
1

Computer Science Undergraduate Project
EPFL, Logic Systems Laboratory

June 21, 2003

Adam
A Modular Robot Evolution

and Simulation Tool

Author: Daniel Marbach
Supervisor: Prof. Auke Ijspeert

2

Contents

1 INTRODUCTION ...3

1.1 MODULAR ROBOTS..3
1.2 CO-EVOLUTION ..3
1.3 ROBOT SIMULATION ..4

2 STATE-OF-THE-ART..4

2.1 KARL SIMS BLOCK CREATURES ...4
2.2 MODULAR TRANSFORMER...4
2.3 POLYBOT..5
2.4 CONRO ...6
2.5 FRAMSTICKS...6

3 INTRODUCTION TO ADAM...7

3.1 MODULES ...7
3.2 THE ADAM SCRIPT ...7
3.3 STRUCTURES ..8
3.4 PARAMETERS ...11
3.5 BODY PARTS...12
3.6 FORMATTING SCRIPTS..12
3.7 EXAMPLE: A QUADRUPED ROBOT ...12

4 GENETIC ALGORITHM..14

4.1 PHENOTYPE SPACE...14
4.2 GENETIC ENCODING ..14
4.3 GENETIC OPERATORS...15
4.4 INITIALIZATION..16
4.5 SELECTION AND REPLACEMENT...16
4.6 ALGORITHM ...16

5 IMPLEMENTATION...17

5.1 INTERNAL REPRESENTATION OF ROBOTS ..17
5.2 CONTROL OF POWERED HINGES...17

6 RESULTS ...18

7 CONCLUSIONS..19

3

1 Introduction
This chapter is a broad overview of the three main
concepts of this work: Modular robotics, co-
evolutionary algorithms and robot simulation. Chap-
ter 2. focuses on the state-of-the-art in modular ro-
bot design and shows some current research
projects.

1.1 Modular Robots
Modular robots (figure 1) are built by connecting
modules together, much like a child’s Lego bricks.
Current research is done with robots built up from
tens to hundreds of modules. In the future one can
imagine robots with thousands, potentially millions of
modules.

Modular reconfigurable robots have further the
ability to change their structure by reconnecting the
modules in different ways [3]. They offer many in-
teresting qualities such as versatility, robustness and
low cost.

They are versatile due to the many different
ways modules can be connected together. Hundreds
of modules allow usually millions of configurations,
which can be applied to many diverse tasks. If the
robot is self-reconfigurable, he can even adapt
autonomously to different situations. Such a robot
could for example move through a small hole in a
‘snake configuration’ and then change its structure to
a four-legged creature to climb up a staircase.

Robustness comes from redundancy. Modular
systems typically use a small number of module
types but they are built of many modules. If some
modules are damaged, overall function degrades but
the system still works. Furthermore, self-repair
mechanisms can be implemented, for example by
adding spare modules that replace the faulty element
or by reconfiguring the robot around it.

Figure 1: Some possible configurations of modular
robots using simple hinge modules.

Potentially, the modules can be produced at a low
price because they are small, relatively simple and
used in large numbers. Another aspect is reuse:
Suppose a robot is working on an assembly line. If
the production process is changed, he can be recon-
figured to suit his new task with the same modules.

All this promises to make modular reconfiguring
robots very interesting for a wide range of tasks.
Versatility and reliability make them especially well
suited to harsh and unpredictable environments
found in applications such as urban search and res-
cue operations after natural catastrophes or terrorist
attacks, space exploration or battlefield reconnais-
sance.

1.2 Co-evolution
Traditionally, biologically inspired learning and evo-
lutionary algorithms (EAs) only affect (if they’re ap-
plied at all) the controller of the robot; the hardware
is still totally designed by humans. Aspects of mor-
phology like the shape, size, method of propulsion or
type and position of sensors are all decisions the en-
gineers make.

This unbalance in the use of EAs regarding mor-
phology and control probably has practical reasons:
Usually the controllers are designed for specific ro-
bots that already exist, engineering a completely new
robot type is too expensive. On the other hand
building and testing evolved hardware is much more
complicated than doing the same for software. While
it is possible to test an evolved controller immedi-
ately just by loading it onto the robot or even by do-
ing the EA online (on the robot itself), one first has
to build the evolved hardware to test it.

Nevertheless, if we have a look at nature, we see
co-evolution on all levels. There’s no such thing as a
body and a brain god, each one doing his job one
after the other. Evolution wouldn’t suddenly come up
with a leg and then slowly evolve the required sen-
sors and controller for it. The powerful solutions na-
ture came up with to allow creatures to survive in
their complex environments were found with coop-
erative, co-evolutionary processes. There is co-
evolution on several levels: The body is cooperatively
co-evolving with the sensors and the brain and
there’s co-evolution between a species and its envi-
ronment (for example predator-prey relationships).

There are many arguments if favor of body-brain
co-evolution: Biologically inspired engineering tech-
niques have proven to be effective and often result in
better solutions than traditional approaches. If na-
ture uses co-evolution, why shouldn’t we do the
same in robot engineering?

If the EA is applied only to the controller, it works
on a static fitness landscape. Even if it finds the op-
tima, the resulting robot is certainly not the best
possible solution for his task. Co-evolution results in
changing fitness landscapes over time and expands
the search space to find solutions that are more
powerful [4].

4

Modular robots are especially well suited to co-
evolution. The complexity of designing the structure
and programming the controller of the robot grows
exponentially with the number of used modules. It
might be impossible to configure and program a ro-
bot made up of thousands of modules by hand. Co-
evolutionary algorithms allow us to evolve morphol-
ogy and controllers simultaneously to suit a particu-
lar task.

1.3 Robot Simulation
Simulation plays an important role in evolutionary
robotics. In general, it is impossible to calculate the
fitness analytically. Therefore, the fitness has to be
measured either on the real robot (online) or in
simulation (offline).

The advantage of online EAs is the ‘what-you-
see-is-what-you-get’ effect. Suppose we want to
evolve a robot that is able to push a button. If a ro-
bot succeeds the EA could be stopped, naturally if
the robot were tested now, it would succeed again
provided the task is identical to the one in the EA.
The problem with online EAs is that they are ex-
tremely slow.

Using a simulation to measure fitness values is
much faster than testing the robots in the real world
each time but they might have problems closing the
‘reality gap’. A robot that perfectly accomplishes a
task in simulation can be completely useless in the
real world. To ensure a good transfer from simulation
to real world the body of the robot and the environ-
ment must be carefully (not accurately) reproduced.
There are a number of different approaches:

Adding noise from a uniform distribution centered
about zero to the precise values produced by analyti-
cal models is the most simple and common way to
facilitate transfer from simulation to real world. Un-
fortunately, the noise in the real world is not uniform
and robots still might have problems closing the re-
ality gap.

Figure 2: The famous block creatures of Karl Sims
competing over control of the box in the middle.

Sampling guarantees a much better transfer. Values
returned by the robot sensors for given objects and
by actuators at given speeds are measured and
stored in a look-up table. The simulation accesses
these values and adds some noise.

Jakobi proposed another approach: Minimal
simulations only try to model the base set features.
These are the characteristics of the interaction be-
tween robot and environment that are relevant for
the expected behavior. The remaining features are
considered implementation-specific and therefore are
simplified and varied randomly from one trial to the
next so that evolution does not rely on them.
Minimal simulations speed up significantly computing
time and transfer well to the real world but require
the programmer to know in advance, what the rele-
vant features will be that must be accurately mod-
eled [6].

2 State-of-the-art
2.1 Karl Sims block creatures
Karl Sims co-evolved body and brain of block crea-
tures (figure 2) quite similar to our Adam robots al-
ready in 1994. The morphology and the neural
systems for controlling their muscle forces are both
genetically determined, and the morphology and be-
havior can adapt to each other as they evolve si-
multaneously.

The genotypes are structured as directed graphs
of nodes and connections, and they can efficiently
but flexibly describe instructions for the development
of creatures’ bodies and control systems with re-
peating or recursive components (figure 3). When
simulated evolutions are performed with populations
of competing creatures, interesting and diverse
strategies and counter-strategies emerge [7] [4].

2.2 Modular Transformer
In 2002, the Distributed System Design Research
Group of the National Institute of Advanced Indus-
trial Science and Technology of Japan developed a
self-reconfigurable modular robot (Modular Trans-
former). It successfully realized multi-mode robotic
motion by changing its shape smoothly from a
crawler to a four-legged walking robot (figure 4).

The used modules are very similar to the Adam
hinge module. They consist of two semi-cylindrical
parts that are connected by a hinge. Each semi-
cylindrical part can rotate 180 degrees and has three
connection surfaces, which can connect to other
modules by magnetic force. In addition, electrodes
are placed on each connection surface for power
supply and communication with the host computer
[8].

5

Figure 3: The genotype of Karl Sims block crea-
tures is a directed graph.

Figure 4: The Modular Transformer of the AIST is
capable of changing its shape from a crawler to a
four-legged walking robot.

2.3 PolyBot
The Palo Alto Research Center (PARC), a subsidiary
of Xerox Corporation, developed PolyBot (figure 5).
The modules of the first generation were manually
screwed together, so they did not self-reconfigure.
The G1 modules showed the first instance of simple
reconfiguration for locomotion in 1997. The modules
of the second generation have the ability to auto-
matically attach and detach from each other making
them self-reconfigurable. PolyBot is the first robot to
demonstrate sequentially two topologically distinct
locomotion modes by self-reconfiguration. The third
generation of PolyBot is currently under construction.
The goal is to demonstrate reconfiguration and loco-
motion with large configurations. PARC uses two
module types: Hinges and connection modules. On
both sides of the hinge, only one module can be at-
tached. Connection modules are cubes; other mod-
ules can be fixed on all six faces.

PolyBot has shown versatility, by demonstrating
locomotion over a variety of terrain and manipulating
a variety of objects. It has successfully completed
obstacle courses including ramps, steps, pipes and
chicken wire [9].

Figure 5: The second generation of PolyBot is able
to self-reconfigure itself to spider, crawler, loop and
snake configurations.

6

2.4 CONRO
The CONRO Project of the USC Information Sciences
Institute has a goal of providing the Warfighter with
a miniature reconfigurable robot that can be used to
perform reconnaissance and search and identification
tasks in urban, seashore and other field environ-
ments. CONRO (figure 6) is homogenous (made from
identical modules) that can be programmed to alter
its topology in order to respond to environmental
challenges such as obstacles.

The base topology is simply connected, as in a
snake, but the system can reconfigure itself in order
to grow a set of legs or other specialized append-
ages. Each module consists of a CPU, some memory,
a battery, and a micro-motor plus a variety of other
sensors and functionality, including vision and wire-
less connection and docking sensors. The control
mechanism is distributed and hormone-based [10].

Figure 6: CONRO self-reconfiguring itself from a
snake to a two armed crawler configuration.

2.5 Framsticks
Framsticks is a three-dimensional life simulation
project. Both physical structures (“bodies”) and con-
trol systems (“brains”) of creatures are modeled. It
is possible to design various kinds of experiments,
including simple optimization (by evolutionary algo-
rithms), co-evolution, open-ended and spontaneous
evolution, distinct gene pools and populations, di-
verse genotype/phenotype mappings, and spe-
cies/ecosystems modeling.

Framsticks creatures are built of sticks. Modifi-
cators can be applied to change the properties of the
sticks. The genotype encodes all parameters of a
creature, including morphology, sensors and actua-
tors placement as well as control network. There are
gyroscope, touch and smell sensors. Actuators can
rotate or bend sticks.

Adam and Framsticks have very similar philoso-
phies, the main difference being that Adam focuses
on robotics while Framsticks focuses on artificial life.
Both systems use simple modules to construct crea-
tures and the genotype encodes both structure and
control. Currently there’s no notion of energy used in
Adam. Framsticks creatures consume energy and die
if they don’t find a ‘food’ source. A creature can also
kill another one and steal its energy [11].

Figure 7: A Framsticks creature with a sense of
touch (on the top) and a sense of equilibrium (glass-
like cell).

Figure 8: Framsticks user interface allows editing
the genotype and watch the structure and control
network change in real time.

7

3 Introduction to Adam
Adam is a system to evolve and simulate modular
robots. Currently the robots are not reconfigurable
and loop configurations like the one of PolyBot in fig-
ure 5 are not allowed. The simulation accurately
models rigid body dynamics (kinematics, gravity,
friction, collisions, etc) in a world that consists simply
of an infinite plane. In future versions of Adam re-
configuration and cycles will be supported and the
simulation might offer environments that are more
complex.

3.1 Modules
Adam robots are built with a number of different,
well-defined module types. Modules are like LEGO
blocks: Each type has certain qualities and positions
where it is possible to put another building stone.
Adam is built to make it easy to add new types of
modules. One could define modules that correspond
to real hardware and then actually build the evolved
robots but for now, we test the system with only a
single element type.

The hinge module (figure 9) consists of two
cubes, fixed together with a hinge. Other elements

Parameter Definition
Initial
angle

A hinge has an initial angle between
–150.0 and 150.0 degrees. High and
low stops as well as the oscillation of
the desired angle are all relative to
the initial angle.

Low stop The maximal negative deviation of the
hinge with respect to the initial angle.
The low stop must be set between 0.0
and 150.0 degrees.

High stop The maximal positive deviation of the
hinge with respect to the initial angle.
The high stop must be set between
0.0 and 150.0 degrees.

Powered A Boolean indicating if the hinge is
powered with a motor or rigid.

Maximal
force

The maximal force of the motor (only
relevant for powered hinges).

Amplitude
Frequency
Phase

Amplitude, frequency and phase of
the oscillation of the desired angle
(only relevant for powered hinges).

Elastic A Boolean indicating if the hinge is
elastic or not. Note that elasticity
does not have any effect on powered
hinges.

Spring The spring constant of an elastic
hinge.

Damping The damping constant of an elastic
hinge.

Table 1: Definition of hinge parameters

Figure 9: A rigid Adam hinge module with an initial
angle of 30 degrees in the simulation world.

can be attached at each one of the ten free faces.
The hinge can be rigid or powered by a motor. Each
powered hinge has a PD controller on its angle. Fur-
thermore, the joint can be elastic or not.

The desired angle a of a powered hinge is defined
with the amplitude A, frequency f and phase j of a
sinus oscillation:

a = A sin(2pft + j)

Naturally, if a gets outside the bounds set by the low
and high stop, the hinge can’t follow the desired tra-
jectory and will wait at the stop until a reenters the
interval. The spectrum of movements of the robots is
enriched by the option of setting the low and high
stops purposely smaller than the amplitude.

Unpowered hinges can be elastic. In this case,
the joint applies a spring force defined by the spring
and damping constants.
Refer to chapter 5 for more detailed information
about the implementation of these features.

3.2 The Adam script
The user can define his own Adam robots with a sim-
ple script. Furthermore, this allows evolved robots to
be saved in plain text format. They can then be in-
spected and edited by the user with the text editor of
his choice.

As mentioned above, Adam robots are built with
modules that can be fixed together like LEGO blocks .
Each module type defines the characteristics of the
element such as how it can be fixed with other mod-
ules. An Adam robot is valid if the same structure
could be built in the real world with corresponding
elements.

8

Figure 10: Syntactic grammar in EBNF

Figure 8 shows the syntactic grammar of the Adam
script in Extended Backus Naur Form (EBNF). Don’t
worry if you are not familiar with EBNF, just read the
next two sections and study table 2, which shows
basic structures with their corresponding script ex-
pressions. If you have Adam installed you can build
and simulate robots defined with scripts by typing:
Adam –open file

The first part of the Adam script defines the
structure of the robot (how the modules are con-
nected to each other). Each module in the structure
part must be given a unique identifier. The first letter
of the identifier indicates which type it is. Hinge
identifiers must always begin with a capital ‘H’. These
identifiers are used in the second part of the script to
set the parameters of the modules.

3.3 Structures
In this section I will explain how Adam structures can
be defined using the script. As mentioned above,
scripts must have a structure as well as a parameter
section. The examples in this section represent only
the structure expression as defined in the grammar.
If you want to build them with Adam, begin your file
with the keyword ‘STRUCTURE’ followed by such an
expression. The structure expression must be fol-
lowed by the keyword ‘PARAMETERS’. As you can see
in the grammar, the section following this keyword
can be left empty. In that case, all the modules will
have default parameter values.

The most natural way for humans to write or
read a description of a configuration consisting of
many elements is a sequential building plan. Such a
building plan is usually structured as a series of pic-
tures showing which elements have to be added at
which position to the part that has already been
built. The Adam script follows this philosophy with
the only difference that we can’t use pictures and
that always only one new module is added to the
structure at a time.

Figure 11: The hinge module has 10 positions
where another module can be attached. Each posi-
tion can be identified with respect to the local coordi-
nate system of the hinge by its number as indicated
in the figure.

P0: First cube back face
P1: First cube top face
P2: First cube right face
P3: First cube bottom face
P4: First cube left face
P5: Second cube top face
P6: Second cube right face
P7: Second cube bottom face
P8: Second cube left face
P9: Second cube front face

script = { ident '{' bodypart '}' }
 [headOrient] bodypart
headOrient = 'ORIENTATION'
 '(' real ',' real ',' real ',' real ')'
bodypart = 'STRUCTURE' structure
 'PARAMETERS' parameters

structure = ([pos] [orient] module
 { pos limb
 | [pos] [orient] module })
 | [pos] [orient] ident
limb = ‘(‘ structure ‘)’
module = hinge
hinge = 'H' 'identifier'
orient = 'N' | 'E' | 'S' | 'W'
pos = ‘P0’ | ‘P1’ | ‘P2’ | ‘P3’ | ‘P4’
 | ‘P5’ | ‘P6’ | ‘P7’ | ‘P8’ | ‘P9’

parameters = { module function }
function = '.' 'identifier' '(' real arguments ')'
arguments = [',' 'real']

real is a real valued number with the usual syntax
(scientific notation is supported). There's one re-
striction: The number shouldn’t start with a point,
so write '0.4' instead of '.4'

identifier is a string with lower or uppercase let-
ters. Underscores are allowed as well.

Quick reminder of grammars and EBNF:

A syntactic (non-contextual) grammar is defined
by a set of terminal and non-terminal symbols, a
set of productions and an initial symbol. It defines
a language as the set of finite sequences of termi-
nal symbols that can be derived from the initial
symbol by successively applying productions.
Repetitions can be expressed with {x} (zero or
multiple occurrences of x), options with [x] (zero
or one occurrence of x).

P1
P4

P5 P8

P9

P0

P2

P6
P3

P7

9

The key to understanding structure expressions and
the rest of this section is the difference between ‘at-
tached AT’, ‘attached TO’ and ‘attached WITH’. Sup-
pose that in our building plan, a new hinge Hb has to
be attached to another hinge Ha that is already part
of the unfinished structure. We say that Hb is at-
tached TO Ha WITH a certain position and orienta-
tion. With respect to Ha, we could say that Hb was
attached AT a certain position. The first element of
the body expression is the head of the robot. It is the
only module that is not attached TO another one.
Naturally, other elements can be attached AT various
positions. All other elements are attached TO one
and only one other module WITH a specific position.

I will now explain how a new hinge Hb can be
attached to another hinge Ha. In the following exam-
ples, Ha is always the head of the robot. Naturally,
the same syntax is used when attaching a hinge to
an arbitrary module of a partially built robot. Build
the examples with Adam if you have the possibility.
In table 2 you can find a more exhaustive list of sim-
ple expressions and their corresponding phenotype.
In this section, colors have no specific meaning. They
are only used to distinguish the modules better.

The simplest way to attach the two hinges to-
gether is in a straight row. ‘Ha Hb’ tells Adam to at-
tach Hb to Ha using default positions. Hb can be
attached at any free position of Ha. This is done by
specifying the position and putting the new module
in parenthesis. ‘Ha P5 (Hb)’ attaches Hb at the top
face of the second cube (position 5).

Ha Hb Ha P5 (Hb)

The part within the parenthesis is called a limb of Ha.
In the previous example, the limb consists of only
one module but in general, it can be any legal body
expression. You can attach as many limbs at a hinge
as there are free positions. The example on the left
attaches two limbs at the downside of the first and
second cube of Ha (positions 3 and 7) and a third
hinge at the default position. On the right, the sec-
ond limb is attached at Hd instead of Ha.

Ha P3(Hb) P7(Hc) Hd Ha P3(Hb) Hd P7(Hc)

Now that we have seen how to attach limbs at vari-
ous positions of a module, let’s see how a hinge can
be attached with other positions than the default
one. ‘Ha P4 Hb’ attaches Hb with the left side of the
first cube (position 4) to Ha. Naturally, it is still pos-
sible to specify where Hb should be attached to Ha.
The example below on the right attaches Hb with po-
sition 4 to position 5 of Ha. Note that the position
before the parenthesis is a face of Ha while the posi-
tion within the parenthesis is one of Hb.

Ha P4 Hb Ha P5 (P4 Hb)

Finally, once the faces that will be fixed together are
specified, there’s the possibility to set four different
orientations for the second hinge (N, E, S and W for
North, East, West and South respectively). Let’s
modify the previous examples to change the orienta-
tion of Hb from default to East. The hinges are still
attached together with the same positions, but Hb
has been rotated 90 degrees around an axis perpen-
dicular to the faces of contact.

Ha P4 E Hb Ha P5 (P4 E Hb)

I mentioned default positions several times already.
Every Adam module type has to define a default po-
sition to attach limbs as well as a default position
and orientation with which it gets attached to other
modules. This makes the scripts shorter and easier
to read.

For hinges, these default values are the front
face of the second cube (position 9) for limbs to be
attached at and the back face of the first cube (posi-
tion 0) with orientation ‘north’ to attach it to another
element. This allows us to put two hinges in a
straight row, the most natural and often used con-
figuration, with the simple expression ‘Ha Hb’. The
same structure can also be built by explicitly naming
the positions and orientation:

Ha Hb
= Ha P9 (Hb)
= Ha P0 Hb
= Ha N Hb
= Ha P9 (P0 N Hb)

10

Ha Hb = Ha P9(Hb)

Attach Hb at the default
position, which is the
front face of the second
cube of Ha.

Ha P5(Hb)

Attach Hb at the top
face of the second cube
of Ha.

Ha P6(Hb)

Attach Hb at the right
side of the second cube
of Ha.

Ha P7(Hb)

Attach Hb at the bot-
tom face of the second
cube of Ha. This picture
is the first frame of the
simulation, naturally
this structure will fall

 over immediately.

Ha P8(Hb)

Attach Hb at the left
side of the second cube
of Ha.

Table 2: The five ways to attach a hinge AT the
second cube of another hinge. Use positions zero to
four to attach it to the first cube.

Hb has been given an initial angle of 30 degrees
to show its orientation better. The various positions
are obtained by rotating Hb in the default position
(first example) plus or minus 90 degrees around the
x-, y- or z-axis.

Ha Hb = Ha P0 Hb

Attach Hb with the de-
fault position, which is
the back face of its first
cube.

Ha P1 Hb

Attach Hb with the top
face of its first cube.

Ha P2 Hb

Attach Hb with the right
side of its first cube.

Ha P3 Hb

Attach Hb with the bot-
tom face of its first
cube. Naturally this
structure falls over im-
mediately after simula-
tion starts.

Ha P4 Hb

Attach Hb with the left
side of its first cube. If
the initial angle of Hb is
set to 30 degrees, this
structure is invalid be-
cause of self-collision

 (See chapter X).

Table 3: The five ways to attach Hb WITH different
positions of its first cube to Ha. Use positions five to
nine to attach Hb with its second cube to Ha.

11

Ha Hb = Ha N Hb

Attach Hb with the de-
fault orientation North.
The z-axis of Hb is fac-
ing up.

Ha E Hb

Attach Hb with orienta-
tion East. The z-axis of
Hb is now directed to-
wards the viewer.

Ha S Hb

Attach Hb with orienta-
tion South. The z-axis
of Hb is now facing
down.

Ha W Hb

Attach Hb with orienta-
tion West. The z-axis of
Hb is now directed away
from the viewer.

Table 4: Two hinges can be fixed together with two
specific faces in four ways. Orientations are labeled
North, East, South and West. They correspond to
rotations of the default orientation North by 90, 180
and 270 degrees respectively around the x-axis of
the second hinge.

3.4 Parameters
Now that we have seen how the structure of a
modular robot can be defined, let’s see how the pa-
rameters of the modules can be set. Remember that
each module has been given a unique identifier in
the structure part. These identifiers can now be used
to set the parameters of the module with the follow-
ing notation:

identifier.function(arguments)

All hinge parameter-setting functions currently avail-
able are defined in Table 5. The arguments are real
numbers separated with commas. You can use sci-
entific notation, but you shouldn’t start the numbers
with a point (write ‘0.5’ instead of ‘.5’)

Parameters of various modules can be set in any or-
der. You can, for example, group all setters for a
specific module together or order them by function
type. The parameter setting functions can be sepa-
rated by spaces, but I recommend using a new line
for each one.

For internal reasons (see chapter X) it is not pos-
sible for a powered hinge to be elastic. If a hinge is
set to be powered and elastic at the same time, the
elasticity and damping constant will be ignored and
the hinge behaves exactly the same way as if it were
just powered and not elastic.

It is only necessary to set parameters that are
different from the default value. Hinges with default
parameters are rigid and have an initial angle of zero
degrees. It is also possible to redefine the default
parameter values using the same syntax as for set-
ting parameters of a specific module. Instead of the
identifier of a module, the indicator of the module
type is used. For hinges, this is a capital ‘H’. For ex-
ample, you could set all hinges except Ha to be elas-
tic with a spring constant of 10 and a damping
constant of 1 like this:

PARAMETERS
H.soft(true, 10, 1)
Ha.soft(false, 0, 0)

As mentioned above, the values of the elasticity and
damping constant of a rigid hinge do not have any
effect. In the previous example they were set to 0,
we might as well have chosen 1 or any other value.

initAngle(a)

Sets the initial angle of the hinge to a.

powered(isPowered, loStop, hiStop, Fmax, A, f, j)

Sets all parameters that are relevant for powered
hinges. isPowered indicates if the hinge has a
motor or not. If this argument is equal false, the
values of the other arguments have no influence
on the behavior of the hinge. LoStop and hiStop
are the low and high stops of the hinge, Fmax is
the maximal force of the motor and A, f and j are
the amplitude, frequency and phase of the desired
oscillation.

soft(isSoft, elast, damp)

Sets all parameters that are relevant for elastic
hinges. isElastic determines if the hinge will be
rigid or elastic, elast and damp are the elasticity
and the damping constant of the hinge.

Table 5: The three parameter-setting functions of
the hinge module. Refer to chapter 3.1 for exact
definitions of all hinge parameters.

12

However, currently it is mandatory to specify all ar-
guments. Opening a script with the following pa-
rameter section results in an error:

PARAMETERS
H.soft(true, 10, 1)
Ha.soft(false) // ILLEGAL

The parser prints out error messages if the syntax of
the script is not correct. Usually the error message
indicates what was expected and what was found.
Naturally, this holds for the whole script and not just
for the parameter section. If you open a file with the
previous illegal statement, the following error mes-
sage will be displayed in the terminal:

Expected ',' found ')'

Currently the parser does not count lines and words
and can’t indicate exactly where the error occurred.
If you don’t find it, try again with the –debug option.
Now you can see how far the parser got and where
the error is:

PARAMETERS
--> parameters
 H.soft(true, 10, 1)
 Ha.soft(true
--> Expected ',' found ')'

3.5 Body parts
The Adam script offers the possibility to define body
parts that can be reused several times in the main
structure. For example, you can define a leg or an
arm at the beginning of the script and then attach
these predefined structures at different positions with
different orientations to the robot. The syntax is the
same as for the main bodypart. To declare a body-
part, start with its identifier, open a left brace fol-
lowed by the structure and parameter section as
described in the previous chapters and finish with a
right brace:

ident {
 STRUCTURE
 …
 PARAMETERS
 …
}

The bodypart can now be attached with various posi-
tions and orientations using the same syntax as if it
were a simple module. Remember that what you’re
actually doing is attaching the head of the bodypart,
which is a hinge. Default values can therefore be
used as described in the previous chapters:

// attach with default position and orientation
Ha P1(ident)
// attach with position 3 and orientation East
Ha P1(P3 E ident)

3.6 Formatting scripts
As in every script or programming language, it is
possible with the Adam script to write the same thing
in many different ways. Some of them are easy to
read, others not.

The Adam parser ignores white spaces, tabs and
new lines; you are therefore free to format your
scripts as you want. In this chapter, I propose one
good way to do it. This is also, how the examples in
the following chapters are formatted and how Adam
saves evolved robots to text files. Formatting is cru-
cial for the structure part, it’s not so important for
the rest of the script. The parameter section is for-
matted, quite naturally by beginning a new line for
every parameter setting function. Formatting of the
structural part can be done with the following three
rules:

1. Begin a new line for every limb.
2. Every time you begin a new line, indent by i.

At the beginning, i is zero.
3. Increase i by one for the limbs of a module.

Remember that only structures in parenthesis are
considered limbs. Just go on reading the following
chapters if this seems somewhatcryptic and you will
get used to writing nice scripts even without knowing
these rules by heart. The advantage of writing
structure expressions like this is that one immedi-
ately sees where a limb begins, ends and where it is
fixed. Furthermore, the tree structure of the robot
(see chapter 4.2) is quite visible.

3.7 Example: A quadruped robot
We will now apply the learned concepts to build a
walking quadruped robot. Unfortunately, Adam can’t
yet show the robot growing as the script is written
like Framsticks. Therefore, we always have to write a
part of the script, save it to a file and then build it
with Adam to check if the structure is correct. Let’s
begin with the body of the robot, a rectangle of rigid
hinges (figure 12). Since Adam doesn’t yet support
cycles, the first and the last hinge can’t be fixed to-
gether.

Let’s now attach a leg at the right face of the first
cube of H_body0 (figure 13). Three more legs could
be added in the same way but it is much nicer to de-
fine the leg as a modular bodypart and then attach it
four times at the desired positions (figure 14).

If you simulate this robot, you will see that it
does push-ups and doesn’t walk because all four
powered hinges of the legs have the same oscillation.
In future versions of Adam it will be possible to seed
populations and to evolve only certain parameters of
the robots while leaving the others untouched (see
chapter X). We could now seed a population with this
robot and hope that evolution will somehow take ad-
vantage of it, or we could evolve only the phases of
the powered hinges to get this specific structure to
walk.

13

Figure 12: This rectangle of rigid hinges will be the
body of the quadruped robot. Note that Hbody0 and
Hbody5 are not fixed together.

Figure 13: A leg has been attached at the right
face of the first cube of Hbody0. The ‘foot’ is set to
be elastic. Note that usually legs have two powered
joints, for simplicity we didn’t add a knee to this ro-
bot.

Figure 14: The final script for the quadruped robot.

If you want to test your Adam scripting skills, finish
the script of figure 13 by adding the three resting
legs explicitly. Try to get the robot to walk. Set the
phase of the first leg to zero and play around with
the other three phases. Can you get it to jump by
also modifying the other parameters of the powered
hinges?

///////////////////////////////////
// A simple quadruped robot
///////////////////////////////////

//////////// LEG /////////////////
leg {
 STRUCTURE
 H_leg H_foot

 PARAMETERS
 // default for hinges of the leg
 H.initAngle(-60)

 H_leg.powered(true, -60, 60, 100, 60, 0.2, 0)
 H_foot.soft(true, 50, 0)
}

/////////// BODY ////////////////
STRUCTURE

H_body0
 P2(E leg)
H_body1 P4 H_body2
 P0(W leg)
P4 H_body3
 P2(E leg)
H_body4 P4 H_body5
 P0(W leg)

PARAMETERS

STRUCTURE STRUCTURE
Hbody0 Hbody1 Hbody0 Hbody1
P4 Hbody2 P4 Hbody2 P4 Hbody3
PARAMETERS Hbody4 P4 Hbody5

PARAMETERS

STRUCTURE

H_body0
 P2(E H_leg H_foot)
H_body1 P4 H_body2 P4 H_body3 H_body4
P4 H_body5

PARAMETERS

H_leg.initAngle(-60)
H_foot.initAngle(-60)

H_leg.powered(true, -60, 60, 100, 60, 0.2, 0)
H_foot.soft(true, 50, 0)

14

4 Genetic algorithm
This chapter describes the genetic algorithm (GA)
that Adam uses to co-evolve morphology and control
of robots. The primary goal of this project is the
simulator of modular robots and not the evolution of
a specific robot type. Consequently, the GA is rather
primitive and probably not optimal, even though it
has proved to evolve powerful solutions (see chapter
X). Some of its basic parameters like the population
size or the mutation rate, can be changed but a lot of
other choices, for example how individuals are se-
lected for reproduction and deletion, are hard coded
and need further testing to know if they really per-
form well.

The implementation of this first version of a GA
for Adam has two purposes. It should be the starting
point for a more in depth analysis of co-evolution of
modular, potentially even self-reconfigurable, robots.
The second purpose is to test the stability of the
simulation environment.

4.1 Phenotype space
The phenotype space of Adam robots is huge. Sup-
pose you have a hinge Ha and you want to attach a
second hinge Hb to it. If the two hinges are not yet
attached to any other modules, there are a priori 400
ways to fix them together. Hb can be attached on
any of the 10 free faces of Ha with any of its 10
faces, plus there are 4 possible ways of attaching
two hinges together with two specific faces. A third
hinge could be attached to any of the 18 free faces
and this can be done, as before, in 10*4 different
ways. Theoretically, only three hinges therefore offer
already 1’120 different structures. This is only an es-
timate and not the exact number of structural con-
figurations because some of them might be
functionally identical, just built another way and it
also has to be considered if the space that the at-
tached hinges occupy is free. Nevertheless, this gives
us an idea of the vast phenotype space we are deal-
ing with. Note that we only considered how the
hinges could be attached together; the parameters of
the different modules are also part of the search
space.

The precise definition of the Adam phenotype
space relies on the following hypothesis:

1. There’s a finite number N of module types
used (usually few).

2. There are an infinite number of modules
available of each type.

3. There’s infinite space available to build the
robot (there are no limitations on size and
form of the robot)

The Adam phenotype space consists of all robots
in the simulated world that could be built theo-
retically in the real world with corresponding
hardware modules under hypothesis 1-3.

Note that phenotypes are simulated robots. The pre-
vious definition allows robots to have cycles but
modules must not intersect because such a structure
could not be built in the real world (it works perfectly
well in simulation). For pratical reasons, , the second
hypothesis can obviously not hold because the
memory of the computer is limited and simulation
gets very slow for robots with more than 50 hinges.
Evolved robots usually had up to 30 modules.

On the other hand, hypothesis 3 must always
hold: First, the robot is built in empty space, and
then it is put into the simulation world (so there will
never be such a thing as a leg entering into the
ground).

4.2 Genetic Encoding
The type of encoding plays an important role in the
evolution process, at the level of genetic operators,
fitness landscape and, finally, speed and quality of
evolution. The more complex a phenotype space is,
the more difficult it is to find a good genotype-to-
phenotype mapping, or genetic encoding. In nature,
billions of genes are necessary to define organisms
able to survive. Even though we have succeeded in
decoding many genomes, we don’t know much about
the corresponding genotype-to-phenotype mappings.

There’s an infinity of possible genetic encodings
for a given phenotype space. An encoding and the
corresponding genotype are complete if the genotype
space is mapped onto the phenotype space. Recent
studies on different genotype encodings for simu-
lated 3D agents have found that completeness is not
necessarily a good thing to have [1]. An incomplete
genotype does not fully cover the phenotype space.
It limits and structures the search space and there-
fore speeds up evolution, the drawback is obviously
that some optima’s might be lost because they’re not
covered anymore.

Figure 15: The Adam genotype is a tree. The head
of the robot is the root; the nodes represent module
instances with all their parameters.

15

A phenotype space has an inherent topology: phe-
notypes of similar fitness are ‘close’ to each other.
The genotype encoding imposes another topology, by
defining which phenotypes are close genetically
(measured as the number of mutations separating
the corresponding genotypes) and which ones have a
higher probability of being visited. Under a good en-
coding, these two topologies are more highly corre-
lated [5]. Unfortunately, this correlation is impossible
to measure directly, because of the vast complexity
of the phenotype space and its fitness landscape.
Our judgments of encodings are thus subjective,
based on various theoretical and experimental obser-
vations.

It is possible to apply the genetic operators di-
rectly to the phenotype itself without encoding it.
This is usually done with simple, parameter optimiz-
ing GAs. For complex phenotype spaces, such direct
encodings have proven to perform worse than
higher-level encodings. The two most currently used
genotypes for co-evolution of morphology and con-
trol of artificial creatures or robots are directed
graphs and developmental encodings. The latter ones
are based on L-systems and tend to result in more
complex, better structured but not necessarily fitter
solutions [1].

One could imagine using the script as genotype
for Adam robots. However, the script has been de-
signed to be easy to read and manipulated by hu-
mans and is not well suited for the GA. For example,
the decomposition in a structure and a parameter
part is convenient for users but very inefficient for a
GA. To delete modules or to do crossover it would
have to gather all the parameter-setting functions of
the involved hinges in the second part of the script.

Adam uses trees, a subset of directed graphs, as
genotype (figure 15). The main advantages of this
representation are that it is compact, robust in the
face of genetic operators and identical to the internal
data type of Adam robots (see chapter 5.1), allowing
the genotype-to-phenotype mapping to directly build
the robot in the simulation world. With a develop-
mental encoding this step would be much more com-
plicated and time consuming. Unfortunately, it is
impossible to express cycles and to reuse predefined
body parts with trees alone. It would therefore be
desirable to generalize the current genotype to di-
rected graphs like the ones Karl Sims used (figure
3).

The genetic encoding structures the phenotype
space. As mentioned above, the GA is suspected to
perform better if this topology is highly correlated
with the one induced by fitness values. The Adam
genotype clearly fulfills this criterion because geneti-
cally neighboring individuals have similar phenotypes
and therefore usually also similar fitness values. This
is not true for developmental encodings where a sin-
gle mutation can result in a completely different
phenotype.

4.3 Genetic operators
The mutation operator acts on parameters as well as
on the structure of the robot. The mutation rate de-
termines the chance of a value being mutated. Its
default value is 0.01 but it can also be set with the
option –mut when Adam is launched. Random values
are always selected with a uniform distribution.

The effect of mutation depends on the type of
the value being mutated. Booleans are set to their
opposite value while numerical parameters are reset
to a random value, selected with a uniform distribu-
tion from an appropriate interval. The position and
orientation that the module is fixed with can also be
mutated and are set to another random posi-
tion/orientation. Furthermore, each position where a
limb can be attached has a chance of being mutated.
If mutation occurs, a new, randomly initialized mod-
ule is added if the position was free. In the case that
there is already a limb attached at this position, it is
deleted.

Figure 16: Mother (top left), father (top right) and
child (bottom) after crossover. A randomly selected
sub tree of the mother (Hb) has been swapped with
one of the father (H3).

16

Thanks to the tree structure of the genotype, the im-
plementation of crossover is straightforward. First a
mother and a father are selected as described in
chapter 4.5. The child is then formed by copying the
mother and swapping one of its sub trees with a sub
tree of the father (figure 16). The sub trees are se-
lected by randomly choosing a node from the look-up
table of the robot. Each module has an equal chance
of being selected.

Obviously, crossover and mutation can generate
invalid robots with intersecting modules. If this hap-
pens, the concerned robot is deleted and replaced
with a new, randomly initialized individual. This is
done in the hope of increasing diversity in the gene
pool. In advanced populations, it might be better to
replace such individuals with another child.

4.4 Initialization
At the beginning of the GA the population is initial-
ized with randomly created robots. Individuals with
self-collision are deleted and recreated until the
whole population consists of valid robots. The size of
the population can be specified when Adam is
launched with the option –pop. It has a default value
of 100 robots.

In order to increase the chance of creating valid
structures, default positions have a higher probability
of being retained. Experience has shown that better
results can be achieved by not initializing with com-
pletely random values. For example, hinges have a
higher probability of being rigid or powered than
elastic, the frequency of powered hinges is always
the same and the phase is a multiple of p/6. A hinge
can only have up to two limbs and the depth of the
tree representing the robot is limited at 3.

This initialization algorithm has proven to con-
struct a big variety of mostly valid robots. It was
surprising to see that very simple but efficient solu-
tions were already found with the initialization, just
by coincidence (figure X).

4.5 Selection and replacement
After evaluating a generation and assigning a fitness
value to every individual, parents have to be selected
to produce offspring. Fitter individuals have a better
chance of being parents. This gives us selection
pressure and drives the population forward. One
should be careful that selection pressure is not too
high; otherwise, the population diversity might suf-
fer. There are many different strategies to select
parents from the population.

Fitness proportionate selection (also known as
the roulette wheel method) gives each individual a
chance proportional to how good its fitness is with
respect to the population fitness. Fitness proportion-
ate selection does not work if all individuals of the
population have roughly the same fitness. In that
case, the chance of being a parent is almost the
same for all individuals and selection pressure is too
low. The other extreme occurs if an individual has a

very high fitness compared to the rest of the popula-
tion. Its probability of producing offspring is close to
1 and in a few generations, the whole population will
consist of equal copies. For these reasons, fitness
values should be scaled when using the roulette
wheel method.

Tournament selection randomly selects k indi-
viduals. k is the size of the tournament. The best in-
dividual of the tournament is taken to make
offspring.

Rank-based selection sorts individuals on their
fitness values from best to worse. The place in this
sorted list is called rank. Adam uses a rank-
proportional roulette wheel method. The probability
ps(i) for an individual i to be a parent is proportional
to its rank r(i). N is the population size.

ps(i) = (N + 1 - r(i)) / Âr(i)

For every new child, another individual has to be de-
leted if the population size is to stay constant. To
randomly choose an individual for replacement, the
same methods as for selection of parents can be
used. Now fitter individuals will have a smaller
chance of being selected. Adam uses the same strat-
egy for replacement as for selection. The probability
pr(i) of an individual to be deleted is:

pr(i) = r(i) / Âr(i)

4.6 Algorithm
Adam uses a standard genetic algorithm. For every
generation, a number of individuals are replaced with
offspring. Afterwards the mutation operator is ap-
plied to all robots of the population except for the
fittest one (steady-state evolution) and finally the
fitness values of the modified robots are updated in
simulation.

Figure 17: Diagram of the GA implemented in
Adam. k is the number of replaced individuals per
generation, i is the total number of generations.

17

5 Implementation
5.1 Internal representation of robots
Internally, a robot is represented as a tree (figure
16). Each module has pointers to the heads of its
limbs. It is not necessary for the limbs to know to
which module they are attached to so the tree is not
doubly linked.

This tree structure has been proven extremely
efficient, flexible and well adapted to represent Adam
robots. The structural parts of the script are them-
selves representations of such trees (figure 15). The
implementation of a recursive parser constructing a
robot is therefore straightforward and efficient
(chapter X). Furthermore, this representation can
also be used as genotype. This simplifies the geno-
type-to-phenotype mapping a lot and therefore saves
time in the EA (chapter 4.3). To speed up random
access robots also have a lookup table with all their
modules listed.

Note that in the script it is possible to point to
predefined trees (body parts) from another one. The
internal representation (data type) doesn’t allow this.
The body parts from the script are copied and added
to the tree as many times as needed because cur-
rently one module represents exactly one object in
the simulated world. This might change in the next
version of Adam (see chapter X).

Figure 18: The structural parts of a script, in this
case the quadruped robot of chapter X, describe the
configuration as a set of trees. It is possible to point
to previously defined trees (body parts).

5.2 Control of powered hinges
The desired angle q of powered hinges is defined by
a sinus oscillation as described in chapter 3.1:

q = A sin(2pft + j)

But how can we achieve the desired behavior in
simulation? The simplest solution is a PD controller. A
couple of torques is applied to get a rotation of the
hinge that depends on the difference between the
desired angle qd, the actual angle qa and also on the
angular rate w (the derivative of the actual angle):

T = a(qd - qa) - bw

However, ODE offers motors to control certain joints.
These motors can be set at a specific speed (angular
rate). This rate is applied immediately, in one simu-
lation step. Even though it might seem weird to con-
trol the angular rate and not the angle itself, one
should still use the motors and not apply torques di-
rectly because with motors ODE takes care that the
simulation is stable. Therefore, control can be done
by setting at each time step the angular rate of the
motor to:

w = a(qd - qa)

Figure 19: The tree of the quadruped robot from
chapter X. This internal representation (data type) is
also the genotype of Adam robots.

18

6 Results
Locomotion has been evolved with a very simple but
effective fitness function. The fitness of a robot is
defined to as its distance after a constant time of
simulation from the origin. To calculate the fitness
one only needs to know the x- and y-coordinates of
the robot when simulation ends because the starting
position is always in the origin. The position of the
robot is defined to be the one of its head.

f = sqrt(x2 + y2)

This simple fitness function has proved to evolve
better locomotion than more complex ones, consid-
ering the center of mass or the instant velocity of
robots. An advantage is also, that robots are evolved
to move less in a straight line and not just for exam-
ple, turn in circles.

Experience showed that the time of simulation is
crucial to achieve good results. If it is too long, the
GA gets very slow but if it is too short, we don’t
really evaluate the ability of locomotion but only a
fast jump at the beginning of simulation. Figures 20
to 23 show some examples of evolved robots.

Figure 20: Simple but sometimes very efficient
solutions were usually found in early generations.
Later, they had no chance against more complex
structures.

Figure 21: A jumping worm. This is (as well as the
two following examples) a highly specialized individ-
ual that is difficult to improve on. Evolution took
about three hours.

Figure 22: A two legged jumper. He has a long
‘horn’ on the front side of his head that effectively
prevents him from falling over.

19

Figure 23: This dragon is one of the most feared
creatures in the Adam world… It walks on two small
legs keeping its balance with the arms.

7 Conclusions
The main goal of this project was to build a simulator
for modular robots. By applying the genetic algo-
rithm, we have tested this simulation environment
repeatedly. I estimate the number of robots built and
simulated by Adam well over a million – without a
single crash. Furthermore simulation seems to be
accurate and without bugs. Otherwise, evolved ro-
bots would have taken advantage of such irregulari-
ties. I also expected the simulation to perform well
because ODE is a well-recognized simulation tool.

 Clearly future work with Adam has to focus on
the genetic algorithm and the control of the robots.
It would be interesting to generalize the Adam tree
genotype to directed graphs and to test develop-
mental encodings. Furthermore, robots could be
equipped with sensors and neural networks as con-
trollers.

Another feature that should be implemented is
self-reconfiguration. One could even somehow try to
evolve self-reconfiguration. Obviously, cycles within
the structure of the robot should be allowed as well.

20

References
[1] M. Komosinsky, A. Rotaru-Varga, Comparison of Different Genotype Encodings for Simulated 3D Agents. Arti-
ficial Life Journal, 7:395-418, 2001

[2] Hornby, Gregory. S. and Pollack, Jordan. B. (2001). Body-Brain Co-evolution Using L-systems as a Generative
Encoding. Genetic and Evolutionary Computation Conference.

[3] M. Yim, D. Goldberg, A. Casal, Proc. of SPIE, Connectivity Planning for Closed-Chain Reconfiguration, Sensor
Fusion and Decentralized control in Robotic Systems III, Volume 4196, Nov. 2000

[4] Karl Sims, Evolving 3D Morphology and Behavior by Competition. Artificial Life IV Proceedings, ed. by R.
Brooks & P. Maes, MIT Press, 1994, pp28-39.

[5] W. Hordijk, Population flow on fitness landscapes.

[6] Jesper Rasmussen, A General Robot Simulator for Evolutionary Robotics. Master’s thesis, 2001

[7] Biota website, http://www.biota.org/ksims/

[8] Modular Transformer website, http://staff.aist.go.jp/e.yoshida/test/top-e.htm

[9] Modular robotics at PARC website, http://www2.parc.com/spl/projects/modrobots/

[10] CONRO website, http://www.isi.edu/conro/

[11] Framsticks website, http://www.frams.alife.pl

