The QOOL Algorithm for fast Online
Optimization of Multiple Degree of
Freedom Robot Locomotion

Daniel Marbach
January 31th, 2005

Swiss Federal Institute of Technology at Lausanne
Daniel. Marbach@epfl.ch
http://birg.epfl.ch/page32031.html

1. Introduction

This paper concludes the research of my Master Thesis. It presents the QOOL (Quick On-
line Optimization of Locomotion) algorithm for fast online optimization of multiple degree
of freedom robot locomotion. Previous research uses heuristic search algorithms such as
simulated annealing and genetic algorithms to optimize robot locomotion. These algorithms
are generally well suited for offline optimization but they are too slow for efficient online
adaptation of locomotion. In contrast, QOOL is based on Powell and Brent’s algorithms,
which are not heuristic. These algorithms guarantee quadratic convergence (i.e. the number
of significant figures is doubled at each iteration) to a local optimum. For a more detailed
introduction and a discussion of previous research and the potential merits of different
types of search methods, refer to Chapter 5 of the report [1].

Note that even though I use the terminology of modular robotics, QOOL is well suited to
optimize locomotion of any multiple degree of freedom robot. As I argue in the report, the
performance of a deterministic optimization algorithm depends heavily on the topology of
the fitness landscape. If the search space is full of small local optima, the probability of
finding a good locomotion gait is small. In the next section I discuss fitness evaluation and
present some preliminary experiments that encouraged me to use Powell’s method for op-
timization of locomotion. In section 3 I briefly present Brent’s method for one-dimensional
function optimization. Brent’s method is a sub algorithm of Powell’s multidimensional op-
timization method, which is outlined in section 4. Finally I shall discuss the QOOL algo-
rithm for online optimization of robot locomotion and present the results.

Figure 1: Three YaMoR robots that have been evolved with the co-evolutionary algorithm: A sala-
mander like configuration, a walker and a crawler (from left to right). Head modules are green, spine
modules red and limbs blue. Rigid modules are dark, powered modules light. Nonlinear oscillators
with unidirectional couplings are used for locomotion control. The parameter space of the first two
configurations is well suited for online optimization; the search space of the crawler is highly irregu-
lar (refer to Figures 2-4).

2. The fitness function and the topology of the search space

Effective fitness evaluation is essential for online optimization. It is much more compli-
cated than one might think. When changing the locomotion gait of a robot online from gait
A to gait B, there is a chaotic transition period. Clearly, this period should not be included
in the fitness evaluation of gait B. By analyzing the trajectories of the nonlinear oscillators,
one can detect when the CPG converges to a stable limit cycle and start measuring the fit-
ness at that point. However, I did not get satisfactory results with this approach. The prob-
lem is, that the mechanical dynamics take some time to adapt to the new gait even after
convergence of the CPG (e.g. the robot might still be accelerating when switching from a
slow to a fast gait).

Thus, for online fitness evaluation each module should constantly estimate it’s average
speed during the last period (the period of the oscillations). The current fitness of the robot
is defined as the average of the module speeds over the last period. Note that this fitness
could easily be computed online by the modular robot provided that the modules are
equipped with adequate sensors. The fitness evaluation of a gait is only done when the av-
erage speed of each module stabilizes at a constant value over several periods. This indi-
cates that the mechanical dynamics converged. However, even with these precautions the
fitness evaluation is quite ‘noisy’ as you can see on Figures 2-4.

In order to test the fitness evaluation and to visualize the topologies of the fitness land-
scapes I explored two-dimensional hyper planes within the N-dimensional search space. In
other words, all parameters of an evolved locomotion gait are fixed except for two free pa-
rameters. For each combination of these two parameters (with small increments) the online
fitness is then evaluated. I found that for some robots the fitness landscapes seem to be
quite regular. In this case, a heuristic optimization algorithm is clearly not appropriate and
Powell’s method should find the optimum with few fitness evaluations. However, the fit-
ness landscape of other robots is more irregular, containing local optima. For these configu-
rations, Powell’s algorithm might converge to a small local optimum. Refer to Figures 2-4.

phase left leg >

0 45 90 135 180 225 270 315

phase right leg >

Figure 2: Fitness landscape of the walker (Figure 1). The two free parameters are the phase differ-
ences of the two limbs. Both plots represent the same data. Using Brent’s method for optimization
in one dimension, an optimum is found with only about four fitness evaluations thanks to parabolic
interpolation (see Chapter 3).

amplitude leg module 2 >
phase leg module 2 >

10 20 30 40 s0 60 70 80 0 45 90 135 180 225 270 315 360

amplitude leg module | > phase leg module 1 ->

Figure 3: Fitness landscape of the walker (Figure 1). On the left, the two free parameters are the
amplitudes of two modules within a limb. On the right, the free parameters are the phases of the
same limb modules. Again, the search space seems to be well suited for a quadratically converging
optimization algorithm.

phase left arm >

0 45 90 135 180 225 270 315 360

phase right arm >

Figure 4: Fitness landscape of the crawler (Figure 1). The free parameters correspond to the
phases of the two limbs. The search space is very noisy and unstructured. Depending on the start-
ing point the optimization might converge to a local optimum (i.e. one of the red islands).

3. Brent’s method for one-dimensional function optimization

The goal of function optimization is to find x such that f{x) is the highest or lowest value in
a finite neighborhood. From now on I just consider the problem of function minimization.
Note that function maximization is trivially related because one can minimize —.

The main idea of one-dimensional function optimization is to bracket the minimum with
three points a < b < ¢ such that f(b) is less than both f(a) and f(c). In this case and if f'is
nonsingular, f must have a minimum between a and c¢. Now suppose that a new point x is
chosen between b and c. If f(b) < f(x), the minimum is bracketed by the triplet (a, b, x). In
the other case if f(x) < f(b), the new bracketing points are (b, x, ¢). In both cases, the brack-
eting interval decreases and the function value of the middle point is the minimum found so
far. Bracketing continues until the distance between the two outer points is tolerably small.

One can show that the best strategy for choosing the new point x given a bracketing in-
terval (a, b, ¢) is the point that is a fraction of (.38 into the larger of the two sub intervals
[2]. The consequence of this strategy is, that the midpoint always lies in a fraction of 0.67
from one end and 0.38 from the other end of the bracketing interval. These fractions are the
so-called golden mean or golden section, hence the name golden section search.

“A golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered like a
scared rabbit [2]”. Most functions are parabolic near the minimum. Thus, instead of choos-
ing x with the golden section strategy, we can fit a parabola through the points f(a), f(b) and
f(c) and choose the new point x at the minimum of this parabola. Generally one can get very
close to the function minimum in a single leap with this strategy.

However no optimization method is likely to succeed following strictly this approach.
Brent’s method [2,3] is a clever combination of golden section search and parabolic inter-
polation. Brent uses golden section search when the function is not cooperative but
switches to parabolic interpolation when the function allows it. Obviously, detecting
whether the function is cooperative or not is far from trivial. A presentation of the detection
scheme goes beyond the scope of this paper; refer to [2,3] for details.

Initially bracketing the minimum is actually at least as complex as finding the minimum
with Brent’s method. From an initial point a, I choose a second point b = a + o, where 9§ is
a random number from a Gaussian distribution with mean zero and standard deviation 0.735.
Now suppose f(a) > f(b) (rename the points in the other case). The idea is to step downhill
with increasing step sizes until bracketing the minimum. In analogy to Brent’s minimiza-
tion method, I use a combination of two strategies: Increasing the step size by the golden
ratio and parabolic extrapolation. Refer also to the bracketing method described in [2].

Initial bracketing and subsequent minimization can be observed very nicely in the fig-
ures of the last chapter.

4. Powell’s method in multidimensions

Consider a line defined by a starting point P and a direction n in N-dimensional space. It is
possible to find the minimum of a multidimensional function f on this line using a one-
dimensional optimization algorithm such as Brent’s method. In order to do so, one can
minimize the one-dimensional function g with Brent’s method as described in the previous
section:

g(A) = f(P+An)

The minimum A,,;, of function g corresponds to the minimum P+A,,;,;n of the multidi-
mensional function fon the line with direction n through P.

Direction-set methods for multidimensional function minimization consist of sequences
of such line minimizations. The methods differ by the strategies in choosing a new direc-
tion for the next line minimization at each stage. Some methods require gradient calcula-
tions for the choice of successive directions. Even though these methods are more powerful
than those that do without the gradient, numerically estimating the gradient of the fitness
function would take too much time because it involves many fitness evaluations. For this
reason I chose Powell’s algorithm [2,3], which is a direction-set method that does not rely
on the gradient.

Powell’s method starts with the unit vectors e;, €3, ... ex of the N-dimensional search
space as a set of directions. One iteration of the algorithm does N line minimizations along
the N directions in the set. Using the unit vectors as direction set works actually fine for
most functions. However, in some cases convergence might be very slow. Consider a func-
tion with a “valley’, for example:

@ =[x+ (3= 3,) (1)

This function is plotted for N = 2 (two dimensions) in Figure 5. The first term of /' impli-
cates that the function value increases with the distance from the origin. The consequence
of the second term is a ‘valley’ along x =y that descends towards the origin. The global
minimum is the origin.

In order to test my implementation of Powell’s method I optimized f using different
numbers of dimensions. The two-dimensional case is nice to illustrate the algorithm, see

fix.y)

(-0.03,-025 (0.33.-0.21)

1 b
-1 0 | 2 3 4 5

X->

Figure 5: The color corresponds to the function value of f given in Equation 1 (two-dimensional
case). Succeeding line minimizations by Powell’s method starting at point (2, 5) are plotted in black.
For details, refer to the main text.

Figure 5. Starting at the initial point (2, 5), the first line minimization along the direction
given by the unit vector [1, 0]" takes us to the point (4.61, 5). From this point the second
line minimization along [0, 1] completes the first iteration. As you can see on Figure 5,
repeated line minimizations along the unit vectors would involve many iterations because
the minimum would be approached in small steps such as the one of iteration 2 from (4.61,
4.31)to (4.01, 3.67).

After each iteration, Powell’s method checks if it is beneficial to replace one of the di-
rections in the set by v = Py - Py where Py is the starting point of the iteration and Py the
new point after the N line minimizations. In the example of Figure 5, v, replaces [1, 0]" in
the second iteration. The algorithm correctly decides not to include new directions in all
other iterations as this would actually slow down convergence.

Deciding whether or not to include the new direction v after each iteration and which di-
rection in the set should be replaced is quite complicated. For details and a mathematical
discussion of conjugate direction sets and the resulting property of quadratic convergence,
see [2].

5. The QOOL algorithm

QOOL is an implementation of Powell’s method in the context of multiple degree of free-
dom robot locomotion. The robot constantly evaluates its fitness as described in Chapter 2.
If the QOOL online adaptation is active, the robot updates it with the current fitness as soon
as the mechanical dynamics are stable. QOOL then returns a new set of parameters that
should be tested by the robot.

In Chapter 5 of the report [1] I discuss two applications for online optimization of loco-
motion in the context of modular robotics: a) When self-assembling modules build random
configurations, they could learn to locomote efficiently (optimization from scratch); b) The
locomotion gait of a robot may be adapted online to the environment (adaptation of a spe-
cific gait). QOOL may be used for both scenarios. The only difference is, that the standard
deviation for the Gaussian distribution in the bracketing procedure should be much smaller
in the second scenario. This implicates that the robot continuously explores the parameter
space in a small neighborhood. Thus, locomotion remains efficient by continuously adapt-
ing to changing environmental constraints. Contrary to optimization of mathematical func-
tions, it is important for QOOL to re-evaluate the current optimum at each iteration because
the environment and consequently also the fitness landscape are dynamic.

One can show that Powell’s method finds the minimum of a function in the order of N
iterations, where N is the number of dimensions [2]. Each iteration consists of N line mini-
mizations. A one-dimensional optimization usually involves about five to ten fitness
evaluations. Thus, I estimated that QOOL online optimization from scratch would involve
approximately 10*N° fitness evaluations. To my surprise, the algorithm turned out to be
much faster (see next chapter) because it converges to an efficient locomotion gait already
in the very first iterations of Powell’s method.

The key to fast online optimization is also a reduction of the parameter space. A pow-
ered module is controlled with three parameters as described in [2]: The amplitude, the
phase and the initial angle. The coupling weights of the nonlinear oscillators are set using
phase prediction. Corresponding modules in symmetric limbs share the same control pa-
rameters; only the very first modules of symmetric limbs have distinct phase differences.

6. Results

I tested QOOL with robots that have been evolved with the co-evolutionary algorithm [2].
For online optimization from scratch, I reset all control parameters to random values. On-
line adaptation is tested by simulating evolved robots and trying to further optimize loco-
motion.

The following figure shows QOOL online optimization from scratch (randomly initial-
ized control parameters) of the salamander from Figure 1. It has six powered modules, but
since they are all limb modules the locomotion controller has only seven parameters (three
phases, three amplitudes plus the additional phase of the mirrored limb). Already the sec-
ond line minimization, which optimizes the phase of the right limb (in red) leads to an effi-
cient locomotion gait after exactly two minutes of simulated time (i.e. real time, not
computation time of the computer). The first iteration of Powell’s method is finished after
6.5 minutes and the new direction is tested (the point where all parameters change at the
same time). However, the new direction is not included in the set. In contrast, the new di-
rection of the second iteration (after 14.5 minutes) is included in the set. The subsequent
line minimization along this direction gets very close to the optimum in a single leap.

After only 24 minutes of simulated time and three iterations of Powell’s method, QOOL
detects that the optimum has been reached. In this short time, a highly efficient walking gait
of a robot with six degrees of freedom has been found. Notably, the gait is efficient already
after the first five minutes of QOOL optimization! By turning on the graphics one can actu-

.I"ht] I 1 I | I I] I I 1 I I I I I I || I 1 1 I 1 I I I
| |
315 | fly {
b | Ay
e i A | II| \ '|| Ii.'ﬂ""’
270 ||} W | i
I il \
,‘I\ - [l (AR __JII | || I' .
z 225 || i |
z |
20 180 |
3 r A
: \ in |
s R !
g] y |
] 45 |
0
45 [
o0 -
403
A [. -
o f h N = L = ﬁ'_u‘ 0.6
A _|_I.,_\ﬂ MLy f | | 1 |l I‘n"ui f N \ II\. M
~tro—— N AA Ilu* A i I [(1] v 0.5 -
i NI A A /
-r.—*-—"‘.."ll": -'N | W | | VT K I|I | I II [|I | | | : || - 04 B
[AN LT ! iRl [3
|| i II."I I||I |I) | Il | | II ||| | III I -0 f_
iha'a ' | !l i 402 %
(1l 1 l | | | I ' \l 3
\ 3
i \/ I r - 0.1 =
| 1 | | | | 1 | 1 [| | | | 1 | | 1 | | 1 | | | 0
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1% 20 21 22 23 24 25

simulated time (minutes) ->

Figure 6: Online optimization of the salamander (see Figure 1) from scratch. The optimum is found after
24 simulated minutes, or 145 fitness evaluations (a fitness evaluation takes about 10 simulated sec-
onds). The lines in the upper part of the figure correspond to the parameter values. The fitness of the
optimal gait found so far (in red) and the gait that is currently being tested (in black) are plotted below.
The maximum fitness decreases sometimes because it is being re-evaluated at each iteration.

ally watch how locomotion improves within few minutes. Note that in previous research,
offline optimization of comparable gaits (for example with genetic algorithms) took hours
of computation time, i.e. dozens of hours of simulated time. Movies are available at:

http://birg.epfl.ch/page32031.html

The results of the online optimization from scratch of the walker from Figure 1 are
shown below. With eleven degrees of freedom this robot is quite complex. Nevertheless, a
very efficient and elegant locomotion gait is found in less than 40 minutes of simulated
time. The first iteration is completed after 12 minutes and the new direction is added to the
set. The subsequent line optimization along this direction gets very close to the optimum.
Note that the optimized gait is slightly fitter than the gait that had been evolved with the
genetic algorithm in hours of computation time.

I have not yet tested the online adaptation of locomotion to changing environmental con-
straints but [expect it to perform well because it is actually the simpler case compared to
optimization of a randomly initialized CPG (optimization from scratch). Evolved locomo-
tion gaits could not be further improved by QOOL in a static environment because they are
generally already highly optimal (see Figure 8).

630 T T I T T T T
540 | | ! (! i
405 - | I ' |p
aso -l I a ‘Il
36l | i T LI
315 L |

270 | _
225 | fin
180 B | !
135 | |‘| L I]

90 | [y
L — i e eSS ESR = '1

Lt I | N N
0 R el !] | — | {1 : — -
A %\F‘v T | | |‘IV_$%EY llli v (I' i i

parameter value (degrees) ->

90 ll \’I|'\,'\,-
' | —4 05

f— Ly
. _ - —!I M T 7T 04

I 'LlJrﬁ acamr .'flhTﬁ AT ""Pl i LI."L. .| [V ||.l”" po
A W)y YU W WL T [vl 4
I|| .Il||I Al |II |} ‘| |||| I | || V | |,‘ || ||I - 0.3
T ol TR | il |l I‘lI f | l Jd 02
ANTTT L"'||'I VTN ||'II i i il || il -
e | [Vl || I | '

W | | | | I - 0l

0 2 4+ [8 w12 14 1e 18 20 22 24 26 28 30 32 34 36 3¥

simulated time (minutes) -

average speed (m/s) >

Figure 7: Online optimization of the walker (see Figure 1) from scratch. The lines in the upper part of
the figure correspond to the values of the different parameters and the maximum and current fithess are

plotted below.

1 [} I I I I | I '|I | 1 I]
| | | |
| " |
360 | , my A
o fll T — [l ™= -
| I|| Ill". ' ! . \Jl'll\
35S . |]
A \ | 1 \ | |
= i'l i | |
2 270 | I [
T 225 [
2
o L) Al |
3 180 I\
5 135 |- : |
=9
[1 ||||
00 | { { S
1 i o § 1
| | A AN, i—
45 = T T \/\ IV [!
N | ﬂl | IR v) ."| Im! 1/
| 1 T '\ | v
N : V) A [
ok / - v 1 Y - 0.6
- 05
o
T A e . i - 04
NN {11 vl =\ A \ il I) - N T - N
RN NI A P S M AV A
L} ¥ |I|I IFI u-\| ¥ |II |l' IIIIII| L} I\/ - t.’..!'
a0
|||| ||| ¥ - 02
I
- .1
1 1 | 1 1 1 1 1 1 1 0
0 2 4 i 8 10 12 14 16 18 20 22

simulated time (minutes) ->

Figure 8: Adaptation of an evolved locomotion gait in a static environment (walker of Figure 1). Be-
cause the gait is already optimal for this environment, it can’t be further improved. The maximum
fitness fluctuates because it is constantly being re-evaluated. Note that most parameter values are
left unchanged. The parameters that are modified by the optimization algorithm (e.g. the red line on
the top) have little effect on the gait.

References

[1T D. Marbach. Evolution and Online Optimization of Central Pattern Generators for Modular Robot Lo-
comotion. Unpublished Master Thesis, Swiss Federal Institute of Technology Lausanne, 2005. Available
at: http://birg.epfl.ch/page3203 1.html

[2] W.H. Press, S. A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recepies in C: the art of scien-
tific computing (2nd ed.), Cambridge University Press, 1992. Available at:
http://www.library.cornell.edu/nr/bookcpdf.html

[3] R.P.Brent. Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973.

average speed (m/s) >

