = -1.0; // individual co nfidence factor
float Particle::_b2 = -1.0; // social confid ence factor

Particle::Particle(int numParams) {

 // if not assigned yet ...
 if (_maxSpeed < 0.0) {
 // get data from configuration file
 _maxSpeed = Defaults::get("particle.speed.max", 0.2f);
 _b1 = Defaults::get("particle.confidence.indivi dual", 2.0f);
 _b2 = Defaults::get("particle.confidence.social ", 2.0f);
 }

 _numParams = numParams;
 _params = new float[numParams]; // current po sition
 _nextParams = new float[numParams]; // position o f next time step
 _bestParams = new float[numParams]; // best posit ion so far
 _speed = new float[numParams];

 // start initializing positions and speed at rand om
 for (int i = 0; i < numParams; i++) {
 _params[i] = Random::getUniform();
 _bestParams[i] = _params[i];
 _speed[i] = Random::getUniform() * 2.0 * _maxSp eed - _maxSpeed;
 }

 _fitness = 0.0;
 _bestFitness = 0.0;
}

Particle::~Particle() {
 delete [] _params;
 delete [] _nextParams;
 delete [] _bestParams;
 delete [] _speed;
}

void Particle::save(FILE *file) const {
 fprintf(file, "%.3f %.3f ", _fitness, _bestFitnes s);

 for (int i = 0; i < _numParams; i++)
 fprintf(file, "%.4f ", _params[i]);

 for (int i = 0; i < _numParams; i++)
 fprintf(file, "%.4f ", _speed[i]);
}

void Particle::setFitness(float fitness) {
 _fitness = fitness;

 if (fitness > _bestFitness) {
 _bestFitness = fitness;

 77

 for (int i = 0; i < _numParams; i++)
 _bestParams[i] = _params[i];
 }
}

// compute distance between 2 particles in the para meter space
float Particle::distanceTo(const Particle *particle) const {
 float distance = 0.0;
 for (int i = 0; i < _numParams; i++) {
 float diff = this->_params[i] - particle->_para ms[i];
 distance += diff * diff;
 }

 return sqrt(distance);
}

// compute next particle speed and position accordi ng to basic PSO rules
void Particle::computeNextPosition(const float *bes tNeighbourParams,
 float inertia) {

 for (int i = 0; i < _numParams; i++) {

 // compute new speed
 float c1 = Random::getUniform() * _b1;
 float c2 = Random::getUniform() * _b2;
 _speed[i] = inertia * _speed[i] + c1 * (_bestPa rams[i] - _params[i])
 + c2 * (bestNeighbourParams[i] - _params[i]);

 // constrict speed
 if (_speed[i] > _maxSpeed)
 _speed[i] = _maxSpeed;
 else if (_speed[i] < -_maxSpeed)
 _speed[i] = -_maxSpeed;
 }

 // next position
 for (int i = 0; i < _numParams; i++) {

 // constrict position
 _nextParams[i] = _params[i] + _speed[i];
 if (_nextParams[i] < 0.0) {
 _nextParams[i] = 0.0;
 _speed[i] = -_speed[i];
 }
 else if (_nextParams[i] > 1.0) {
 _nextParams[i] = 1.0;
 _speed[i] = -_speed[i];
 }
 }
}

// current position = next position
void Particle::updatePosition() {
 for (int i = 0; i < _numParams; i++)
 _params[i] = _nextParams[i];
}

 78

6.4.16 ParticleSwarm.h
#ifndef ParticleSwarm_H
#define ParticleSwarm_H

/*
 Particle Swarm Optimization for robot locomotion
 Author: Yvan Bourquin
*/

#include "Optimizer.h"

class Robot;
class Particle;

class ParticleSwarm : public Optimizer {
 public:

 // constructior: setup particle swarm optimizatio n procedure
 ParticleSwarm(Robot *robot);

 // desctructor
 virtual ~ParticleSwarm();

 // run particle swarm optimization
 virtual void run();

 private:
 int _neighbourhoodSize; // particle neighbourhoo d size
 float _reductionFactor; // inertia reduction fac tor
 float _maxSpeed; // max particle speed in parameter n-space
 int _iteration; // current algorithm ite ration
 char _filename[64]; // file name
 int _size; // num particles in swar m
 Particle **_particles; // particles
 float **_distances; // inter-particle distan ce matrix
 float _inertia; // current inertia
 float *_bests; // record of best fitnes s
 float *_means; // record of mean fitnes s

 void save(const char *fileName) const;
 Particle *findBestNeighbourOf(int particleIndex) const;
 Particle *findBestOverall() const;
 void evaluateSwarm();
 void computeDistances();
};

#endif

6.4.17 ParticleSwarm.cpp
#include "ParticleSwarm.h"
#include "Particle.h"
#include "Robot.h"
#include "Defaults.h"
#include <limits>
#include <iostream>

 79

using namespace std;

ParticleSwarm::ParticleSwarm(Robot *robot)
 : Optimizer(robot) {

 _size = Defaults::get("swarm.size", 50);
 _particles = new Particle*[_size];
 _bests = new float[2000];
 _means = new float[2000];
 _inertia = Defaults::get("initial.inertia", 1.0f) ;

 for (int i = 0; i < _size; i++)
 _particles[i] = new Particle(getNumParams());

 _distances = new float*[_size];
 for (int i = 0; i < _size; i++)
 _distances[i] = new float[_size];

 _neighbourhoodSize = Defaults::get("neighbourhood .size", 5);
 _reductionFactor = Defaults::get("inertia.reducti on.factor", 0.995f);

 sprintf(_filename, "../../results/pso_%d_%d_%s%d. m", _size,
 _neighbourhoodSize, robot->getName(), getNumPara ms());

 cout << "filename: " << _filename << endl;
}

ParticleSwarm::~ParticleSwarm() {
 for (int i = 0; i < _size; i++)
 delete _particles[i];

 delete [] _particles;

 for (int i = 0; i < _size; i++)
 delete [] _distances[i];

 delete [] _distances;
 delete [] _bests;
 delete [] _means;
}

void ParticleSwarm::save(const char *filename) cons t {
 FILE *file = fopen(filename, "w");
 if (! file) {
 printf("could not write file: %s\n", filename);
 return;
 }

 cout << "writing file: " << filename << endl;

 Optimizer::save(file);

 fprintf(file, "inertia= %.5f ;\nnparticles= %d ;\ n"
 "maxspeed= %.2f ;\nb1= %.2f ;\nb2= %.2f ;\nbests =[",
 _inertia, _size, Particle::getMaxSpeed(),
 Particle::getB1(), Particle::getB2());

 80

 for (int i = 0; i < _iteration + 1; i++)
 fprintf(file, "%.3f ", _bests[i]);

 fprintf(file, "];\nmeans=[");

 for (int i = 0; i < _iteration + 1; i++)
 fprintf(file, "%.3f ", _means[i]);

 fprintf(file, "];\nparticles=[\n");

 for (int i = 0; i < _size; i++) {
 _particles[i]->save(file);
 fprintf(file, ";\n");
 }

 fprintf(file, "];\n");
 fclose(file);
}

void ParticleSwarm::run() {

 cout << "starting swarm particle optimization ... \n";

 // PSO main loop
 for (_iteration = 0; ! isFinished(); _iteration++) {

 // evaluate fitness of every particle
 evaluateSwarm();

 // compute new inter-particle distances
 computeDistances();

 // PSO update step for all particles
 for (int i = 0; i < _size; i++) {

 // find neighbour with best fitness
 Particle *bestNeighbour = findBestNeighbourOf (i);

 // compute next position
 _particles[i]->computeNextPosition(bestNeighb our->getBestParams(),
_inertia);
 }

 Particle *best = findBestOverall();
 recordSolution(best->getBestFitness(), best->ge tBestParams());
 save(_filename);

 // apply next position synchronously
 for (int i = 0; i < _size; i++)
 _particles[i]->updatePosition();

 _inertia *= _reductionFactor;
 }
}

Particle *ParticleSwarm::findBestOverall() const {

 81

 Particle *bestParticle = _particles[0];

 for (int i = 1; i < _size; i++)
 if (_particles[i]->getBestFitness() > bestParti cle->getBestFitness())
 bestParticle = _particles[i];

 return bestParticle;
}

Particle *ParticleSwarm::findBestNeighbourOf(int pa rticleIndex) const {
 Particle *neighbours[_neighbourhoodSize];

 cout << "minDistances: ";

 // find closest neighbours ...
 for (int j = 0; j < _neighbourhoodSize; j++) {

 // find closest neighbour ...
 float min = numeric_limits<float>::max();
 int minIndex = 0;
 for (int k = 0; k < _size; k++) {
 if (_distances[particleIndex][k] < min) {
 min = _distances[particleIndex][k];
 minIndex = k;
 }
 }

 cout << min << " ";

 neighbours[j] = _particles[minIndex];
 _distances[particleIndex][minIndex] = numeric_l imits<float>::max();
 }

 cout << endl;

 // find neighbour with best fitness
 Particle *bestNeighbour = neighbours[0];
 for (int j = 1; j < _neighbourhoodSize; j++)
 if (_particles[j]->getFitness() > bestNeighbour ->getBestFitness())
 bestNeighbour = _particles[j];

 return bestNeighbour;
}

void ParticleSwarm::evaluateSwarm() {

 _bests[_iteration] = numeric_limits<float>::min() ;
 _means[_iteration] = 0.0;
 for (int i = 0; i < _size; i++) {

 cout << "iteration: " << _iteration
 << " inertia: " << _inertia
 << " particle: " << i << endl;

 float fitness = Optimizer::evaluate(_particles[i]->getParams());
 _particles[i]->setFitness(fitness);

 82

 if (fitness > _bests[_iteration])
 _bests[_iteration] = fitness;

 _means[_iteration] += fitness;
 }

 _means[_iteration] /= _size;
}

void ParticleSwarm::computeDistances() {
 // compute inter-particle distances
 for (int i = 0; i < _size; i++) {
 for (int j = 0; j < i; j++) {
 float distance = _particles[i]->distanceTo(_p articles[j]);
 _distances[i][j] = distance;
 _distances[j][i] = distance;
 }

 _distances[i][i] = 0.0;
 }
}

6.4.18 Population.h
#ifndef Population_H
#define Population_H

/*
 Genotype population with selection and crossover for genetic algorithm
 Author: Yvan Bourquin
*/

#include "Genotype.h"

class Population
{
 public:
 // constructor: create population with specified size and genome size
 Population(int popSize, int genSize);

 // destructor
 virtual ~Population();

 // population size
 int getSize() const { return _size; }

 // save to file
 void save(FILE *file) const;

 // sort population from most fit to least fit ind ividual
 void sort();

 // fittest
 Genotype *getFittest() const
 { return _genotypes[0]; }

 // change generation

 83

 // precondition: population must be sorted before this function is called
 void reproduce();

 // current generation number
 int getGeneration() const { return _generation; }

 // get genetic code
 const float *getGenome(int index) const
 { return _genotypes[index]->getGenes(); }

 // get/set fitness
 void setFitness(int index, float fitness)
 { _genotypes[index]->setFitness(fitness); }

 float getFitness(int index) const
 { return _genotypes[index]->getFitness(); }

 private:
 float _elitePart; // propotion of population cloned (no mutation)
 float _sexualPart; // proportion of populatio n reproducing sexually
 Genotype **_genotypes; // genotypes
 int _size; // population size
 int _genotypeSize; // size of each genotype
 int _generation; // current generation
 float *_meanFitness; // record of mean fitness
 float *_bestFitness; // record of best fitness

 const Genotype *selectParent() const;
};

#endif

6.4.19 Population.cpp
#include "Population.h"
#include "Random.h"
#include "Defaults.h"
#include <stdlib.h>
#include <cassert>
#include <iostream>

Population::Population(int populationSize, int geno typeSize) {

 _elitePart = Defaults::get("population.elite.part ", 0.05f);
 _sexualPart = Defaults::get("population.sexual.pa rt", 0.05f);
 _size = populationSize;
 _genotypeSize = genotypeSize;
 _generation = 0;
 _genotypes = new Genotype*[_size];
 _meanFitness = new float[1000];
 _bestFitness = new float[1000];

 for (int i = 0; i < _size; i++)
 _genotypes[i] = new Genotype(genotypeSize);
}

Population::~Population() {

 84

 delete [] _bestFitness;
 delete [] _meanFitness;

 for (int i = 0; i < _size; i++)
 delete _genotypes[i];

 delete [] _genotypes;
}

void Population::save(FILE *file) const {

 fprintf(file, "generation= %d ;\nbests=[", _gene ration + 1);

 for (int i = 0; i < _generation + 1; i++)
 fprintf(file, "%.3f ", _bestFitness[i]);

 fprintf(file, "];\nmeans=[");

 for (int i = 0; i < _generation + 1; i++)
 fprintf(file, "%.3f ", _meanFitness[i]);

 fprintf(file, "];\npopsize= %d ;\nnparams= %d ;\n elitepart= %.2f ;\n"
 "sexualpart= %.2f ;\nmutprob= %.2f ;\nmutsdev= % .2f ;\n"
 "population=[\n",
 _size, _genotypeSize, _elitePart, _sexualPart,
 Genotype::getMutationProbability(), Genotype::ge tMutationDeviation());

 for (int i = 0; i < _size; i++)
 _genotypes[i]->save(file);

 fprintf(file, "];\n");
}

static int compare(const void *a, const void *b) {
 return (*(Genotype**)a)->getFitness() >
 (*(Genotype**)b)->getFitness() ? -1 : +1;
}

const Genotype *Population::selectParent() const {
 while (true) {
 int index = Random::getInteger(_size);
 if (index <= Random::getInteger(_size))
 return _genotypes[index];
 }
}

void Population::sort() {
 // sort for rank selection
 qsort(_genotypes, _size, sizeof(Genotype*), &comp are);

 for (int k = 0; k < _size; k++)
 cout << _genotypes[k]->getFitness() << " ";

 cout << endl;

 _bestFitness[_generation] = _genotypes[0]->getFit ness();

 85

 float sum = 0.0;
 for (int i = 0; i < _size; i++)
 sum += _genotypes[i]->getFitness();

 _meanFitness[_generation] = sum / _size;
}

void Population::reproduce() {
 Genotype **_nextGeneration = new Genotype*[_size] ;
 for (int i = 0; i < _size; i++) {
 Genotype *child = new Genotype(_genotypeSize);

 if (i < _elitePart * _size)
 *child = *_genotypes[i]; // cloned elite
 else {
 const Genotype *mom = selectParent();
 if (Random::getUniform() < _sexualPart) {
 const Genotype *dad;
 do {
 dad = selectParent();
 }
 while (dad == mom);
 *child = mom->crossover(*dad); // sexual reproduct ion
 }
 else {
 *child = *mom; // asexual reproduction
 child->singleLocusMutate();
 }
 }

 child->setFitness(0.0);
 _nextGeneration[i] = child;
 }

 for (int j = 0; j < _size; j++)
 delete _genotypes[j];

 delete [] _genotypes;

 _genotypes = _nextGeneration;
 _generation++;
}

6.4.20 Random.h
#ifndef Random_H
#define Random_H

/*
 Random number functions
 Implementation of getGaussian()
 taken over from Dr. Everett F. Carter Jr.
 http://www.taygeta.com/random/gaussian.htm
*/

class Random {
 public:

 86

 // return random number between [0;1] from a unif orm
 // distribution
 static float getUniform();

 // return random integer number between [0;max-1] from a
 // uniform distribution
 static int getInteger(int max);

 // return random number from a Gaussian distribut ion with
 // mean 0 and standard deviation 1
 static float getGaussian();

 private:
 Random() {} // disabled constructor
};

#endif

6.4.21 Random.cpp
#include "Random.h"
#include <math.h>
#include <stdlib.h>

const float PI = 3.1415926535f;

float Random::getUniform() {
 return (float)rand() / (float)RAND_MAX;
}

float Random::getGaussian() {
 static bool flag = true;
 static float y2;

 if (flag) {
 float x1, x2, w;
 do {
 x1 = 2.0f * getUniform() - 1.0f;
 x2 = 2.0f * getUniform() - 1.0f;
 w = x1 * x1 + x2 * x2;
 } while (w >= 1.0f);

 w = (float)sqrt((-2.0f * (float)log(w)) / w);
 float y1 = x1 * w;
 y2 = x2 * w;

 flag = false;

 return y1;
 }

 flag = true;

 return y2;
}

int Random::getInteger(int max) {

 87

 return rand() % max;
}

6.4.22 RandomSearch.h
#ifndef RandomSearch_H
#define RandomSearch_H

/*
 Random search for locomotion parameters for modul ar robot
 Author: Yvan Bourquin
*/

class Robot;

#include "Optimizer.h"

class RandomSearch : public Optimizer {
 public:
 // constructor: create random search
 RandomSearch(Robot *robot);

 // destructor
 virtual ~RandomSearch();

 // run random search
 virtual void run();

 private:
 float *_params; // current best solution
 char _filename[64]; // data file
 float _fitness; // current solution fitness

 void save(const char *filename) const;
};

#endif

6.4.23 RandomSearch.cpp
#include "RandomSearch.h"
#include "Random.h"
#include "Robot.h"
#include <iostream>

using namespace std;

RandomSearch::RandomSearch(Robot *robot)
 : Optimizer(robot) {

 _params = new float[getNumParams()];
 sprintf(_filename, "../../results/rs_%s%d.m", rob ot->getName(),
getNumParams());
 cout << "filename: " << _filename << endl;
}

RandomSearch::~RandomSearch() {

 88

 delete [] _params;
}

void RandomSearch::save(const char *filename) const {
 FILE *file = fopen(filename, "w");
 if (! file) {
 printf("could not write file: %s\n", filename);
 return;
 }

 cout << "writing file: " << filename << endl;

 Optimizer::save(file);

 fclose(file);
}

void RandomSearch::run() {

 _fitness = 0.0;

 cout << "starting random search ... \n";

 while (! isFinished()) {

 cout << "trial: " << getNumTrials()
 << " fitness: " << _fitness << endl;

 // generate new random controller
 float *candidate = new float[getNumParams()];
 for (int j = 0; j < getNumParams(); j++)
 candidate[j] = Random::getUniform();

 float candidateFitness = Optimizer::evaluate(ca ndidate);

 if (candidateFitness > _fitness) {
 cout << "***ACCEPTED*** candidate with fitnes s: "
 << candidateFitness << endl;
 _fitness = candidateFitness;
 delete [] _params;
 _params = candidate;
 Optimizer::recordSolution(_fitness, _params);
 }
 else {
 cout << "refused candidate with fitness: " << candidateFitness << endl;
 delete [] candidate;
 }

 if (getNumTrials() % 100 == 0)
 save(_filename);
 }
}

6.4.24 Robot.h
#ifndef Robot_H
#define Robot_H

 89

/*
 Modular robot implementation for Webots simulato r
 Author: Yvan Bourquin
*/

#include <device/gps.h>

class Module;

class Robot {
 public:
 // constructor: create robot according to specifi cation
 Robot(const char *path);

 // destructor
 virtual ~Robot();

 const char *getName() const { return _name; }
 int getNumParams() const;
 int getNumModules() const { return _numModules; }

 // evaluation trial, returns fitness
 float evaluate(const float *params);

 // return true is the robot oscillators are chaot ic
 bool isOver() const { return _over; }

 private:
 int _maxSteps; // duration of a simulation trial
 const char *_name; // robot name
 int _numModules; // number of modules
 int _numConnections; // number of oscillator conn ections
 Module **_modules; // robot's modules
 DeviceTag _gps; // for measuring the current position
 DeviceTag _emitter; // emitter device for commun icating with supervisor
 float *_sendBuffer; // buffer for communicating with supervisor
 bool _over; // is this evaluation over
 int _simulationStep; // simulation step size in m illiseconds
 float _x; // current x position
 float _z; // current z position
 float _distance; // integrated distance
 int _stepCount; // number of simulation step s so far

 const float *reset(const float params[]);
 float getFitness() const;
 float getAbsoluteDistance() const;
 float getIntegratedDistance() const;
 void step();
};

#endif

6.4.25 Robot.cpp
#include "Robot.h"
#include "Module.h"

 90

#include "Defaults.h"
#include <device/robot.h>
#include <device/custom_robot.h>
#include <device/emitter.h>
#include <device/gps.h>
#include <string>
#include <iostream>
#include <cassert>

using namespace std;

Robot::Robot(const char *path) {

 _maxSteps = Defaults::get("simulation.max.steps", 500);
 _name = path;
 _over = false;
 _simulationStep = Defaults::get("simulation.step. duration", 64);
 _stepCount = 0;
 _x = 0.0;
 _z = 0.0;
 _distance = 0;
 _numModules = Defaults::get("%s.servos.count", 0, path);
 assert(_numModules > 0);
 _modules = new Module*[_numModules];

 // create one module for each servo
 for (int i = 0; i < _numModules; i++)
 _modules[i] = new Module(_name, i, _numModules) ;

 // create oscillator connections
 _numConnections = Defaults::get("%s.connections.c ount", -1, path);
 if (_numConnections < 0) {
 cerr << "ERROR: number of connections not speci fied.\n";
 exit(0);
 }

 for (int i = 0; i < _numConnections; i++) {
 int from = Defaults::get("%s.connection[%d].fro m", -1, path, i);
 int to = Defaults::get("%s.connection[%d].to" , -1, path, i);
 if (from < 0 || to < 0)
 cerr << "ERROR: connection " << i << " is bad ly configured.\n";
 else
 _modules[from]->addInput(_modules[to]);
 }

 // set up emitter and gps
 _emitter = robot_get_device("emitter");
 _gps = robot_get_device("gps");
 gps_enable(_gps, _simulationStep);
 cout << "emitter device tag is " << (int)_emitter << endl;
 cout << "gps device tag is " << (int)_gps << endl ;
}

Robot::~Robot() {
 for (int i = 0; i < _numModules; i++)
 delete _modules[i];

 91

 delete [] _modules;
}

int Robot::getNumParams() const {
 return 2 * _numConnections + 2 * _numModules;
}

const float *Robot::reset(const float *params) {

 _over = false;
 _stepCount = 0;
 _x = 0.0;
 _z = 0.0;
 _distance = 0.0;

 // send message to supervisor so that he moves
 // the robot to its initial position
 cout << "sending reset message ..." << flush;
 _sendBuffer = (float*)emitter_get_buffer(_emitter);
 _sendBuffer[0] = 0;
 _sendBuffer[1] = 0;
 _sendBuffer[2] = 0;
 emitter_send(_emitter, 3 * sizeof(float));

 // make sure the supervisor has time to reset bef ore we continue ...
 robot_step(2 *_simulationStep);

 // reset modules also
 for (int i = 0; i < _numModules; i++)
 params = _modules[i]->reset(params);

 return params;
}

// straight distance between initial and final posi tion
// assuming that initial position was [0, ?, 0]
float Robot::getAbsoluteDistance() const {

 if (_over)
 return 0.0;

 const float *matrix = gps_get_matrix(_gps);
 float dx = gps_position_x(matrix);
 float dz = gps_position_z(matrix);

 return sqrt(dx * dx + dz * dz);
}

float Robot::getIntegratedDistance() const {
 if (_over)
 return 0.0;

 return _distance;
}

float Robot::getFitness() const {

 92

 float ad = getAbsoluteDistance();
 float id = getIntegratedDistance();
 float fitness = ad + id;

 cout << "absolute distance: " << ad << " integrat ed distance: "
 << id << " tfitness: " << fitness << endl;

 return fitness;
}

void Robot::step() {
 // simulater step
 robot_step(_simulationStep);

 // uptdate module positions
 for (int i = 0; i < _numModules; i++) {
 _modules[i]->step();
 if (_modules[i]->isCrazy())
 _over = true;
 }

 _stepCount++;

 // every second
 if (_stepCount % (1000 / _simulationStep) == 0) {
 const float *matrix = gps_get_matrix(_gps);
 float x = gps_position_x(matrix);
 float z = gps_position_z(matrix);
 float dx = x - _x;
 float dz = z - _z;
 _distance += sqrt(dx * dx + dz * dz);
 _x = x;
 _z = z;
 }
}

// evaluate robot performance during _maxStep steps
// and return fitness result
float Robot::evaluate(const float *params) {

 const float *p = reset(params);
 assert(p - params == getNumParams()); // self-tes t

 for (int j = 0; j < _maxSteps && ! isOver(); j++)
 step();

 return getFitness();
}

6.4.26 SimulatedAnnealing.h
#ifndef SimulatedAnnealing_H
#define SimulatedAnnealing_H

/*
 Simulated Annealing for optimizing robot locomot ion
 Author: Yvan Bourquin

 93

*/

#include "Optimizer.h"

class Robot;
class Genotype;

class SimulatedAnnealing : public Optimizer {
 public:
 // constructor: create simulated annealing for ro bot
 SimulatedAnnealing(Robot *robot);

 // destructor
 virtual ~SimulatedAnnealing();

 // run simulated annealing
 virtual void run();

 private:
 float _initialTemperature; // initial temperature
 float _reductionFactor; // temperature reducti on factor
 int _requiredSuccesses; // num successes befor e temperature reduction
 float _temperature; // current temperature
 float _fitness; // fitness of current parameter set
 Genotype *_params; // current parameter s et
 int _temperatureIndex; // temperature index
 int _nsucc; // num successes so fa r for current temperature
 char _filename[64]; // data file
 Genotype **_cooling; // cooling record

 bool metropolis(float de, float t) const;
 void save(const char *filename) const;
};

#endif

6.4.27 SimulatedAnnealing.cpp
#include "SimulatedAnnealing.h"
#include "Robot.h"
#include "Random.h"
#include "Defaults.h"
#include "Genotype.h"
#include <cmath>
#include <cassert>
#include <iostream>

using namespace std;

static const int MAX_TEMPERATURES = 1000;

SimulatedAnnealing::SimulatedAnnealing(Robot *robot)
 : Optimizer(robot) {

 _reductionFactor = Defaults::get("temperature.red uction.factor", 0.95f);
 _requiredSuccesses = Defaults::get("temperature.r equired.successes", 5);
 _initialTemperature = Defaults::get("temperature. initial", 1.0f);

 94

 _params = new Genotype(getNumParams());
 _cooling = new (Genotype*)[MAX_TEMPERATURES];
 _nsucc = 0;

 sprintf(_filename, "../../results/sa_%d_%s%d.m",
 _requiredSuccesses, robot->getName(), getNumPara ms());

 cout << "filename: " << _filename << endl;
}

SimulatedAnnealing::~SimulatedAnnealing() {
 delete _params;

 for (int i = 0; i < MAX_TEMPERATURES; i++)
 delete [] _cooling[i];

 delete [] _cooling;
}

bool SimulatedAnnealing::metropolis(float cost, flo at temperature) const {
 return cost < 0.0 || Random::getUniform() < exp(- cost / temperature);
}

void SimulatedAnnealing::save(const char *filename) const {
 FILE *file = fopen(filename, "w");
 if (! file) {
 printf("could not write file: %s\n", filename);
 return;
 }

 cout << "writing file: " << filename << endl;

 Optimizer::save(file);

 fprintf(file, "initemp= %.2f ;\nredfact= %.3f ;\n mutprob= %.2f ;\nmutdev= %.2f
;\n"
 "temp= %f ;\nnsucc= %d ;\ntindex= %d ;\ncooling= [\n",
 _initialTemperature, _reductionFactor,
Genotype::getMutationProbability(),
 Genotype::getMutationDeviation(), _temperature, _nsucc,
_temperatureIndex);

 for (int i = 0; i < _temperatureIndex; i++)
 _cooling[i]->save(file);

 fprintf(file, "];\n");
 fclose(file);
}

void SimulatedAnnealing::run() {

 // initialize
 _temperatureIndex = 0;
 _temperature = _initialTemperature;
 _nsucc = 0;

 while (_temperatureIndex < MAX_TEMPERATURES && ! isFinished()) {

 95

 while (_nsucc < _requiredSuccesses && ! isFinis hed()) {

 // generate new configuration
 Genotype *candidate = new Genotype(*_params);
 candidate->singleLocusMutate();

 float candidateFitness = Optimizer::evaluate(candidate->getGenes());
 float cost = _fitness - candidateFitness;

 cout << "trial: " << getNumTrials()
 << " temperature: " << _temperature
 << " fitness: " << _fitness
 << " nsucc: " << _nsucc << endl;

 if (metropolis(cost, _temperature)) {
 delete _params;
 _params = candidate;
 _fitness = candidateFitness;
 _params->setFitness(_fitness);
 Optimizer::recordSolution(_fitness, _params->getGe nes());
 _nsucc++;

 cout << "***ACCEPTED*** candidate with fitness: "
 << candidateFitness << " cost: "<< cost << en dl;
 }
 else {
 cout << "refused candidate with fitness: "
 << candidateFitness << " cost:"<< cost << end l;

 delete candidate;
 }

 if (getNumTrials() % 100 == 0)
 save(_filename);
 }

 cout << "***REDUCING TEMPERATURE*** ..." << end l;

 _cooling[_temperatureIndex] = new Genotype(*_pa rams);
 _temperature *= _reductionFactor;
 _temperatureIndex++;
 _nsucc = 0;
 }
}

6.5 C++ listings of supervisor controller
#include "Defaults.h"
#include <device/robot.h>
#include <device/supervisor.h>
#include <device/receiver.h>
#include <stdio.h>
#include <iostream>

using namespace std;

static int numServos = -1;

 96

static DeviceTag receiver;
static float (*servo_current_positions)[7];
static float robot_initial_position[7] = { 0, 0, 0, 0, 0, 1, 0 };
static float (*servo_initial_positions)[7];
static NodeRef servos[99];
static NodeRef robot;

void reset(void) {
 receiver = robot_get_device("receiver");
 cout << "supervisor: receiver device tag is " << (int)receiver << endl;
}

int run(int ms) {
 int length = receiver_get_buffer_size(receiver);
 if (length) {
 (float*)receiver_get_buffer(receiver);

 cout << "supervisor: resetting ..." << endl;

 supervisor_simulation_physics_reset();

 supervisor_field_set(robot,
 SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION,
 robot_initial_position);

 for (int i = 0; i < numServos; i++) {
 supervisor_field_set(servos[i],
 SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION,
 servo_initial_positions[i]);
 }

 supervisor_simulation_physics_reset();
 }

 return 64;
}

int main(int argc, char * argv[]) {

 Defaults::loadFile("../walker.ini");
 const char *robotName = Defaults::get("robot.name ", (const char*)NULL);
 if (! robotName) {
 cerr << "supervisor: error: robot name not spec ified !\n";
 return 0;
 }

 numServos = Defaults::get("%s.servos.count", -1, robotName);
 if (numServos < 0) {
 cerr << "supervisor: error: number of servos no t specified !\n";
 return 0;
 }

 robot_initial_position[6] =
 Defaults::get("%s.start.z.rotation", 0.0, robot Name);

 robot_live(reset);
 receiver_enable(receiver, 64);

 97

 robot = supervisor_node_get_from_def("WALKER");

 for (int i = 0; i < numServos; i++) {
 const char *servoName = Defaults::get("%s.servo [%d].name",
 (const char*)NULL, robotName, i);
 cout << "supervisor: looking for " << servoName << " ... ";
 servos[i] = supervisor_node_get_from_def(servoN ame);
 if (servos[i])
 cout << "found" << endl;
 else {
 cout << "NOT FOUND !" << endl;
 break;
 }
 }

 servo_current_positions = new float [numServos][7];
 servo_initial_positions = new float [numServos][7];

 for (int i = 0; i < numServos; i++)
 supervisor_field_get(servos[i],
 SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION,
 (void*)servo_current_positions[i], 128);

 robot_step(128);

 for (int i = 0; i < numServos; i++)
 for (int j = 0; j < 7; j++)
 servo_initial_positions[i][j] = servo_current _positions[i][j];

 robot_run(run);

 return 0;
}

