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Chapter 1 

Introduction

This Thesis presents a bio-inspired approach to modular robot locomotion. The goal of the
project is self-organization of locomotion for autonomous modular robots. In contrast to
previous research in modular robotics, I include the morphology in the self-organizing
process. For my experiments I use a realistic simulation of YaMoR, the modular robot that is
currently being developed at the Biologically Inspired Robotics Group (BIRG). In the near
future, the results could be tested on the hardware itself.

The motivation of my research is two-fold. On one side, I believe that modular robotics is
a perfect framework to build novel self-organizing and adaptive machines by applying bio-
inspired methodologies. As artificial systems become increasingly complex, more and more
resources are required to design, produce and maintain them. In addition, machines are
expected to operate in more complex and unpredictable environments. This makes it
increasingly difficult or even impossible for the engineer to identify the requirements and
functionalities a priori. Therefore, autonomous machines must be self-organizing and
adaptive. However, adaptation should not be limited to the controller of the machine. In order
to adapt to a new task or a new environment, a machine must be able to autonomously change
its morphology. Modular self-reconfigurable robots fit perfectly in this picture because they
are versatile, adaptive and reliable.

On the other side, modular robots are an ideal test bed for research in complex, distributed
and synergetic systems. Thus, I also see my research as being part of a more general effort
that aims at a better understanding of complex, self-organizing systems in nature. By taking
inspiration from nature to design autonomous, self-organizing machines we can also verify
models from biologists and pose new hypothesis that must in turn be verified by biologists. In
other words, the bio-inspired approach is mutually beneficial for both computer sciences and
biology.

I believe that autonomous modular robots can be designed by implementing the three
biological models of self-organization that explain the emergence of complex, autonomous
organisms in nature: Phylogeny (P), Ontogeny (O) and Epigenesis (E). This classification of
bio-inspired methodologies is known as the POE model [Sanchez et al. 1997, Tempesti et al.
2002]. An example of a system that incorporates all three POE axes would be an evolving
(phylogeny) and self-assembling (ontogeny) modular robot with an online optimization
algorithm (epigenesis). The ontogenetic axis is not yet included in this project.
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The next chapter is a quite comprehensive review of modular robotics. Not all discussed
issues are directly relevant for this project. However, the chapter as a whole should give the
reader a sense of the particularities of modular robotics, especially with respect to modular
robot control.

In the third chapter I discuss bio-inspired locomotion control both from a
phenomenological and a neurophysiological point of view. Then I present the nonlinear
oscillators that I choose as canonical subsystems to model the central pattern generator.
Furthermore I introduce a new notation for the coupling parameters of the nonlinear
oscillators. Based on this notation, one can easily predict the phase difference between two
coupled oscillators, which has been considered impossible before. Moreover I propose a new
coupling term with interesting properties.

Chapter 4 discusses co-evolution of morphology and control. I explain the genetic
encoding that I use to co-evolve configuration and control of modular robots. Furthermore I
present a powerful genetic encoding that restricts the phenotype space to symmetric
configurations.

The online optimization algorithm is outlined in Chapter 5. Finally I discuss the results of
the co-evolutionary algorithm and the performance of the different coupling schemes.
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Chapter 2 

Modular Robotics

2.1   Introduction

A modular robot1 (Figure 1) is built from modules that can be connected together in
various ways, much like a child’s Lego bricks. The main idea is to use only one or very
few module types, but many modules. Current research is done with robots built up from
dozens of modules. In the future one can imagine robots with hundreds, potentially
thousands of modules.

To live up to their promises (see below), modular robots should have the ability to
dynamically change their configuration (also sometimes referred to as structure or
topology) by reconnecting the modules in different ways. For example, a modular robot
could climb over an obstacle in a quadruped configuration and then reconfigure to a snake
in order to slide through a small hole. Self-reconfiguration (autonomous or automatic
reconfiguration) is one of the main challenges in modular robotics.

Two concepts that are closely related to self-reconfiguration are self-assembly and self-
replication. A cluster of modules may be capable of self-assembling into various types of
robots [Kurokawa et al. 2004]. Separate individual modules with some locomotion
capabilities could also gather, connect with each other and self-assemble (i.e. self-
reconfigure) to a given configuration. Self-assembly opens the door for self-replication.
For example one can imagine that a Modular Robot (MR) self-replicates in an environment
with enough free modules by releasing a module or by transferring its genome to a free
module. This seed could then self-assemble with other free modules to form a new robot.
Alternatively the parent can actively assemble a copy of itself [Mytilinaios et al. 2004].
Furthermore, self-repair mechanisms can be implemented by ejecting damaged modules
and replacing them with spare ones or by self-reconfiguring the robot around them.

                                                  
1 Sometimes also called cellular robot or metamorphic robot.



4 Chapter 2.   MODULAR ROBOTICS

Collective robotics (also sometimes called swarm robotics) is another field that has
received a lot of interest lately [e.g. Mondada et al. 2002], swarms of relatively simple
robots that can move autonomously and dock to form larger structures cooperate to achieve
complex tasks. Intelligence should emerge through interaction, like in swarms of social
insects. The similarities with modular robotics, where simple modules form together a
complex robot, are apparent. However, there are also some important differences: In
swarms, cooperation is generally rather loose. For example, no exact alignment and
synchronization are needed to push a heavy object in a team of robots. On the other hand,
modular robots demand a very tight cooperation among modules. Consider a walking
modular robot where exact synchronization of all modules is required for efficient
locomotion.

2.1.1   Classification of modular robots

Generally modular robots are classified along three distinct axes:

• Manual vs. automatic reconfiguration
• Homogeneous vs. heterogeneous modules
• Chain vs. lattice-type

As I mentioned above, self-reconfiguration is an essential feature of modular robots.
Unfortunately, since automatic reconfiguration is very complex, the majority of physically
realized chain-type robots is currently not self-reconfigurable. Note that a lot of issues in
modular robot control can also be explored using manual reconfiguration.

Homogenous modular robots only use one module type while heterogeneous modular
robots use several distinct module types. The term semi-homogenous can be used for
robots that consist of exactly two module types.

Modular robots are usually referred to as being either lattice or chain-type. Lattice-type
modular robots are generally homogenous and use highly symmetrical modules.
Conceptually, the modules are organized in a grid. Modules have the ability to move to
neighboring positions on the grid by rotating or sliding along adjacent modules. For
reconfiguration, individual modules wander on the cluster to their final position. Lattice-
type robots use cluster-flow (or water-flow) locomotion: In order to move, the robot

  

  

Figure 1:   M-TRAN self-reconfiguring first from a crawler to a rolling tank
and then to a quadruped configuration.
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reconfigures in a way to continuously bring the modules from the back to the front giving
the impression that the module cluster flows on the ground and around obstacles.

On the other hand, chain-type2 robots reconfigure by extending limbs that can connect
at the desired new position on the robot. For example, a walker can reconfigure to a snake
by attaching one leg after the other to the tail. In contrast to lattice-type cluster-flow
locomotion, chain-type robots reconfigure only in order to adapt to their environment or
function. They locomote in a fix configuration, using powered joints for instance, which is
faster and more energy efficient.

Murata et al. coined the term hybrid-type for chain-type robots that have the ability to
reconfigure in a lattice-type way, i.e. by moving individual modules to neighboring
positions on a grid [Murata et al. 2000]. Maybe because M-TRAN (see Chapter 2.2.2) is
currently the only hybrid-type modular robot to my knowledge, this term is generally not
used in the literature.

We are more interested in chain or hybrid-type than in lattice-type modular robots at the
BIRG laboratory because, as I mentioned above, the latter ones have superior locomotion
capabilities (faster and more efficient). Our modular robot hardware prototype YaMoR is
chain-type (see Chapter 2.2.4). Consequently I focus on this kind of MR system in this
thesis and include lattice-type modular robots only for the sake of completeness.

2.1.2   Promises and Applications

Versatility, adaptability, reliability and low cost are the four promises that are consistently
advertised in modular robotics literature [e.g. Murata et al. 1994]. I add modular design,
actually the most obvious feature of modular robots but often not explicitly mentioned, as a
fifth promise:

1. Versatility . With the number of modules used, the number of possible
configurations grows exponentially and the number of degrees of freedom linearly,
making modular robots extremely versatile. In other words, the same system could
be used for various tasks, which is especially useful when it is undesirable to build
a special purpose robot for each task.

2. Adaptability. A self-reconfigurable modular robot can autonomously adapt to its
environment. Such a robot could for example use an energy efficient rolling-loop
configuration on flat ground and reconfigure to a walker when the terrain gets
rough.

3. Reliability stems from redundancy. Modular robots that are controlled in a
distributed manner are robust because failure of some modules potentially only
degrades the overall function. Furthermore self-repair mechanisms can be
implemented by ejecting damaged modules and replacing them with spare ones or
by self-reconfiguring the robot around them. The more modules a robot has, the
higher is its self-healing potential. On the other hand it is important to be aware that
as the number of used modules grows, the probability of failure of one or several
modules also grows and self-repair becomes a crucial issue.

                                                  
2 The terms string, linear or thread type are also found in the literature.
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4. Low cost. Mass production could lower the price of single modules. Versatility and
reliability are qualities of great commercial interest because the same robotic
system could be used for diverse and changing tasks with low maintenance costs.
However, one has to be careful about this promise because modules are needed in
great numbers to form a single robot. For self-repair and distributed control
modules must be self-contained (i.e. autonomous with respect to power, processing,
communication, sensing, etc). It is not clear if such complex modules can be
produced at sufficiently low price to build modular robots that are cheaper than
special purpose robots.

5. Modular design. In a modular robot, the ratio between the number of module types
and the total number of modules used is low. Such a system is called n-modular, n
being the number of module types. “The low heterogeneity of the system is a
design leverage point getting more functionality for a given amount of design. The
analog in architecture is the building of a cathedral from many simple bricks. In
nature, the analog is complex organisms like mammals, which have billions of
cells, but only hundreds of cell types.” [Yim et al. 2000]

Naturally, a modular robot that fulfills all these promises would be interesting to use for
any task that a traditional robot can do. For example, industrial modular robots working on
an assembly line could simply be reconfigured to suit a new process. However, versatility,
adaptability and reliability make modular robots especially well suited for harsh and
unpredictable environments found in applications like space exploration, urban search and
rescue (USAR) or undersea mining, where a complete set of desirable functions cannot be
determined a priori.

It is estimated that in the past two decades, disasters like earthquakes, tornados,
hurricanes, floods, fires, hazardous materials accidents etc. have caused about 3 million
deaths worldwide, 800 million people adversely affected, and property damage exceeding
US$50 billion [Yim et al. 2000]. Tragically, in the context of population growth and global
warming, natural disasters are expected to be more frequent and cause even higher
damages in the future. The most common USAR scenario is the location, initial medical
stabilization and rescue of victims trapped under collapsed buildings. Modular robots may
be able to explore confined spaces deep in a rubble pile. The use of robots in USAR
applications is especially important because collapsed structures are often unstable and
dynamic and the safety of rescuers is at stake. [Yim et al. 2000]

Personally I believe that the first practical application of modular robots will be in space
exploration. A MR system can be brought into space at relatively low price because the
modules can be packed in a compact way. Once in space, the modular robot can be used
for various tasks, for example in space station maintenance operations. Robustness is of
crucial importance in space missions because they often have only one attempt to succeed
at great cost. Furthermore, the absence of dust/dirt and zero gravity are favorable
conditions for modular robots. Dust is problematic for the connection surfaces and gravity
constrains the length of module chains [Yim et al. 2003]. Modular robots are also well
suited for planetary exploration (consider that when a rover gets stuck or tips over this is a
mission-ending disaster). A more futuristic vision of modular robots in space are extra
terrestrial self-replicating robot colonies, e.g. for lunar resource development [Chirikjian et
al. 2002].

I believe that besides from these practical applications, modular robots are also
interesting from an academic point of view. Modular robotics is an ideal test bed for
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research in distributed systems, self-organizing systems, multi-agent systems and robot
control with many degrees of freedom (DOF). Furthermore, MR systems are a perfect
framework to build one day a truly autonomous machine by applying bio-inspired
methodologies [Marbach & Ijspeert 2004].

2.2   Module design

The success or failure of any MR system begins with the module design. The space of
possible robot configurations and its theoretical locomotion and reconfiguration
capabilities are determined by important design choices: The module’s shape, number and
position of connection surfaces, connection mechanism, joint types, number of DOF,
global/local communication and processing capabilities, sensors, etc.

For example an M-TRAN like module can perform lattice-style reconfiguration while
this is not possible with modules that have only two perpendicular rotational axes as
CONRO does (see below). On the other hand, the latter ones might favor locomotion.
Besides from kinematical constraints the module design also has a strong impact on the
control algorithms that can be used (e.g. can a module only talk to its immediate neighbors
or has it a wireless communication system?).

Given the importance of the module design, I did a comprehensive review of existing
modular robot projects. In the next sections I discuss three leading chain-type MR systems
in detail: CONRO, Polybot and M-TRAN. These robots are generally acknowledged to be
state-of-the-art by the modular robotics community. Furthermore, they are interesting to
compare because all three use very different but equally interesting approaches to both
module design and modular robot control. Last but not least I present BIRG-module, the
MR system that is currently being developed at our laboratory.

Lattice-type modular robots are not included here. They often use triangular and
hexagonal shapes for planar robots and cubic or dodecahedral modules for 3-D. Some of
the leading projects are: Telecube [Vassilvitskii et al. 2002], Crystalline [Vona & Rus
2000], I-Cubes [Unsal et al. 2000], Fractum [Tomita et al. 1999] or ATRON [Østergaard &
Lund 2003].

2.2.1   CONRO

CONRO is a chain-type homogenous modular robot developed by the USC Information
Science Institute and Computer Science Department. A CONRO module (Figure 2) has
two degrees of freedom (yaw an pitch). It has one female connector on one side and three
male connectors on the other side. The male connectors have two pins and can be attached
to a female connector in any of two orientations: “Belly-up” or “belly-down”. However,
the IR transmitters/receivers that are used for communication are not correctly aligned if
one module is “belly-up” and the other “bell-down” [Castano & Will 2001]. Therefore
only one orientation can practically be used.
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Compared to other modular robotics projects, the CONRO module is with two
perpendicular rotational axes quite flexible. Even a single module has (limited) locomotion
ability, which theoretically opens the door for self-assembly. CONRO has demonstrated
some self-reconfiguration capability but the use of female/male connectors that can be
attached together only in one orientation makes it very difficult. This lack of flexibility in
docking might be on of the reasons why Shen et al. use manual reconfiguration in most
experiments [e.g. Shen et al. 2002] and have not worked on a planning method for non-
trivial reconfigurations for CONRO.

2.2.2   M-TRAN

The M-TRAN [Murata et al. 2002], standing for Modular TRANsformer, is developed by
the Distributed System Design Research Group of the National Institute of Advanced
Industrial Science and Technology of Japan (AIST).

The M-TRAN module consists of two semi-cylindrical boxes, connected together by a
link as shown in Figure 3. The module has two degrees of freedom: Each box can rotate
180° independently. The servomotors are actually embedded in the connection link. The
two rotational axes are parallel, in contrast to CONRO where they are perpendicular (yaw
and pitch). This design allows M-TRAN to perform (limited) lattice-style reconfiguration.

The original approach of the M-TRAN module lies in its connection mechanism that
uses permanent magnets. The module has an active and a passive box with three
connection surfaces each. All connection surfaces of passive boxes use magnets of the
same polarity, while the active boxes use the opposite polarity. Active boxes always meet
passive ones when multiples of 90° are used for joint angles (check board parity). The
active connection surfaces use shape memory alloys (SMA) and non-linear springs in their
detachment mechanism, the passive ones simply consist of a plate with magnets. In
addition, electrodes are placed on each connection surface for power supply and
communication with neighboring modules or the host computer.

The use of magnets greatly simplifies autonomous docking because no exact alignment
is needed as long as the modules are sufficiently close for the magnetic force to act. This is

Figure 2:   Schematic view of the CONRO module.
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probably the main reason why M-TRAN has demonstrated superior self-reconfiguration
capabilities than other advanced modular robotics projects such as Polybot or CONRO.

Recently a second prototype (M-TRAN II) has been built [Kurokawa et al. 2003]. The
module now has an acceleration sensor and various improvements have been made
(information processing ability, power consumption, connection mechanism, size).

2.2.3   PolyBot

The Palo Alto Research Center (PARC), a subsidiary of Xerox Corporation, develops
PolyBot [Yim et al. 2000], the successor of the famous Polypod [Yim 1994]. The design
philosophy behind PolyBot is to use very simple and small modules that should fit in a
cube 5cm on a side, thus PolyBot uses cubic modules with only one DOF (see Figure 4).
These segments have only two connection surfaces: One on the front and one on the back.
Hence the need for a second module type (node) which is simply a cube with a connection
surface on each side. Using segments and nodes, semi-homogenous modular robots can be
built.

PolyBot G2 (second generation) is self-reconfigurable. The connection mechanism is
hermaphroditic and 4 times redundant: Connection plates can mate in 90 degrees
increment. Each connection surface has 4 LED’s and 2 photo-diodes for 6 DOF position
and orientation determination in autonomous docking. Processing capabilities of individual
modules are strong thanks to an embedded Motorola PowerPC 555 processor with 1MB of
RAM. Unfortunately, external power supply is used and sensing is limited to joint position
in G2 [Duff et al. 2001].

The third generation of PolyBot is currently under construction. It mainly adds a
brake/ratchet to the main actuation, is much more compact and has improved sensorial
capabilities. It is planed to equip G3 modules with a wide range of sensors: 4 IR emitter-
receiver pairs and 4 force sensors per connection surface, a potentiometer, joint angle
sensor and two accelerometers [Zhang et al. 2002a].

PolyBot G2 was the first robot to demonstrate sequentially two topologically distinct
locomotion modes by self-reconfiguration. With the G3 module, Yim et al. want to build a
modular robot using an order of magnitude more modules (100+) than previous robots.

Figure 3:   Schematic view of the M-TRAN module.
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Note that it is possible to construct PolyBot meta-modules that are conceptually
equivalent to M-TRAN modules by connecting two segments together in the same
orientation  (parallel axes of rotation) and adding a node on each side. Meta-modules that
are similar to Conro can also be built: The segments are attached at 90 degrees shift
(perpendicular axes of rotation) and only one node is added on the front side. Last but not
least, PolyBot can also mimic YaMoR (see next section) with meta-modules that consist
simply of a node attached to a segment.

I find the semi-homogenous design with simple, cubic units very appealing. Meta-
modules that are conceptually equivalent to modules of other MR systems can be built
with PolyBot. This fact indicates that PolyBot may be functionally superior to these
systems (i.e. more versatile and adaptive). However, this flexibility comes at the price of
heterogeneity that might in turn complicate control, especially with respect to self-
reconfiguration. Only the future can show if homogenous systems using more complex
modules or heterogeneous systems with simpler modules are better suited for particular
applications in modular robotics.

2.2.4   YaMoR

YaMoR (Figure 5) is the MR hardware prototype that is currently being developed at our
laboratory, the Biologically Inspired Robotics Group (BIRG) of the Swiss Federal Institute
of Technology in Lausanne. YaMoR stands short for Yet another Modular Robot – a very
humble name. Indeed, the short-term objective was to rapidly build a prototype at low cost.
Even though YaMoR is technologically not as advanced as the modular robots introduced
in the previous sections, it is perfectly well suited to investigate issues in locomotion
control. For details, refer to [Dittrich 2004].

The design is inspired by modules such as M-TRAN or Polybot (see above). YaMoR
has a single degree of freedom: The hinge of the U-shaped lever has a working range of a
little bit more than 180°. It is driven by an RC-servo with a maximum torque of 73 Ncm,
which is sufficient for a module to lift three others. The module weights about 250 grams
and it is 94mm long (including the lever) with a cross section of 45mm x 50mm.

Figure 4:   The Polybot G3 module with its sensors.
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The modules are self-contained, i.e. autonomous with respect to power, actuators,
sensors and computation. Each module is equipped with a Field Programmable Gate Array
(FPGA), a more flexible computational resource than common micro-controllers used in
modular robots. No automatic docking mechanism has yet been designed. A special type of
genderless Velcro® fastener is used to attach the modules together. Velcro proved to be a
very simple, flexible and efficient way to manually connect modules together.

Comparing YaMoR with other modular robots, its most distinctive feature is the
wireless communication via BlueTooth, which is not common in modular robotics. The
advantage of wireless communication is, that there is no need for an electrical connection
between the modules. This simplifies the design of the docking plates and avoids problems
with dust/dirt that are likely to occur outdoors. Furthermore disjoint modules or groups of
modules can communicate, for instance to self-assemble to a modular robot.

2.3   Modular Robot Control

Modular robot control is an extremely challenging field because modular robots generally
have many more DOF and sensors (provided that the modules have sensorial capabilities)
than ‘normal’ robots. Reconfiguration and locomotion are by themselves complex
problems. The combination of both and the distributed nature of a modular robot further
complicate things.

Consider for example PolyBot G3 (see chapter 2.2.3). It is planned to build robots with
more than hundred modules. Such a robot would have about thousand force sensors and IR
receivers/emitters (four per connection plate) and hundred potentiometers and joint angle
sensors. The controller of the roughly 100 DOF has to be implemented on a distributed
network with dynamic topology (due to reconfiguration) of about 100 embedded
processors.

A modular robot is a distributed system and as such it can be controlled using a
centralized master-slave approach, a distributed approach or a combination of both. In the
centralized approach, at every time step the central controller sends action commands to
all modules, usually identified by their id. The controller can be a host computer or one of

Figure 5:   The YaMoR module. On the right, YaMoR in a rolling loop configuration.
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the modules. The centralized approach is problematic for several reasons: 1) It is not
scalable because the central controller creates a communication bottleneck. 2) Master-slave
control is not robust because if the controller fails, the whole system shuts down. 3) It is
not well suited to deal with dynamical reconfiguration because it is impossible to know a
priori where a specific module is in the current configuration [Salemi & Shen 2004]. In
other words, the same module is not always on the same position in a specific
configuration.

The problems mentioned above can be addressed by partially decentralizing the system:
To resolve the scalability problem, the central controller can leave low-level control to the
modules and take the role of a ‘coordinator’ [Yim 1994]. For example, the controller could
be used to synchronize modules that know their proper action sequence. Such a partially
decentralized system would also be better suited to implement dynamical reconfiguration
because modules can locally choose their appropriate behavior based on their position in
the configuration.

However, the system still has a single point of failure. Even though robustness could
potentially be achieved if the ‘coordinator’ is a module and if other modules can take its
place in case of failure, a completely decentralized approach that embraces the distributed
nature of the MR system seems clearly more appealing.

One can distinguish between synchronous and asynchronous distributed control. In
synchronous distributed control, the role of the ‘coordinator’ is taken by a distributed
synchronization algorithm. Shen et al. take this approach in their hormone-based control
algorithms (see Chapter 2.3.3). However insisting on strict global synchronization has a
high cost in terms of efficiency [Støy et al. 2002].

Asynchronous distributed control emphasizes the autonomy of the modules. They are
considered autonomous agents and the modular robot can be viewed as a multi agent
system. The global behavior should emerge from local interaction between the modules
[Støy et al. 2002, Murata et al. 1994]. Role-based control (see Chapter 2.3.2) and non-
linear oscillators (see chapter 4.4) are examples of asynchronous distributed control.

In the following sections I review various approaches to modular robot control. Even
though this is not a complete overview, the selected topics are a good introduction to the
main issues in modular robot control. It is also important to be aware that not all topics
address the same issues. The first three sections concern locomotion control. Then I
present hormone-based and constraint-based control, which are both control frameworks,
i.e. various types of controllers (e.g. locomotion, navigation, reconfiguration, etc) could be
implemented within these frameworks. Since locomotion control with oscillators is the
main focus of this work, it is not included here and presented more in detail in chapter 4.

Even though some of the presented concepts also apply to lattice-type robots, I focus on
chain-type modular robots. Lattice-type robot control usually takes inspiration from
cellular automata [e.g. Hosokawa et al. 1998, Butler et al. 2002]. ‘Virtual scents’ or other
kinds of gradients are also used a lot [Bojinov et al. 2000, Støy 2004].
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2.3.1   Gait control tables and phase automata

The most common and obvious approach to control locomotion of a chain-type robot in a
specific configuration is a centralized gait3 control table [Yim 1994]. Each column of the
table contains the sequence of actions for a specific module, usually identified with an id.
Actions are generally just motor commands that set the desired angle. In mathematical
terms gait control tables correspond to simplified finite state machines with a predefined
sequence of actions for each module.

The gait control table is generally precomputed by a host that sends the commands of
the next row to the modules at every time step. Alternatively, the host can also download
the tables to the modules, which act as slaves and execute their table once received.

Besides from the problems inherent to the master-salve approach, namely scalability
and reliability, gait control tables are a simple open loop behavior without sensory
feedback. Phase automata, a generalization of gait tables, address this issue. A phase
automaton is an event-driven discrete state machine with periodic behavior. The phase
represents the automata’s starting point in a continuous time domain. Events can be
triggered by time or by sensors. Modules have a two-level control. The phase automata
sets the control attributes (e.g. joint angle) and the lower level controller tracks the desired
behavior [Yim 2003].

2.3.2   Role-based control

Role-based control has been proposed by Støy et al. for locomotion of chain-type robots
[Støy et al. 2003]. It is an asynchronous distributed approach. Each module plays a role. A
role consists of a periodic function A(t) (e.g. a harmonic oscillator) that specifies the joint
angle(s) of the module. Additionally, a delay for every child connector is given. The
modules periodically send signals with the corresponding delay to their children and act as
the master of their sub-trees. Therefore, synchronization is done locally with neighbors and
global synchronization emerges over time. Even though the authors program the roles
manually, one could also use an optimization algorithm.

Role-based control is an elegant approach to synchronize the system in a distributed
manner but the algorithm has a major drawback: It is assumed that modules have one and
only one parent connector. Modules can only be connected with this parent connector to
child connectors of other modules. Conro modules can’t be physically connected in a way
that violates this constraint (the female connector being the parent) but if a genderless
connection mechanism is used or if several male and female ports are available (e.g. M-
TRAN) the algorithm can’t be applied as is.

Another disadvantage is, that the synchronization procedure in role based control can
lead to discrete jumps in the generated trajectories A(t). Consider two connected modules
that are not synchronized. When the parent sends the synchronization signal, the child will
reset it’s clock t, leading to a brutal and uncontrolled change in the trajectory. In contrast,
nonlinear oscillators always generate smooth trajectories (see Chapter 4).

                                                  
3 A gait is a cycle of a pattern of motion that is used for locomotion
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2.3.3   Hormone-based control

Shen et al. took inspiration from hormones to design reliable, distributed control
algorithms that can deal with dynamic configuration changes. A digital hormone is, as its
biological counterpart, a message that propagates in the network and triggers different
actions from different receivers. In contrast to message broadcasting, a hormone may have
a lifetime and can be modified or deleted by cells as it travels through the network [Shen et
al. 2002].

As I mentioned above, a modular robot can be seen as a distributed system consisting of
a set of interacting autonomous agents (the modules). It can be represented as a dynamic
network where nodes are modules and links represent physical connections or
communication channels between modules. The network is dynamic because its topology
might change through reconfiguration. Modules must have some essential capabilities in
order to perform complex tasks within this context [Salemi & Shen 2004]:

• Distributed task negotiation: The modules must agree on a global task to perform.

• Distributed behavior collaboration: Based on the global task each module has to
choose its appropriate local behavior.

• Synchronization: To compensate the lack of global clocks, the local behaviors need
to be synchronized between modules.

• Topology monitor and discovery: Modules must discover the current configuration
and their position for correct action selection. Potentially topology monitoring might
allow modules to detect damages and adapt their behavior accordingly (evtl. trigger
self-reconfiguration).

A priori a module cannot know the current configuration of the robot. Topology
discovery consists in representing the current configuration and potentially trying to map it
to a known configuration in a database (i.e. one for which a controller is available). The
problem is to find a good representation for configurations. A simple graph with a node for
each module and links for physical connections is not sufficient because two modules can
be attached together at various connection ports and/or with different orientations. To
include information about the ports and the orientations that are used, Castano et al. use
directed graphs with several vertexes for each module [Castano & Will 2001].
Configurations can then be compared by their adjacency matrixes.

Salemi et al. have proposed a distributed task negotiation algorithm for modular robots
called DISTINCT [Salemi et al. 2003]. A module can originate a new task by propagating
a specific hormone to build a Task Spanning Tree (TST). A TST is a growing tree of
modules within the configuration that have all agreed on the same task. If different
modules initiate multiple tasks a forest of partial TSTs might grow in the network. The
partial TSTs gradually merge until there is only one TST covering all modules, the
originator of the winning task being its root.

For a given task in a specific configuration, a module can generally select the correct
behavior based on its local connection information. Salemi et al. have defined 32 types,
covering all possible configurations of a CONRO module with its immediate neighbors
[Salemi et al. 2001]. For example, if the module is attached to the ‘left’ port of another
module with its ‘back’ port, its type is T5. If the position of the module within the
configuration is not uniquely determined by the immediate neighborhood (e.g. in a snake
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robot), an extended neighborhood type that includes connection information until distance
n can be used [Salemi 2004]. A module can discover and monitor its type dynamically and
autonomously based on the hormones it receives.

The correct local behavior is selected as a function of the extended type (i.e. the local
configuration) and the selected behaviors of neighboring modules. Potentially, elapsed
time or sensor input may also be considered. Algorithms for local behavior selection can
be found in [Salemi & Shen 2004] and [Støy et al. 2003]. The latter one doesn’t use the
terminology of hormones but the approach is the same.

Last but not least, synchronization can also be achieved with hormone-based control.
For example, a module can delay the propagation of a hormone or wait for special
synchronization hormones from its active neighbors. Both serial and parallel hormone-
based synchronization are discussed in [Salemi et al. 2001].

I agree with Støy et al. [Støy et al. 2003] that an important issue has not been addressed
in the hormone-based protocols for Conro: A hormone might be lost on its way due to
system failure or dynamic reconfiguration. If the sender waits for the message to propagate
through the configuration tree and back this leads to a system stop with the algorithms
proposed by Shen et al.

The algorithms discussed above address important issues in distributed control of
modular robots. They are scalable, robust to dynamic reconfiguration changes and don’t
rely on global unique identifiers but I find the name hormone-based control somehow
misleading. It suggests a novel, bio-inspired approach for communication in a distributed
system but in practice, hormones are just content-based messages that are exchanged
between modules using adequate protocols. It is true that these messages may have a
lifetime that nodes can delete them, alter their content or insert a delay before routing them
to the neighboring nodes, but this is true for other protocols as well and has not much to do
with the functioning of biological hormones. Shen et al. have recently proposed a Digital
Hormone Model (DHM) that is truly bio-inspired [Shen et al. 2004]. For example,
stochastic reaction, dissipation and diffusion are modeled. Unfortunately the authors don’t
discuss how this model could practically be applied for modular robot control.

2.3.4   Constraint-based control

As I discussed above, in strictly asynchronous distributed control the robot is viewed as a
multi-agent system. Modules are autonomous agents that exchange messages with other
(generally neighboring) modules. It is important to keep in mind that this is only a model
and that alternative views of a MR system are possible.

Zhang et al. have developed a constraint-based control framework to effectively
program modular robots [Zhang et al. 2002b, Fromherz et al. 2001]. Constraint-based
control is only a framework, thus various types of controllers could be implemented on top
of it. Within this framework, the modular robot is not modeled as an aggregation of
autonomous agents but as a large embedded distributed system with dynamic topology. In
other words, the system is not viewed as N controllers that run on separate modules but as
a single control system that is implemented on a network of N embedded processors.

In constraint-based control, the control problems are casted as constrained optimization
problems. Thus, the controller consists of a set of constraint solving components
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distributed over the embedded network. “Constraint solvers are goal oriented deliberative
agents; they can be used as control regulators that drive the system to desired states or as
information retrievers that extract current state information from sensed data.” [Zhang et
al. 2002b]

The framework is built on an Attribute/Service Model (ASM). Constraint solvers are
considered as services that can be triggered by time or by externally (hardware) or
internally (software) generated events. Various components (services and shared attributes)
of the control system may be physically located on the same or on different processors.
ASM makes this transparent.

Zhang et al. have successfully applied constraint-based control to modular self-
reconfigurable robots in simulation [Zhang et al. 2002b]. It is planned to use the
framework with PolyBot G3 (see chapter 2.2.3). Unfortunately, the authors only focus on
scalability and not on reliability. They mention that a state retriever can act as a diagnostic
engine to detect failures, but it is not discussed how the system reacts when a whole node
(module) fails.

2.3.5   Reconfiguration

A general reconfiguration planning algorithm would find the fastest reconfiguration
sequence between two arbitrary configurations. Unfortunately it is computationally
intractable to find the optimal solution [Chirikjian et al. 1996]. Various heuristic-based
methods have been proposed for lattice-type robots: For instance, modules can be attracted
to their final position with gradients as described in [Støy 2004] or [Bojinov et al. 2000].
The total distance that the modules traveled on the grid can be used as cost function for the
reconfiguration sequence.

The main difficulty in chain-type reconfiguration planning is the numerous constraints
that must be respected. For instance, one must take into account collisions with the ground,
self-collisions, gravitational stability, actuation torque limits etc. [Murata et al. 2004].
Reconfiguration is much simpler for lattice-type modular robots since they limit the
possible angles between elements. Furthermore, an elementary step in the reconfiguration
sequence consists of a single module moving to a neighboring position on the grid. In
contrast, chain-type modular robots must coordinate many modules for exact alignment
and autonomous docking.

Initially I planed to design a new hybrid-type module with two DOF, inspired by the M-
TRAN but using regular or rhombic dodecahedrons instead of cubes as basic shape for the
modules. By doing so I hoped to overcome the limitations of M-TRAN with respect to
lattice-style reconfiguration (see below) but finally the project took another direction.
Nevertheless I discuss hybrid-type reconfiguration in the next section, as I believe it to be a
very promising and sometimes over-looked approach.

2.3.5.1   Hybrid-type reconfiguration

Hybrid-type reconfiguration is an attempt to lower the complexity of reconfiguring chain-
type modular robots. As mentioned above, various algorithms for reconfiguration planning
with lattice-type robots have been proposed and alignment is easier because modules only
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move to neighboring positions on the grid. Therefore it is desirable to reconfigure a chain-
type robot in a lattice-type way, i.e. instead of reconfiguring whole chains of modules,
individual modules wander on the robot body to their new position.

As I mentioned before, M-TRAN (generally considered chain-type) is currently the only
modular robot that classifies as hybrid-type. However, the lattice-type reconfiguration
capabilities of M-TRAN are limited because a module can only move to some of the
neighboring positions on the grid. On a flat cluster, a module can travel in two modes:
Forward roll and pivot mode (see Figure 6). A second module is needed for transition
between these two modes. These limitations make it impossible to use general lattice-type
reconfiguration algorithms for M-TRAN.

With the help of a graphical user interface for manual reconfiguration planning, Murata
et al. have demonstrated a wide variety of reconfiguration experiments, both in simulation
and with hardware. For example a crawler can self-assemble from a regular cluster of
modules, then reconfigure first to a rolling tank and finally to a four-legged walker as
illustrated in Figure 1.

Naturally, manual reconfiguration planning by trial and error has its limitations and is
generally not acceptable for autonomous modular robots. Murata et al. have tackled the
problem of finding a reconfiguration planning algorithm by introducing regularity in the
module cluster. Regular clusters consist of four-module blocks, also called meta-modules.
Three different types of such clusters have been designed and a centralized planning
method for reconfiguration has been developed [Yoshida 2002] in order to achieve lattice-
type locomotion (cluster flow) with M-TRAN modules. Locomotion is achieved by
succeedingly moving tail meta-modules to the front. A global planner determines the
desired position of the moving tail block. On a lower level, a motion scheme selector is
responsible for planning the movements of individual modules based on a rule database.
Clusters can move in various directions and climb over obstacles.

Figure 6:   The M-TRAN module can move on a cluster of modules (here represented as the floor)
almost in the same way as lattice-type modules do. If the module is lying on its side, it is in pivot
mode (on the top), otherwise in forward-roll mode (in the middle). For conversion between these
two modes, a second module is required (on the bottom).
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Kurokawa et al. have described an operation scenario for search and rescue where
regular clusters locomote and/or self-assemble various types of walkers [Kurokawa et al.
2004]. These walkers could potentially reassemble into a cluster (refer to figure 7).

Even though this approach permitted astonishing demonstrations with M-TRAN, it
relies heavily on manually programmed solutions. The proposed reconfiguration planner
only concerns lattice-type locomotion of regular clusters. It is a centralized algorithm that
uses a manually programmed rule database. More complex reconfiguration sequences, for
example the walker generation from a cluster, have been completely hand programmed. As
I discussed above, centralized control is problematic for modular robots because of
scalability issues and robustness.

2.4   Sensors in modular robots

In order to display more complex behaviors than open-loop locomotion and to adapt to
environmental changes, the robot obviously has to be able to sense its environment and
internal state. Especially for their highly advertised locomotion capabilities in unstructured
terrain, modular robots need strong sensorial capabilities.

Figure 7:   Hybrid-type reconfiguration capabilities of M-TRAN. A regular cluster of modules
can locomote in a lattice-style way and/or assemble various types of walkers.
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It is striking how little attention has been paid to the use of sensors in modular robots.
Previous research has consistently focused on ‚blind’ open-loop locomotion and
reconfiguration. Consequently state-of-the-art MR systems generally only use joint
position sensors and, in the case of self-reconfigurable robots, sensors for docking-aid.

Recently an effort has been done to improve this situation: For instance, M-TRAN II
now includes an acceleration sensor and PolyBot G3 will be equipped with two
acceleration sensors, a potentiometer and force sensors on the connection plates (besides
from the IR sensors used for docking). However, these sensors will mainly improve
autonomous docking and ‘blind’ locomotion. I conclude that not a single MR system
currently uses modules with sensors that are suited for navigation in rough terrain or
obstacle avoidance (e.g. IR distance sensors or photoreceptors).

Consequently, little research has been done on how to include sensor information in
modular robot control. The use of sensors in modular robots differs from previous work in
sensor systems and sensor fusion in that the position of a specific sensor is not fix (due to
dynamic reconfiguration). The question is how to extract meaningful data from a dynamic
network of sensors. Clearly one should look for answers in the field of distributed sensor
networks where a lot of research has been done recently. See for instance [Esterin et al.
1999].

If the sensor information is used exclusively locally, this is not a problem. In a well-
designed controller, every module should know its position in the current configuration
and select the correct local behavior. The local behavior may be influenced by the local
sensor input. Naturally, the local sensor information can also be used by the module to
influence the global behavior, for example by releasing a specific hormone.

So far so good, but generally several sensors from different modules might be needed
for correct global behavior selection. One solution is to send all sensor data to a master
controller, e.g. a specific module. Such a controller would take global decisions based on
the sensor input it gets from the modules and act as the ‘brain’ of the robot.

Støy et al. have tested a completely distributed approach with CONRO. Sensor
information is first abstracted based on the position of the sensor in the robot and then
propagated to all modules [Støy et al. 2002]. Each module independently selects the local
behavior based on the propagated sensor values. The disadvantage of this solution with
respect to the centralized ‘brain’ approach is slow reaction time and much communication.
Obviously it is more efficient to directly send sensor information to a single controller than
gradually propagating it to all modules. 
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Chapter 3 

Bio-Inspired Locomotion Control

Clearly, locomotion is an essential skill of any autonomous robot. However, locomotion
control is of particular importance to modular robots because their potential applications
advertised in the literature always emphasize superior locomotion capabilities on rough
terrain.

Unfortunately, many degree of freedom locomotion control is very complex and it
turned out to be difficult to design such a controller with traditional engineering
methodologies. Since nature was confronted with the same problem, it is interesting to
study the solutions that emerged from evolution. Thus, in the first sub-chapter I give a brief
overview of vertebrate locomotion.

3.1   Vertebrate locomotion

Efficient locomotion is mandatory for a species to survive. For example, animals rely on
locomotion to find food, mate, populate new territories, catch prey or escape from
predators. The locomotion strategy of a particular species must be well adapted to its
environment and ecological niche. Evolution has led to a wide variety of different types of
locomotion such as walking, hopping, crawling, flying, swimming etc, providing thereby a
rich source of inspiration for engineers.

Despite the large variety of locomotion strategies that can be observed in nature, we can
identify some common characteristics that underlie locomotion of vertebrates. In the
subsequent sections I shall discuss these fundamental characteristics of vertebrate
locomotion and their impact on bio-inspired locomotion control of robots in detail.

In Sections 3.1.1 – 3.1.4 animal locomotion is analyzed qualitatively, i.e. from a high
level point of view. As you will see, locomotion control is extremely complex.
Specifically, many oscillatory signals need to be coordinated and synchronized. In Sections
3.1.5 and 3.1.6 I discuss how these signals are generated at a neurophysiologic level. I will
focus on the building blocks and architecture of the locomotor circuit, as these findings are
most interesting for designing a bio-inspired robot controller.
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3.1.1   Locomotion through rhythmic activities

In nature, locomotion is generally achieved with periodic activities. Rhythmic contractions
of muscles lead to undulations of the body and/or oscillations of legs, wings or fins. On the
other hand, man-made machines generally rely on continuous movement of wheels or
propellers. One must be aware that the preference of periodic activity in nature doesn’t
imply that this approach is always superior to continuous activity for locomotion.
However, in the case of locomotion on unstructured terrain the strategies adopted by nature
seem clearly superior to what can be achieved with wheeled robots.

The drawback of locomotion based on oscillations is the complexity of the control
system. For example, a differential wheel robot can be controlled using only two actuators:
The speed of the left and the right wheel. Furthermore, the effects of the actuators on the
movement of the robot are easy to understand. On the other side, locomotion through
periodic movements generally implies many more degrees of freedom. The signals that
induce the oscillations must be well coordinated in order to achieve efficient locomotion
and the effect of a single actuator on the global behavior is far from trivial.

Locomotory control is further complicated in the case of dynamically stable gaits of
walkers. In a dynamically stable gait, the center of gravity is not maintained at all time
within the polygon formed by the contact points of the limbs with the ground (in contrast
to statically stable gaits, where this is the case). Therefore the limbs are not only used for
locomotion per se, but also to avoid falling over by balancing the momentum, gravitational
and inertial forces.

3.1.2   The importance of mechanical dynamics

Clearly, the dynamics of the biomechanical system are as important to efficient locomotion
as the dynamics of the neural control. First of all, the body determines what movements are
physically possible. Furthermore, the interplay between the control signals, the
biomechanical system and its environment leads to the emergence of very complex,
nonlinear dynamics. For example, the effect of a particular command depends on the
position, momentums and inertial forces acting on the body at that specific time. On the
other hand, each command has a long-term effect on the mechanical dynamics and on the
future sensory feedback.

 For the biologist this implies that the neural system can’t be understood without taking
into account it’s interaction with the body. For the engineer it implies that an effective
locomotion controller cannot be designed separately from the body. Over the last decade,
embodied cognition has received a lot of interest. Embodiment stresses the importance of
the dynamics that emerge from the interplay between the controller, the body and its
environment. The importance and complexity of this interplay are strong arguments in
favor of co-evolution of morphology and control.
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3.1.3   Symmetry – a fundamental characteristic of locomotion

I can’t think of a vertebrate whose axis of symmetry doesn’t coincide with its preferred
direction of locomotion4. In order to move on a straight line, the sum of the rhythmical
forces that are applied to the environment by the limbs on the left and on the right side
must be symmetric with respect to the direction of locomotion, otherwise the animal would
turn in a circle. Even though symmetric forces could theoretically also be produced by an
asymmetric structure, symmetry obviously favors efficient locomotion.

Symmetry in nature is not limited to the morphology; it also extends to the architecture
of the controller. Clearly, the locomotory control circuit of your left leg has the same
architecture as the one of your right leg. It wouldn’t be advantageous for evolution to come
up with two different control systems to achieve the same basic functionalities.

As I will discuss in Chapter 4.3.1, my experiments with a genotype-to-phenotype
mapping that implies symmetric morphology and control structures indicate that symmetry
is indeed a fundamental characteristic of efficient locomotion.

3.1.4   Locomotion gaits

A gait is a cycle of a pattern of motion that is used for locomotion. Observing animal
locomotion at a high level, a gait can be described by the phase differences of the limbs
and/or body segments.

For example, typical quadruped walking gaits are walk, trot and bound. The walking
gait is characterized by different phases of all legs, i.e. the four legs touch the ground at
different times. Trotting is when the diagonally opposed legs touch the ground at the same
time and in bound, the hind and the forelegs hit the ground simultaneously.

Generally animals have the capability to switch between various gaits. Transition
between gaits is fast (often within one cycle) and smooth. For example, the salamander
swims like a lamprey with a traveling wave along the body. On ground, it changes to a
trotting gait with a standing wave along the body [Ijspeert & Cabelguen 2003].

Another important observation from animal locomotion is that the frequencies of the
rhythmic movements are equal. Also at a lower level of description, there seems to be no
evidence that the various oscillators along the spinal cord (see next section) use different
frequencies [Ijspeert 1998].

                                                  
4 There are also animals that move sideways, like crabs or some snakes.
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3.1.5   Neurophysiology of vertebrate locomotion

An important question to neurobiologists was where the oscillatory patterns are generated.
In a famous experiment Shik et al. observed gait transitions in a decerebrated cat [Shik et
al. 1966]. A walking gait could be induced by an electrical stimulus of the brainstem. If the
amplitude of the stimulus was increased, the gait switched to trot and finally to gallop. This
demonstrates that most of the vertebrate locomotary circuit is located in the brainstem and
the spinal cord and that it can be controlled with simple stimuli from the higher neural
centers. These high-level commands can for example be used to control the speed of
motion.

Neurobiologists have extensively studied the locomotor circuit of some species. Central
pattern generators (CPGs) are circuits that generate oscillatory output from tonic input.
Nowadays we know that CPGs in the spinal cord and in other oscillatory centers are
responsible for transforming simple stimuli from higher neural centers into complex
patterns of rhythmic signals needed for locomotion5.

The locomotor CPG is controlled via multiple descending pathways from the motor
cortex. These tracts can either be direct or relayed by centers in the brainstem. For
example, the corticospinal tracts used for visuomotor coordination by mammals directly
link spinal neurons while the reticulospinal tract, which is essential for locomotion of all
vertebrates, is relayed by the reticular nuclei in the brainstem. In general the descending
pathways are surprisingly conservative. Recent studies indicate that modifications of the
CPGs and of the morphology (hence also of the sensory feedback), might be much more
frequent than changes in the descending tracts in the evolution of species [Donkelaar,
2001].

The oscillatory centers (or sub-CPGs) are coupled together to control the phase
difference of their periodic output. For example, the swimming CPG of a lamprey consists
of roughly 100 segmental oscillators along the body. The swimming gait is a traveling
wave from head to tail. Oscillatory neural activity can be measured from an isolated spinal
cord in an excitatory bath. The phase difference between two segments remains constant
even if increasing the pharmacological stimulation changes the frequency of the
oscillations. These oscillations can also be observed from only two isolated lateral
segments, hence the oscillatory centers seem to be interconnected with their neighbors. In
tetrapods there is evidence of a hierarchical decomposition of the CPG into different
oscillatory centers on the level of the limbs, the joints and even the individual extensor and
flexor muscles.

In summary the most important properties of CPGs are: a) Rhythmic neural activity
without external stimuli or induced by very simple input signals; b) Capability of
generating distinct patterns in function of the input; c) Hierarchical decomposition into
coupled oscillators.

                                                  
5 Note that CPGs are not only used for locomotion but also for other rhythmic

activities like breathing.
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3.1.6   The role of sensory feedback

In the previous chapter I have mentioned experiments where rhythmic neural activity has
been observed from completely isolated spinal cords, i.e. in the absence of sensory
feedback. Other studies have shown that animals whose oscillatory centers had been
chirurgically or pharmalogically isolated from the sensory information were still able to
produce similar patterns of neural activity as recorded from intact locomotion.

These findings rejected the theory of peripheral control, which supposed that
locomotion is a chain of reflexes based on sensory feedback. It seems that the CPG is able
to generate the basic patterns of neural activity without sensory information, but that it
strongly relies on sensory receptors in joints and muscles in order to shape these patterns
for efficient locomotion. Coordination of mechanical and neural activity is of particular
importance within this context. This can be demonstrated very nice by rhythmically
moving a limb of a decerebrated vertebrate which is often enough to start the oscillatory
activity of the CPG.

Most interestingly, the tracts of the reflexes often share many interneurons with the
oscillatory centers of the CPG. In other words, the effect of a reflex depends on the state of
the CPG and may even be shaped by higher-level commands. From the embodied
cognition point of view the capability of the CPG to influence the future sensory input with
the signals it projects to the motoneurons deserves particular attention. The sensory-motor
loop does not constitute the basis for the CPG to work, as this would correspond to
peripheral control. However, it may still play an essential role for efficient locomotion.
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3.2   Nonlinear oscillators with balanced couplings

3.2.1   Introduction

The coupled nonlinear oscillators presented in the subsequent sections belong to a broad
class of mathematical problems, called perturbed nonlinear dynamical systems:

 q = F q( ) + p

where q is the vector of state variables (x and v in our case) and p a perturbation vector.
An oscillator is defined as a dynamical system that converges to a periodic solution if it is
unperturbed (p = 0). Any oscillator may be transformed into a polar coordinate system:

 

θ =ω0 + pθ
r = Fr r,θ( ) + pr

⎧
⎨
⎪

⎩⎪

where ω0 is the natural frequency of the unperturbed oscillator. The evolution of the
radius r is defined by the dynamical system Fr. The perturbation p has been decomposed
into two components, one acting on the phase (pθ) and the other acting in the direction of
the radius (pr). In order to understand the effect of the perturbation p it is useful to look at
the limit cycle (i.e. the set of q that the system periodically visits after convergence) from a
geometrical point of view. As illustrated on figure 8, pθ modifies the phase but pr will be
damped out and have a negligible effect [Buchli & Ijspeert 2004].

Multiple oscillators may be coupled together by defining a perturbation that is a
function of the state of the other oscillators. Before turning to the general case, suppose we
have a system that consists of only two coupled oscillators:

pθ ,1 = 0

Figure 8: Sketch of a limit cycle. This oscillator has state variables x  and v. It may be transformed
into a polar coordinate system θ-r. The perturbance can be decomposed into pθ (in red) and pr (in
blue). The latter one is generally damped out and has no effect on the phase.
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pθ ,2 = f (q1 )

The coupling can result in various dynamics, chaos or stabilization at a constant phase
difference φ are the most common cases. We are obviously interested in the latter one. As I
will discuss in the next chapter, it is essential that the phase difference after convergence
(φ) can be predicted for many reasons. In other words, we would like to find a function g
that gives us φ in function of p. Actually it’s the inverse that is most useful: A specific
phase difference ξ could be set if a function h was known that perturbs the system such
that it converges to φ = ξ. Suppose p1 is zero, i.e. there is a unidirectional coupling from
oscillator 1 to oscillator 2:

g p2( ) = φ
p2 = h ξ,q1( ) ⇒ φ = ξ

Unfortunately the relation between the perturbation and the resulting phase difference is
far from trivial and for some oscillators it may even be impossible to derive it analytically.
For the interested reader, the paper by Buchli and Ijspeert is a good starting point [Buchli
& Ijspeert 2004]. The authors discuss phase sensitivity analysis of amplitude controlled
phase oscillators. The methodology involves transforming the system into polar
coordinates and deriving a differential equation for the phase difference. This method
might also be applicable to the nonlinear oscillator that I present in the subsequent
sections, but I follow a more intuitive and less formal approach.

  Through numerical experiments and with the help of graphical plots I gain insight into
the dynamics of the system. Based on the understanding of the dynamics I succeed
„guessing“ the functions g and h. Finally I prove the correctness of my solutions both
numerically and analytically (luckily, the analytical prove of correctness of a known
solution is trivial compared to actually deriving the solution from the system).

As mentioned above, there are different types of oscillators. From now on, when I use
the term nonlinear oscillator or just oscillator, I always refer to the specific type that is
presented in the following sections.

3.2.2   Standalone nonlinear oscillator

Before tackling the problem of designing coupled nonlinear oscillators that can be set to a
specific phase difference, let’s consider the simple case of a single nonlinear oscillator
without couplings. Experience shows that sinusoidal signals are well suited for locomotion
control:

x = Asin(2π ft +ϕ )

where A is the amplitude, f the frequency and ϕ the phase. By taking the first and the
second derivative of x, a first order differential equation can be derived:
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τ x = v
τ v = −x
⎧
⎨
⎩

with  τ =
1
2π f

The amplitude A is only implicitly defined by this linear differential equation. A
depends on the initial conditions and perturbations of the state variables will have an effect
on it (analogous to the perturbation of an ideal spring). We must therefore add a new term
that drives the system to a limit cycle with precise amplitude:

 

τ x = v

τ v = −α x2 + v2 − E
E

v − x

⎧
⎨
⎪

⎩⎪
(1)

The expression x2 + v2  represents the actual energy of the oscillator and x2 + v2 − E  is
the energy error of the oscillator. Therefore, the nonlinear term may be understood as the
normalized energy error multiplied by α and v. The positive constant α can be used for
tuning the attracting force to the limit cycle. The bigger α, the faster the convergence. The

Figure 9: Convergence of a standalone nonlinear oscillator (equation 1). The energy has been set
to π/4 and τ is 1/π, consequently x converges to a sinus with amplitude π/2 and frequency 1/2 (see
equation 2). The phase depends on the initial conditions and has been tuned manually in the
harmonic oscillator to match the NOL. The initial state is set randomly. Note that I also initialize
each NOL with a different time in order to simulate the asynchronous clocks of the modules.
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multiplication by v implies faster convergence when the velocity is high. As illustrated on
Figure 9 and 10, on the limit cycle of (1) x and v converge to:

 

x = Asin t
τ
+ϕ⎛

⎝⎜
⎞
⎠⎟

v = Acos t
τ
+ϕ⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

(2)

with  A = E   and   f = 1
2πτ

The phase ϕ depends on the initial conditions. You can easily verify that this is indeed a
solution of (1) by replacing x  and v  by  x  and  v  in the equations. Convergence to the
limit cycle is guaranteed for arbitrary initial conditions except for the singularity when
both x0  and v0  equal zero. Refer to figure 10.

3.2.3   Coupled nonlinear oscillators

I will now explain how several nonlinear oscillators can be coupled together in order to
synchronize at a constant phase difference. Following [Ijspeert, et al. 2003] I started with a
simple coupling strategy which consists of projecting signals proportional to the x and v
states. The perturbation pi of oscillator i is:

px,i = 0

pv,i = aij x j + bijvj( )
j
∑

⎧
⎨
⎪

⎩⎪
(3)

where aij and bij are positive constants that imply a specific phase difference on the limit
cycle. As illustrated on figure 11, one can classify the coupling scheme of two oscillators
as:

Figure 10: Limit cycle of a standalone nonlinear oscillator (equation 1). Each line corresponds to a
separate run with random initial conditions as illustrated on figure 1. Ten runs are plotted on the left,
500 on the right.
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a) Uncoupled: aij = b ij = aji = bji  = 0. Obviously the phase difference can’t be
controlled.

b) Unidirectional: aji and bji are both zero. For any aij and bij (not both zero) the
oscillators converge to a constant phase difference.

c) Bidirectional with two free parameters: aji = -aij and bji = bij. In this case, the links in
both directions drive the system to the same phase difference, thereby accelerating
convergence (see next section).

d) Bidirectional with four free parameters: if none of the above applies. Generally, the
two links are conflicting, i.e. the two couplings try to drive the system to two
diverging phase differences. The oscillators may stabilize at a phase that balances the
conflicting perturbations or fall into chaotic behavior.

To model a CPG a network of nonlinear oscillators is needed (see Figure 12). If the
network is a tree, i.e. a fully connected and acyclic graph, the phase differences can be
analyzed pair wise. In other words, the coupling between two oscillators alone determines
their phase difference. On the other hand, in cyclic networks complex dynamics emerge
from conflicting forces analogously to the case of bidirectional couplings with four free
parameters (which are also a cycle) mentioned above.

Trees of nonlinear oscillators always converge to constant phase differences. Since
chaotic dynamics slow down both the genetic algorithm and the online optimization I
assume that the networks are always trees in this project. Further investigations whether
this assumption is biologically plausible would be very interesting within this context.

With the simple coupling given by (3), the perturbation is strongly influenced by the
energies Ej of the coupled oscillators. For example, if the amplitude of oscillator j is very
small, the coupling will be weak (unless compensated with high values of aij and bij) which
results in a slow convergence. As we want the strength of the coupling to be independent
from the amplitude of the emitting oscillator, the perturbation must be normalized by the
actual amplitude (xj

2 + vj
2)1/2 (which might be very different from E j

1/2 before
convergence). Hence the general equation for the coupled oscillator i is:

Figure 11: Classification of coupling schemes between two nonlinear oscillators.

Figure 12: In an acyclic network the phase difference between two coupled oscillators is determined only
by the coupling between these two oscillators (first two examples). Cycles result in more complex
dynamics and a pair wise analysis of the phase difference is not sufficient (on the right).
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τ xi = vi

τ vi = −α xi
2 + vi

2 − Ei

Ei

vi − xi +
aij x j + bijvj
x j
2 + vj

2
j
∑

⎧

⎨
⎪

⎩
⎪

(4)

The attentive reader might have noticed that the same argument also holds for oscillator
i. In equation (3), the coupling is normalized with respect to the amplitudes of the emitting
oscillators but the amplitude of oscillator i is not taken into account. In other words, if the
amplitude Ai is halved, the influence of the coupling will be twice as strong. I observed this
phenomenon in form of varying convergence times for equivalent initial conditions with
different values of the energy parameters. A remedy would be to multiply the coupling
term with the actual amplitude of oscillator i:

pv,i = xi
2 + vi

2 ⋅
aij x j + bijvj
x j
2 + vj

2
j
∑ (5)

However I decided not to use this form (see also equation 14). Hence, the following
sections build upon equation (4).

3.2.4   Predicting the phase difference of two oscillators

In the previous section I explained how two oscillators can be coupled together to
synchronize at a constant phase difference. However, efficient locomotion requires
synchronization at a specific phase. When using genetic algorithms or other optimization
methods it is not necessary to understand the effect of the coupling parameters on the
phase. However, with phase prediction we can drastically improve these algorithms by
limiting and structuring the search space.

First of all I measured the phase difference in function of the coupling parameters in a
series of experiments. Obviously, the phase difference can only be measured after
convergence of the system. Correctly detecting convergence and measuring the phase is
not as easy as one might think and apparent irregularities in the phase are sometimes
falsely interpreted as a consequence of the nonlinearity of the system.

As you can see in figure 13, the relation between the coupling parameters is much more
regular than previously expected. It seems that on any ray parting from the origin, the
phase is constant. Furthermore, the phase appears to be a linear function of the angle that
the ray forms with one of the axes. The key to phase prediction is a transformation of a and
b into polar coordinates (refer to figure 14):

a = r cos ξ( )
b = r sin ξ( )

(6)
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Note that this is not the transformation of the oscillator into polar coordinates that has
been mentioned in Section 3.2.1. It is just a different notation for the coupling parameters.
However, with this notation we can easily guess the relation between the phase difference
φ and the coupling.

Figure 13: Phase difference between two coupled oscillators. Each combination of the coupling
parameters a and b has been tested (by increments of 0.02) using random values for the initial
conditions and the energy parameters. As expected, the results are identical for both unidirectional
and bidirectional couplings with two free parameters.

Figure 14: Transformation of the coupling parameters into a polar coordinate system r-ξ.
The plot on figure 6 suggests that the phase difference grows linearly with π/2 - ξ.
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Based on figure 13 I hypothesize that the function g that predicts the phase from the
perturbation is:

In polar coordinates: g r,ξ( ) = π
2
− ξ (7)

In Cartesian coordinates: g a,b( ) =

π / 2 (a > 0  ∧  b = 0)

arctan a
b

⎛
⎝⎜

⎞
⎠⎟

(b ≠ 0)

−π / 2 (a < 0  ∧  b = 0)

⎧

⎨
⎪⎪

⎩
⎪
⎪

(8)

Figure 15:  Plots of the phase difference (vertical axis) in function ξ and r. For the upper diagram
unidirectional couplings were used, for the lower bidirectional couplings with two free parameters. The
‚canyon’ in the second plot is a typical example of an artifact (in the phase plots of figure 6 I eliminated
it by using much higher precision and smaller time steps).



34 Chapter 3.   BIO-INSPIRED LOCOMOTION CONTROL

Before trying to prove this hypothesis analytically, we can test it numerically. In order
to do so I first plotted the phase difference in function of ξ and r using both unidirectional
and bidirectional couplings with two free parameters. Indeed, the plots of figure 8 confirm
equations (7) and (8) for sufficiently big r (i.e. for sufficiently strong couplings).

In another experiment I calculated the error of the phase prediction function g for a
constant radius r. Again, the hypothesis was confirmed. As shown in figure 16, 0.1 and
–0.15 degrees bound the error, which is sufficiently small for our purposes. Furthermore,
as explained in figure 16 the error is only a numerical artifact explained by the use of a
relatively low precision (0.01 radians) for convergence detection.

By rewriting the coupling term pi,v of  the nonlinear oscillator i (equation 4) using the
new notation (equation 6) we can understand the effect of the coupling parameters:

pv,i =
aij x j + bijvj
x j
2 + vj

2
j
∑ = rij ⋅

cos ξij( )x j + sin ξij( )vj
x j
2 + vj

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟j

∑ (9)

Now suppose that xj and vj converged to:

Figure 16: Error of the phase prediction function g (equations 7 and 8). For this plot, bidirectional
couplings with two free parameters were used. Unidirectional couplings gave the same results. To
speed up the experiments I only used a precision of 0.01 radians (approximately 0.5 degrees) for
detecting the convergence, thus the error lies within the precision of the phase measurement and
could be reduced by increasing the precision.
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x j = Aj sin
t
τ
+θ j

⎛
⎝⎜

⎞
⎠⎟

vj = Aj cos
t
τ
+θ j

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

then, by replacing xj and vj in (9) we get:

pv,i = rij ⋅
cos ξij( ) ⋅ Aj sin

t
τ
+θ j

⎛
⎝⎜

⎞
⎠⎟ + sin ξij( ) ⋅ Aj cos

t
τ
+θ j

⎛
⎝⎜

⎞
⎠⎟

Aj

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟j

∑

= rij sin
t
τ
+θ j + ξij

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟j

∑

= rij cos
t
τ
+θ j −

π
2
− ξij

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟j

∑

The first simplification is achieved with a trigonometric addition theorem, then we apply
the reduction formula sin(π/2 + α) = cos(α). Now suppose that on the limit cycle:

 
vi = Ai cos

t
τ
+θi

⎛
⎝⎜

⎞
⎠⎟ (11)

Note that  
Ai ≠ Ei . The hypothesis (7) implies that:

φij = θ j −θi =
π
2
− ξij ⇒ θi = θ j −

π
2
− ξij

⎛
⎝⎜

⎞
⎠⎟ (12)

Hence, the cosine in (10) is the normalized velocity of oscillator i on the limit cycle:

 
pv,i = rij

vi
Ai

⎛
⎝⎜

⎞
⎠⎟j

∑ (13)

If the same radius (strength of the coupling) is used for all couplings, the perturbation is:

 
pv,i = kr

vi
Ai

(14)

where k is the number of couplings. The coupling perturbs the oscillator with a signal that
is proportional to the normalized ‚target’ velocity  v ! Note that this signal  v  is different
from v  before convergence. The effect of such a perturbation is that v  synchronizes with
 v .

The speed of convergence is proportional to the number of couplings k and to the
strength of the couplings r. The signal  vi  is normalized, thus the force of the perturbation
is not proportional to the amplitude of the oscillator. Therefore, the same coupling results
in either faster or slower convergence if the energy of the oscillator is decreased or

(10)
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increased. This is the exact same observation that has already been made in Section 3.2.3.
Now we see that multiplying the coupling term with the actual amplitude of the oscillator
(equation 5) would indeed lead to a convergence independent from the energy. However,
slower convergence for oscillations with big amplitudes generally makes sense in a
robotics application: oscillations with small amplitudes can usually be changed faster by
the motor than oscillations with big amplitudes because a smaller torque is needed in the
first case. This is the reason why I decided not to use equation (5).

Note that, even though verified numerically, I have still not proved the hypothesis about
function g (equations 7, 8). Specifically, equations (13, 14) could only be derived under the
assumption that the hypothesis is true. Luckily this is the case, as I will prove in Section
3.2.7.

Finally, yet most importantly, we can use equations (7, 8) to define a coupling that sets
the phase difference φij  between two oscillators to a specific phase  

φij :

 

pv,ij = rij ⋅
cos π

2
− φij

⎛
⎝⎜

⎞
⎠⎟ x j + sin

π
2
− φij

⎛
⎝⎜

⎞
⎠⎟ vj

x j
2 + vj

2
⇒ φij = φij (15)

3.2.5   Convergence of two coupled nonlinear oscillators

Two oscillators have converged if their phase difference remains constant. In the previous
section we have seen that the radius gives the strength of a coupling:

r = a2 + b2

Choosing an appropriate r is essential for the optimization algorithms: Convergence
should be quick to speed up the algorithm but ideally the trajectories should not change
faster than the mechanical dynamics allow. Furthermore it is important to know an upper
bound for the time it takes the system to converge with arbitrary initial conditions.

In order to study the effect of r I measured the number of periods until convergence in
function of the coupling parameters. As illustrated in figure 10, one should choose at least
r > 0.75 in the case of unidirectional couplings and r > 0.5 in the case of bidirectional
couplings with two free parameters in order to stay out of the red and purple areas where
convergence is impracticably slow for locomotion.

One could imagine that choosing initial positions on the limit cycle might accelerate
convergence. Figure 18 shows the number of periods until convergence for initial
conditions x0 = 0 and v0 = A. Comparing figures 17 and 18 we see that convergence is
actually faster for random initial conditions. Geometrically speaking, a possible
explanation is that the trajectories can take ‚shortcuts’ from the initial positions and
directly approach the limit cycle with the correct phase (remember Figure 10). This is
apparently faster than changing to the correct phase difference on the limit cycle itself.
Finally, to choose optimal values for r I defined a measure of the convergence in function
of r. This measure is given by:
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Figure 17:   Number of periods until convergence in function of the coupling parameters a and b. For
each run random initial conditions are set, this explains the noise. On the top, a unidirectional
coupling scheme is used. The apparent faster convergence on the left side of the b-axis compared to
the right side is just an artifact (it’s because I measure the convergence in whole numbers). As
expected, convergence is faster for bidirectional couplings with two free parameters (below).
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Figure 18: Number of periods until convergence in function of the coupling parameters a and b for
constant initial conditions x0 = 0 and v0 = A. Again, on the top a unidirectional coupling scheme is
used and below bidirectional couplings with two free parameters. Surprisingly, convergence slowed
down for big r in the upper left corner of the second plot, thereby indicating that convergence time
might increase if the coupling is too strong. This observation is confirmed in figure 19.
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c r( ) = p0
2 + p1

2 + ...+ pN
2

N
(16)

where pi is the number of periods until convergence with an angle of ξi = i
2π
N

. For

each pi (i.e. for each run) random initial conditions and random amplitudes are set for both
oscillators. Taking the square mean instead of the arithmetic mean makes c(r) more
sensible to runs that take exceedingly long to converge. The results are given in figure 12.
Interestingly, the convergence slows down as r increases after reaching an optimum at
roughly:

ropt = 1.5 (for unidirectional couplings)

ropt = 1.0 (for bidirectional couplings with two free parameters)

Figure 19: For each radius r, the number of periods until convergence p of 100 separate
runs is measured. The angle ξ  is incremented for each run, starting at 0 for the first run and going
until 2π for the last run. Random initial conditions and random amplitudes are set for every run. The
convergence for a specific radius c(r) (vertical axis) is defined as being the square mean of the
hundred p that have been measured for r (see equation 16). Interestingly, the convergence gets
slower for very strong couplings. The spikes that occur in the case of bidirectional couplings
indicate individual runs that converge very slowly.
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3.2.6   The amplitude difference

As explained above, a standalone nonlinear oscillator converges to a sinusoidal limit cycle
with an amplitude equal to the square root of the energy parameter. Unfortunately, the
perturbation of the coupling does not only have an effect on the phase but also on the
amplitude  

Ai  on the limit cycle of oscillator i:

 
Ai > Ei

Intuitively, we can understand that the signal of the coupling increases the energy in the
oscillator. I define the amplitude difference eA as being:

 eA =
Ai − Ei

As you can see in figure 20, the amplitude difference increases with the radius, i.e. the
strength of the coupling. The difference is significant and can certainly not be neglected.
Actually, the influence of the coupling on the amplitude is so strong that oscillations with
amplitudes smaller than approximately 20° are not possible with couplings of reasonable
strength. Making matters worse, the difference of a coupled oscillator i depends not only
on the strength of the coupling but also on it’s energy Ei (refer to figure 21).

I spent some time trying to find the relation between the amplitude difference eA, r and
Ei, but I didn’t succeed. Finally I found a much better solution for the problem: In the next
section I introduce a modified coupling term that implies a zero amplitude difference.

Figure 20: The amplitude difference (vertical axis) of a coupled oscillator increases
(not linearly) with the strength of the coupling.



Chapter 3.   BIO-INSPIRED LOCOMOTION CONTROL 41

3.2.7   Nonlinear oscillators with energy balanced couplings

The amplitude difference discussed in the previous section is problematic for locomotion
control. First of all because small oscillations become impossible for coupled oscillators
but also because the difference depends on the strength of the coupling r. As mentioned
above, r can be used to tune the speed of convergence. For locomotion control, r is an
important parameter, especially in the context of gait transitions. For example, it may be
useful to experiment with different coupling strengths for a specific gait transition. One
can even imagine a robot that actively controls the speed of the gait transition via the
parameter r. However, since r strongly influences the amplitudes, modifying the strength
of the couplings will generally have a very negative impact on the locomotion gait (they
are very sensible not only to the phases, but also to the amplitudes).

As the amplitude difference stems from an increase of the actual energy caused by the
coupling, the most obvious solution is to add a new term to the coupling that balances the
additional energy out (hence the name energy balanced couplings). Thus I propose to
introduce an energy balancing term Γ  in the standard equation (4) for the coupled
nonlinear oscillators. After experimenting with different terms, I succeeded finding a term
Γ  that works. Using polar coordinates for the coupling parameters, the energy balanced
coupling is:

Figure 21:   The amplitude difference (vertical axis) for a constant radius. In a first set of
experiments, energy parameters of both coupled oscillators were the same for all runs (this
corresponds to the line on the top). In a second series, random amplitudes were set for both
oscillators (the points). The same random seed was used for the series with the unidirectional (red)
and the bidirectional couplings with two free parameters (blue). Note that the points always
coincide; hence the amplitude difference is the same for unidirectional and bidirectional couplings.
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pv,i = rij ⋅
cos ξij( )x j + sin ξij( )vj

x j
2 + vj

2
+ Γ ij

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟j

∑ (16)

with Γ ij = −rij
vi

xi
2 + vi

2

As explained below, the energy balanced coupling actually represents the phase error of
oscillator i. The following two equations define the nonlinear oscillators with energy-
balanced couplings. In equation (17) I use polar coordinates, in equation (18) Cartesian
coordinates for the coupling parameters (i.e. the two equations are equivalent):

 

τ xi = vi

τ vi = −α xi
2 + vi

2 − Ei

Ei

vi − xi + rij ⋅
cos ξij( )x j + sin ξij( )vj

x j
2 + vj

2
 −  vi

xi
2 + vi

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟j

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

(17)

 

τ xi = vi

τ vi = −α xi
2 + vi

2 − Ei

Ei

vi − xi +
aij x j + bijvj
x j
2 + vj

2
 −  aij

2 + bij
2 vi

xi
2 + vi

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟j

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

(18)

Unlike the standard nonlinear oscillators discussed in the previous sections, an energy
balanced oscillator i converges exactly to:

 

xi = Ai sin
t
τ
+θi

⎛
⎝⎜

⎞
⎠⎟

vi = Ai cos
t
τ
+θi

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

(19)

with θi = θ j −
π
2
− ξij

⎛
⎝⎜

⎞
⎠⎟

By replacing xi , vi  with  xi ,  vi  in equation (17) we can prove that (19) is indeed a
solution. These calculations are not included here because they are trivial to do. I shall only
show that the energy balanced coupling term pv,i indeed becomes zero after convergence as
this helps understanding why pv,i represents the phase error of the oscillator:

 

pv,i = rij ⋅
cos ξij( ) x j + sin ξij( ) vj

x j
2 + vj

2
 − 

vi
xi
2 + vi

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟j

∑

      = rij ⋅ cos
t
τ
+θ j −

π
2
− ξij

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
 − 
vi
Ai

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟j
∑

      = rij ⋅  
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Ai
 − 
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Ai

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟j
∑ =  0
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The simplification of the first term in the sum to a cosine is achieved with trigonometric
theorems as explained for equation (10). Note that the discussion of nonlinear oscillators in
section 3.2.4 was based on the hypothesis about the phase predicting function g and on the
assumption that the oscillator converges to a sinusoidal limit cycle. The approach in this
section is fundamentally different: As mentioned in the previous paragraph, we can prove
that the oscillator converges to  xi ,  vi  (equation 19) by showing that it is a solution to the
differential equation (17).

The phase predicting function g for energy-balanced couplings is the same as the one
given in equation (7) for standard couplings. The difference is that in the case of energy
balanced couplings the g of equation (7) is not just a hypothesis because it can actually be
derived from the solution to the differential equation (19) which is proven true.

The fact that  xi ,  vi  is the only solution and global attractor for energy balanced coupled
oscillators has been confirmed numerically (Figure 22). The phase error is lower than the
precision used to measure it and the amplitude error is indeed zero for random amplitudes
and initial conditions.

Figure 22: The amplitude and phase error of energy balanced oscillators for a constant radius. For
each run, random initial conditions and random amplitudes are set. As expected, the amplitude error is
zero, independently from the amplitudes and ξ.  As explained in figure 9, the phase error is due to the
relatively low precision (0.01 radians) used for detection of convergence.
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Chapter 4 

Co-evolution of configuration and
control for locomotion

4.1   Introduction

In Chapter 3.1 I discussed the complexity of many DOF locomotion control. In summary,
the oscillatory signals must be well coordinated for efficient locomotion and the effect of a
single actuator on the global behavior cannot be easily predicted. Furthermore, the
dynamics that emerge from the interplay between the CPG and the mechanical system
must be taken into account. For all these reasons, it is very difficult to design a locomotion
controller with traditional engineering methodologies (i.e. there is no analytical approach
to the problem) - hence the need for heuristic optimization algorithms to set the parameters
of the CPG.

In modular robotics, the arguments considered above also speak against designing the
configurations of the robot by hand. There are two additional reasons why it is
inadmissible to manually design the configurations and locomotion controllers: a) A
modular robot is meant to operate in many different configurations. Manually designing all
these configurations and their CPGs demands too much time and effort; b) The complexity
of designing the configuration and the CPG grows exponentially with the number of
modules used. Manually programming the locomotion controller is not scalable, it might
become virtually impossible if several dozens or hundreds of modules are used.

In the next section I review various approaches to self-organization of locomotion in
chain-type modular robots. Then I discuss previous research in the field of co-evolution of
morphology and control. Finally I shall present how Adam (my modular robot simulation
and evolution tool) co-evolves configurations and CPGs for locomoting chain-type
modular robots. As you will see, the evolved configurations are more complex and the
locomotion more elegant and efficient compared to what has been achieved in previous
research.
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4.1.1   Evolutionary approaches to modular robot control

As mentioned above, there has been a lot of research on automatic generation of biped or
quadruped locomotion using various CPG models. Interestingly, to the best of my
knowledge the research group behind the M-TRAN project and the BIRG laboratory are
currently the only ones applying these principles to chain-type modular robots.

4.1.1.1  Evolutionary motion synthesis method for M-TRAN

An evolutionary motion synthesis method for M-TRAN that includes both locomotion and
reconfiguration has been proposed in [Yoshida et al. 2003]. The behavior of the robot is
described as a motion sequence. Each segment of the sequence contains various motor
commands for the modules. There are two basic commands: One to set the angles of a
specific module and one to keep a connection with another module. If not explicitly
specified with the connection command, two neighboring modules are detached.

Yoshida et al. applied a Genetic Algorithm to evolve motion sequences for arbitrary
generated initial configurations. With other words, they evolved gait control tables. Even
though they argue that this is the first method that involves both locomotion and
reconfiguration, the connection command was not used in the genetic algorithm.
Therefore, only locomotion with static configurations was evolved. However, to evolve
locomotion without reconfiguration other approaches are better suited (see below). This
method only uses angles that are multiples of 30° and since it relies on a fix series of motor
commands it is not scalable to evolve more complex behaviors (e.g. using sensors). Also it
is not clear to me how reconfiguration could be evolved like this (e.g. what fitness to use).
Furthermore control is centralized and the modules need unique identifiers.

4.1.1.2  Automatic locomotion pattern generation for M-TRAN
   

Kamimura et al. recently proposed an Automatic Locomotion Pattern Generation (ALPG)
method that seems clearly superior to the evolutionary motion synthesis method described
above [Kamimura et al. 2003]. Neural oscillators are used as a model of the CPG.
Analogously to Mesot and Bourquin (see below) they apply a GA to optimize the
parameters of the CPG for a specific, fixed configuration. The evolved gaits were
successfully transferred from simulation to the M-TRAN hardware.

Kamimura et al. use a full coupling scheme, i.e. all oscillators are connected with each
other unless the GA specifically sets the connection weights to zero. Clearly, this approach
was only successful because the tested configurations were all quite simple, consisting of
less than ten modules. With a full connection scheme, the number of couplings grows
exponentially with the number of modules, thus it is not scalable. Furthermore, the
principle of strictly local interaction is abandoned. For these reasons I believe that nearest
neighbor couplings are better suited for modular robot CPGs.

Another weak point of the proposed method is, that the GA evolves the initial
conditions of the oscillators. In other words, all initial conditions must be set to the evolved
values before starting the controller. Thus, the locomotion controller is not asynchronous.
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4.1.1.3  Previous research at BIRG

To explore self-organization of locomotion, Mesot simulated modules with stick-wheels
that wander around and make connections with other modules that they bump into
coincidentally [Mesot 2004]. This leads to random assemblies of modules. For a specific
(fix) configuration, Mesot applied a GA to optimize the parameters of the nonlinear
oscillators for locomotion. Furthermore he proposed an adaptive algorithm that applies
gradient descent to find the coupling parameters for a specific phase difference. Note that
if we know the phase predicting function, such an adaptive algorithm is not necessary
anymore as we can directly set any desired phase difference between two oscillators. The
most interesting part of Mesot’s research concerns online optimization of locomotion using
simulated annealing, which is discussed in chapter 5.

Bourquin applied different heuristic algorithms to optimize the locomotion of several
fix configurations [Bourquin 2004]. Unlike Mesot, who used nearest neighbor couplings
for the nonlinear oscillators, the coupling scheme was manually designed. Efficient
locomotion gaits were generated by all tested optimization algorithms (particle swarm
optimization, genetic algorithm, simulated annealing), even though particle swarm
optimization seemed to perform slightly better than the others.

4.1.2   Co-evolution of morphology and control

Even though to the best of my knowledge Adam is the only project co-evolving
configuration and control of modular robots, co-evolutionary algorithms have successfully
been applied in other fields.

Sims co-evolved body and brain for locomoting and competing block creatures [Sims
1994]. Ventrella used co-evolution to generate walking stick creatures [Ventrella 1994].
With Framsticks, an artificial life project, the user can co-evolve morphology and control
of virtual stick creatures with various genotypes and fitness functions [Komosinsky &
Rotaru-Varga 2001]. Bongard and Pfeifer evolve gene expression rules and simulate an
ontogenetic process during which the body grows by successive cell divisions [Bongard &
Pfeiffer 2001]. Hornby co-evolved morphology and control of locomoting robots as
illustrated on figure 23 [Hornby & Pollack 2001]. Using L-systems as generative encoding

Figure 23: Using L-systems as generative encoding, Hornby co-evolved morphology and control
 of locomoting robots that are more complex than those in previous work.
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for the GA he succeeded evolving robots that are more complex and use more parts than
those in previous work.

However, the projects mentioned above all use stick-like body-segments that are
themselves subject to evolution and don’t simulate existing hardware. By using a realistic
simulation, the evolved solutions can be built in reality as done by Hornby or even be
generated automatically with 3D printing technology [Lipson & Pollack 2000]. However,
the modules must still be produced especially for every robot. In contrast, robots evolved
by Adam can be assembled and tested with the predefined module type (YaMoR). Similar
work has been done with LEGO robots [e.g. Lund 2001], but these robots use many
different kinds of elements and are not well suited to implement key features of modular
robots like self-reconfiguration.

4.2   The simulation environment

Before discussing the genetic algorithm used by Adam to co-evolve configuration and
control of modular robots, I shall briefly present the simulation environment that the robots
are tested in. For the implementation I tried out two different frameworks: The Open
Dynamics Engine (ODE) and Webots.

ODE is an open source physics simulation library [Smith]. It accurately models rigid
body dynamics (kinematics, gravity, friction, collisions etc.). ODE is well suited for
evolutionary robotics because it is very stable and fast. Webots [Michel 2004], commercial
robot simulation software developed by Cyberbotics Ltd in collaboration with EPFL, is
actually built on top of ODE. In contrast to ODE it is a higher-level framework specifically
designed for robot simulation. The user can build robots and environments with a graphical
user interface. The advantages of Webots are numerous: It is possible to design a robot
simulation in short time, without worrying about the details of the lower-level physics
simulation library. Furthermore, common types of sensors and actuators are available and
the user can benefit from many additional features such as video export. The disadvantage
of Webots is a certain loss of flexibility that is inherent to any high-level software
framework. For this reason and also because of problems with the Mac version of Webots,
I decided to use ODE for the simulation.

The simulated module corresponds exactly to the specifications of the real hardware
(see chapter 2.2.4). As you can see on figure 24, I left aside the cylindrical front part of the
module in the ODE simulation. I did so to increase the speed and stability of the simulation
(cylinders take considerably more time than cubes for collision detection and they
sometimes cause stability problems in ODE). Even though there are few collisions with the
cylindrical front part as the lever protects it, we should add it to the simulation before
transferring evolved robots to the hardware. The total mass of the module is uniformly
distributed in the simulated bodies. Again, before transfer to the real world one should
implement a more detailed model.

Powered hinge joints are used to simulate the RC-servo of YaMoR. A PD controller
sets the torques that are necessary to follow the trajectories generated by the CPG. The
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torque Ti that is applied to the hinge i depends on the desired angle θi , the actual angle θa ,
and the angular rate ωa :

Ti = α θi −θa( ) − βωa

Experience showed, that it is better to use a more advanced controller that is part of
ODE. The input for this controller is the target angular rate ωd .

ωd = α θi −θa( )
Again, α is a positive constant that must be determined experimentally. I agree with

Mesot [Mesot 2004] that there is no need for a second term that depends on the actual
angular rate ωa  (like in the first equation) because the same effect can be achieved with
the parameters of the ODE controller.  Most importantly, these parameters can also be used
to set the maximum torque and the maximum speed of the powered hinge to respect the
specifications of YaMoR’s RC-servo.

4.3   Genetic Algorithm

For the reader who is not familiar with genetic algorithms, I give here a very brief
introduction. A genetic algorithm (GA) acts on a population of individuals. In this case, the
individuals are modular robots. In analogy to Darwinian evolution in nature, fitter
individuals have a higher probability to reproduce and a lower probability to die than
weaker individuals. As in nature, the offspring is affected by mutations and/or crossover.
The fitness of an individual is given by the fitness function. An example of a simple fitness
function that promotes locomotion is the average speed of the individual over a certain

        

Figure 24: Simulation of the YaMoR module with Webots (left) and ODE (right).
The environment is for the moment an infinite plane.



50 Chapter 4.   CO-EVOLUTION OF CONFIGURATION AND CONTROL

amount of time. An individual is defined by its genome. In order to determine the fitness of
an individual its genome must first be decoded. The function that decodes the genome is
called the genotype-to-phenotype mapping. In the case of Adam, the phenotypes are
modular robots in the simulation world. The set of all possible genotypes and phenotypes
are called the genotype and phenotype space of the GA.

4.3.1   Genetic encoding

Defining an adequate genotype-to-phenotype mapping is by far the most difficult step
when designing a GA that acts on a complex phenotype space. The most common genetic
encodings for co-evolution of morphology and control are directed graphs and L-systems.
Directed graphs are direct encodings, generally the nodes represent body segments and the
links physical connections. On the other hand, L-systems are generative (or
developmental) encodings that describe a growing process of the morphology. They result
in more complex and better structured, but not necessarily fitter solutions. For Adam I
chose trees, a subset of directed graphs, as genotype.

The genetic encoding defines which phenotypes are close genetically (i.e. separated by
only a few mutations) thereby structuring the phenotype space. The fitness function
induces another topology with respect to fitness values (sometimes called the fitness
landscape). The idea behind direct encodings is to correlate these two topologies. In other
words, related genotypes should correspond to similar phenotypes with similar fitness
values. The genotype that is presented next strictly follows this philosophy. In contrast, the
second genotype (section 4.3.1.3), which encodes symmetric configurations, is a
compromise between a developmental and a direct encoding.

4.3.1.1 Encoding the configuration of YaMoR robots

The Adam genotype is a tree. Each node represents a module and links correspond to
physical connections between the modules. The root of the tree is referred to as the head of
the robot. Even though YaMoR has a genderless connection mechanism, I use a
male/female connection scheme for the genotype: The docking plate on the U-shaped lever
is male and the docking plates of the body are female. The disadvantage of this choice is a
smaller phenotype space, i.e. not all configurations that are physically possible can be
encoded with the genotype. The advantages are:

• Children are always attached to their parents with the lever, thus the only free
lever in the configuration is the one of the head. In other words, a limb always
ends with a body of a module and not a lever. This is desirable because the body
is more robust and provides more friction with the ground. Clearly, the lever is
not well suited as a foot, especially in unstructured terrain where it could get
stuck easily.

• The control algorithm is simplified because the modules always know that their
parent is connected at the lever and all other attached modules are children. As I
will explain below, modules need to know who their parent is to correctly
communicate the state of their nonlinear oscillator.
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• No automatic docking mechanism has yet been designed for YaMoR. Promising
a genderless connection mechanism is always easier than implementing it. If my
evolutionary experiments show that the locomotion capability is not impaired by
the male/female connections, we can do without a genderless docking
mechanism in the hardware.

• The implementation of the genotype-to-phenotype mapping is simplified.
Decoding the tree genome and building the corresponding modular robot in the
simulation world is highly complex. Despite my previous experience, this part
of the project took about two months.

• The genetic algorithm benefits from the smaller phenotype space so that
evolution might be faster.

Even though the phenotype space has been restricted, it is still huge. As illustrated on
figure 25, two modules can be attached together in twenty different ways: There are four
distinct orientations for each of the five docking positions. Using three modules, there are
already 720 different configurations (even though some of them might be functionally
equivalent). When more than ten modules are involved, the number of configurations
quickly grows beyond all measures. Considering this big phenotype space, I don’t believe
that using male/female connectors limits the locomotion capabilities of evolved robots.

Besides from the orientations and the docking positions, the initial angles of the hinge
joints are also an important parameter of the configuration. Powered modules oscillate
around the initial angle and the joints of rigid modules are locked at the initial angle. Mesot
and Bourquin consider the initial angle as a parameter of the controller, which works fine
for the specific configurations that they worked with. However, if one is confronted with
randomly generated configurations, the initial angles must be taken into account before
starting the simulation in order to determine if the structure is legal or not. I define a
structure to be illegal if it has intersecting body parts. The initial angles significantly alter
the shape of large configurations. If zero initial angles were used when building the

                  
a) A child (the module with an initial angle of 30 degrees) can be connected with the parent
in four distinct orientations, labeled north, east, south and west (from left to right).

                     
b) The child can be attached to the parent at five different connection plates. They are labeled
BACK (illustrated in the upper four figures), DOWN, LEFT, RIGHT and UP (from left to right).

Figure 25: The genotype limits the configurations of two modules to four orientations (a) and five
connection plates (b). Therefore, two modules can be attached together in twenty different ways.
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structure, a configuration might be considered legal even if it is problematic with the true
initial angles. Or it might be discarded because of intersecting body parts but with the true
initial angles the problem would not have occurred.

In figure 26, you can see a simple configuration and its genotype. Each node encodes its
orientation and initial angle. Furthermore, each node specifies at which positions the
children are attached. Note that these positions must not be conflicting, i.e. there can’t be
two children attached at the same position. I refer to these variables as structural
parameters; they are summarized in table 1.

I conclude this section with some implementation details of the genotype-to-phenotype
mapping regarding the configuration. In order to set the correct position of the various
bodies and joints in the physics simulation, one must know the coordinate transformation
from the global (world) coordinate system to the local coordinate system of each module.
The procedure starts with the head and recursively descends the tree. The coordinate
transformation of any module can be calculated with a series of matrix multiplications of
the parents coordinate transformation matrix. The matrix multiplications must take into
account the initial angle of the parent as well as the docking position and the orientation of
the child. Once the structure is built, it is tested for intersecting body parts with ODE’s

Figure 26: The configuration in the simulation world (phenotype) and the corresponding genotype.
The head of this structure (on the top in both figures) has an initial angle of –60°, its child is
attached to the BACK position with orientation SOUTH.

Parameter Range Description
Orientation {NORTH, EAST, SOUTH, WEST} The orientation of the module
Initial angle (-pi/2, pi/2] The initial angle of the hinge joint.
Child position(s) {BACK, LEFT, RIGHT, UP,  DOWN} The docking position for every child

Table 1:  The structural parameters. Each node contains at least it’s orientation and initial angle.
Additionally, it must encode the docking position of each child. I use the term structural parameters
for these variables because they encode properties of the structure. On the other hand, the control
parameters (tables 2 and 3) encode properties of the controller.
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built in collision detection. Furthermore, the height difference between the lowest module
and the head is determined. The whole structure is then destroyed and, if it was legal,
rebuilt at the correct height in the real simulation world.

4.3.1.2 Encoding the controllers

Luckily, encoding the controllers is much simpler than encoding the configurations. The
parameters of a module’s controller must be encoded in the respective node together with
the structural parameters (orientation, child position(s) and initial angle). This is because
structural mutations, for example attaching a limb (i.e. a sub-tree) at a new position, should
not affect the controllers. In other words, the nodes encapsulate the controller of the
module and protect it from mutations that affect the structure.

Encoding harmonic oscillators is straightforward. The free parameters defined in table 1
are simply added to the structural parameters of the nodes. The oscillation will take place
around the initial angle defined in the structural parameters.

The approach is the same when using nonlinear oscillators. The control parameters
(table 2) are encoded in the nodes, together with the orientation, initial angle and child
position(s) of the module. However, the couplings require some special attention.
Kamimura et al. use a full coupling scheme for their neural oscillators [Kamimura et al.
2003], i.e. every oscillator is coupled with all other oscillators unless the weights of some
connections are explicitly set to zero. In section 4.1.1 I argued that this approach is not
scalable and that the principle of strictly local interaction shouldn’t be abandoned. For
these reasons I use nearest neighbor couplings as illustrated in figure 27. The children are
coupled with their parents. A rigid module has no active oscillator, thus it simply relays the
couplings from its children to the parent. The head must always have an active oscillator
(even if it is set rigid) to ensure that the network of coupled oscillators is a spanning tree
over the whole configuration.

Parameter Range Description
IS_RIGID {true, false} Determines if the module is rigid or not.
A (0, π/2] The amplitude.
phi [0, 2π] The phase.

Table 1:  Control parameters of a harmonic oscillator. The frequency is constant and the same for
all modules. The oscillation takes place around the initial angle defined in the structural
parameters.

Parameter Range Description
IS_RIGID {true, false} Determines if the module is rigid or not.
E (0, pi/4] The energy parameter of the nonlinear oscillator.
a_ij [-2, 2]
b_ij [-2, 2] The weights of the coupling from the parent to this oscillator.

a_ji [-2, 2]
b_ji [-2, 2]

The weights of the coupling from this oscillator to the parent
(only for bidirectional couplings with four free parameters).

Table 2:  Free parameters of a coupled nonlinear oscillator. The last two parameters are only
required when using bidirectional couplings with four free parameters.
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The parameters aij and bij of a coupling between a parent and a child module are
encoded in the child. Thus, if a structural mutation detaches a sub-tree (i.e. a limb) from its
previous position to connect it to a new module, the limb still operates with the same phase
difference. For example, if the sub-tree of module 5 in figure 27 is detached from module 3
and reattached to the head, it still has the same phase difference because the node
encapsulates the coupling parameters.

4.3.1.3 A genetic encoding for symmetric configurations

Robots that have been evolved with the genotype presented above are often quite
symmetric. It seems that the phenotype space is too big and unstructured for the GA to find
truly symmetric configurations that would perform even better. In chapter 3.1.3 I reasoned
about symmetry in nature and concluded that symmetry might be a fundamental
characteristic of efficient locomotion. For all these reasons it is interesting to restrict the
phenotypes to symmetric configurations.

The basic idea is to mirror the configuration along the spine. The spine is the robots axis
of symmetry (refer to figure 28). The symmetry is not encoded in the genotype, the only
difference with the genotype presented above is that each node must not only encode its
own phase, but also the phase of its mirrored counterpart. As in nature, the amplitudes of
corresponding joints in left and right limbs are the same. Thus, an additional phase
parameter must be added for harmonic oscillators and an additional set of coupling
parameters when nonlinear oscillators are used. Refer to figure 29.

Figure 27: Nearest neighbor couplings for the example configuration of figure 26. The oscillators
of rigid modules are inactive (represented with an empty circle). Rigid modules relay the couplings
between their parents and children as described below. Unidirectional couplings are used on the
left, bidirectional couplings on the right. The child nodes encapsulate the coupling parameters aij
and bij  of the coupling with their parent.
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First of all, the genotype-to-phenotype mapping detects which modules lie in the axis of
symmetry. These are the spine modules. If the initial angle of a spine module would cause
the spine to be asymmetric, it must be overruled and set to zero. For example, the left robot
of figure 28 must have a zero angle for the first spine module, but not for the second one.

In a second step, the limbs on the right are mirrored to the left and vice-versa. The
mirrored limb has the same tree structure as the original, but some of the structural
parameters must be mirrored in some cases. For example, depending on the relative
position of the module within the limb, the initial angle must sometimes be multiplied by
–1, sometimes not. Analogously, the child positions must sometimes be switched. A
detailed description of the procedure goes beyond the scope of this report.

Figure 28: Two robots that have been evolved with the symmetric encoding.
The head is colored green, spine modules red and limbs blue.

Figure 29: Genotype for symmetric configurations. On the left: An example genome. The phase of
the mirrored module is added to the parameters defined in the previous sections. On the right: The
same genome after the symmetric decoding. The limb has been mirrored and the additional phase
integrated in the controllers of the mirrored modules.
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4.3.2   Genetic operators

Genetic operators include mutation and crossover. Both operators act on the structure as
well as the control parameters. Mutation of real-valued parameters is done by adding a
random number from a Gaussian distribution to the previous value. The mean of the
Gaussian distribution is zero, the standard deviation σ  depends on the parameters range:

σ =
xmax − xmin

k

where k is a positive integer, xmax is the upper and xmin the lower bound of the parameter.
k is a parameter of the GA that must be set intuitively. I found that values between 10 and
60 gave good results.

Parameters that are not real numbers, namely the orientation, the child positions and the
Boolean variable that specifies if the module is rigid, are mutated by randomly selecting
another value from the set of possible values.

The tree structure of the genotype may be mutated in several ways. New modules can
be added to the structure at any free face. Modules or whole sub-trees can also be deleted
by mutation. Furthermore, sub-trees or single nodes of the tree may be swapped.

I use single-point crossover. A child is formed by copying the mother and then
replacing one of its sub trees with a sub tree of the father. Generally this corresponds to a
macro-mutation, i.e. the child is not close to the parents in the phenotype space. This is
important to explore new areas of the phenotype space but also problematic because the
area around the parents might not be searched enough. Thus it is advisable to use rather
low probabilities for the crossover operator.

Before doing crossover I check if the tree of the mother’s and the father’s genotype are
identical. When comparing the trees, the parameter values are ignored. Only the structure
of the tree is considered, i.e. the nodes and the links that connect them. Note that identical
trees may correspond to different (but similar) configurations because the nodes
encapsulate the structural parameters. If the trees of the mother and the father are identical,
the crossover operator swaps identical sub trees. In other words, the child has the same tree
structure as the parents, but part of the tree is from the mother and the other part from the
father. This corresponds better to sexual reproduction in nature: The child is similar to the
parents and inherits qualities from both parts. As the GA converges to a particular solution,
the population becomes more and more homogenous and the probability for the tree
structure of the parents to be identical becomes quite high. In advanced generations,
approximately half of the individuals have the same tree structure.

4.3.3   Fitness function

I reward locomotion with a very simple but effective fitness function. The fitness of a
robot is determined by how far it travels from the starting point in a certain amount of
time. Note that this is not the total distance that the robot traveled. This simple fitness
function implicitly promotes locomotion in a straight line. I didn’t get better results with
more complex fitness functions that explicitly reward movement in a straight line.
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The time of simulation is crucial to achieve good results. The principle is „you get what
you ask for“. If the time of simulation used for fitness evaluation is too short, one can’t
expect stable locomotion of evolved robots after that exact amount of time. A common
problem is also the evolution of high, instable configurations that get a positive fitness
score just by falling over at the beginning of the simulation.

I found that letting the simulation run a certain amount of time before starting the
fitness evaluation solved these problems. Generally I used the position of the robot after 4
simulated seconds as starting point and the position after 14 seconds as end point to
measure the distance.

4.3.4   Initialization and detection of convergence

The population of the GA is initialized with randomly generated genomes. I use a
maximum depth of 5 for the initialization of the tree genomes. Note that during the
evolution, the size of the genome is unlimited.

I use a convergence test to decide when to stop the GA. The convergence of the GA at
generation g  is defined as the ratio of the Nth previous best-of-generation fitness
fmax g − N( )  to the current best-of-generation score fmax (g) :

c g( ) = fmax (g)
fmax g − N( )

where N is a positive integer. The GA is stopped when the convergence of the current
generation passes a user specified bound, for example if: c g( ) > 0.95 .

N should be set in accordance with the type of genetic algorithm that is used. One
should choose high values for N when using an incremental GA, where at each generation
only two new individuals are produced. In contrast, N should be set to a rather low value
for a GA with multiple, migrating populations where hundreds of new individuals are
evaluated at every generation.

When comparing the performance of different types of GAs (chapter 6)I chose N such
that 1000 individuals are evaluated in N generations. For example, an incremental GA has
N = 500 because two new robots are evaluated in one generation.

4.3.5   Selection and replacement

I shall now review the different types of genetic algorithms that I tested. All algorithms use
the same genetic encoding, genetic operators, fitness function, initialization and stopping
procedure. The algorithms only differ in how they manage the population, namely how
offspring is created and inserted into the population.



58 Chapter 4.   CO-EVOLUTION OF CONFIGURATION AND CONTROL

The incremental GA only creates two new individuals per generation. For each
generation, two children are generated from two selected parents. The children then
replace two individuals from the previous generation. Refer to figure 30. I tested two
different replacement strategies. The first one always replaces the worst individuals of the
population. If the newly generated offspring has a lower fitness value than the worst
individual, it is not inserted into the population. In the hope to promote diversity in the
population I also tested a random replacement method, where the children replace
randomly selected individuals. The best robot is never removed (elitism).

I obtained best results with a rank-proportional roulette wheel method for selecting
parents. The robot with the highest fitness value has rank zero, the worst robot has rank N-
1, where N is the population size. The probability ps(i) for an individual i to be selected is
inverse proportional to its rank r(i):

ps i( ) =
N − r i( )
r i( ) +1( )

i
∑

The steady state GA follows the same procedure as the incremental GA, but much more
offspring is generated at each iteration. As you can see in figure 30, two children are not
directly inserted into the population. Replacement only takes place after all offspring of the
generation has been created. The disadvantage of this approach with respect to the
incremental GA is that the convergence is slowed down. On the other hand, the slower
convergence allows the GA to better explore the search space and potentially evolve fitter
individuals.

Finally I also tested a GA with multiple, independent populations. Each population is
evolved using a steady state GA as described above. At each generation, the populations
migrate a fixed number of their best individuals to the neighbor population (deterministic
stepping-stone migration algorithm). Additionally, a master population is updated each
generation with the best individuals from every population. The performance of the
incremental GA, steady state GA and the algorithm with migrating populations is
compared in chapter 6.

Figure 30:  Flow chart of a genetic algorithm. In contrast to the steady state GA, the incremental GA
does not repeat the selection of parents and creation of children in a single generation.
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4.4   Asynchronous distributed control

In chapter 1 I have discussed the importance of asynchronous distributed control in
modular robotics. Hormone-based control (section 2.3.3) and role-based control (section
2.3.2) are examples of distributed asynchronous control algorithms. I shall now briefly
outline such an algorithm for modular robots that have been evolved with the GA
presented in the previous section. With minor adaptations, the algorithm could be
implemented on any modular robot that uses coupled nonlinear oscillators with nearest
neighbor couplings.

The modules are autonomous, i.e. they have their own computational resource.
Furthermore, they must be able to communicate with the modules that they are connected
with (the nearest neighbors). It is assumed that the modules know the genome and their
position within the configuration. Thus, they can extract the appropriate genes from the
genome to correctly set the energy and coupling parameters of their nonlinear oscillator.

If unidirectional couplings are used, each module periodically communicates its state xi

and vi to all children. The children compute the perturbation of their nonlinear oscillator
based on the state of the parents and the coupling parameters that are encoded in their
genome. Rigid modules simply forward the state information from their parent to all
children.

In the case of bidirectional couplings, in addition to the communication from parents to
children, the children must also send their state to the parent. Actually, since all parameters
of the bidirectional coupling are encoded in the children genome, the child j may directly
send its contribution sj to the perturbation of the parent oscillator i.

s j =
aij x j + bijvj
x j
2 + vj

2

Again, rigid modules relay the sj from the children to the parents. In order to reduce the
communication load, the rigid module may already compute the sum of the sj from its
children and only send this sum to the parent node. Now suppose that the nonlinear
oscillators have converged to constant phase differences. If energy balanced couplings are
used, the perturbations are all zero at that point (remember that the perturbation represents
the phase error). In other words, the couplings have no effect anymore. Thus, if one or
several couplings are temporarily cut because of a communication failure, the behavior of
the robot is not affected. Actually, in the absence of sensory feedback or higher-level
control, the couplings could be completely disabled after convergence of the nonlinear
oscillators. The phase differences would diverge only very slowly because of numerical
errors (I have tested this in simulation).

If a module doesn’t get a message from a neighbor in time, it assumes a communication
failure and integrates the nonlinear oscillator without the input from that neighbor. With
standard nonlinear oscillators, this would cause the modules amplitude to drop
significantly. But when using energy-balanced couplings, the modules continue to operate
with the same phase differences and the same amplitudes. Thus, the control algorithm is
resistant to temporary communication failures.

In summary, I have presented an approach for a reliable, asynchronous, distributed
control algorithm that could be implemented in the YaMoR modules or other modular
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robots. In contrast to hormone-based and role-based control, neighboring modules
smoothly synchronize to the desired phase difference.
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Chapter 5 

Online optimization of locomotion

The genetic algorithm presented above is an offline optimization method. Only if the
modules could autonomously self-assemble to the evolved configurations and evaluate the
fitness of the robot, the GA could potentially be implemented online, i.e. on the hardware
itself and not just in simulation. Clearly, this is not possible with today’s technology.
Furthermore, the evolution of fit individuals would take years.

Online optimization (we could also say learning or online adaptation) of modular robot
locomotion is interesting for two scenarios. The first scenario has been considered by
Mesot [Mesot 2004]: Self-assembling modules build random configurations. Using an
online optimization algorithm, locomotion can be learned by such random structures. Even
though highly interesting from a theoretical point of view, this scenario is not very
practical. Obviously, random configurations are almost never well suited for locomotion.
Therefore, even if the online optimization method finds the global optimum (i.e. the
perfect locomotion gait for this configuration) the robot will still perform poorly compared
to robots with configurations that have been designed for locomotion.

The second, more practical scenario is the online adaptation of a specific locomotion
gait of a modular robot. For example, when building a robot that has been evolved in
simulation, it always performs worse in reality than in simulation. This is because the
simulation is not an exact model of the real world. Learning robots favor a smooth transfer
from simulation to reality because the locomotion gait is being adapted to the
environmental constraints by the online optimization algorithm. This is useful not only for
transfer from simulation to reality, but whenever the robot needs to adapt to new
environmental conditions.

To the best of my knowledge, Mesot is the first one to tackle the problem of online
optimization of locomotion for chain-type modular robots [Mesot 2004]. He uses
simulated annealing to optimize the parameters of the controllers. His approach is
discussed in the next section. The algorithm I chose for online optimization is Powell’s
method. It is based on a one-dimensional optimization procedure like Brent’s method.
Unfortunately the implementation is not finished at the time of writing. Numerical recipes
in C gives an excellent overview of both methods:

http://www.library.cornell.edu/nr/bookcpdf.html
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5.1   Introduction to optimization

The goal of optimization is to find an extremum (maximum or minimum point) of a
function f that depends on one or several variables. An extremum can be global or local. A
local extremum is an optimum in a finite neighborhood. The global extremum is truly the
highest or lowest function value. From now on I just consider the problem of function
maximization. Note that function minimization is trivially related because one can
maximize –f.

In our case, f is the fitness function and the variables are the parameters of the
controller. The fitness function is evaluated by setting the new control parameters, waiting
until the nonlinear oscillators converged and then measuring the average speed or the
distance covered over a certain amount of time. For now I just assume that the robot can
estimate its speed, even though YaMoR is not yet equipped with the necessary sensors.

There are two classes of optimization algorithms: Those that only require evaluations of
the function and those that also require evaluations of the derivative (the gradient in the
multidimensional case). Unfortunately we don’t know the gradient of the fitness function f.
Even though methods using the gradient are more powerful, numerically estimating the
gradient of the f would take too much time because it involves many evaluations of f.

The most obvious way to optimize f is to crawl uphill on the fitness landscape. Indeed,
there is a simple but very effective algorithm that follows this approach: The downhill
simplex method . This algorithm is not well suited for online optimization of locomotion
because it can be extremely slow. Other multidimensional optimization methods that do
without the gradient are heuristic optimization methods (e.g. simulated annealing), and the
so-called direction-set methods.

Mesot used simulated annealing for online optimization [Mesot 2004]. On the heart of
simulated annealing [Kirkpatrick 1983] lies an analogy to how crystals are obtained from a
melt. If the temperature in a melt is gradually reduced crystals form. In a crystal, billions of
atoms are ordered in a completely regular structure that corresponds to the lowest possible
energy state of the system, i.e. the global optimum. In simulated annealing, the atoms
correspond to the parameters, and the energy to the function that is being optimized. The
essence is that the system may always jump to a state of higher energy (i.e. lower fitness).
Thus, the method heuristically explores the search space and does not always crawl uphill.
As the temperature (a parameter of the algorithm) is decreased, the probability that the
system jumps to a higher state of energy becomes smaller and smaller.

In summary, simulated annealing is a heuristic optimization method that avoids small
local optima if the temperature is decreased slowly. Unfortunately, the optimization
process takes so long (hundreds of simulated hours in Mesot’s experiments) that the
‚online’ optimization could never be used online in reality. Two other heuristic
optimization algorithms are Particle Swarm Optimization (PSO) and genetic algorithms.
Bourquin obtained better results with these two algorithms than with simulated annealing
for offline optimization [Bourquin 2004]. This indicates, that GAs or PSO probably also
perform better for online optimization. Robot controllers for wheeled robots have
successfully been evolved online with genetic algorithms but the optimization took days.

By using a quadratically converging direction-set method instead of a heuristic search
algorithm I take a radically different approach. For the second scenario mentioned above,
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which is online adaptation of locomotion, a heuristic optimization algorithm is clearly not
appropriate because the gait that is being adapted is relatively close to the optimum that we
are looking for. Therefore it is unnecessary to heuristically explore wide areas of the search
space. For the online optimization of locomotion from scratch (first scenario mentioned
above) the performance of a deterministic optimization method depends heavily on the
topology of the fitness landscape. If the search space is full of small, local optima, the
probability of finding a good locomotion gait is small. Only experiments can show if my
approach is well suited for online optimization from scratch, but I am confident that it is
the right choice for online adaptation of locomotion.
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Chapter 6 

Results

6.1   Fitness function

First of all, I would like to illustrate the problems that arise when using an evaluation time
that is too short. Some genetic algorithms evolve high and instable structures that get a
positive fitness just by falling over at the beginning of the simulation (figure 31). Other
robots take advantage of their initial position, i.e. the specific position where the structure

Figure 31:  The structure on the upper figure gets a positive fitness just by falling over at the
beginning of the simulation. The second robot actively takes advantage of the momentum he gets
from rolling out of the initial position. Both behaviors can be avoided by increasing the evaluation
time.
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is built at the beginning of the simulation. The robot in figure 31 takes advantage of the
initial position to roll forward one time. In contrast to the big structure that gets fitness just
by falling, this robot continues to locomote after the initial forward roll. When the
evaluation time is too short, almost all robots take advantage of their potential kinematical
energy from the initial position.

To avoid these problems I increased the evaluation time from 6 to 14 simulated
seconds. Furthermore, I started the evaluation only after 4 seconds. Therefore, robots are
not encouraged to take advantage of their initial position. Unfortunately, increasing the
evaluation time considerably slows down the genetic algorithm but I do not see an
alternative.

An interesting detail can be observed on the big structure of figure 31. The two limbs
that touch ground are almost identical. Even though there is no gene duplication operator,
the part of the genome that encodes this limb has clearly been reused. This may happen if
crossover takes place between two individuals that have a common ancestor. This kind of
gene duplication or gene reuse is a very beneficial effect of the crossover operator.

6.2  Genetic encoding

Before comparing the different kinds of couplings that I tested, I compare the general
encoding with the encoding that restricts the phenotype space to symmetric configurations.

As expected, the symmetric encoding outperforms the general encoding by far. Even
though fit individuals are also obtained with the general encoding, a lot of these robots are
very simple. The majority are rollers. The configuration of these robots is often a linear
chain of modules and locomotion is achieved by rolling sideways. The problem is, that this
kind of solution is both easy to find by the GA and very fit. In fact, a good roller defeats
even the fittest walkers. As you can see in the examples of evolved robots given at the end
of the chapter, the general encoding also evolves interesting robots. Locomotion strategies
include rolling, walking, crawling, hopping, etc. It is striking, that fit individuals are
always kind of symmetric. As mentioned above, it seems that the GA ‚tries’ to evolve
symmetric configurations but it converges to local optima that are not exactly symmetric
because the phenotype space is too big and too unstructured.

The genetic encoding that limits evolved robots to symmetric configurations exceeded
my expectations. Using the convergence test to stop the GA, an evolutionary run takes
generally about two hours on a 1.25 GHz G4 Mac computer. In this short time, highly
interesting and fit robots are evolved in almost every run. The majority of the robots are
crawlers or walkers. These chain-type robots are more complex and the evolved gaits are
more dynamic and sophisticated than those from previous research. Refer to the example
robots at the end of the chapter. Unfortunately the elegancy of the evolved robots is not
visible on the images. Movies are available on my project web page at:

http://birg.epfl.ch/page32031.html

In order to compare the performance of the GA with the general and the symmetric
encoding I did 15 evolutionary runs for both encodings, using the convergence test
described in chapter 4.3.4 to stop the GAs. For each run, I recorded the number of fitness
evaluations (i.e. the total number of generated children) and of course the maximum
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fitness. The averages of both measures are compared in table 3. Due to the smaller and
better structured phenotype space, GAs using the symmetric encoding evolved fitter
individuals in shorter time. However, the difference is not as big as one might expect. This
is explained by the fact, that the general encoding usually also finds fit individuals, but
they are much simpler and less interesting than those evolved with the symmetric
encoding.

6.3   Nonlinear vs. Harmonic oscillators

I have also evaluated the performance of the GA for the different controllers. For this
experiment, I used a steady state GA with a population size of 100 robots. At each
generation, 50 children were generated. Again, I used the convergence test to stop the GA
and recorded the maximum fitness and the number of generations. I did 14 evolutionary
runs for each type of controller. The controllers included harmonic oscillators, nonlinear
oscillators with unidirectional couplings and nonlinear oscillator with bidirectional
couplings. The bidirectional couplings have four free parameters; I did not test
bidirectional couplings with two free parameters because I expect them to perform
similarly to unidirectional couplings.

As you can see on table 4, bidirectional couplings with four free parameters didn’t give
satisfactory results. This is explained by the larger search space and problems with
convergence of the coupled nonlinear oscillators. Indeed, some of the evolved robots had
conflicting couplings and their oscillators did not converge to stable phase differences.

To my surprise, the nonlinear oscillators with unidirectional couplings outperform the
harmonic oscillators even though their search space is bigger. This is surprising because
the main advantages of nonlinear oscillators such as asynchronous distributed control and
smooth gait transitions are not relevant for the fitness in simulation. A possible explanation
are the higher amplitudes caused by the couplings (I did not use the energy balanced
couplings). I will repeat this experiment with: a) Energy balanced couplings; b) Harmonic

Controller Generations Max. fitness
Harmonic 66.69 2.94
Unidirectional 67.38 3.17
Bidirectional 75.09 2.53

Table 4:  Average number of generations and the average of the maximum fitness for different
types of controllers: Harmonic oscillators, nonlinear oscillators with unidirectional couplings and
nonlinear oscillators with bidirectional couplings and four free parameters. The average has been
computed from 14 GAs for each type of controller.

Encoding Evaluations Max. fitness
General 2435.66 2.74
Symmetric 2208.21 2.91

Table 3:  Average number of evaluations and average of the maximum fitness for both encodings.
The average has been computed from 15 genetic algorithms. GAs using the encoding that restricts
the phenotype space to symmetric configurations evolve fitter individuals in shorter time.
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oscillators with higher amplitudes, so that the range of the amplitude matches the actual
range of the nonlinear oscillators (the upper limit of the amplitude is boosted by the
couplings in the case of nonlinear oscillators).

6.4   Genetic Algorithms

As explained in chapter 4.3, I implemented three different kinds of genetic algorithms:
Incremental GA, steady state GA and a genetic algorithm with multiple, migrating
populations. The GA with multiple populations performed poorly. An evolutionary run
takes very long and the results are not better than those evolved with the incremental and
steady state GA.  This is because the probability is quite high, that a simple locomoting
robot is generated by the random initialization procedure in one of the populations. By
migration, this simple solution (that corresponds to a local optimum) then ‚poisons’ the
other populations.

I believe that for the same reason, large populations don’t perform well for incremental
and steady state GAs (table 5). As expected, the incremental GA converges faster than the
steady state GA. On the other hand I was surprised that the incremental GA also evolves
individuals that are at least as fit as those from the steady state GA.

The random replacement strategy mentioned in chapter 4.3 proved to be too destructive,
i.e. the average and maximum fitness of the population could not be improved because too

Incremental GA Steady state GA
Population size Evaluations Max. fitness Evaluations Max. fitness

50 1990 3.37 2066 2.88
100 2090 3.23 2398 3.20
200 1785 2.89 2330 2.64

Table 5:  Performance of incremental and steady state GAs for various population sizes. The
incremental GA with a population size of 50 performs best.

Replacement Evaluations Max. fitness
Worst 2177.14 2.88
Random 1120.00 1.14

Table 6: The random replacement strategy proved to be too destructive. The averages are
computed from 12 GAs.

Scaling Evaluations Max. fitness
Rank 1883.33 3.00
Linear 2568.88 2.72

Table 7:  The rank-proportional roulette-wheel method performed much better than the more
traditional fitness-proportional roulette-wheel method with linear scaling of the fitness values
(averages from 12 GAs).
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many fit individuals were being replaced by the offspring (table 6).

I can highly recommend the rank-proportional roulette-wheel method for selection
(table 7). Not only does it perform much better than the common fitness-proportional
roulette-wheel method with linear scaling of the fitness values, but also is it much easier to
implement.

6.5   Energy balanced couplings

My analysis of the nonlinear oscillators is rewarded with a significant reduction of the
parameter space. Instead of optimizing both weights aij and bij, a single parameter ξ may
be optimized. This is beneficial for the GA, but especially important in the context of
online optimization, where the parameter space must be reduced to a minimum.

Even with quadratically converging optimization algorithms such as Powell’s method,
the fitness function must be evaluated many times. The number of evaluations needed to
find the optimum grows exponentially with the number of parameters. Initially, online
optimization of locomotion in a reasonable time seemed impossible to me. Only with
phase prediction and the resulting limitation of the search space do I believe online
optimization to be feasible within dozens of minutes.

I have estimated that it takes about one simulated minute to optimize the fitness
function in one dimension. An iteration of Powell’s method involves N one-dimensional
optimizations, where N is the number of dimensions (i.e. the number of parameters). If the
fitness landscape is not full of small, local optima, we may indeed dream that online
optimization of locomotion could be very fast.

Unfortunately, I did not finish the implementation of Powell’s method at the time of
writing. Thus, I have neither positive nor negative results. Please visit my project web page
for the latest news regarding online optimization:

http://birg.epfl.ch/page32031.html

Thanks to the energy-balanced couplings, it is possible to use nonlinear oscillators with
robots that have been evolved using harmonic oscillators. I have successfully tested this in
simulation. The phases of the harmonic oscillators must simply be converted to the
coupling parameters that imply this phase. Indeed, the robots then have the exact same
behavior when using harmonic oscillators or nonlinear oscillators. This is only possible
when using energy-balanced couplings. Otherwise, the couplings cause a significant
amplitude difference of the oscillators that completely changes the gait.
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6.6    Examples of evolved robots

Asymmetric robots
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Some examples of robots that have been evolved with the genetic encoding that restricts
the phenotype space to symmetric configurations. The robot on the top uses bidirectional
couplings with four free parameters, the second robot harmonic oscillators and the two
robots on the bottom undidirectional couplings.
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Chapter 7 

Conclusions and future work

I have presented a bio-inspired approach for self-organization of locomotion for modular
robots. In contrast to previous research in self-organization of chain-type modular robot
locomotion, I co-evolve the configurations with the CPGs in analogy to how the bodies co-
evolve with the nervous system.

Inspired by symmetry in nature and the tendency of the GA to evolve quasi-symmetric
individuals, I designed a genetic encoding that restricts the phenotype space to symmetric
configurations. The results of this encoding exceeded my expectations. Evolved robots use
more modules and are more complex than those in previous research. The gaits are more
elegant and sophisticated than those of any other chain-type modular robots that I have
seen so far. Furthermore, the GA evolves these individuals in a surprisingly short time
(about two hours on a high-end PC). In summary, fitter and more complex robots are
evolved in shorter time with the symmetric encoding.

We may philosophize about the origin and purpose of symmetry in nature based on
these results. In chapter 3.1.3 I have argued that symmetry might be a fundamental
characteristic of efficient locomotion. Even if this was true, it is no explanation why the
whole body of animals is symmetric and not just the limbs that are used for locomotion.
After the complicated implementation of the symmetric genotype-to-phenotype mapping, I
am amazed how the body succeeds growing almost perfectly symmetrical limbs.
Obviously, there must be a mechanism at the level of the developmental gene regulatory
networks [Hinman et al. 2003] that is responsible for the bilateral symmetry. I hypothesize,
that the ‘purpose’ of symmetry in nature is the same as of my genetic encoding: A
restriction and structurization of the phenotype space. Indeed, nature is confronted with the
same problem as my genetic algorithm: A huge and unstructured search space. Now
suppose that a developmental gene regulatory network that implies a symmetric
morphology is evolved per coincidence, through mutation. The evolution of such a species
would be boosted because of the limited and structured phenotype space. If the analogy
with my genetic encoding holds, ‘symmetric species’ would soon become more
sophisticated and fitter than ‘asymmetric species’ and finally extinguish them. Note that
these considerations are purely philosophical, it would be interesting to further investigate
the role of developmental gene regulatory network within this context.

With respect to the different types of genetic algorithms that I tested, I can conclude that
the performance of the evolved robots cannot be improved with more sophisticated
algorithms such as the GA with migrating populations. Therefore, to evolve more complex
modular robots, one should test a developmental coding based on L-systems for instance.
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I found that the nearest neighbor coupling scheme is well adapted for a modular robot
CPG. Note that with the symmetric encoding, the couplings are relayed along the spine to
the limbs, analogously to the architecture of the neural CPG in vertebrates. I believe that
the nonlinear oscillators are well suited as canonical subsystems to model the neural
oscillatory centres and that there is no benefit in using more complex models for open loop
locomotion. Clearly, we should investigate if the dynamics of the nonlinear oscillators are
rich enough to integrate sensory feedback.

In chapter 4.4 I have outlined a distributed, asynchronous control algorithm for
implementing the CPG on the hardware. The algorithm is based on strictly local interaction
and is robust in face of temporary communication failures.

 Using polar coordinates for the coupling parameters, one can easily predict the phase
difference between two coupled oscillators, which has been considered impossible before.
Instead of optimizing both weights aij and bij of a coupling, a single parameter ξ may be
optimized. This is beneficial for both the GA and the online adaptation method. I have also
proposed a new coupling term that ensures exact convergence to a sine. The couplings
have no effect on the amplitude when using this term. This is interesting for the distributed
control algorithm mentioned above, because only with energy-balanced couplings is it
resistant to temporary communication failures.

Unfortunately the online adaptation algorithm is not finished at the time of writing.
Success or failure of my approach depends on the topology of the fitness landscape. Only
experiments can show if efficient locomotion is obtained with randomly assembled
structures. However, I am confident that online adaptation of evolved individuals is
possible with Powell’s method.
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Appendix - implementation
The source code is more than 8000 lines. The description of the class interfaces alone
would take dozens of pages. I decided that it makes more sense to include the sources and
the documentation of the implementation electronically.

On the CD that is included with this report, you find the complete HTML
documentation of the project. The documentation has been generated automatically from
the sources with Doxygen. It is also available on the project web page at:

http://birg.epfl.ch/page32031.html

Simplified design class diagram. For details, refer to the online documentation.
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