
Goals

• Develop a simulator for modular robots

• Develop a script to build the robots
– Easy to read and edit by the user

– Allows evolved robots to be saved, inspected and
modified

• Implement a genetic algorithm (GA)
– Evolve locomotion

– Test the simulator

Modular robotics

• Motivations
– Versatility

– Robustness

– Low cost?

• Applications
– Search and rescue

– Space exploration

– Battlefield reconnaissance

Co-evolving morphology and
control
• Difficulties

– Testing

– Transfer from simulated to real world

• Promises
– Evolve complex systems

– Fitter individuals

– Well adapted for modular robotics

Simulation

• Advantages
– Speed

– Low cost

• Closing the ‘reality gap’
– Add noise

– Sampling

– Minimal simulation

State-of-the-art

PolyBot (PARC)

Modular Transformer
(AIST)

CONRO (USC)

Karl Sims’ block creatures

• Co-evolution of
morphology and neural
network

• Competition

• Genotype is directed
graph

• Very similar to Adam

Framsticks

• Artificial life

• Nice user interface

• Various genotypes

• Many parameters of the
GA can be set by the user

• Very similar to Adam

Adam - overview

• Modular robots
– No self-reconfiguration
– No cycles
– Homogenous

• Simulation
– Implemented with ODE
– Rigid body dynamics

(kinematics, friction, collision etc)
– Simulation world: Infinite plane

Hinge module
• Other modules can be

attached at every position

• Rigid, powered or elastic

Hinge parameters

– Initial angle
– Low and high stop
– For powered hinges:

• Maximal force of the motor
• Control: Amplitude, frequency and phase

a = A sin(2pf + j)

– For elastic hinges
• Elasticity and damping constants

Script - overview

• Formally defined with a lexical and a syntactic
grammar

• Structural part
– Defines how modules are attached to each other

– Each module is given a unique identifier

• Parameters are set in the second part
– Set default parameters

– Set parameters of specific modules

Script – defining structures

• Sequential building plan

• The first module is the head of the robot

• Add new modules. Define:
– Where?

– With which position?

– With which orientation?

Definition: Positions of a hinge
P0: First cube back face
P1: First cube top face
P2: First cube right face
P3: First cube bottom face
P4: First cube left face
P5: Second cube top face
P6: Second cube right face
P7: Second cube bottom face
P8: Second cube left face
P9: Second cube front face

Attaching limbs (1)

Ha Hb

Ha P5(Hb)

Attaching limbs (2)

Ha P3(Hb) P7(Hc) Hd Ha P3(Hb) Hd P7(Hc)

Specifying the position a hinge gets
attached with

Ha P4 Hb Ha P5 (P4 Hb)

Specifying the orientation

Ha P4 E Hb Ha P5 (P4 E Hb)

Defaults

• The default position to attach a limb is P9

• The default position with which a hinge is
attached to another one is P0

• The default orientation is North

• Therefore:
Ha Hb = Ha P9(Hb) = Ha P0 Hb = Ha N Hb

= Ha P9 (P0 N Hb) = …

Setting parameters
• Modules have default parameters
• The defaults can be reset by the user
• Notation:

identifier.function(arguments)
• Hinge parameter-setting functions:

– initAngle(a)
– powered(isPowered, loStop, hiStop, Fmax, A,

f, j)
– soft(isSoft, elast, damp)

Example (1) STRUCTURE
H_body0
 P2(E H_leg H_foot)
H_body1 P4 H_body2
P4 H_body3 H_body4
P4 H_body5

PARAMETERS
H_leg.initAngle(-60)
H_foot.initAngle(-60)
H_leg.powered(true,
 -60, 60, 100, 60, 0.2, 0)
H_foot.soft(true, 50, 0)

Example (2)

//////////// LEG /////////////////

leg {

 STRUCTURE

 H_leg H_foot

 PARAMETERS

 H.initAngle(-60) // default

 H_leg.powered(true, -60, 60,

 100, 60, 0.2, 0)

 H_foot.soft(true, 50, 0)

}

…

/////////// BODY ////////////////

STRUCTURE

H_body0

 P2(E leg)

H_body1 P4 H_body2

 P0(W leg)

P4 H_body3

 P2(E leg)

H_body4 P4 H_body5

 P0(W leg)

PARAMETERS

 Genetic algorithm

Phenotype space
1. There are an infinite number of modules available of

each type.
2. There’s a finite number N of module types used

(usually few).
3. There’s infinite space available to build the robot

(there are no limitations on size and form of the
robot).

The Adam phenotype space consists of all robots in
the simulated world that could be built theoretically
in the real world with corresponding hardware
modules under hypothesis 1-3.

Genetic encoding
• The script is not a good choice
• The phenotype space is structured

– Genetically
– With respect to fitness values
– Goal: Find a genetic encoding that correlates the two

• Developmental encodings
– Better structured individuals
– Fitter individuals?

• Adam uses Trees

Crossover

Mutation

• Acts on all parameters and on the
structure

• Sub trees can be deleted

• Modules can be added

• Position and orientation of attachment
might change

Initialization

• Default positions have higher probability
– Increases probability of building a legal structure

• Parameters are set ‘reasonable’
– Frequency constant
– Low stop = high stop
– Phase is a multiple of p/6
– etc

• Reinitialize illegal robots

Selection and replacement

• Rank-proportional roulette wheel method

• Probability of an individual make offspring:
ps(i) = (N + 1 - r(i)) / Âr(i)

• Probability of an individual to be deleted:
pr(i) = (r(i)-1) / (Âr(i)-1)

• Steady-state evolution

Goals

• Develop a simulator for modular robots

• Develop a script to build the robots
– Easy to read and edit by the user

– Allows evolved robots to be saved, inspected and
modified

• Implement a genetic algorithm (GA)
– Evolve locomotion

– Test the simulator

Goals

• Develop a simulator for modular robots

• Develop a script to build the robots
– Easy to read and edit by the user

– Allows evolved robots to be saved, inspected and
modified

• Implement a genetic algorithm (GA)
– Evolve locomotion

– Test the simulator

Goals

• Develop a simulator for modular robots

• Develop a script to build the robots
– Easy to read and edit by the user

– Allows evolved robots to be saved, inspected and
modified

• Implement a genetic algorithm (GA)
– Evolve locomotion

– Test the simulator

