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Abstract

Dynamical systems have become an increasingly interesting tool to engineer biolo-
gically inspired control systems. The properties that are especially interesting to study,
are the pattern generating capabilities of dynamical systems. There are two continuous
space models, that have been studied extensively for their ability to generate static and
dynamic pattern. Namely reaction diffusion systems and the neural field model. Both
classes have been used so far, for different tasks in robotics such as perceptive tasks
as well as embodied cognition and motor control. Both systems can be described in
the unifying language of dynamical systems, and can be understood as models of
activity pattern in continuous neural tissue. To our knowledge no attempt has been
made so far to combine those important classes to a generalized class of dynamical
systems for pattern formation. In this master thesis such a general class is introduced.
Furthermore PantaRhei has been developed for the simulation and visualization of
dynamical systems that are governed by this general class of integro-reaction-diffusion
equations. It provides a simple scripting language to generate, run and plot dynamical
systems of the class of integro-reaction-diffusion systems.
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"11.15 Restate my assumptions.

1. Mathematics is the language of nature.

2. Everything around us can be represented and
understood though numbers.

3. If you graph these numbers, patterns emerge.

Therefore: there are pattern everywhere in nature."

- Max Cohen in the film π

1 Introduction

When we see something, that repeats itself or a similar copy of itself, we conclude, that
there is a template, a form or a set of rules that by its repetition generates a pattern. Evol-
utionary processes can, given a set of rules, exhibit pattern. A pattern is a very universal
and abstract concept, that plays a vital role in many fields, such as psychology, linguistics
and computer science. In the field of Artificial Intelligence (AI) there is a increased interest
in pattern recognition as well as pattern formation. An "intelligent" agent must recognize
patterns in order to create a simplified inner representation of its environment, on the other
hand it must, according to the state of the environment and its inner state, generate an
adapted behavioral pattern [Schöner, 2000] [Braitenberg, 1984].

We can find pattern in a variety of spatial and temporal scales. Those pattern are in a
dynamical interplay and bring each other into being. Dynamical systems can be described
and understood on different levels of abstraction. For example does the dynamical inter-
play of ionic channels and membrane potentials in nerve cells produce spiking patterns
known as action potentials. On a more abstract level, when we’re not observing the mem-
brane potential, but rather an averaged spiking frequency, we can observe other patterns
on a larger scale. Let’s suppose we observe the averaged spiking frequency of motor neur-
ons. In this case we can surely see some effects on the muscular level and therefore see
limbs moving in a certain way, that we would also obviously also call a pattern. On each
level the behavioral pattern can be described using a unified language, the language of dy-
namical systems. Pattern on different levels of abstraction can be described and modeled
mathematically without knowledge of the details of an underlying dynamics that actually
exhibits the pattern. Cognitive scientist, for example, have described a mathematical model
that explains reaching pattern in infants, without referring in details to the neural system
generating the pattern [Esther Thelen, 2000].

Pattern as we can see them animal fur or shells, seem static, but they were generated
by a dynamic process. Other pattern that we observe, are inherently dynamic. The ocular
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Figure 1: Pattern in different environments

dominance stripes for example reflect a certain pattern in the connectivity of neurons in the
visual centers of the brain. Hallucination on the other hand have been described as activity
pattern in the visual cortex. While the pattern in connectivity of the cortex, is more or less
static, the processes on a smaller scale, that generate the pattern, reflect a dynamical
system, which is mainly driven by the input to the system. So we have in addition to static
pattern, dynamic pattern that express themselves in form of movement such as index
oscillations.

1.1 Why Study Biological Pattern Formation?

Pattern emerge on a macroscopic level, because elements interact with each other on
a microscopic level. This principle can be observed in ecology, physiology, neurobiology
and many other disciplines. The rules which describe the interaction between microscopic
elements define a dynamical system, able to produce certain pattern. Such dynamical
systems, capable of producing spatial pattern are described in the framework of biological
mathematics, mainly using partial differential equations.

There is an ongoing debate in the field of cognitive science, if dynamical systems can
even be viewed as an alternative to the computational paradigm. [Gelder, 1997] [?] Given
a set of attractors and repulsors in a dynamical systems, the temporal change of a sys-
tem can be described in a geometrical way, in terms of trajectories and bifurcations. The
change of variables in dynamical systems are continuous, that is a feature that is difficult
to describe in a computation paradigm. Dynamical systems have other interesting advant-
ages such as stability, flexibility, adaptivity and self-organization.

Another field in which dynamical system become increasingly important is the field of
robotics. The reason why dynamical systems seem so attractive for robotics, is that a be-
havioral pattern can be continuously meshed with lower level movement pattern used in
locomotion, because both can be described in the same language. Furthermore mech-
anisms of short term memory and long term memory can also be described in the same
way.

1.2 Basic Goals of this Master Thesis

In the first part of this work, there will be given a broad view of what makes a bio-inspired
approach so interesting in information processing or other control systems. Concepts
named in the introduction will be clarified and explicitly defined. Especially the framework
of dynamical systems will be formally defined.
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As the PantaRhei interpreter is designed to simulate dynamical systems, that can
be described in the framework of neural field and reaction-diffusion systems, those two
models will be further introduced and their importance in the field of biological pattern
formation will be shown.

In section 3 several contributions to the analysis and application of either reaction dif-
fusion systems as well as neural fields in the broader context of AI and robotics will be
listed.

In Section 4 the architecture of the resulting software is described in terms of its inter-
face, its data structures and algorithms. A Manual describing how PantaRhei can be
used will be found in Appendix B.
The results of example systems calculated with the interpreter are given and resulting
pattern are discussed in Section 5.
In section 6 and 7 some concluding remarks are given as well as a brief note is made on
how the software can be used and how it could be extended.
One can find two appendices at the end of the document. The first giving a complete
grammar of the PantaRhei language and a reference manual.
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2 Background

This section gives a general overview over the topic. In a first part, the properties of biolo-
gical systems are discussed as well as its potency to inspire engineers in the development
of performant and reliable systems. The main mathematical frameworks used to describe
and analyze such systems is the framework of dynamical systems. The framework will be
introduced and formally defined. A special kind of dynamical systems act upon a continu-
ous space rather then of discrete variables. It will be shown, that given the vast dimen-
sionality of neural systems, continuous field approaches are justified, in highly abstract
on activity levels in neural tissue. The two main classes of biologically inspired models
of pattern formation in continuous space are neural fields and reaction diffusion systems.
Both will be introduced and defined. A look on the conditions in which dynamic pattern can
occur in such systems is given in the end of this section.

2.1 Bio-Inspired Technology

The Center for Biomimetic and Natural Technologies, at University of Bath has created a
database in which they gather mechanical tricks, that nature has developed in the course
of time [uni, 2005]. Searching for "locomotion" in the data base yields several different
ways that creatures locomote, each probably very robust, adaptive and energy-efficient in
all different types of gaits. The performance of such systems of locomotion is due to an
evolutionary process, that eliminates the solutions that could not adapt to changes either in
the environment or in the physical situation of the agent. Neural mechanisms of information
processing, are managed by vast amounts of small, simple and possibly unreliable that
can self-organize and therefore are very stable and flexible. Therefore it is helpful to study
biological systems that can adapt and self-organize.

2.1.1 Stability

In some technical systems, it is favorable to be able to stay in a steady state, when confron-
ted with ever changing inputs from an perturbed environment. The pilot in a aircraft must
try to keep is aircraft stable despite turbulences. The dynamic system that represents the
myriads of neurons in the pilots brain are able to constantly adapt to outside forces in order
to keep a dynamic equilibrium. In robotics there is a prominent search for such adaptive
systems. Stability means also that even in presence of noise the behavioral variable must
be kept stable. Extended systems that include filtering ability or mechanisms to diffuse
incoming signals are of great use in such tasks. In the terminology of dynamical systems,
such stable states are called attractors. It therefore is interesting, to find systems, that have
at least one attractor, but it is important to note that multiple attractors can coexist.

2.1.2 Flexibility

Dynamical systems address the fundamental conflict, between stability and flexibility. Cer-
tain instabilities that are due to inputs to the system or an inherent random factor. A pattern
is flexible, when it is able to change its state, by temporally losing its stability, but this prop-
erty is only interesting, when a new fixpoint or cycle can be found, in which the system can
maintain stable. That presupposes the existence of multiple attractors in the system. Such
temporal instabilities that can occur in a non-linear system, where change of attractors
becomes possible are very interesting because they differentiate elementary behavioral
modules. Gait transition in locomotion is a good example where changes in the parameter
of the system generates new oscillatory patterns.
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2.1.3 Self-Organization

The very term "self-organization" seems to be introduced by the cybernetician W. Ross
Ashby. He argued that a dynamical system always tends to evolve towards a equilibrium
state. This process reduces the uncertainty about the state of the system, and therefor its
statistical entropy. In this process however pattern can emerge, as pattern can be viewed
as ordered structures. Self-organization from that point of view is the process of produce
a globally coherent "order" out of mutual interactions between elements, that have the
tendency to be unordered.

2.2 Dynamical Systems

It follows a more formal definition of the most important concepts of dynamical system
theory.

2.3 Definition

A general dynamical system is a triple D = (X,T, φ). X is the state space T the temporal
domain and φ is a state transition function for which must hold:

φ(x, 0) = x

and

φ(φ(x, t)s) = φ(x, s + t)

(1)

for all x ∈ X and s, t ∈ T . Now if T = N, the temporal domain equals the set of natural
numbers, the dynamical system is a discrete time dynamical system. When T = R

+, the
temporal domain is the set of non-negative real numbers, the dynamical system is called
a continuous time dynamical system. Often dynamical systems are defined by differential
equations. A differential equation

dx(t)/dt = F (x(t))

with

x(0) = x0

(2)

defines a dynamical system D = (X,R+, φ) when φ is the solution of (2)

φ(x, t) =
∫ t

0
F (x(s))ds

with

φ(x, 0) = x

(3)

In the case of a discrete time system, a map g : X 7→ X a discrete time system D =
(X,N, φ) where φ represents a iteration of g

φ(x, t) = gt(x) (4)
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2.4 Dynamics

To be able to talk about the behavior of a dynamical system one has to introduce some
properties. By fixing either the instance in time or the initial state of the system one can
more formally describe the behavior of a system.

trajectory We can define a map φx : T 7→ X by φx(t) = φ(x, t) for each possible state of
x. this map defines all of the path that a particular x would take given the transition function
φ. It defines how the system evolve given the initial state x.

flow The flow of a dynamic system is a map φt : X 7→ X given by φt(x) = φ(x, t). For
each moment in T this function yields the state in which the system would be given the
initial state x.

orbit For each initial state x one can compute all the states that the system goes through
for all instances t ∈ T . This set is called the orbit of x. It is formally defined by:

Γ(x) = {φx(t)|t ∈ T} (5)

2.4.1 Attractors

We’ll call a limit point p of a trajectory, a point that the trajectory reaches, when the se-
quence of time intervals reaches infinity: p = limt→∞ φx(t) as a trajectory can have several
limit points, we’ll call the set ω(x) the limit set of x. A limit set is called invariant if each
point in ω(x) stays in ω(x) as time advances. Now we can define an attractor as being a
closed invariant subset of the state space X.

stability If there is neighborhood U of the attractor A, so that for each point in U its
limit set is in A, then the attractor is called stable. Stable attractor are interesting because
even though the state of the dynamical system is perturbed by "outside forces", it has the
tendency to move back into an equilibrium state, which is invariant without these "outside
forces". If on the other hand the points in the neighborhood U have limit sets with empty
intersections with the attractor A, then the attractor is called unstable. There are situation,
when an attractor is neither stable nor unstable. In this situation the attractor A is a saddle.
There are several different categories of attractors, that will be described below.

fixed point A fixed point is a trajectory which does not change. That is, for all t ∈ T must
hold: φx(t) = x. We also say the the trajectory is stationary, or the dynamical system is
in its equilibrium or steady state. The condition, for x to be a fixed point is F (x) = 0 for a
continuous time system and g(x) = x in the case of a discrete time system.

limit cycle A trajectory can always return to the same point in R
n, more formally: φx(p) =

x with 0 < p < ∞. Then p is called the period of the trajectory of x. A limit cycle, then is a
periodic trajectory or it can be the limit set of another trajectory. limit cycles are especially
interesting, when the control system that an engineer wants to develop requires oscillatory
pattern.
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Figure 2: (a) the trajectory of several different initial states (p1 − p4) end up in a stable limit
cycle. Whereas in (b) we have the trajectories of points p1 to p4 all ending up in a fixed
point.

strange or chaotic attractors In several non-linear systems the distance of trajectory
φx and φy of two close initial states x and y respectively, grow exponentially in time t. We
then say that the system is sensitive to initial condition. These kind of system are hard to
predict and problably therefore called chaotic or strange attractor.

2.5 Bifurcation

A bifurcation is a change in the dynamic structure (number, positition and quality of attract-
ors). When a dynamical system depends on a set of parameters, then bifurcation can be
studied. To formally define bifurcations one must define the topological conjugancy : Two
dynamical Systems D = (X,T, φ) andD′ = (Y, T, ψ) are said to be topologically conjugate
if there is a continuous map h : X 7→ Y with a one-to-one correspondence between the
trajectories of D and D′. If in the parameter space there are to parameters µ1 and m1 in
the neighborhood of m0, for which the corresponding systems Dµ1

and Dµ2
are not topolo-

gically conjugate, then µ0 is a bifurcation point. At a bifurcation point the number, position
and/or the nature of attractors change.

2.6 Biological Justification for Continuous Space Models of neural systems

In this section the biological plausibility of the models proposed for biological pattern forma-
tion will be explained. Biological information systems such as a nervous systems, consists
of huge amount of simple processing units called neurons. Neural network theory has
provided us with tools to analyze the behavior of relatively small neural networks mainly to
investigate their capability to learn. However, it is important to understand that in natural
brain there is a high redundancy, what increases its reliability. 1 Some elements can dis-
integrate and their task must be compensated by other elements. This description is very
much in line with the idea of building models based on functional units that represent cell

1human brain:7× 10
10 to 8 × 10

10 with each having thousands of connections with other
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Figure 3: bifurcation point at µ = 1

assemblies consisting of large numbers of individual neurons [Hans A. Mallot, 1996] . This
idea, that significant concepts were actually coded not by neurons, but by groups of neur-
ons, goes even back to Donald Hebb. Even though there are no precise ideas about the
boundaries of such functions units, Edelmann speculates on the size of these populations,
when he states that several thousands of neuron were necessary to encode significant
stimulus categories in animals [Edelmann, 1987]. Averaging across many neurons allows
the use of deterministic equations even if the behavior of individual neurons include a
random component.

2.6.1 Randomness and Specificity in Neural Nets

In their work, Almud Schütz and Valentino Braitenberg [Valentino Braitenberg, 1990] pro-
pose three different categories of connectivity in neural systems, according to their degree
of randomness.
In figure 4 we see the three categories depicted.

• (a) Each neuron is labeled (by a chemical marker for example). There are specific
connections between individual neuron. How two layers or groups of neuron connect
is totally defined through the labels.

• (b) The network is organized in layers or groups where inter-layer connection are
statistically depended on the distance between nodes. There must be a notions of
neighborhood in such models, but it is assumed that neuron connect with each other
in a random manner on a microscopic level.

• (c) Here there is still distinction between different types of neuron, such as inhibitors
and activators, but the neurons connect randomly with one another.

Amari [Amari, 1972] and others have investigated in the behavior of random neural net-
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Figure 4: different categories of connectivity in the nervous system.

works. Networks that consist of one homogeneous class of neurons are proofed 2 to be
mono-stable or bistable 3. That is even the case, when the connections have positive and
negative weights. It has been furthermore shown, that random nets consisting of excitat-
ory and inhibitory classes of neurons, have not only mono-stable, bistable and tri-stable
solutions, but can also generate stable oscillations.

2.6.2 Continuous Space Models

In figure 2 we have a plots of a dynamical systems consisting of two variables. However,
there is no restriction to the dimensionality of the system. We have argued, that a nervous
system is a dynamical system of such high dimensionality, that it seems appropriate, to
look at this systems less as networks, but rather as homogeneous neural tissue and ana-
lyze them mathematically as fields. To do so we must give up the notion of individual
neurons, but rather look at the averaged activity level at some point in continuous space.
It should be clear, that learning on the level of individual neuron becomes impossible in
such a scheme, because we cannot model a situation as described in figure 4(a). But
we can average out over a situation depicted in figure 4(b) and 4(c) provided, we know
something about the statistics in the connectivity of the neural net that is to be modeled. In
the following section it will be shown, how reaction diffusion systems as well as the neural
field model are appropriate models for continuous space modeling of certain aspects of
neurodynamics.

2You can find a proof in [Amari, 1972]
3having one or two attractors
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2.7 The Reaction-Diffusion Model

In situation 4(c) we have two classes of neurons, that are randomly connected with each
other. There is no differentiation of layers or groups. In this situation the two classes are
homogeneously spread in a given volume. If we look at these elements as morphogens just
like Alan Turing described them in his landmark paper about pattern formation in chemical
systems, we can adopt this model for our purposes 4 [Turing, 1952]. In this scheme different
classes of neurons interact with each other. This interaction can be modeled by a local
reaction between to virtual layers, each associated with a class of neurons present in the
tissue. The activity of the neuron at some point in the domain take random walks through
the tissue, due to the fact, that they are randomly connected with each other. Such random
walks can be averaged out through a diffusion process. The general idea behind reaction
diffusion systems is that two interacting class of elements can destabilize the system,
whereas diffusion is seen as a more stabilizing smoothening process.

A reaction diffusion system takes the following general form:

∂n

∂t
= f(n) +D∇2n (6)

In equation (6) n(x, t) is the value that underlies the dynamics at position x at time t. f(n)
sets the rule for a reaction and D∇2n is the diffusion term parameterized by the diffusion
rate D. Furthermore initial condition, the state of n at t = 0, and boundary condition5 must
be specified.
For pattern generating system two species systems are used. In such a case the hole
system is governed by to interlinked partial differential equations, namely:

∂u
∂t

= fu(u, v) +Du∇
2u

∂v
∂t

= fv(u, v) +Dv∇
2v

(7)

In the last part of this section more details about special conditions under which pattern
can emerge in such systems will be given.

2.8 The Neural Field Model

Neural fields model situations like the one depicted in figure 4(b). The connection weight of
two neurons depend on a probability distribution parameterized by the distance between
them. Here the notion of neighborhood comes into play.

Amari was one of the first, to apply a dynamical systems approach to neural networks
theory. He introduced an important class of continuous networks as dynamic neural fields.
For his mathematical analysis Amari studied artificial neural networks arranged in "fields"
in the sense used in physics.

4

It is suggested, that a system of chemical substances, called morphogens reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern or
structure due to an instability of the homogeneous equilibrium, which is triggered off by random
disturbances[Turing, 1952]

5Because the specification of such a system include partial differential equations (∇2
=

∂
2
n

∂x2 )
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Amari’s model can be regarded as a spatially distributed population of model neurons
which are connected in a random manner. Amari’s equation describes the changes of the
membrane potential depending both on time t and position x of a given neuron, and so is
formulated as a differential equation:

τ
du(x, t)

dt
= −u(x, t) +

∫

w(x, x′)F (u(x′, t))dx′ + h+ I(x, t) (8)

Even if he treats the field like a continuous field, one can imagine the field as a neural
network with a finite number of nodes that are fully connected and where each node is
directly connected with itself. The following variables describe the system:

u(x, t) The membrane potential u of the neuron x at time t.

h The resting potential h is the same to each neuron in the field.
this is only interesting in relation with a threshold, it can as well be set to 0.

F (u(x, t)) The activation function F is a threshold function. Normally a
step function (see figure 9) a
limited linear function (see figure 10)
or a sigmoid function (see figure 11) is used.

I(x, t) The sensory inputs at time t for neuron x

w(x− x′) A weighting function that determines the strength of the connection as a function
of the relative positioning of the two neurons x and x′.

τ This is the length of a single time step, so it determines also the
number of time steps that pass until the system converges.

This equation describes the rule by which the potential of a neuron changes given a resting
potential, an input and several lateral inputs from surrounding neurons. The next potential
u(x, t+ τ) can be calculated by adding up

• A resting potential which is the same value for all neurons.

• The input which is the output of a neuron in a previous layer or directly from the
receptors.

• The lateral inputs that are calculated by the convolution term
∫

w(x, x′)F (u(x′, t))dx′.

The lateral inputs are of the main interest for a system, that also includes a reaction term,
because the inputs and the resting potential can be specified in a reaction term described
in section 2.7. As the reaction term acts only locally and a diffusion term only with it’s
nearest neighborhood, a spatial convolution introduces the possibility for long range lateral
interactions in the system.

2.9 Conditions for Dynamic Stability

In order to grow pattern in a medium underlying a dynamical system, we have to have
a mechanism, that searches an ordered equilibrium state. Such an equilibrium state can
only be established, where there is a balanced interplay between activating and inhibiting
forces.
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ACTIVATOR
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Figure 5: Dynamical equilibrium is found when activator and inhibitor balance each other
out

It is interesting to note that in both of the systems proposed for biological pattern formation
the self-activation is taking place more locally and inhibition takes place laterally on a
longer range. In reaction diffusion systems, that are stable, the inhibitor diffuses faster. For
neural fields interesting properties have been shown to occur in so-called lateral inhibition
type neural fields [Amari, 1977]. In this type of neural fields we have positive Gaussian
for the activator-activator connections and a negative Gaussian for the inhibitor-activator
connections. For just one layered systems the two Gaussian form a Mexican hat function.
This concept of lateral inhibition is found in real neural networks. Lateral inhibition leads to
a competitive behavior of the nerve cells where noisy input vectors converge to contrasted
output patterns. On the other hand, neurons in a certain neighborhood cooperate with each
other and might together being able to activate other neurons and so expand the region
of activation as a whole. Simple cooperation leads to smooth but uncontrasted output
because the region of activity is expanding without being stopped by inhibited neurons,
therefore cooperation must be combined with competition. Lateral inhibition stabilizes the
region because it keeps the activation level of the neurons inside the region from always
increasing, therefore it determines the edge of the region which is expanding. [Amari and
Arbib, 1977]
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3 State of the art

Both Models of biological pattern formation have been used extensively in robotics. Several
approaches are cited in this section. Despite an extensive bibliographic search, no project
has been found, that tried to combine the properties of dynamical systems, that rely on
neural fields and reaction diffusion systems. Every project in this listing has either used
neural fields or reaction diffusion systems. It is part of the goal of this master thesis to
introduce a new class of spatio-temporal pattern generating system, that include properties
of both classical approaches.

3.1 Analysis of Reaction Diffusion Systems

Even though Reaction diffusion systems were first described in the context of chemistry,
they have been also analyzed in the context of developmental biology, which investigate in
the formation of spatial pattern in the embryo and the differentiation of cells in that process
[Philip K. Maini, 1997].

Hans Meinhardt, from the University of Tübingen, also put forward significant analysis
of reaction diffusion system. He especially investigated in the conditions in which pattern
in reaction diffusion systems can occur. Namely local self-activation and lateral inhibition
[Hans Meinhardt, 2000].

Other authors where more interested in reaction diffusion system from a computational
perspective. Thomas Henderson argues, that reaction diffusion systems can be analyzed
from the point of view of their computational capabilities. He proposes that reactions diffu-
sion models are a more general computational models than Turing machines, and in fact
include them as much as they include models of recursive function theory [Henderson,
2001].

3.2 The Application of Reaction Diffusion Systems

Authors like Kirby and Conrad argue that the main drawback of conventionally program-
mable digital computers is their lack of efficiency, adaptability and evolvability. Therefore
they investigated in structurally intelligent system that can behave "intelligent" without the
explicit storing of symbols. Kirby and Conrad successfully applied their Turing-like reaction
diffusion system on a robot for simple navigation tasks. They called their control systems
"Turing’s other Machine" [K.G. Kirby, 1986].

In some laboratories so-called smart chemicals are used to build completely new
massively parallel bio-molecular computing engines, based on reaction diffusion principles.
These methods are especially interesting for difficult computational problems in image pro-
cessing, pattern recognition and path finding [Rees, 2003] [Rambidi, 2000].

As mentioned in section 1.1, the dynamics of reaction diffusion systems have become
increasingly important in robotics. The fact, that the dynamics of such systems can be
used to implement higher level tasks, such as navigation [Adamatzky et al., 2004], but
also central pattern generators, provided stable oscillating pattern emerge in the system.
Central pattern generator have become the main concept in the study of locomotion in
vertebrate [Ijspeert, 2002]. Therefore the paradigm of CGP’s is omnipresent in the engin-
eering of locomotion in biologically inspired robotics [Arena, 2000].
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3.3 Analysis of Neural Field Models

The main effort in the theoretical analysis of neural fields dynamics have been made by
Amari. He studied the behavior of one dimensional neural fields, and found, that three
different kind of interesting pattern can emerge in neural fields, that use connections with
laterally inhibiting weights. He showed the existence of mono-stable and bistable dynamics
as well as the possibility of oscillating pattern when the system consists of an activating
layer and a inhibitory layer [Amari, 1977].
Wellner and Schierwagen have shown in simulations, that similar pattern emerge in two
dimensional neural fields. At the same time they showed that cellular automata-like sim-
ulations like they have been also used in reaction diffusion system [Weimar, 1997] are
appropriate for the simulation of neural fields [Jörg Wellner, 1998].

3.4 The Application of Neural Field Models

It was Gregor Schöner that suggested to use a read out at some point in the neural field, to
directly control the servos of some robot. The combination of Amari’s neural field approach
and Schöner’s read out mechanism represents a elegant solution for robot navigation. It
follows brief and certainly incomplete description of projects that have either used the
neural field approach alone or in combination with Gregor Schöner read out mechanism.
Neural fields are often used in the context of perception, especially for visual systems.
Because the neural field approach is a continuous model, the number of nodes is virtually
unlimited. With a high resolution of input images in the input layer the number of nodes in
the network should not be restricted. With its capability to simulate short term memory the
neural field can be used for motion recognition or attention.

Motion recognition M. A. Giese of the MIT 6 has developed a neural field model for
motion pattern recognition. In his approach one neural pathway calculates the form orient-
ation from the input image, the other one calculates the optic flow of the motion orientation.
In both pathways neural fields are used for the recognition.[Giese, 2000]

Attention Volker Stephan and Horst Michael Gross from the University of Ilmenau have
investigated in modeling sequential visual attention with the help of columnar organized
neural fields. Their neural fields are 2-layered and model pyramid cells, chandelier cells
and globally acting inhibitory cells. Columnar organized means that the neurons at the
same location in different layers are associated in columns.

Robot control In the research group around Schöner himself, Axel Steinhage and Ioan-
nis Iossifidis have used dynamic neural field for robot control [Steinhage, 1997]. They used
neural fields for a service and assistance robot named CORA 7. The robot CORA is a ma-
nipulator with 8 degrees of Freedom (DOF) [Ioannis Iossifidis, 2001]. Schöners conception
of the dynamical behavioral variable which is the solution that generates the robots beha-
vior was extended in particular by Axel Steinhage to create more complex behavior such
as behavioral sequences, behavioral organization and learning [Steinhage and Bergener,
1998] [Steinhage, 2000].

6Massachusetts Institute of Technology
7CORA is an abbreviation for COoperative Robot Assistant.
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Learning by imitation Sorin Moga and Philippe Gaussier from the Groupe Neurocyber-
netique at the ENSEA 8 have used neural fields and the read out mechanism to treat visual
information in order to model imitation in robots [Gaussier et al., 1997].

8The ENSEA is the Ecole nationale superieure de l’electronique et de ses applications
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4 Implementation

As mentioned in section 3 what concerns simulators for pattern generating systems, there
are very few simulators that are optimized for either reaction diffusion systems or neural
fields models. Since such systems include spatial derivates as well as spatial integration.
Such systems are hard do implement on classical ODE simulating system. Furthermore
there is to our knowledge no simulator that would include both models. Therefore such
a tool is very useful for the exploration of Integro-Reaction-Diffusion systems. A simula-
tion tool for spatially extended dynamical systems should first and foremost dispose of an
interface through which a user can create and manipulate fields or layers on which the
corresponding differential equation can act upon. It should be possible to set the temporal
and spatial resolution with which the system should be simulated, and while the application
is iterating through the simulation, it should be possible to visualize or/and save results in
the form of raw data or in different plots and formats. In the following section some of the
issues concerning the implementation of PantaRhei are addressed.
The dynamical systems to be simulated are restricted to a form with which it is possible
to model neural field equations as well as reaction diffusion systems. We therefore need a
system that provides local interlayer connections, kernel convolution methods and diffusion
processes inside of each layer. Let n be the number of layers in such a system. Then a
Integro-Reaction-Diffusion system could be defined through the following general form:

∂ui(x, t)

∂t
= R(u1 . . . un, x, t) +Di

∂2ui

∂x2
+

∫

X

Ki(ui, x)Fi(ui)dx (9)

In equation (9) the sum of three terms define the evolution of the state u of our system.

1. The first term R(u1 . . . un, x, t) is a function or a an expression which computes a new
value, given all the values of the layers 1 to n at the position x at time t.

2. The second term is the diffusion term. This term includes diffusion in each layer,
parameterized by an individual diffusion rate Di for each layer i.

3. The last term is a convolution term, that has a kernel Ki for each layer and a activity
or threshold function Fi associated to layer i.

This form of a dynamical system is general enough to model dynamical neural fields,
reaction diffusions systems, as well as combinations of the two.
PantaRhei is a language with which one can specify a Integro-Reaction-Diffusion sys-
tem, setting parameters of the simulation, setting plotting and saving options and of course
starting a simulation for the number of time steps specified. There are three different in-
terface through which the user can send commands to the interpreter. In the following
sections information will be given about the implementation of the parser as well as the
grammar of PantaRhei .

4.1 The Interface

There are three different ways in which PantaRhei can read commands:

1. PantaRhei can be open in a interactive console.

2. A file can be given as command line option when invoking PantaRhei .

3. PantaRhei can be accessed through a pipe.

For convenience, the interactive console was implemented, using the
readline/history -Library, that provide auto-completion and a history.
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4.1.1 The Parser

The PantaRhei parser is implemented using the Boost Spirit Library (BSL) [spi, 2005].
After long and unsuccessful trials with YACC and LEX [yac, 2005] 9 Which concerns the
BSL, the host language and the target language are both C++. By means of meta-template
programming techniques [D. Abrahams, 2005] , a parser can be specified using a syntax
which is very similar to the Backus-Naur-Form, but can be written as C++ source code. In
figure the specification of a simple expression parser, using the BSL:

expr = term >> ’+’ >> term
| term >> ’-’ >> term
| term ;

term = factor >> ’*’ >> factor
| factor >> ’/’ >> factor
| factor ;

factor = integer
| ’(’ >> expr >> ’)’ ;

Figure 6: A simple expression parser using the Boost Spirit Library

Attached to the different terminal symbols are semantic actions, that are executed, when
the production parses. The whole grammar and the corresponding functions that serve
as semantic actions, are specified in the file Interpreter.h. This file is the heart of
the project, where everything is kept together. Because of the use of meta-templating
techniques, the code is hard to understand at first. Once grasped the structure of file, one
will surely appreciate the expressivity of the code.

4.1.2 Syntax

The entire grammar of PantaRhei is listed in Appendix B. In this section a quick over-
view is given on how the grammar is structured. The streams of token that PantaRhei
reads in, is divided in statements. A statement can either be a command (with or without
arguments), as well as a declaration or a definition. Any string, that is not a keyword can
be used to assign an object to it. Commands have the general form of:

<command> <argument 1> ... <argument n>

or to set a global variable, such as temporal or spatial resolution as well as plotting range
and style.

set <variable> = <value>

Possible commands are:
9LEX and YACC are hosts languages to specify parser. The can generate C and C++ Code. But unfor-

tunately Flex++ and Bison++, the GNU derivates to generate C++ classes where not maintained for a long
time.
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• help takes no arguments and simply displays a short manual.

• file takes 1 argument, which is a previously declared layer.

• plot takes 2 argument, which is either a previously declared layer or a previously
declared kernel and the format to which the plot should be saved. There are 3 differ-
ent possible formats: screen, jpeg and pstricks.

• run takes no argument and starts the simulation

• set takes 2 arguments, where the first is the variable name and the second is the
value to be set.

• show takes one argument which is either "system", to look at the system variables
or "symbols" to have a look at the variables that are already stored in the symbol
table.

• quit quits the application.

A declaration consists of the object type and an identifier:

<object type> <identifier>

Possible object types are:

• layer |LAYER

• kernel|KERNEL

• reaction|REACTION

• diffusion|DIFFUSION

• matrix | MATRIX

• function|FUNCTION

• constant|CONSTANT

An identifier can be any alpha-numerical string (including the underscore ("_")), that is not
a keyword. One can declare and define objects in the same line.

Definitions are of the general form:

<identifier> = <initializer>

The initializer is different for each object type, depending which information are
needed to define the particular object:

Constants Constants consists of a scalar double value.

<identifier> = <real>
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Functions For a Function, one can specify up to four arguments. We will see, that there
are no functions that require more. PantaRhei provides a set of basic functions that can
be parameterized and linked to a new identifier.

<identifier> = <base function>(<argument 1>, ... <argument n>)

With n ≤ 4 of course.

Matrix Matrices are read from a file and utilized as initial conditions for layers. Therefore
the initializer for a matrix is a file path, where directories a separated with a normal slash.
The file the path leads to, is a normal ASCII-file with space-separated values. Such files
can easily be exported from Matlab.

Diffusion A diffusion object just needs a float value (as diffusion rate) and therefore is
defined just like a constant, as described earlier.

Reaction A reaction term is defined as a simple expression consisting of multiplications,
divisions, addition and subtractions as well as the parenthesis to force priority of the differ-
ent subexpressions. Its formal specification can be looked up in the appendix A.

4.2 Data Structure

4.2.1 Symbols

As depicted in figure 7 every type of data structure is directly derived from a symbol class.
The whole dynamical system, that is to be simulated consists of an array of layers. Layers
are the central structure in PantaRhei . A layer consists of a kernel, a diffusion, a reaction
and a matrix, that will serve as initial condition. To specify a kernel, one must declare its
size, two functions and a boundary condition. The kind of functions, that can be assigned
are described in section ?? . A reaction term is an expression containing floats, constant
variables and layer variables. A diffusion term is simply a float or constant variable. All the
symbols are stored in a simple symbol table as described in section 4.2.2.

4.2.2 The Symbol Table

The symbol table is implemented with a map container of the Standard Template Library
(STL) [stl, 2005]. The symbol table simply maps a string with a pointer to a Symbol. During
the parsing of the symbol specification, the symbols are stored in the symbol table. While
initializing and running the simulation, symbols are retrieved from the symbol table, using
the associated identifier string. The symbol table must be visible in the kernel class as well
as in the layer class, because they contain links to other symbols.

4.2.3 Expressions

The expressions in the reaction term are fairly simple. While parsing a expression in the
input, a expression tree is build up, using a stack. Terminals in the tree, can either be float
values or variables. Where variables either point to a scalar constant or a layer specified in
the system. Operations link to two terminals with a basic operation such as multiplication,
division, addition and substraction. Brackets are used to force the priority of operations
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Constant
get_value()
set_value(double)
double value

Function
get_number_of_arguments()
get_number_of_free_arguments()
compute()
get_arguments()
get_pointer_d()
set_name(string)
put_argument(double)
functionptr function_d
vector<double> arguments
int nArguments
int free_arguments
symbtab_t variables

Kernel
set_size(int)
set_shape(pFunction)
set_activation(pFunction)
set_boundary_conditions(string)
get_boundary_conditions()
get_shape()
get_activation()
get_grid()
initialize()
int kernel_size
doubleArray data
pFunction shape
pFunction activation
string boundary_conditions

Layer
compute()
get_kernel()
get_reaction()
get_diffusion()
get_init_cond()
get_value_at(int,int)
get_data()
set_kernel(pKernel)
set_reaction(pReaction)
set_diffusion(pDiffusion)
set_init_cond(pMatrix)
set_should_plot(bool)
set_should_file(bool)
initialize()
diffuse()
react()
convolve()
pKernel kernel
pReaction reaction
pDiffusion diffusion
pMatrix init_cond
double dt
double dx
int layer_size
doubleArray data
doubleArray temp_data
int n
Index Io
Index Ii
int step
symtab_t variables

Reaction
get_expression()
pExpNode expression

Diffusion
get_rate()
set_rate(double)
double diffusion_rate

Matrix
get_filename()
get_data()
get_value_at(int,int)
get_length()
get_Index()
initialize()
doubleArray data
Index I
double temp_data[][]
int width
int height
const string filename

Symbol
get_name()
get_type()
set_name(string)
str()
string name
enum_type type

Figure 7: Class Diagramm
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OpNode: *

VNode: u OpNode: +

CNode: 5.0 VNode: v

Figure 8: Storage of the expression u(v + 5)

and therefore alter the structure of the expression tree. The way the expression will be
calculated at each point in the layer at each time step, is further described in section 4.3.1.

4.2.4 Kernels

The kernel consists of a matrix, which has a certain shape and a rule of activation. (See the
convolution term in section 4) Two functions are used to specify the kernel instance. The
function specifying the kernels shape is accessed, only in the initializing procedure. The
kernel is then stored in an array, so that values can be accessed directly instead of being
re-calculated at each step. The activation function on the other hand, must be calculated
for each point in the domain and for each time step.

Weighting Function The function describing the shape of the kernel is some density
function that describes the probability of an element to be connected with another element,
depending on their distance from one another. We suppose, that the neighborhood 10 of
an element is a circle, and is simply described by its diameter (the size of the kernel). We
further assume, that the probability of two elements making a connection, obeys some
form of normal distribution. That is why PantaRhei provides gaussians or mixture of
gaussians as weighting functions. When the program is started several different basic
functions are stored in the symbol table, that can be parameterized and utilized for the
specification of a kernel.

• We have a normal Gaussian, where we can only choose the variance of the kernel.

my_kernel_shape = norm_gaussian(<variance>);

• To be able to scale a gaussian or to define all weights as negative, one must use

10The area in which the element can make connections
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my_kernel_shape = scaled_gaussian(<scaling factor>, <variance>);

• To model a mixture out of negative and positive connections, there are two functions
that will form a mexican hat type of kernel. We have the standard mexican hat (see
figure 14)

my_kernel_shape = norm_mexican(<positive variance>,<negative variance>);

where the two variances for the negative and the positive gaussian are specified.

• For a scaled gaussian, the scaling factor for the positive and negative gaussian is to
be added.

my_kernel_shape = scaled_mexican( <positive scaling>,
<positive variance>,
<negative scaling>,
<negative variance>);

In all of these density functions the mean value is in the middle of the kernel.

Activation Function The activation function models the frequency rate of the action po-
tential given a certain membrane potential. The functions used, are typically threshold
functions, that have also an upper bound. In real neurons, a refractory state in which the
neuron is not capable to generate an action potential, creates an upper bound for the
neurons firing rate. Three different functions are possible,

step The simplest function is a simple step function, as depicted in figure 9. The step
function is defined by the function in equation (10)
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step(x)

Figure 9: The Step Function

f(x) =

{

l , if x− θ < 0
u , else

(10)
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Where u is the upper bound, l is the lower bound and θ is the threshold. A basic step
function is provided by the symbol table. The function is accessed through:

my_step_function = step(<threshold>, <lower bound>, <upper bound>);

linear To take into account, the degree to which the membrane potential deviates from
the resting potential, a limited linear function is provided. It is given by f(x) in equation (11)

f(x) =







l , if x− θl > 0
u , if x− θu > u
x , else

(11)

-0.5

0

0.5

1

1.5

-10 -5 0 5 10

linear(x)

Figure 10: The Limited Linear Function

To make an instantiation, one must provide a lower threshold and a upper threshold as
well as a lower bound and a upper bound.

my_step_function = limited_linear(<upper threshold>,
<lower threshold>,
<lower bound>,
<upper bound>);

sigmoid Physiologically the most plausible activation function, is a sigmoid function,
which values tend to either the upper or the lower bound. Also here, a basic function
exists and can be parameterized, by specifying a shift in x and y direction and a scaling in
x and y direction. This gives us the general equation:

y = s1

(

1

1 + e−xs2+s3

)

− s4 (12)

Where s1 is the scaling factor on the y axis, s2 is the scaling factor for the x axis, whereas
s3 and s4 shift the output value on the x and y axis respectively. An example of different
scaled and shifted sigmoid function is given in the figure 11:
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Figure 11: The Sigmoid Function

4.2.5 The Array Class

Because the simulations consist mainly of matrix calculations, it was appropriate to spend
some time choosing a fast and flexible array class. It is also desirably to have a class that
would support parallelization. The Library of choice was the A++/P++ array library [app,
2005] [Quinlan, 2000], that is use in the Overture framework [ove, 2005] for solving PDE’s.

4.3 Algorithms

When the simulation begins, for each time step each layer in the system must be cal-
culated. Each layer has all information needed to compute its next state. It does so in
computing for each point in the plane: Its reaction given the states of the other layers, its
diffusion given the state of its nearest neighbors and the associated diffusion rate and the
convolution term given the kernel and the neighborhood specified in the kernel instance.
The values are summed up and divided by the time step and added to the value at the
previous time step. It follows a description of how the three terms, that are calculated.

4.3.1 Calculating the Reaction Term

In section 4.2.3 the dynamic data structure in which expressions are stored is described.
An operation node links to two other nodes, that can be either a constant float value, a
variable node pointing to either a layer or scalar value or an another operation node. All
three node types inherit a virtual method get_value from its superclass ExpNode. When
this method is invoked in a operation node, then get_value invokes get_value in the
two nodes it links to. When a variable node or a float is reached the value can be read
immediately. Now the result is passed upwards and the operations are computed upon
them. This procedure is done for each point in the plane.

4.3.2 Calculating the Diffusion Term

The diffusion class contains just the diffusion rate as a float value. Diffusion is what makes
the resulting dynamical system be governed by a partial differential equation. The stability
of this calculation step highly depends on the resolution that is chosen for the layer. One
has to calculate twice the spatial derivate δ2

δx2 . Given a spatial steps ∆x = ∆y and a
temporal step ∆t we calculate the new value at point x in layer u as follows:
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3.5 + 7.5 = 11

3.5 5.0 + 2.5 = 7.5

5.0 2.5

get_value(u) get_value(+)

get_value(5.0) get_value(v)

Figure 12: computing 3.5(2.5 + 5)

u(x, y, t+ ∆t) =
D(u(x− ∆x, y, t) − 2u(x, y, t) + u(x+ ∆x, y, t)
+u(x, y − ∆y, t) − 2u(x, yt) + u(x, y + ∆y, t))

(13)

Because we have to calculate the spatial derivate, we have to choose boundary condi-
tion. For reaction diffusion systems normally two different kind of boundary conditions:
PantaRhei only supports the simple von Neumann zero flux boundary condition. That
means, that at the borders of each layer the spatial derivate is set to zero.

4.3.3 Calculating the Convolution Term

The convolution term is the most complex of the terms to be calculated. A convolution on
a 2 dimensional layer using a 2 dimensional kernel requires 4 nested for-loops. When we
have a m ×m Layer and a n × n kernel, the convolution over a layer has the complexity
O(n2m2). Therefore the kernel should be kept small. Let f(u) be a activation function as
described in section 4.3.3 and W = wij be the kernel. The discretized convolution at point
p = (x, y) for the next time step is then calculated as follows:

u(x, y, t+ ∆t) =
i=+r
∑

i=−r

j=+r
∑

j=−r

wijf(u(x+ i∆x, y + j∆y, t)) (14)

Also for convolution boundary conditions must be specified. PantaRhei
provides 4 different kind of boundary conditions for the convolution.
repeat: Repeat the last valid value.
avoid: Set all values outside the domain to zero.
wrap: Wrap the domain to a torus.
reflect: Let the index return inside the domain.

4.4 Plotting

As mentioned in the introduction, it is important for a simulation framework to have the abil-
ity do visualize the solutions obtained. In PantaRhei plotting is done, using a interface,
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to access the Gnuplot utility [gnu, 2005] through a pipe. The great advantage that Gnuplot
has, is that it support several different terminals. Gnuplot also allows many options for
the style of the plotting. Only a small set of options can be set through the PantaRhei
interface.

In general, only layers and kernels can be plotted. When a kernel has been
defined, the kernel shape can be plotted with the command: plot <identifier> to
<terminal>. Where <terminal> is the format in which the plot should be outputted.
Four values are possible for this option:

• screen: The plot is simply drawn to the screen. This is for observing the simulation
for tests.

• jpeg: This option is chosen when one wants to save images of the simulation, to
make movies and for HTML documents. For the generation of movies, transcode
has been of great use. A bash script is provided with the package, that makes creat-
ing movies out of jpeg images very easy.

• pstricks: Even nicer is the LATEX format using pstricks, because text and other
labels or symbols can be nicely added within the LATEX syntax, to render plots for
printed documents.

It is absolutely necessary, to specify in advance, the range in which the values of the
simulation are expected. Gnuplot must fix its range in order to not change the range with
each plot that is generated. That is why before plotting one must specify:

set upperbound = <integer>
set lowerbound = <integer>

As already mentioned in section 4.1.2 it is possible to choose between two different styles
of plotting: map and landscape. By choosing map the data will be plotted in a image,
by choosing landscape the data will be plotted as a surface. There is an example of a
map-plot in figure 15, and an example of a landscape-plot in figure 13.

4.5 Parallelization

Thanks to the A++/P++ array class it is possible to run the application in a network of
heterogeneous platforms. This is a feature that can be interesting when one has to make
simulations with high spatial resolution. For smaller simulations there is probably no gain in
time, but rather loss, due to the overhead created by the network communication protocols.
The interface that is used to run the application in parallel is the LAM/MPI [lam, 2005]
interface, which creates a virtual machine using several computers in the network.
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5 Results

In the following section the results of several simulations are demonstrated. The first ex-
ample is a very simple one layer reaction diffusion system. Then the properties of a one
layer neural field are demonstrated. Different properties of the fields dynamic, just like
predicted by Amari [Amari, 1977] and showed for the two dimensional case by Wellner
and Schierwagen [Jörg Wellner, 1998] can be reproduced using the PantaRhei environ-
ment. Furthermore, as diffusion is added, new properties arise. Another example drawn
from [Jörg Wellner, 1998], namely the system consisting of two layers that supports trav-
eling waves, we demonstrate how a slight change in the kernel shape can produce very
different behavior. A classic example for a two species reaction diffusion system is the
Belousov-Zhabotinskii reaction. A PantaRhei script is presented, simulating such a sys-
tem. Each of the subsections have the same ordered structure. The model is first presented
in a mathematical notation. Then the part of the PantaRhei code that defines the system
is listed before a series of plots show the development of the system. And in the end the
dynamics is discussed.

5.1 The Schloegl System

A Schloegl system is a very simple one species model of a reaction diffusion systems. It
is defined by the following partial differential equation:

∂n

∂t
= −k(x− p0)(x− p1)(x− p2) +D∇2n (15)

A complete specification of the system is coded in PantaRhei as follows:

matrix ic = init/random.init

constant h1 = 0.1
constant h2 = 0.5
constant h3 = 0.9
constant k = 1.5

Layer schloegl = {NULL, -k*(schloegl-h1)*(schloegl-h2)*(schloegl-h3), 0.001, ic}

We can see the development of that system in figure 15. Starting from uniform random
distribution, the diffusion term smoothes the distribution, before the reaction terms takes
over and let each point of domain tend to one of the stable fixed points. We have chosen
the following parameters for the system: k = 1.5, p0 = 0.1, p1 = 0.5 and p2 = 0.9. This
represents a symmetric case, where 0.5 is a unstable fixed point and 0.1 and 0.9 are stable
fixed points. It can be easily seen, that the system whould not change when each point
in the domain, was to be initialized with 0.5. but as soon as only one point is differs from
0.5 the neighborhood of that point whould change due to the diffusion process. Starting
from that initial deviation the whole domain whould move to one of the stable fixed points.
Because of is simplicity the schloegl system is a great system to demonstrate properties
of dynamical systems such as attractors and fixed points.
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t = 0 t = 1001 t = 3891

t = 7521 t = 10001 t = 35381

Figure 13: plots of the Schloegl system

5.2 One Layered Neural Field

The model of the one layered neural field is given through the following equation:

τ
du(x, t)

dt
= −u(x, t) +

∫

w(x, x′)F (u(x′, t))dx′ + h (16)

As kernel w we have a mexican hat plotted in figure 14.
A complete specification of the system is coded in PantaRhei as follows:

// initial conditions

matrix s = init/single_layer100.init

// constants

constant h = 0.0

// kernel:

Kernel w = {24,
scaled_mexican(0.1, 18, 0.1, 20),
step(0.1, 0, 0.1),
repeat}

// layers

Layer u = {w, -u+h, NULL, s}

set spatial resolution = 100

We can see the development of that system in figures 15 to , with slightly different para-
meters.
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Figure 14: A mexican hat like kernel used for neural fields with lateral inhibition

We can see that already such a simple system shows some interesting properties. In
figure 15 a large region of excitation in the upper right corner of the domain is not further
enhanced but has the tendency to even die out. Not so the the small point of excitation,
barely visible at the bottom left of the plot. The region around this small point of excitation
is strongly inhibited and therefore builds up a contrast to the excited region.

We have another situation in figure 16. The initial condition consists of several distributed
points of excitation. Through cooperation of points that in a certain proximity to each other
and competition between excited points, that are farther away, the field chooses some
regions and enhances their contrast. Interesting to note here, that not all region become
enhanced at the same time but some are kept suppressed for a while before they can build
a island of excitation. So there is not only a spatial differentiation, but also a temporary
one.

In the figures 17 and 18 diffusion is added to the system. In figure 17 we see, that
diffusion somehow increases the effect of competition in the domain, this time only the
regions can survive that can cooperate with each other. Isolated regions of excitation die
out in such an environment. But still, the system is able to find a stable state in which three
islands of activity remain. Not so in the situation plotted in figure 18. Here the diffusion rate
is to high and the system finds itself in a stable state, where all the excitations have died
out.

5.3 Two Layered Neural Field

As Amari [Amari, 1977] and Wellner / Schierwagen [Jörg Wellner, 1998] have shown,
neural fields support traveling waves, when the system consists of two layers. One is a
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t = 0 t = 500 t = 1000

t = 1500 t = 2000 t = 2500

Figure 15: plots of the one layered neural field

excitatory layer, governed by:

τ
δu1(x, t)

δt
= −u1(x) +

∫

w1(x, x
′)f(u1(x

′, t))dx′ −

∫

w2(x, x
′)f(u2(x

′, t))dx′ + h1 (17)

and a second inhibitory layer is governed by the differential equation:

τ
δu2(x, t)

δt
= −u2(x) + w3(x)f(u1(x, t)) + h2 (18)

Two kernels are in use w1 being only excitatory and w2 containing only inhibitory connec-
tions. Such a equation can be specified in PantaRhei as follows:

// constants
constant h1 = 0.0
constant h2 = 0.0

// kernel:
Kernel w1 = {12, scaled_gaussian(0.1, 7), step(0.1,0, 0.1), repeat}
Kernel w2 = {12, scaled_gaussian(0.1, 7), step(0.1,0, 0.1), repeat}
Kernel w3 = {3, constant_kernel(0.3), step(0.1, 0, 0.1), repeat}

// layers
Layer u1 = {w1, -u1-tmp_u2+h1, NULL, s1}
Layer u2 = {NULL, -u2+h2+tmp_u1, NULL, s2}
Layer tmp_u1 = {w3, NULL, NULL,z}
Layer tmp_u2 = {w2, NULL, NULL,z}

We can see the development of that system in figure 19 and 20.
In the initial condition producing such traveling waves, we have a small line of excitation
in both layers, but the regions are a little bit shifted. In the plots in figure 19 only one
wave front is generated and moving out of the the domain. After 250 time steps the field
is in its resting potential again. In figure 20 the kernel shape has slightly changed, but
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t = 0 t = 13 t = 25

t = 35 t = 57 t = 100

Figure 16: One layer neural field: through cooperation and competition in the domain, the
neural field chooses and contrasts the most significant excitations from the initial condi-
tions.

the behavior is totally different. In this case, the field will generate a never ending cycle of
traveling waves. Given the initial conditions described earlier, the waves are organized in
spirals.

5.4 A Belousov-Zhabotinskii Reaction

The Belousov-Zhabotinski reaction is a very well known reaction of chemicals, discovered
independently by Boris Belousov in the 50’s and A. M. Zhabotinskii in the early 60’s. The
reaction results in the establishment of a chemical oscillator. A petri dish in which a BZ-
reaction take place, is shown in figure 21. A oscillating waves has been simulated with
PantaRhei .

The Belousov-Zhabotinskii reaction is governed by two differential equation, the activator
being:

du

dt
= Du∇

2u+
u(1 − u) − sv u−q

u+q

ǫ
(19)

and the inhibitor is
dv

dt
= Dv∇

2 + u− v (20)

Such a equation can be specified in PantaRhei as follows:

matrix m1 = init/u.init
matrix m2 = init/v.init

Layer u = {NULL, (u*(1-u)- 3 * v * (u-0.002)/(u+0.002))/0.01, 0.5, m1}
Layer v = {NULL, u-v, 0.1, m2}
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t = 0 t = 10 t = 25

t = 50 t = 500 t = 1000

Figure 17: A simple Integro-Reaction-Diffusion system. A one layered neural field with low
diffusion rate.

We can see the development of that system in figure 22. Starting from an initial condition,
the system is going to self-organize to a traveling wave, which is going to split into a wave
with a corner, which is moving aout of the domain. The other wave, keeps stable and forms
a moving spiral.



5.4 A Belousov-Zhabotinskii Reaction 38

t = 0 t = 10 t = 25

t = 50 t = 75 t = 250

Figure 18: This neural field is very simular to the field plotted in figure 17 this field has got
a higher diffusion rate.

t = 0 t = 10 t = 50

t = 65 t = 100 t = 249

Figure 19: Plots of a two layered neural field, generating a single wave front, that is splitting.
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t = 0 t = 31 t = 61

t = 91 t = 121 t = 1001

Figure 20: Plots of a two layered neural field, generating a stable pattern of oscillating
traveling waves.

Figure 21: A petri dish with a Belousov-Zhabotinskii reaction.
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t = 0 t = 31 t = 61

t = 91 t = 121 t = 1001

t = 0 t = 31 t = 61

t = 91 t = 121 t = 1001

Figure 22: plots of the Belousov-Zhabotinskii reaction



6 Conclusions 41

6 Conclusions

It has been shown that the study of biological pattern formation is a important contribution
to the design and development of adaptive and selforganizing control systems. Especially
in the field of robotics, it may be interesting to unify flexible oscillater used in locomotion
with self-organization and learning for higher order tasks that include action perception
loops. Some models even suggest that embodied dynamics is a promising tool model an
agents behavior [Esther Thelen, 2000].

The beauty and power of the dynamical approach in contrast to a merely computational
approach based on a finite state automaton is that it has virtually an infinity of states and
that transitions between states are continuous and smooth. Subsystems like described
above could be coupled and continuously meshed. For example could the variable that de-
termines the gait (running, walking) in the dynamical system that generates the oscillation,
directly be read out in a dynamical system that controls a higher level behavioral variable
in target aquisition for example.

There are to main classes of dynamical system for which the emergence of dynamical
pattern has been shown and for which the conditions in which those system generate
pattern are more or less understood. The two systems, neural fields and reaction diffusion
systems have been described in section 2.8 and 2.7 respectively. In both systems, local
self-excitation and lateral inhibition seems to play a crucial role in the emergence of stable
pattern.

The theoretical analysis of dynamical system in extended media including spatial deriv-
ate are very hard. One must try to get a more intuitive feel of such systems. Search for
stable pattern in simulations by showing that the simulated system does not explode to in-
finity or collapse to zero is hard and time consuming. Furthermore the existence of several
stable attractors is to be shown in order to use the dynamics for interesting computational
tasks.

PantaRhei provides a simple language for the specification of dynamical systems re-
stricted to the class of reaction diffusion systems extended through a convolution term.
PantaRhei makes it possible, to test the behavior of such classes of dynamical systems
in a fast and simple manner. The user can instantly get a visualization of the dynamics and
save them for documentations.
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7 Outlook

As mentioned in section 6, PantaRhei is a tool, to be utilized for the analysis of pattern
generating dynamical systems, such study is important for engineers that search for self-
organizing control systems. Some authors even propose a new paradigm of amorphous
computation which relies on a myriad of simple and eventually unreliable elements, that in
forming pattern perform some kind of computations. For people interested in the engineer-
ing of such control systems the use and extension of PantaRhei can be interesting. In
the following section some points of future extension of the software will be discussed.

7.1 Using PantaRhei

A complete reference manual is given in appendix B. Here the overall procedure for work-
ing with PantaRhei is given.
As systems that are simulated using PantaRhei are very sensitive to the choice of para-
meters such as initial conditions, resulutions and parameters of the model it is crucial in
the begining to find a simple but working configuration. With "working" is meant, that the
pattern generated are stable and interesting.
In a second step, one has to seek to change parameters,in order to alter the scale of the
pattern or even the quality of the pattern, without loss of stability. This process can be
automated by invoking PantaRhei through a pipe through another process or by calling
it inside a shell script.
Once a interesting system is found and the range of parameters in which the system
can bifurcate to another stable attractor, PantaRhei provides nice visualizing feature to
prepare images for documents and demonstrations.

7.2 Extending PantaRhei

The simplest way to extend the possibilities of PantaRhei is to add new functions, that
can be chosen either to form the shape of the kernel or the activation function for the
convolution term. Functions can be declared and defined in the file UserFunction.h /
UserFunction.cc respectively. Then, they must be added to the symbol table during the
initialization of the symbol table.
Always when encountering a problem in the design and implementation of software, it is of-
ten unavoidable, for simplicity, to write a simpler and less general version. So PantaRhei
could be extended in adding more generality to the dimensionality and size of kernels and
layers. For some pattern to be generated it is sufficient to have just one dimension, but
then where is it to be read in by the layer that has the it in its expression? It would be
furthermore interesting to be able choose a different spatial (and maybe even temporal 11)
resolutions for each layer. One must be careful though, because more generality is likely
to require more computations. On the other hand, the ability to specify smaller layers could
remarkably reduce computational complexity.

11see [J. Buchli, ]
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statement

statements

command

general_declaration

general_definition

;

statement

quit

help

run
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system

symbol

initialize

file string

plot string to format
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temporal resolution = integer

spatial length = float
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timesteps = integer

saveintervals = integer

style = plotting_style

upperbound = integer

lowerbound = integer

command
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reaction string
= expression

reaction_declaration

diffusion string
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function string
= function

function_declaration

layer string
= layer

layer_declaration

kernel string
= kernel

kernel_declaration



A The Grammar of Pantha Rei 45

string =

layer

kernel

function

expression

float

file_path

general_definition

string
/string

file_path

{

string

kernel

null

,

string

expression

null

,

string

diffusion

null

,
string

file_path
}

layer

{
string

integer
, 

string

function
,

string

function
, boundary_conditions }

kernel

string ( argumentlist )

function

term

+term

–term

expression

factor

*factor

/factor

term



A The Grammar of Pantha Rei 46

string

float

( expression )

– string

factor

float
,float

argumentlist

avoid

repeat

reflect

wrap

boundary_conditions

map

landscape

plotting_style

screen

jpeg

pstricks

format



B Reference Manual 47

B Reference Manual

B.1 Requirements

PantaRhei was developed on Red Hat Linux distribution. To install and use PantaRhei
the A++/P++ Array library [app, 2005] must be installed. Furthermore the Gnuplot plotting
utility [gnu, 2005] must be installed with the pm3d extension [pm3, 2005].

B.2 Installing PantaRhei

A Makefile is provided with the package. Using the make-utility the complete source can
be compiled. After compiling the source, move the executable one folder up the hierarchy.
In your installation - folder you should then have a folder called data right beside the ex-
ecutable file. This is, where PantaRhei is storing the results and plots.

B.3 Starting PantaRhei

You can start PantaRhei with several options. You have to choose one of the following
arguments, that determine the interface through which PantaRhei is accessed:

-i Open PantaRhei in an interactive console.

-f <filename> Open PantaRhei using a initialization file. If the file does not end
with the command quit, PantaRhei will open the interactive
console, after parsing the file.

-p Access PantaRhei through a pipe.

Several optional arguments simply determine the level of verbosity with which PantaRhei
should run.

-d Run PantaRhei in debug mode. Every message is printed out.

-v Run PantaRhei in verbose mode. All Warnings and other
informations are printed.

-l <filename> Use this option, to tell PantaRhei where to print the logger
messages. If no file is given, a standard file is used.

B.4 Structure of a PantaRhei -file

Some examples files are provided with the package. They are quite intuitive, and can be
used as boilerplate-code. Normally it is convenient, to organize a script using the following
structure:

1. System properties:

set spatial length = <int>
set spatial resolution = <int>
set temporal length = <int>
set temporal resolution = <int>
set timesteps = <int>
set saveintervals = <int>
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2. Plotting properties:

set style = <style>
set upperbound = <int>
set lowerbound = <int>

3. define and declare objects:

Constant <identifier> = <float>
Function <identifier> = <identifier> (<float> ...)
Reaction <identifier> = <expression>
Diffusion <identifier> = <float>
Kernel <identifier> = {<size>, <function>, <function>, <boundary condition>}
Layer <identifier> = {<Kernel>,<Reaction>,<Diffusion>,<initial condition>}

4. Specify the structures you want to plot:

plot <identifier> to <format>

5. Often you want to display the system, initialize it and run the simulation:

initialize
show system
run
quit
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