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Please do not hesitate to ask questions at any time!
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2. Co-evolution of configuration and control

3. Online optimization / adaptation

4. Questions



Goals

• Modular robot locomotion control
– Distributed, asynchronous and reliable controller

– Testing YaMoR in simulation

• Bio-inspired locomotion control
– Nonlinear oscillators as canonical subsystem of CPG

– Which coupling types are appropriate?

– Which coupling schemes should we use?

• Self-organization of locomotion
– Offline: Co-evolution of configuration + CPG

– Online: Fast optimization / adaptation of locomotion



Motivation

• Autonomous machines
– ‘Emergent functionality’ is becoming increasingly

important in today’s technology

– Self-organization and adaptation are key concepts

– MR is a perfect framework to design autonomous
machines (versatility, adaptability, reliability)

• Test bed for research in:
– Complex, distributed and synergetic systems

– Multi-agent systems, distributed learning

– Many degree of freedom robot control



Modular Robotics

• Hardware

M-TRAN II

(AIST)
PolyBot G3

     (PARC)

CONRO

(USC)



Modular Robotics

• YaMoR
– Length: 94 mm; Weight: 250 grams
– Manual reconfiguration (Velcro)
– Modules are self-contained
– RC-servo strong enough to lift three other modules
– Each module is equipped with an FPGA
– Wireless communication via BlueTooth



Modular robot control

• Gait control tables
– Each column contains the action sequence of a

module

– Centralized master-slave approach

– E.g. M-TRAN

• Hormone-based control
– MR is a distributed system with dynamic topology

– Synchronous distributed approach, CONRO.

– Digital hormones are used to implement distributed
synchronization algorithms.



Modular robot control

• Role-based control
– Asynchronous distributed approach

– Modules periodically send synchronization signals to the children

– Each module acts as master of its sub tree

– Disadvantage: Abrupt jumps in the generated trajectories

• Constraint-based control
– MR is not a multi-agent system

– MR is a distributed network of N embedded processors



Vertebrate locomotion

• Rhythmic activities
– Efficient locomotion but complex control

– Synchronization at specific phase differences is essential

• Central Patter Generator (CPG)
– Rhythmic neural activity induced by simple (tonic) input

– Capability of generating distinct patterns in function of the input

– Smooth gait transitions

– Hierarchical decomposition into coupled oscillators

– Sensory feedback shapes the output signals

• Symmetry of the morphology and the controller



Nonlinear Oscillators

• Harmonic oscillator:
– Synchronous control

– Gait transitions are not smooth

• Standalone nonlinear oscillator:
– Asynchronous distributed control

– Smooth gait transitions
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Standalone oscillator



Coupled oscillators
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Coupled oscillators



Coupled oscillators

 

pv,ij = rij ⋅
cos π

2
− φij

⎛
⎝⎜

⎞
⎠⎟ x j + sin

π
2
− φij

⎛
⎝⎜

⎞
⎠⎟ vj

x j
2 + vj

2
⇒ φij = φij

g a,b( ) =

π / 2 (a > 0  ∧  b = 0)

arctan a
b

⎛
⎝⎜

⎞
⎠⎟

(b ≠ 0)

−π / 2 (a < 0  ∧  b = 0)

⎧

⎨
⎪⎪

⎩
⎪
⎪

• Predicting the phase difference:

• Setting the actual phase diff.        to a specific phaseφij  
φij
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Coupled oscillators
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• Energy balanced couplings:

– The coupling term represents the phase error
– Asynchronous distributed and reliable control possible
– Analytical proof that the oscillators converge to a sine
– Possibility to set desired phases and amplitudes

=> The same set of parameters as harmonic oscillators!



Co-evolution

• Co-evolution of configuration and control
– Bio-inspired

– MRs are meant to operate in many different configurations

– Manual design of configurations is not scalable

• Previous research
– Evolutionary motion synthesis method for M-TRAN

– Automatic locomotion pattern generation for M-TRAN

– Artificial life: Sims block creatures, Hornby, and many others.



Co-evolution

• Encoding the configurations of YaMoR robots
– Tree: Nodes represent modules and links physical connections

– Male / female connection scheme. Advantages:

• The only free lever is the one of the head

• The control algorithm is simplified

• The implementation is simplified

• The GA benefits from a smaller phenotype space



Co-evolution

• Orientations and docking positions

NORTH               EAST              SOUTH               WEST

DOWN                  LEFT                     RIGHT                    UP



Co-evolution

• Phenotype and genotype



Co-evolution

• Structural parameters

The docking position for every
child

{BACK, LEFT, …,  DOWN}Child
position(s)

The initial angle of the hinge joint.[-pi/2, pi/2]Initial angle
The orientation of the module{NORTH, EAST, SOUTH, WEST}Orientation
DescriptionRangeParameter

• Control parameters of a harmonic oscillator

The phase.[0, 2π]phi
The amplitude.(0, π/2]A
Determines if the module is rigid or not.{true, false}IS_RIGID
DescriptionRangeParameter



Co-evolution

• Free parameters of a coupled nonlinear oscillator

[-2, 2]b_ji

The weights of the coupling from this oscillator to the
parent (only for bidirectional couplings with four free
parameters).

[-2, 2]a_ji
[-2, 2]b_ij

The weights of the coupling from the parent to this
oscillator.

[-2, 2]a_ij
The energy parameter of the nonlinear oscillator.(0, pi/4]E
Determines if the module is rigid or not.{true, false}IS_RIGID
DescriptionRangeParameter



Co-evolution



Co-evolution



Co-evolution

• Simple but effective fitness function: Distance from the
starting point after a certain amount of time.

• Mutation
– Change parameter value

– Delete a sub tree or ‘grow’ a new node

– Switch two sub trees or two modules

• Crossover
– Single point crossover by swapping sub trees

– Swap identical sub trees if the parents are similar

• GAs: Incremental, steady state, migrating populations

• Rank-proportional roulette wheel selection



Co-evolution

• Results
– An evolutionary run takes about two hours on a high-end PC

– Bidirectional couplings don’t perform well

– Incremental GAs with small / medium populations perform best

– Symmetric encoding evolves fitter and more complex robots in
shorter time. Averages of 15 GAs:

2.912208.21Symmetric
2.742435.66General

Max. fitnessEvaluationsEncoding



QOOL

• Quick Online Optimization of Locomotion (QOOL)
– Optimization of multiple degree of freedom robot locomotion

– Quadratic convergence to a local optimum

– In contrast: Heuristic optimization algorithms (previous research)

• Applications
– Optimization from scratch

– Adaptation of a gait to changing environmental constraints

• Fitness function
– Distance from the starting point after three periods

– One must detect stabilization of the mechanical dynamics before
starting fitness evaluation

– Analyze average speed of each module



QOOL
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QOOL

• Brent’s method for one-dimensional optimization
– Golden section search + parabolic interpolation

– Quadratic convergence



QOOL

• Powell’s method for multidimensions
– Direction-set method

– Succeeding line minimizations through P in direction n

– Line minimization: Optimize the g with Brent’s method
 g(λ) = f(P+λn)

– Example: Minimization of

f (x) = x + xi − xi−1( )2
i=1

N
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Conclusions

• Phase prediction and energy balanced couplings
– Significant reduction of the parameter space

– Distributed asynchronous and reliable control algorithm for MR

• Co-evolutionary algorithm
– Symmetric encoding outperforms the general encoding

– Robots are more complex than those of previous research

– The locomotion gaits are more elegant and sophisticated than
those of other chain-type robots in previous research

• QOOL online optimization
– New approach to online optimization or adaptation of locomotion

– Extremely fast



Future work

• Co-evolution
– Use L-systems for a generative encoding

• QOOL
– Test online adaptation with changing environmental constraints

– Include initial angles in the optimization

• Transfer to the YaMoR hardware…

• Modular robot control
– Include sensory feedback

– Design a higher level controller
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