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Abstract

This report is an exploration of the robustness of populations of coupled
amplitude controlled phase oscillators (ACPO). This kind of system presents
interesting properties for robustness against perturbations. To show this
robustness, I propose a model of perturbations like exposition to heat, local
breakdowns or aging. Then I present results, obtained with the numerical
simulation of the behavior of, populations of oscillators under this model of
perturbations, and I propose two applications: a robust sinus wave generator
and a robust square wave generator. The results are discussed in terms of
profit or loss of the system’s robustness. This work has been done in the
frame of the Master Thesis in Computer Sciences at Swiss Federal Institute
of Technology.



Chapter 1

Inspiration of the project

1.1 Introduction

The goal of this work is to explore a manner of building reliable structures,
with unreliable interacting elements. In other words, inspired by the natural
phenomenon of synchronization, the goal is to make a system able to resists
to any perturbations like exposition to heat, local breakdowns or aging.

In order to feel from where robustness basically can come, I summarize
this in one first proposal. To be robust, a system must have no single points
of failure, otherwise, only one unfortunately breakdown of one of those single
points of failure can lead to a general breakdown of the system. Similarly, a
perturbation on a single point of failure will have more effects, than this same
perturbation on another element. So the effect of this perturbation is not
maximally attenuated by the system. This first proposal can be rewritten
as : To be robust, a system must have an output produced with the equal
contribution of all elements of the system, a non equal contribution would
imply that there are elements more essential than others, and more essential
elements are also single points of failure.

Actual robust systems like controllers or embedded systems, follow this
proposal by duplication of the part of the system (redundancy) and complex
mutual interactions (check, copy, ...). This was the only existing approach
to make robust systems, before scientists thought about “How does nature
proceed to be robust ?”. This led them to consider some natural robust
systems. Many examples exist, the most common, but very complex one,
is life. Animals and plants can survive even if they are injured or ill, they
do not die (stop working) immediately, like an artificial system (electrical
system, computer,...). Another example of robustness in natural system is
the sea waves, the sea waves are robust to sun or hot currents (i.e. any
effects of heat), to boats or shallow waters, and even little islands (local
perturbations).

The study of self-organization in real world complex systems has led



to a global theory called synchronization [1]. Synchronization can be un-
derstood as a self-organization in natural systems, this particular behavior
emerges from this self-organization. When a system is synchronized, all el-
ements taking part of the system have similar evolution (they have a global
behavior), which provides a kind of coherence. I want to demonstrate the
potentiality of robustness, as one of the cues of this ensemble’s coherence
provided by synchronization. A lot of works on synchronization study this
phenomenon with non-linear oscillators. One of the most simple systems
able to synchronize is two coupled non-linear oscillators (cf. sec. 1.3.1), but
synchronization can also appear in a population of oscillators. In order to
link this work to the actual scientific publications, I use next section. All
publication presented is part of the inspiration of this project.

1.2 Related works

As T said in the previous section, there are a lot of publications on synchro-
nization using non-linear oscillators. Many of them use coupled non-linear
oscillators and their dynamics to describe how biological components inter-
act to produce for example: the spindle sleep rhythm [9] or circadian rhythm
[10]. These works are more biological research than engineering, the com-
prehension of the phenomena, is more important than finding an application,
they simulate a system similar to real systems. For example, to simulate
the circadian rhythm, H. Kunz and P. Ackermann use up to 10000 oscilla-
tors. To perform the numerical simulation of as many oscillators, they use
a supercomputer (7 DEC Alpha processors). This work show the potential
of coupled oscillators and discuss the tolerance to thermal noise.

M.Rosenblum and A.Pikovsky [2], the authors of one of the most com-
plete books on synchronization (and also the most important reference of
my work) [1], propose a technique to control coherent collective oscillations
in ensembles of globally coupled oscillators. They demonstrate that a time
delayed feedback in the mean field (cf. sec. 2.2.3) can, depending on the
parameters, enhance or suppress the self-synchronization in the population.
Once more, they use 2000 oscillators for their simulation, which is already
enough long to simulate for a big set of parameters.

A.ljspeert and J.Buchli [7, 8, 3], form the BIRG ! at Swiss Federal
Institute of Technology, were interested in locomotion control applied to
Robotics. They have found a method to predict phase relationship between
coupled phase oscillators, they also discuss robustness against noise and lo-
cal perturbations. For their simulation they use a very small population
composed of only four oscillators and disposed on a ring. My work extends
their work by studying behavior on larger populations of oscillators (about
50) with different dispositions (one or two dimensions).

!Biological Inspired Robotics Group



The last paper I want to present has been written by S.H. Strogatz 2 and
I. Stewart [6]. This paper, written in 1993 (more or less the beginning of syn-
chronization’s study), explain the basic dynamics of two coupled oscillators
and is very abundant of biological examples. For example, he gives a very
simple biological example of synchronization : the bipedal locomotion. This
paper demonstrates the importance of the phenomena of synchronization in
biology.

1.3 Synchronization

This phenomenon has been discovered by C.Huygens 2, when he was looking
at two clocks (which he had manufactured himself) on a common support,
he remarked that after a certain time both clocks started to run simultane-
ously. Their oscillations coincided perfectly, they were synchronized. Even
if he perturbed the system, after a while readjusting their oscillations, the
two clocks synchronized again. To understand what happened in the case
of the two clocks, it is important to notice the weak bound that exists be-
tween the two clocks : the common support. Actually, it is through this
common support, that the two clocks achieve synchronization by mutual
entertainment.

The comprehension of synchronization has been extended and the phe-
nomena is now well-described [1]. I use the forwarding section to describe
more precisely what is an oscillator and how synchronization can appear
with oscillators and how it will contribute to robustness of the system.

1.3.1 Non-linear oscillators

This short introduction on non-linear oscillators is taken from [3].

To understand non-linear oscillators and their behavior under pertur-
bations, it is essential to introduce the notion of a perturbed non-linear
dynamical system :

¢=F(qg) +p (1.1)

where ¢ is a vector of state variables and p a perturbation vector. If the
system is not perturbed (p = 0) and converge to a periodic solution, it is
called an oscillator and the set of ¢ on which it continues to evolve is called
the limit cycle. As described in [1], all oscillators can be transformed into
phase () and radius (r) coordinate system :

0 = wo + py (1.2)

7= F.(r,0) + pr (1.3)

2S.H. Stogatz, is well-known for his reference’s book on non-linear dynamical system
and chaos [5].
3C.Huygens,(1629-1695), the famous Dutch mathematician



where wy is the natural frequency of the (unperturbed) oscillator, F, is the
dynamical system describing the evolution of r, py is the component of the
perturbation acting on the phase and p, is the component of the perturbation
acting in direction of the radius.

Perturbations on a stable limit cycle have different effects on the phase
depending on the py and p, components. The py will modify the phase, since
the phase is marginally stable [1]. On the other hand, the p, component,
i.e. in the direction of the radius, will be damped out and will have little
effect on the phase.

Oscillators on a stable limit cycle are robust to perturbations in direction
of the radius. In fact, this limit cycle being an attractor (system converge to
this solution), provides an other form of robustness : robustness to initial
conditions. Actually the behavior of an oscillator is practically independent
from the initial conditions..

When two oscillators (Fy, F; with corresponding state vectors q1,qs) are
coupled together (pg2 = f(q1)), several types of dynamics can result includ-
ing chaos and phase-locking (synchronization). But in this work, only the
synchronized regimes seem to be interesting for robustness. The following
section will explain how two coupled oscillators synchronize.

1.3.2 Synchronization of two coupled oscillators

Consider a system of two oscillators (F7, F, with corresponding state vectors
q1,92) mutually coupled.

g1 = Fi(q1) + Apci2(ge) (1.4)
go = F(q2) + Mpe21(q1) (1.5)

where ¢q1 = [z1,11],92 = [T2,Y2] , Pc12, Pe21 are the interactions between the
oscillators and X is the coupling constant. When A vanishes, each oscillators
are independent and each oscillator has a stable limit cycle with constant
natural frequencies wy 2. In general, the frequencies w; o are incommen-
surate, therefore the motion of the uncoupled oscillators is quasi-periodic
(not-synchronized). But when the oscillators are coupled (A > 0), the inter-
actions resulting can lead to two states : frequency and phase locking.

frequency locking : The main point in a bidirectional interaction is
that the frequencies of both oscillators change. Let me denote the frequen-
cies of autonomous systems (called natural frequency) as w; and we, and let
w1 < wa. The observed frequencies of interacting oscillators denote as € 5.
Then, if the coupling is sufficiently strong, frequency locking appears as the
mutual adjustment of frequencies, so that Q1 = Qo = Q, where typically
w1 < Q< wo.



phase locking : phase locking implies a certain relation between the
phases that depends not only on the frequency detuning (i.e. |w; — ws| < ¢)
and coupling strength, but also on the way in which the oscillators are
interacting.

Consider two nearly identical, symmetrically coupled oscillators. The
interaction depends in some way on the two phases, and the two simplest
case are when coupling either brings the phases together, or moves them
apart. Clearly, the phase-attractive interaction leads to in-phase synchro-
nization, whereas the phase-repulsive one results in anti-phase (out-of-phase)
synchronization. Moreover detuning makes the phase difference not exactly
zero (not exactly ).

high-order synchronization : Generally, when the frequencies of the
uncoupled system obey the relation nw; = mws + § (where ¢ is sufficiently
small), synchronization of order n : m arises for sufficiently strong coupling.
The frequencies of interacting systems become locked, n€2; = m{)s, and the
phases are also related. We can now consider phase locking as synchroniza-
tion 1: 1.

In this project, I am interested first of all in in-phase synchronization
(sinus wave generator) and in a second time by high-order synchronization
(square-wave generator). Let’s see how extending this to population of os-
cillators.

1.3.3 Synchronization in a population of oscillators

Now we study synchronization phenomena, in large ensembles of oscillators,
where each element interacts with all others (globally coupled). There are
many examples of synchronization in populations of oscillators in nature.
The first one is "fireflies simultaneous flashing”. It has been observed that,
a swarm of this kind of firefly, can start flashing simultaneously. All insects
in the swarm is influenced by the light field that is created by the whole
population. An other example is ”synchronous applause in large audience”.
Everybody has remarked the audience’s capacity to applause synchronously.
Indeed each firefly is influenced by the light field. Similarly, each applauding
person hears the sound that is produced by all other people in the hall.
Synchronization can also appear in population of oscillators. The most
important parameter for that is the coupling. The coupling is defined by
its strength and its range. The simplest coupling manner, are the globally
(all-to-all) phase-attractive (cf. sec.1.3.2) coupled population of oscillators.
With this kind of coupling, the whole population synchronizes (1 : 1) for
a sufficiently small distribution of initial oscillator’s frequencies w;. When
the variance of the distribution of initial oscillator’s frequencies increases,
the oscillators begin to synchronize in several clusters. All oscillators in a



cluster have the same phase, and there is a constant phase shift between
different clusters.

For this work I have also tested neighborhood coupling, i.e. each oscilla-
tor is coupled with all other in a circular neighborhood of a fixed radius (the
distance of coupling). This kind of coupling is cheaper in terms of number
of coupling and also ensures synchronization (cf. sec.2.2.2).

For my work I use two different notions of synchronization : For the
sinus wave generator I use in-phase synchronization in neighborhood coupled
population of oscillators. And for the square wave generator I use high-order
synchronization in neighborhood coupled ”frequency-clustered” population
of oscillators (cf. sec.3.3).

Now we image better how synchronization appears in coupled population
of oscillators. We also see how synchronization will bring robustness to the
system. Actually mutual phase-attractive interaction due to coupling will
act on the system, like a shepherd with his sheep, it keeps the population
coherent (gathered). This mutual phase-attraction act like this shepherd
on the population of oscillators, one oscillators has a behavior depending
on all coupled oscillators so all effects on it will have effects on all coupled
oscillators and vice-versa. In order to measure the level of synchronization,
an order parameter, called mean field (cf. sec.2.2.3), is introduce. The mean
field contains all information of the behavior of the subsystems. Actually
the mean field represents all informations known by the shepherd.

A system based on a population of oscillators presents a real advantage
in comparison of a single oscillator system in term of robustness against
oscillator breakdowns. Actually if one single oscillator is broken, the single
oscillator system is whole broken but not the system based on the popula-
tion.



Chapter 2

General description of the
population of oscillators

2.1 Introduction

In this chapter, the description of the system (population of oscillators) (cf.
sec. 2.2) and the perturbations (cf. sec. 2.4) used to in this work are
presented. The software developed to simulate this population of oscillators
and the perturbations is described in section 2.3.

2.2 Oescillators, coupling and output

The basic components of my system are oscillators. In order to simplify the
domain of research I focus only on populations of oscillators with identical
structure. All oscillators have the same behavior, if they are set to the same
parameters (i.e wg,r,g in the case of ACPO).

For the oscillators, I have to choose between simplicity, to understand
better what happens; and constructibility, to think about an easier material
implementation. This choice of oscillator’s type is developed in section 2.2.1,
where I introduce more precisely the two different kinds of oscillators I used
for my work.

Another important point is the coupling, the most used (and described)
techniques of coupling are globally coupled or neighborhood coupled (cf.
sec. 1.3.3), but coupling is also dependent on the pattern and dimension of
the population. I describe the models of coupling in section 2.2.2.

The last part of the conception of the system is the output of the system.
Actually I said into introduction that robust systems must have an output,
function of all elements and not to complicated. This point is developed in
section 2.2.3.

To simulate the system I have implemented software that makes a nu-
merical integration of the non-linear differential equation which describes



my system. This software allows users to create and simulate (numerically)
a population of oscillators by specifying few parameters (cf. table 2.1).

2.2.1 Oscillators : amplitude controlled phase oscillator vs
Van der Pol’s oscillator

The simplest oscillator is the phase oscillator (cf. eq. 2.1), it is a mathe-
matical oscillator, in the sense that it can hardly be constructed. Its limit
cycle is a harmonic circle for every values of parameters and so the variables
of the oscillators describes (in the case of an unperturbed system) a perfect
sinus wave. In fact, the phase oscillator can be extended to the Amplitude
Phase Controlled Oscillator (ACPO) and keeps the properties of the phase
oscillators [3]. In my work I first use ACPO because it was easier to work
with perfect sinus (for example : the Fourier frequency analysis of a perfect
sinus is a single peak), almost because with this oscillator I could be sure
of having the same behavior (i.e limit cycle and form of oscillation) for ev-
ery set of parameters. This was very important for my work to have only
wanted perturbations, to see the real effect of the perturbations I want to
study (cf. sec. 2.4). The problem is that all results are to be study, keeping
in mind that the system is very hard to manufacture. But I expect having
a comparable behavior with the other types of oscillators (with adequate
parameters).
The ACPO is described by these following equations :

0=w

7= —g(r —ro) ®1)

where 7 set the amplitude of oscillation, g set the damping of oscillation and
w is the intrinsic frequency of the oscillator. ACPO is easily configurable
because, it three parameters are independent (this is not the case for VDP
oscillator).

Equation 2.1 can be transformed in a Cartesian coordinated system :

T0

= g(\/m — 1)z —yw 22)
z)zg(\/—z’;"ﬁ—l)y+ww

In equations 1.4,1.5, F} and F5 can be replaced by equation 2.2 to find
the system of ODE, the program has to integrate, to simulate the behavior
of the coupled population of oscillators.

The second kind of oscillator I use, is called Van der Pol (VDP) oscilla-
tor (cf. eq. 2.3). It is part of an other class of oscillators called relaxation
oscillators, because the form of oscillation is no more a simple sine wave;
rather, it resembles a sequence of pulses [1]. In fact, for small p this oscil-
lator is quasilinear (i.e limit cycle is near a circle), while for large y it is of
a relaxation type (i.e. the limit cycle is no more a circle). Equation of the
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Figure 2.1: This is the physical implementation of the Van der Pol oscillator

VDP oscillator :

&= 2u%(1.0 — f2?) — Wiz (2.3)

Where pu sets the general form of oscillations (for g = 0.1 the limit cycle is
close to a circle), § sets the damping of oscillation and w is To be integrated

by my program, equation 2.3 must be separated in a system of two first
order ODE.

p=[&9" = [y,2py(1.0 — Bz’) — w’a]" (2.4)

Contrarily to the ACPO, the Van der Pol oscillator is constructible with
a simple electric circuit composed by a capacitor, a neon tube, a resistance
and, of course, a battery. This is the main interest of this oscillator : with
it we can think about a very simple physical implementation (cf. fig. 2.1).

2.2.2 System’s coupling : neighborhood coupled

The most common coupling is globally coupled, this coupling is simple
but have a disadvantage : a globally coupled population of N oscillators
have a O(N”) number of coupling. In practice it would be better to have
less interaction than possible, because it would be easier implementable. For
that I use a neighborhood coupled population of oscillators. In this popula-
tion, all oscillators are coupled with all other oscillators in a neighborhood.
The distance of coupling deoyp (size of neighborhood), having for unit one
oscillator, is one of the most important parameter in my system. With this
model of coupling I can vary from next neighbor coupling (deoupr = 1) to
globally coupled.

As developed in 1.3.2, coupling represents interactions, these interactions
can be either mutual or unidirectional, phase-attractive or repulsive. But in
my work, I always use mutual and phase-attractive interaction because, in
all experiments, I need to achieve in-phase synchronization.

So for an oscillator ¢, the coupling corresponds to :

Gi = F(g;) + X ipcij(Qj) (2.5)
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where p¢;; > 0, n is the number of coupled oscillators (dependent of the
distance of coupling dcoyp and A the coupling force.

In order to have comparable coupling between two different populations
with different size, the sum of interactions of an oscillator is about the ampli-
tude of the oscillator, so is normalized by the number of coupled oscillators,
SO :

n
Zp?gm(qj) <A (2.6)
1

where plo™ = pi]\}i (N = size of the population) and A is the amplitude
of oscillations.

Neighborhood coupling is dependent on the geographical disposition of
the oscillators. Actually, the number of coupled oscillator is dependent on
the dimension and the form of the population : in a line of oscillator, a
coupling distance of one will couple the two nearest neighbors, instead of the
four (or eight if we take the diagonal) if the population is in two dimensions.
Moreover, if we transform the disposition of oscillators from line to closed-
line (annulus) or from plane to torus, it leads also to a different number of
coupling. So I also study the impact of the population dimension (i.e. one
(line) or two (plane) but always closed (annulus or torus).

2.2.3 System’s output : mean field

The question was to find a good output for my system, easy to calculate
and robust. One natural idea was the mean field. The mean field (cf. eq.
2.7) M is the average of all "signal” s; in the population of N oscillators.

1
M= Z 5i(t) (2.7)

=1

It’s an easy way to measure the output of the system and takes into
account all informations of the system. Moreover, in some particular exam-
ple, it has a realistic meaning : the magnetic effect of a magnetic material
can be seen has a mean field of magnetic force. The mean field can also be
taken as an order parameter. In my system of coupled population of ACPO,
the mean field is the average of quasi-pure sinus wave. The mean field is
also a sinus wave, if the oscillators are all in-phase synchronized. But if the
synchronization is not complete (extended to the whole population), there
is a progressive degradation of the mean field that can leads to an average
of amplitude of the mean field is equal to zero in the case of the oscillators
phases are uniformly distributed (cf. fig. 2.2

11
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Figure 2.2: typical mean field : left) complete synchronization right) 50%
of synchronization

2.3 Implementation and numerical simulations

All simulations are performed with the software developed in the frame of
this work. This software has been implemented in C and uses the Gnu Scien-
tific Library (GSL). GSL is a good and reliable scientific library. Differential
equations were integrated using a fourth order Runge-Kutta algorithm with
an adaptive step-size. One must remember that an adaptive step-size means
an uncontrolled (unpredictable) runtime of the simulations, but also produce
more precise results. Nevertheless, in order to perform the data processing
on a equidistant sampling, only the data corresponding to a fixed step-size
are stored.

For reasons of performance, data analysis is made straight in the software
with GSL, but additional analysis has been made with Matlab. GSL do not
propose the Hilbert Transform (used in first experiment), algorithms used in
performance measurements, so I implemented it and verified with Matlab.

In all further simulations, I use a population of about 50 identical ACPO
distributed along a annulus (1D) or a torus (2D), and I study the behavior
during 500 [sec]. With 50 oscillators the run-time is acceptable (< 2min)for
any perturbations but for more oscillators (> 100) run-time becomes too
big (=~ 10min). Taking into account the adaptive step-size, and the dif-
ferent perturbations and the run-time became really important (~= 15min).
All experiment done in this work are study of parameters, which implies a
large set of value to test. So one experiment can lead, in the worst, case to
simulation’s duration of 2 or 3 days. As my work consists in making a lot
of experiments, about a hundred (bad and good are counted), 2 or 3 days
for one only is too long. In a further time, one should simulate such com-
plex system (population of oscillators) with super-calculators ( simultaneous
multi-processing), to keep a relative flexibility of work.

In the case of an unperturbed system, all oscillators have the same initial
conditions ([zo,0]) and parameters (w,g,70). The coupling used is neigh-

12



system parameter | symbol | values description
coupling force A [1079,50] | strength of the interactions
coupling distance deoupl [0,1] size of neighborhood
number of oscillator n 1, 250] ~ time of simulation
dimension - [lor2] annulus or torus
oscillator type - [0or1] ACPO or Van der Pol

Table 2.1: Parameters of the population of oscillators

borhood coupled, described in section 2.2.2. This population of oscillator,
with a sufficiently strong coupling but for any value of distance of cou-
pling, synchronizes easily and quickly, and then the behavior of the system
is very stable. By choosing right initial conditions, it is possible to start
immediately with a synchronized population. I use this little trick to allow
me having a stable system, already at the beginning of simulation, so that
simulation time (processing time) can be shorter.

I have tested the performance of the system by studying the impact of
all perturbations, presented in section 2.4, on the system modulated by five
different parameters (cf. table.2.1) :

2.4 Perturbation’s model

To test the robustness of the different coupled populations of oscillators, I
propose a model for some types of perturbations. All these perturbations
can occur in real conditions, their are all perturbations present in real world.
The most basic natural sources of perturbations are heat, shocks or aging.
I have extended the model of perturbations to include also imprecision of
manufacture, and the variation of initial conditions, but the sources of per-
turbations are mainly natural and so they are common to all systems. So
this model of perturbations is more or less generic.

The table 2.2 resumes all the perturbations I have simulated and their
model. All perturbations are explained more precisely in next sections.

2.4.1 Thermal noise

The most common kind of perturbation is due to heat. Actually, heat intro-
duces a strong activation of the material, what modifies the behavior of the
whole system proportionally to the level of heat. In engineering this problem
is well know and, the more commonly used model used for thermal noise
is modeled by a reduced and centered Gaussian distributed random value
Ngauss added to the variables of the system. To modulate the power of ther-
mal noise, I introduce a thermal noise parameter Py, between [1072, 102].
So each step of the numerical integration, I added Py, ngauss to the variables
of the system. Notice that, as my numerical integration step is adaptive, I

13



perturbation parameter source model
thermal noise Pipn exposition to sun, or to increase noise on all
another heat source system interactions
fault of fabrication Pyq imprecision of manu- deviation of the fabri-
factured material cation parameters
component aging Pepa degradation of the mate- variation of the fabri-
rial due to age cation parameters
variation of initial P variation of the init-
conditions tial conditions
breakdowns Rpra shocks or bad use of breakdown on oscillators
Jokd the system or coupling

Table 2.2: This table summarizes all the perturbations implemented for this
work

don’t know exactly how much noise has been added during a simulation. In
fact it adds another little random component to thermal noise. An other
model for thermal noise is a uniformly distributed, in [-1,1], random value,
but this “uniform” noise is less perturbing than a “Gaussian” noise (i.e.
“uniform” noise is bounded), and I know that oscillators are naturally ro-
bust to thermal noise. So for all simulations I use a “Gaussian” noise.

In presence of thermal noise, equation (2.1) becomes :

d
d_i) = Facpo

We already know that a single oscillator is robust to thermal noise ([1]),
but I expect the population of oscillators to be more robust.

(56(1 + Pthnngauss)a y(l + Pthnngauss)) (2-8)

2.4.2 Faults of fabrication

A material oscillator, like every manufactured products, has an intrinsic pre-
cision of fabrication, which is described by the incertitude on the fabrication
values.

This can be modeled by adding a uniformly distributed random value
Nunif to the initial parameter of the oscillators (w,g,70). I uses a uniform
distribution because I want bounded faults of fabrication. 7, is modulated
by the fabrication faults parameter Prq

In fact I focus on the fault of fabrication to the study of the initial
distribution of w because it seems to be the more influential parameter, but
it should be also interesting to study g or rg. The initial distribution of

14



w is one of the most important and studied parameter in a population of
oscillators, as we have seen in section 1.3.3, a to much big initial distribution
of w prevent the population from synchronization.

2.4.3 Component aging

The aging is not very frequently simulated, but is ever present in nature
and has a strong effects on material (progressive degradation, breakdowns,
bad contact, ...). To model the degradation of the system due to age, time-
dependent parameters are introduced, so for example: w becomes w(t). The
aging corresponds to modify the parameter of the system by adding a cen-
tered and reduced Gaussian distributed random value 7, controlled by a
component aging parameter P, in function of time, and keep this modi-
fied parameter for the next step of the numerical integration random walk.
Evolution of a parameter, taking account of aging is described by following
equation:

Wptl = Wy + 7)(0) (29)

n+1 does not corresponds to the next adaptive step of the numerical
integration, but to a fixed time step of 0.1 [sec].

2.4.4 Variation of initial conditions

Robustness to variation of initial conditions is an important characteristic
of a system. Indeed, the robustness to variation of initial conditions is very
appreciated as system’s properties, it let the initialization of the system be
free. Robustness to initial condition determine also if the system is chaotic
or not, actually chaotic are very few robust to variation of initial conditions.
To model the variation of initial conditions, a uniformly distributed random
value 75 is added to initial conditions.

2.4.5 Breakdowns

The breakdowns are probably the most problematic kind of perturbations
because, in an electronic system in general, a breakdown implies, the more
often, the complete crash of the system. I my system I expect a better
behavior. I propose two kinds of breakdowns, on oscillators and on coupling.
When an oscillator breaks, one can imagine almost two kinds of behaviors

the oscillator keeps its current value (constant value) or the oscillator
gives a totally random value, it become a noise generator. I have modeled
a coupling breakdown by the suppression of a randomly chosen coupling
in my population. All breakdowns are controlled by two parameters, the
breakdown frequency fyrq and the maximal percentage of broken oscillators
Rykq- foka is bounded by [0,1]. A frequency equal to one implies a breakdown
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at each fixed steps (0.1 sec) of the numerical simulation. Rpq, the percentage
of breakdown set the maximal number of oscillators potentially breakable
in the population. In practice, I set the frequency of breakdown in a way to
have all breakdowns in, approximatively, the first 50 sec of the simulation
run, and I do vary only the broken oscillator’s percentage. This allows
to have a simple control on the number of oscillators broken during the
simulation.
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Chapter 3

Experiments and results

3.1 Introduction

All experiments presented are the results of numerical integration of a pop-
ulation of neighborhood coupled oscillators (ACPO). More precisely, next
sections are used to describe the behavior of a coupled population of oscil-
lators in two particular applications. The first one, a sinus wave generator
and the second one, a square wave generator. The behavior of these two ap-
plications is discussed in terms of robustness to the perturbations described
in section 2.4.

3.2 First experiment : A robust sinus wave gen-
erator

A single oscillator can be considered as a sinus wave generator, so naturally
the simplest application we can imagine using population of oscillators is a
robust sinus wave generator. In theory, all the oscillators of the population,
under phase-attractive coupling, synchronize in-phase and produce a very
robust mean field equal to a perfect sinus.

3.2.1 Performance measurement

In this section, it is explained how the performance of the system is mea-
sured. In fact, as we have just seen in 2.2.3, the mean field of a single
population of oscillators is a perfect sinus wave when the synchronization is
complete (all oscillators in-phase synchronized). So to know if a population
is synchronized and in which proportion, a simple manner is to compare
the mean field with a perfect sinus wave, using the Hilbert transform, as
explained in next section.
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Level of synchronization : average and standard deviation of the
mean field

I use the fact that the Hilbert transform (HT) of a sinus wave is a circle
in complex plane. So if the norm of the HT of a signal is constant, this
signal is a sinus. Moreover, with a normalized mean field, we have a good
approximation of the instantaneous percentage of synchronization o(t) of
the system. We can write :

a(t) = norm(HT (mf))(t) (3.1)

Then I take the average and standard deviation on time of the instan-
taneous state of synchronization. This gives me a good idea of the rate of
synchronization along time. For example, if the average is equal to one and
the standard deviation small enough, one can be sure that, the mean field
is a perfect sinus wave and all oscillators are in-phase synchronized during
all the time of simulation (fig. 2.2 a) ).

Quality of the generator : frequency stability of the principal com-
ponent and level of noise of the mean field

The goal is to obtain a robust sinus wave generator, able to keep providing
a sinus wave with the right frequency (minimum requirement) and with an
acceptable level of noise (the signal must be easily isolated), in presence
of perturbations. An typical acceptable level of noise is a signal to noise
ratio of at least a hundred [12]. From the Fourier transform (FT) of the
mean field, we can easily extract the frequency corresponding to the sinus
generated and the level of noise.

The frequency of the principal component of the mean field and it’s
ratio with noise are the two basic tests of quality apply to the system. The
frequency stability is important but don’t gives a sufficiently indications on
the quality of the signal, this is why the measure of the signal to noise ratio
was added (fig. 2.2).
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system parameter | symbol | default value
coupling strength A 0.05
coupling distance dcoupl 0.5
number of oscillator n 49
dimension - 1
oscillator type — ACPO

Table 3.1: Table to summarize the default value of the parameters. For each
following experiments, if the parameter’s value in not specified, it was set
to its default value.

3.2.2 Simulation Results

The simulation results of the sinus wave generator are presented in order
to regroup all effects of each perturbations according to the maximum of
different system’s parameters. In order to have a mean field, when the
whole population is synchronized, of amplitude equal to one and a principal
frequency of 1 [Hz]. I set the oscillators with an intrinsic frequency of 1
[Hz] and an amplitude equal to one, and for the ACPO, ry =1 and g = 10.
Nevertheless in the simulations, the principal frequency is never exactly
equal to 1, this is due to the precision of the numerical Fourier Transform,
dependent on the sample’s size and the duration of the simulation. Before
all, I make a little parenthesis, to verify that the property of robustness to
initial conditions described in section 1.3.1 for one oscillator, is transmitted
to population of oscillators. In the following sections all simulations last
500[s] and the default parameters summarize in table 3.1.

Variation of initial conditions

As expected the population of oscillators is very robust to initial conditions.
This experiment shows if the system is able to synchronize during the sim-
ulation time (500[s]), and so gives an idea of the speed of synchronization
(cf. fig. 3.2). Fig. 3.1 shows that the population synchronizes for random
initial conditions between [-1,1] for a weak coupling (A < 1%1072), and then
if the coupling increases reaching A ~ 1% 10! the system is totally synchro-
nized for initial values in [-40,40]. This experiment demonstrates also that
the stronger the coupling is, the faster the synchronization achieves. For all
experiments that follows, initial conditions are no more discussed, because
the initial condition are set in order to have a system synchronized since the
beginning of the simulation.
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Figure 3.1: Impact of the coupling strength in presence of variation on initial
condition. For a too large distribution of initial conditions, the system is not
able to synchronize during the time of simulation (500[s]), so the average
of the mean field decreases (cf. fig. 3.2). A stronger coupling increases
the robustness of the system, the average of the mean field stay equal to
one for a larger distribution of initial conditions. Nevertheless the system is
completely robust to initial conditions between for any strength of coupling,
because the frequency is always stable until the strength of coupling exceeds
A~ 1%1070
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dynamic of two oscillators
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Figure 3.2: Impact of the coupling strength in presence of variation on initial
condition. These two plots represent one of the variable of two particular
oscillators in the population. For a little distribution of initial conditions
(bottom plot) the oscillators achieves synchronization in less than 50[s] and
for the same distribution (top plot) the oscillators are still not synchronized
after 70[s]
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Impact of the thermal noise

Fig. 3.3 and fig. 3.4 shows the general behavior of the sinus wave generator
in presence of thermal noise, for different values of coupling strength. The
increase of couping strength do not increase a lot the system’s marge to
thermal noise (Pj;'¢* = 0.15— > 0.2), but it has others effects. Actually
increasing the coupling strength, makes the region of high standard deviation
of the mean field getting thinner . For a strong coupling A € [107%;1],
the standard deviation do not increase a lot during the transition phase
(Fig. 3.4 arrow on std plot). Focalizing on the frequency stability and the
signal to noise ratio, one can see that, even if the system is not completly
synchronized and has not a minimal standard deviation, the frequency is
stable with a very acceptable signal to noise ratio (snr > 5) for the whole
region a) delemited by the dashed line. The sinus wave generator is totally
robust against thermal noise, while the level of thermal noise do not exeeds
Py, = 1. A superior level of thermal noise (Py,, > 1) leads to a progressive
degradation of the frequency of the generator. For the other experiments on
thermal noise the coupling’s strength is set to 0.05; it is enought to provide
a good robustness to thermal noise and not to strong to keep a relative not
too forced population.

Fig. 3.5 and fig. 3.6 are respectively the results of the simulation for
different size of population and for different distance of coupling. The size of
population and distance of coupling are importants parameters which deter-
mine the general complexity of the system, it has a lower cost in processing
time and an hypothetic manufacturing would be easyer. One of the worst
case, in term of complexity, would be that the best for system’s robustness,
is to have the maximum of oscillators and the maximum of coupling. Fortu-
natelly, fig. 3.5 seems to demonstrate that in the case of thermal noise after
a certain number of oscillators, about thirty, the robustness do not increase
a lot. In the same way, fig. 3.6 do not reveal any important impact for
distance of coupling in regard to tolerance for thermal noise, only that no
coupling leads, for P, > 0.2, to a bigger standard deviation of the mean
field and a smaller signal to noise ratio, but frequency remains stable.

For this kind of perturbation, actually thermal noise, the gain in robust-
ness is not sufficient to justify the use of a more than next neighbor coupled
(deoupi=1 oscil) population of oscillators. At the opposite, more than thirty
oscillators, and a sufficiently strong coupling is indicated to increase the
system’s robustness to thermal noise.
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Figure 3.3: Impact of the coupling’s strength A € [107%;10] in presence
of thermal noise Py, € [0.02;10]. All other parameters are the default’s
one. These four plots , describe the general behaviour of the population
in presence of thermal noise; the domain of synchronization (i.e avg=1)
corresponds to the domain of maximal signal to noise ratio and to the domain
of stability of the frequency. Moreover the phase transition between the
synchronized state(i.e avg=1) and the non-synchronized state (i.e avg = 0),
corresponds to the maximum of standard deviation of the mean field. This
show that we are in presence of a powerlaw for the parameter of thermal
noise. One can also notice that, there is no significant increase of tolerance
to thermal noise due to the increase of coupling’s strength. Moreover a
stronger coupling than A\ =~ 2 leads to oscillation’s deapth and the loss of
synchronization.
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Figure 3.4: Impact of the coupling strength A € [107*;10] in presence of
thermal noise Py, € [0.02;10]. This is exactly the same simulation than for
fig. 3.3. We can see more precisely the syncronization region (i.e domain
c) closed by the dashed line), and the phase transition area (i.e domain b)
closed by the two dashed lines. The dotted-dashed line corresponds, in the
four plots, to 50% of synchronzation. We can see that 50% of synchroniza-
tion is enougth to keep a stable frequency and an acceptable level of noise
(snr > 7.5). The transition’s region(b), corresponds to the maximal stan-
dard deviation region (powerlaw). Increasing the coupling strength has a
little effet on system’s marge to thermal noise, we can see that for a weak
coupling strength (A € [107*;1072]), the level of thermal noise correspond-
ing to the change from synchronization’s state to transition state (b) is equal
to PJ9% 2 (.15, and for a strong coupling A™%® € [10~!; 1] the maximal level
of thermal noise P}}!%* ~ 0.2. (on plo2t4of avg)
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Figure 3.5: Impact of the number of oscillators n € [4;256] in presence
of thermal noise Py, € [0.05;2]. The number of oscillators (i.e size of the
population) influences the general behavior of the sinus wave generator : one
can see that the standard deviation decreases with the number of oscillators,
while the number of oscilators do not exceeds 32. For more than 32 oscilators
the general behavior do not more vary in a significant manner.
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Figure 3.6: Impact of the coupling distance dgoyp € [0.02;1] in presence
of thermal noise thermal noise Py, € [0.02;1]. No coupling is clearly less
robust than any other coupling’s (avg, std, snr plots) but has no impact
on frequency stability. From the principal frequency plot, we can extract
the system’s tolerance to thermal noise: to keep a 5% stable generator Py,
must be < 1 and to keep a perfectly stable generator P, < 0.2.
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Impact of fabrication’s default

Fig. 3.7 and fig. 3.8 show the phase transition taking place when the level
of fabrication default increases. For a relative weak coupling A = 0.01, the
maximal marge to fabrication’s default is equal to P{**7 * 1073 (cf. fig.
3.8). This marge increases when the coupling becomes stronger; A = 0.1
corresponds to a tolerance equal to P}Z“m ~ 3 x 1072, This marge increases
too if the population of oscillators is in two dimensions (torus). Indeed,
for A = 1% 1072, the max tolerance is equal to P = 2% 1072, more
or less three times more robust than in one dimension (cf. fig.3.9). As in
the case of thermal noise, the effects of the size of the population and dis-
tance of coupling have been simulated. Fig.3.10 demonstrates that more
than four oscillators are requested to increase the system’s marge to fabri-
cation’s default. But also that the degradation of the frequency is slower in
this case (n=4). Indeed, for P;q = 0.1, if n=4 frequency= 1 + 2%, n=16
frequency= 1 + 10%,and for n=256 frequency= 1 + 10%. Fig. 3.11 and
fig. 3.12 show that contrary to thermal noise, the system’s marge to fabri-
cation’s defaults is dependent on the distance of coupling. Actually, until
deoupt = 1.5 % 10~ !(i.e 15% of the population’s size), the marge increases
from Pfi** = 1.8 %1072 to Pfy** = 3+ 107>. Moreover, this figure shows
that a larger coupling is not necessary, because it do not increases the ro-
bustness (cf. fig.3.12). Taking account of these results, it is clear that it is
possible to increase the robustness against fabrication’s defaults by choos-
ing a population in two dimension and an appropriate distance of coupling.
A population in two dimensions (i.e a torus) of n > 4 oscillators, with a
distance of coupling dcoyp > 0.2 and a maximal coupling strength A is the
more robust configuration against fabrication’s defaults.
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Figure 3.7: Impact of the coupling strength A € [10?; 2] in presence of fabri-
cation’s default Prq € [0.02;1]. These four plots, shows the phase transition
between synchronized state (avg=1) and non-synchronized state (avg~0) re-
sulting from the increase of the level of fabrication’s defaults. The system’s
marge to fabrication’s default varies in function of the coupling strength.
Indeed, one can see that for a coupling strength A < 0.01, Prg =1 % 1072 is
enought to loose synchronization, and for a strong coupling A = 1 the phase
transition occurs when Py, exeeds 3 * 1071, As before, a coupling strength
A > 2 leads to oscillation’s deapth and to the complete degradation of the
frequency.
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Figure 3.8: Impact of the coupling strength A € [1.573;0.2] in presence of
fabrication’s default Prq € [2 * 1073;0.2]. On the two upper plots, c) is
the region of synchronization, b) the transition region and a) the region of
non-synchronizion. The dotted-dashed line corresponds to 50% of synchro-
nization. The transition region (b) corresponds to the region of maximal
standard deviation. The coupling strength influences the system’s toler-
ance to fabrication’s default. Indeed, for a coupling strength A < 6 % 1073,
the frequency remains stable until the level of fabrication default reaches

= 0% 1073. Then if the coupling strength increases, the robustness of
the system to fabrication’s defaults increases too, reaching P}Z” =6%10"2
for A = 0.2. Signal to noise ratio is maximum on the whole domain of stable
frequency, and is always greater than seven, the noise is so at least 107 times
smaller than the signal.
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Figure 3.9: Impact of the coupling strength A € [1.573;0.2] in presence of
fabrication’s default Pfy € [2%1073;0.2] for a population in two dimensions.
Exactly the same parameters than for fig. 3.8, only dimension changes. We
can see that the system increases in robustness, passing from one to two
dimension. Indeed, in two dimensions, the frequency is stable for a higher
value of fabrication’s default Prj** = 2102 for weak coupling A < 0.01, but
for stronger coupling A > 0.05 the dimension does not make a big difference.
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Figure 3.10: Impact of the number of oscillators n € [4;256] in presence
of fabrication’s default Prq € [2 * 1073;0.2]. The case with four oscillators
seems to stay synchronized (avg=1, std=0) for a higher level of fabrication’s
default P{** ~ 2.5« 1072, instead of L~ 1.2 10~2 for more oscillators.
In fact in terms of signal to noise ratio and frequency stability, one can see
that n = 4 is not always the best case. In the case n=4 the frequency is
stable while P}Zaz < 2.2%1073, and for n > 4 P}?i“”” < 1.5 % 1072, Which
corresponds to value found in fig. 3.8 for a coupling strength A = 0.05.
Nevertheless the case n=4 seems to keep the frequency in a more acceptable
range (2%) of variation, for strong fabrication’s default Pf** > 1 % 1072,
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Figure 3.11: Impact of the coupling distance deoyp € [3 * 1072;8 % 1071
in presence of fabrication’s default Pry € [1% 1073;8 x 107']. The level of
fabrication’s default leading to the phase transition between the synchro-
nized state and the non-synchronized state, is dependent on the distance of
coupling. A next neighbourg coupled (deoypr = 3 * 1072 <=> loscillator)
population is lesser robust than a globally coupled one.

32



average of the mean field standard deviation of the mean field

fabrication default
fabrication default

1
coupling distance coupling distance

principal frequency of the mean field signal to noise ratio of the mean field

fabrication default
AY
AY
fabrication default

107 107
coupling distance coupling distance

Figure 3.12: Impact of the coupling distance deoup € [3 * 10728 % 107] in
presence of fabrication’s default Pyq € [1% 1073;8% 10 !]. On the two upper
plots, c) is the region of synchronization, b) the transition region and a) the
region of non-synchronizion. The dotted-dashed line corresponds to 50%
of synchronization. The transition region (b) corresponds to the region of
maximal standard deviation. The maximal system’s marge to fabrication’s
default is dependent on the distance of coupling. Indeed, for next neighbor
coupling (deoupr = 3 * 1072 <=> loscillator), the phase transition occurs
for P}?ﬂ‘” < 1% 1073 and for a distance of coupling equal to deoupr = 0.5,
the phase transition occurs when Pf** > 8 % 1073. The relation between
fabrication’s default and the distance of coupling seems to be that until the
distance of coupling is bigger than deyy & 1.5+ 107!, there is no significant
increase of robustness (i.e P < 3« 1072, but for smaller distance of
coupling the marge decreases, reaching Pf** < 3x 10~2 for deoupt = 3 * 1072
(next neighbour coupling) (cf. plot of the principal frequency).
33

0.3

0.25

0.2

0.15

0.1

0.05



Impact of component aging

Fig. 3.13 and fig. 3.14 describes the system’s behaviour with the aging of the
components, for different values of coupling strength. The system’s ability
to be robust to the effects of the aging of the components increases, when the
coupling gets stronger, the maximal value for component’s aging parameter,
to keep the system synchronized, increases too. This maximal value going
from PJ% < 5% 1070 for A = 1% 1072, to Pa® < 1% 10~* for A = 1 (cf.
fig. 3.14). This gain in robustness, does not increase the frequency stability
but improves the signal to noise ratio (cf. fig. 3.14). To obtain a gain in
frequency stability, the change of the geometrical disposition (annulus to
torus) seems to be the only way (cf. fig. 3.15). Indeed, the study of the
effects of the population’s size (cf. fig. 3.16) does not show a significant
change of the robustness of the system, and the distance of couplinf influ-
ences only the signal to noise ratio (cf. fig. 3.17). To summarize, to increase
robustness against the aging of the components it is recommended to use
a population in two dimensions with the strongest coupling, before oscilla-
tion deapth (A < 1) and the maximum distance of coupling. For a value of
component agingFPrp, > 1 * 10~%, the processing time of the simulation ex-
plodes, so unfortunately the simulation for these parameter’s values has not
been made. The system’s marge to component agingis hard to determine,
with the result I obtained. Indeed, the marge is always different for the four
simulations I do on this parameter.
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Figure 3.13: Impact of the coupling strength A € [1 * 1074, 10] in presence
of component aging Py, € [5 * 1075,1 + 107%]. These four plots, shows the
phase transition between synchronized state (avg=1) and non-synchronized
state (avga0) resulting from the increase of the level of component’s aging.
The system’s marge to component agingvaries in function of the coupling
strength. Indeed, one can see that for a weak coupling A < 1x1072, a level of
component agingequal to Py, = 1 * 1073 is sufficient to prevent the system
from synchronization. For a stronger coupling, A > 1 % 10~! this level of
component agingPe,, = 1 * 10~° is no longer perturbative.
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Figure 3.14: Impact of the coupling strength in presence of component aging
Pepa € [5x1076,1%1074] X € [1%107%, 5] The axes are volontary too big, to
help the comparison with the case in two dimension (cf. fig.3.15). On the
four plots, the dotted-dashed line corresponds to 50% of synchronization.
System’s marge to component agingincreases when the coupling strength
gets stronger, this do not imply changes on frequency stability but only
increases the signal to noise ratio. For a weak coupling, A < 1 % 1072,
the synchronization is already no more complete (avgjl), even for a little
component agingvalues (P, < 5 * 107%). Then for coupling strength value
between \ € [1 %1072, 1.5], the system’s marge to component agingincreases
from Py = 5 * 1076 for A < 1% 1072, to P~ 1% 10~% for A ~ 1.
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Figure 3.15: Impact of the coupling strength in presence of component aging
Pepa € [5%1076,3 % 107%] X € [1 + 107%,5] These four plots shows the in-
crease, of the system’s robustness to effects of the aging of the components,
due to the change from a population in one dimension (annulus) to a popu-
lation in two dimension (torus). Indeed, going from one to two dimension,
increases the synchronization domain (c in avg plot), the frequency stability
and enhances the signal to noise ratio.
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Figure 3.16: Impact of the number of oscillators n < in[4;128] in presence of
component aging P, € [2*107%;7x1075]. Going from 4 to 128 oscillators
corresponds not to a real enhancement of the quality of the signal, unless
maybe the frequency degradation gets slower (2% to 1%) for P, = [4%107°.
But more than 32 could be advised.
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Figure 3.17: Impact of the coupling distance deoup € [3 * 1072;1] in pres-
ence of component aging P, € [4* 10757 % 107°]. On the plots, c) is
the region of synchronization, b) the transition region and a) the region of
non-synchronizion. The dotted-dashed line corresponds to 50% of synchro-
nization. The transition region (b) corresponds to the region of maximal
standard deviation. The increase of the distance of coupling leads to an
enhancement of the robustness of the system in regard to synchronization
and signal to noise ratio, but do not increases the frequency stability. The
frequency remains stable for a value of component aging P.,, = 3* 1072, for
any distance of coupling. But the more the distance of coupling increases,
the more the signal to noise ratio (snr) remains high: on dashed-dotted line
on sor plot snr=7 all along. So for depyp = 1 * 107! and Py = 2% 1072 -
snr= 6, and for deoypr = 1 and Prpq = 2 % 107% : snrx 7.
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Impact of breakdowns

As described in section 2.4.5, three kinds of breakdowns have been simulated.
The first one is : when an oscillator breaks he keeps its values constant,
it stops. When this kind of breakdown occurs the system starts loosing
synchronization proportionnaly to the percentage of broken oscillators and
its signal to noise ratio gets down too (c.f fig. 3.18). The frequency is always
equal to one until there is more broken oscillators than not broken ones and
then the frequency is equal to zero (a constant signal (broken oscillator) has
a frequency equal to zero). The distance of coupling seems not to influence
the system’s behavior, nevertheless next neigbourg coupling (dcoyp = 0.02)
is worst in regard to signal to noise ratio (c.f fig. 3.19).

The second kind of breakdown is : when an oscillators breaks he becomes
a generator of noise. For this kind of breakdown, the system’s reaction is
a progressive degradaton of the synchronization, exactly similar when the
oscillators keeps a constant value (first kind of breakdown) but a slower
degradation of the signal to noise ratio (c.f fig. 3.20). The frequency remains
stable until there is just one or two not-broken oscillators left. Fig. 7?7 shows
there is no relation between robustness to "noise generator” breakdown and
the distance of coupling.

The last kind of breakdown is breakdown of coupling, to test system’s
tolerance to breakdowns of coupling it is necessary to add a little source
of perturbation, if not, there is no degradation of the system to observe.
Indeed the breakdown of coupling is not enougth perturbative, that there
is no degradation to observe for a non-perturbed system. Breakdowns on
coupling seems, instead of all other breakdowns, to be dependent on dis-
tance of coupling. The principal frequency of the mean field is stable for
a distance of coupling d¢pyp; > 0.1 until the percentage of breakdowns ex-
ceeds thirty percent. In fact, the distance of coupling make increase the
general robustness of the system : synchronization is kept more longer, for a
level of fabrication’s default of 0.003, synchronization is of 30% for globally
coupled deoupl = 1 and of 10% for d.oupl = 0.3 (i.e 30%) (cf. fig.3.22).
Fig.3.23 shows, the effects of coupling strength according to the percentage
of breakdowns of coupling. This figure tends to proof that since the strength
of coupling A = 5 * 1073, the system becomes more and more robust. For
simulation of fig.3.23, the little source of pertubation added is a default
of fabrication Pry = 0.003, the perturbation is so little that the system’s
frequency do not change even if all coupling are broken.
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Figure 3.18: Degradation of the synchronization in presence of a the per-
centage of breakdown NOISE CST with Ryrg € [5%1072;1.8] and fy,4=0.05.
These plots shows the linear law between the percentage of oscillators broken
(ie. Rpkq) and the average of the mean field (ie. percentage of synchroniza-
tion). One can see that at a fixed Ryxq the average equal 1- Rprq. The signal
to noise ratio decreases to form = 6.7 to ~ 4.7 (for Ryrq = 0.9).

41



average of the mean field standard deviation of the mean field

0.11
0.9 0.1
0.8 0.09
=z 07 F 0.08
3 3
B 06 0.07
g 05 g 0.06
8 107"} 8107}
2 2 0.05
3 0.4 3
rel S 0.04
0.3
0.03
0.2
0.02
0.1
= 0.01
10 1
coupling distance coupling distance
principal frequency of the mean field signal to noise ratio of the mean field
0.9 6.5
0.8
= 0.7 = 6
(5] (5]
3 3
2 0.6 2 55
T 107 T 10
= 04 ¥
o o
8 03 <© 4.5
0.2
4
0.1
107 107
coupling distance coupling distance

Figure 3.19: Impact of the coupling distance d.oupl € [3 x 1072;0.8] in
presence of a the percentage of breakdown CST Ryiq € [5 * 1072 1.8] and
foka=0.05. The plot of the average confirms the linear degradation in fonc-
tion of the percentage of breakdown. With a weak coupling d oupl < 3x10~!,
the standard deviation is more weak, for small percentages of breakdowns,
than for a stronger coupling.
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Figure 3.20: Degradation of synchronization in presence of a the percentage
of breakdown NOISE GENERATOR. Ryzq € [2 * 1072;0.7] and fprq=0.05.
The degradation is linear, actually, a percentage of broken oscillators Rpxq
means an average of the mean field equal to 1-Rprg. The signal to noise is
degradate too from = 6.7 to =~ 4.7
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Figure 3.21: Impact of the coupling distance d.oupl € [3¥1072; 1] in presence
of a percentage of breakdown NOISE GENERATOR. Ryg € [2 * 1072;0.7]
and fprg=0.05. The frequency remains stable, even the average of the mean
field decreases, only signal to noise ratio tends to prooves that a coupling
stronger than d.oupl = 2 x 10! is better for the robustness of the system.
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Figure 3.22: Impact of the coupling distance d.oupl € [3¥10~2; 1] in presence
of a the percentage of breakdown COUPLING Ryrg € [2 * 1072;0.7] and
foka=0.05 and fabrication default = 0.01 (fabrication default is included to
see a degradation of the frequency). Breakdowns on coupling seems, instead
of all other breakdowns, to be dependent on distance of coupling. The
principal frequency of the mean field is stable for a distance of coupling
deoupr > 0.1 until the percentage of breakdowns exceeds thirty percent. In
fact, the distance of coupling make increase the general robustness of the
system : synchronization is kept more longer, for a level of fabrication’s
default of 0.003, synchronization is of 30% for globally coupled d.oupl = 1
and of 10% for d.oupl = 0.3 (i.e 30%).
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Figure 3.23: Impact of the coupling force in presence of a the percentage
of breakdown COUPLING Ryiq € [2 * 1072;0.7] and fprq=0.05 and Psq =
0.003. These plots tends to proof that since the strength of coupling A =
5%1073, the system becomes more and more robust. The little added source
of pertubation, is a default of fabrication Py = 0.003. The perturbation is
so little that the system’s frequency do not change even if all coupling are
broken.
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3.3 Second experiment : A robust square wave
generator

The idea is to obtain, achieving high-order in-phase synchronization between
two (or more) clusters of oscillators, a square wave generator (cf. sec. 1.3.1).
The Fourier serie of a square wave being :

4 &1 nrT

— —sin(—— 3.2

> s (32)

n=135,. "

with L the half-period of the square wave. To approximate the square wave,
a population of oscillators separate in two clusters is used. This bi-clustered
population of oscillators with, in the first cluster an initial frequency wp; = 1
and, in the second, an initial frequency wge = 3, has a mean field equal to
a square wave (when the system is synchronized). In order to include the
term of normalization of the fourier serie (1), the first cluster of oscillators
contains three times more oscillators than the second cluster.

3.3.1 Performance measurement

To mesure the performance of the system, the mean field is compared to a
perfect square wave of amplitude =0.6 (this is the amplitude obtained with
the unperturbed system). The error in terms of least square is calculated and
its average and standard deviation along time are calculated too. Contrary
to the sinus wave generator, the population is synchronized when the average
(of error) is minimal. When five cluster were used, tests made during this
work demonstrate that a not perfect’s keep of frequency (for the cluster) is
not the principal source of error. Actually the most important constraint to
have a square wave is to have a sum of perfectly in-phase sinus. This is why
the stability of the two frequencies is not tested.

3.3.2 Results

Many results have been generated to understand the behaviour of a clustered
population of oscillators. At the beginning a population with five clusters
was used, giving a more precise square wave. But it was very hard to achieve
and maintained high-order synchronization between the high frequency clus-
ter (5,7,9), so it has been decided to use only two clusters to generate the
square wave. Fig. 3.24 shows different square wave obtained according to
the level of noise on initial condition. This is a simple manner to test the
property of synchronization of a system, the time of synchronization. Actu-
ally if the initial condition are to much different (cf. fig. 3.24 case b), the
mean field, after 400[sec] is still not a square wave. The robustness prop-
erties can increase if the coupling gets stronger. For the square wave only
robustness to thermal noise (cf. fig.3.26) and robustness to initial condition
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(cf. fig. 3.25), are presented. These two figures shows that, the properties
of robustness demonstrates for the sinus wave generator are not implicitely
extended to the square wave generator. Actually high-order sychronization
is harder to maintain.
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Figure 3.24: a) top-left plot : noise on initial condition variation = 0.8
strength of coupling = 1% 10~ b) top-right plot : noise on initial condition
variation = 1.3 strength of coupling = 1 * 102 c) bottom-left plot : noise
on initial condition = 1.3 strength of coupling = 1 % 10~! Increasing the

strength of coupling let the system to synchronize with a more random
initial conditions.
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Figure 3.25: Impact of coupling strength A € [1%1075; 6] in presence of noise
on initial conditions€ [1 * 1075; 6]. One can see that for too strong coupling
(i.e A > 1% 1071), the system is no more able to keep a perfect square
anf start loosing precision. Indeed, signal to noise ratio raises up, standard
deviation and average of error too. But just before, A = 1 * 107!, there is a
little enhancement of the robustness, and a noise on initial condition equal
to 1.3 is no more perturbative.
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Figure 3.26: Impact of coupling strength A € [1 * 1075;5] in presence of
thermal noise Py, € [1 % 1075;6]. Increasing the strength of coupling leads
to an enhancement of the robustness of the system. As one can see, for a
strength of coupling A < 5 * 1072 the maximum of thermal noise before the
beginning of system’s degradation takes place when Py, > 6 * 10~!. And
for a strength of coupling A = 5 x 10™! (strong coupling) the maximum is
now Py, = 1.
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3.4 Concluding words

3.4.1 About the project

All the properties observed, in the case of the sinus wave generator, about
the robustness are summarized in table 3.2. These properties show clearly
that, in all cases, a stronger coupling increases the robustness of the system.
It could be clear that increasing the strength of interactions between the
oscillators, leads to less freedom for this oscillators and so if an oscillator
is perturbed, it will return on the right way faster. But in the other way,
increasing the strength of coupling, come down to saying that a perturbation
is more diffused in all population and so has more general impact. This is
why this property was not obligatorily expectable. The distance of coupling
plays also an important role in the system. As observed in experiments,
in the case of fault of fabrication, component aging and breakdowns on
coupling, it is advised to use a population of coupled oscillators, coupled
more than just next neighbor. As hoped, a population do not need to have
a huge number of oscillators to be robust. In most case (fault of fabrication,
thermal noise, component aging), a large population (about 100 oscillators)
seems not to be more robust. In fact, the dimension of the population has
clearly a bigger effect on robustness. Actually, without changing the size of
the population, just passing to a two dimensional population, enhances the
robustness.

Globally, the results of the two experiments, sinus and square wave gen-
erator, tend to confirm the hypothesis : Synchronization has really intrinsic
properties of robustness. Indeed a population of oscillators proves to be ro-
bust to thermal noise, fabrication defaults and component aging, moreover
it presents an real potential against breakdowns. Actually, the degradation
is linear with the percentage of broken oscillators, which is a different from
a total degradation for one breakdown, like in usual systems (computer,
electronically circuits,...).

3.4.2 Future investigations

I have presented no results with the Van der Pol oscillator, but during the
work I have, despite everything, made several simulation with Van der Pol
oscillators. All these simulations tended to prove that the same general
behavior is expectable with this other kind of oscillators. So in a future
work it will be interesting to extend the results to population of Van der
Pol oscillators. An other subject to be interesting is the traveling waves.
The program implemented for this work allows to configure a population
able to create traveling waves. This work don’t speak about traveling waves
at all, but it was also an idea of application, like the sinus wave generator.
Traveling wave are well study in literature about complex systems, so in a
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to enhance the best configuration
robustness to

thermal noise strong coupling and about 40 oscillators
fault of fabrication strong coupling, more than 4 oscillators, a two
dimensional population and a big coupling distance

component aging strong coupling a two
dimensional population and a big coupling distance

variation of initial strong coupling
conditions
breakdowns on coupling strong coupling and a big coupling distance

Table 3.2: Table to summarize the observations made during this work about
the robustness of a coupled population of oscillators (this table do not take
into account the square wave generator). For each perturbations, an increase
of the system parameter implies either

future it will be interesting to extend this work to the study of traveling
waves.
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