
 Proceedings of the IEEE
 International Conference on Mechatronics & Automation
 Niagara Falls, Canada • July 2005

0-7803-9044-X/05/$20.00 © 2005 IEEE

Online Optimization of Modular Robot Locomotion
Daniel MARBACH and Auke Jan IJSPEERT
Swiss Federal Institute of Technology at Lausanne,

CH 1015 Lausanne, Switzerland

{daniel.marbach, auke.ijspeert}@epfl.ch

WWW: http://birg.epfl.ch

Abstract – Adaptive locomotion in unstructured and unpre-

dictable environments is one of the most advertised features of

modular robots in the literature. Autonomous modular robots

are expected to adapt in the face of a dynamic environment,

unexpected tasks and/or module failures. There are two levels of

adaptation: Within a static configuration, a chain-type modular

robot can adapt its locomotion gait using its many degrees of

freedom and the inherent redundancy. In addition, the robot may

self-reconfigure to adapt also its morphology. Online optimiza-

tion of locomotion in a self-organizing manner is mandatory

within this context.

The contribution of this paper is three-fold: i) Inspired by

Central Pattern Generators (CPGs) found in vertebrates, we

propose a distributed locomotion controller based on coupled

nonlinear oscillators; ii) For offline optimization, a genetic algo-

rithm that co-evolves the CPG with the configuration of the

modular robot is presented; iii) The ultimate goal of our research

being autonomous locomotion, the focus of the paper lies on a

novel, fast online adaptation method for coupled nonlinear oscil-

lators. The algorithm allows fast online optimization (adaptation)

of locomotion gaits in the face of module failures or new, previ-

ously unknown configurations. A realistic simulation of our

hardware prototype YaMoR is used for the experiments.

I. INTRODUCTION

Modular robots are generally classified as being lattice-type

or chain-type. Lattice modular robotic systems use cluster-

flow locomotion: In order to move, the robot continuously

reconfigures, thereby giving the impression that the module

cluster “flows” on the ground and around obstacles. Our re-

search concerns chain-type robots [1-3] that locomote in a

static configuration, using powered joints for instance. Recon-

figuration occurs only in order to adapt to a new environment

or function. For example, a robot could climb over an obstacle

in a quadruped configuration and then reconfigure to a snake

in order to slide through a small hole.

Locomotion is an essential skill of any autonomous robot.

The promise of adaptive locomotion in harsh and unpredict-

able environments has been a major motivation for research in

modular robotics and related applications such as urban search

and rescue, planetary exploration or undersea mining are

mentioned by the vast majority of publications in the field. In

these scenarios, modular robots are expected to self-

reconfigure in order to autonomously adapt their morphology

to a dynamic environment, new tasks and module failures.

Adaptation is also possible within a static configuration by

taking advantage of the many degrees of freedom (DOF) and

the inherent redundancy.

In vertebrates, Central Pattern Generators (CPGs, i.e. neural

networks that produce complex oscillatory output from simple

tonic input) located in the spinal cord generate the rhythmic

signals for locomotion [4]. Various computational CPG mod-

els have been used for adaptive biped [5], quadruped [6],

swimming [7] and amphibious [8] robot locomotion. These

studies have shown that CPGs can be designed as distributed

systems of coupled neural or nonlinear oscillators, and pro-

duce very robust locomotion with speed, direction, and even

types of gaits that can quickly be modified depending on the

environmental conditions.

Previous research in chain-type modular robot locomotion

control [3][9-11] has not taken inspiration from the concept of

CPGs; except for Kamimura et al., who use two-neuron

Matsuoka oscillators as a CPG model for M-TRAN in their

recent work [1,12]. A genetic algorithm (GA) is applied to

optimize the free CPG parameters offline for specific configu-

rations. In [1] the authors extend the CPG with a drift detec-

tion mechanism and demonstrate adaptive locomotion with M-

TRAN in the face of external perturbations and varying envi-

ronmental conditions.

The research cited above [1][5-8] incorporates sensory

feedback to design adaptive CPGs. Input from the sensors

affects the state and shapes the oscillatory output of the system

in the near future. However, there is no long-term memory or

learning effect and the gait must previously be optimized

offline by a GA, for instance. In contrast, we investigate on-

line adaptation, and this on a higher level, acting on the pa-

rameters of the CPG (e.g. the coupling weights). The two

approaches are complementary and should ideally be com-

bined with each other. We see two major applications for the

online optimization (we could also say adaptation or learning)

algorithm: First of all, it is possible to quickly optimize the

locomotion gait for a new, previously unknown configuration.

This may be the case after self-reconfiguration or self-

assembly. Secondly, the locomotion gait may be adapted to

module failure(s). The algorithm relies on Powell’s method

[13-14] for multidimensional function optimization. To the

best of our knowledge, there has been no previous research in

online optimization of chain-type modular robot locomotion.

The paper is organized as follows. The next section reviews

our hardware prototype YaMoR and the simulation environ-

ment. Subsequently the Central Pattern Generator (CPG)

model based on coupled nonlinear oscillators is introduced.

Co-evolution of the CPG with the configuration of the modu-

lar robot is discussed in Section 4. Finally we explain the

online optimization algorithm and discuss the results.

248

II. YAMOR

YaMoR [15,21] (Figure 1) is the modular robotic system

that is currently being developed at the Biologically Inspired

Robotics Group (BIRG) of the Swiss Federal Institute of

Technology at Lausanne (EPFL). We focus on issues in chain-

type locomotion and leave self-reconfiguration aside for now.

A special type of strong genderless Velcro® fastener is used to

attach the modules together. Velcro proved to be a very sim-

ple, flexible and efficient way to manually connect modules.

A module weights 0.25 kg and has a length of 94 mm (in-

cluding the lever) with a cross section of 45x50 mm. YaMoR

modules have a single degree of freedom: The hinge of the U-

shaped lever has a working range of a little bit more than 180°.

It is driven by an RC-servo with maximum rotation speed of

60°/0.16s and a maximum torque of 0.73 Nm, which is suffi-

cient for a module to lift three others.

The modules are self-contained, i.e. autonomous with re-

spect to power, actuators and computation. Each module is

equipped with a Field Programmable Gate Array (FPGA) with

400’000 gates and 4 Mbit of high speed SRAM. Sensors are

not included in this first prototype. The module is powered by

two rechargeable Li-Ion batteries. The most distinctive feature

of YaMoR is the wireless communication via BlueTooth.

Advantages are low power consumption, small size and the

absence of an electrical connection between the modules.

Furthermore, disjoint modules or groups of modules can

communicate [15,21].

YaMoR has successfully demonstrated locomotion in vari-

ous configurations. Movies and further technical details are

available on the BIRG web page [16].

The simulation environment is implemented with the Open

Dynamics Engine (ODE) [17]. Powered hinge joints are used

to simulate the RC-Servo of YaMoR. A PD controller as de-

scribed in [18] sets the torques that are necessary to follow the

trajectories generated by the CPG.

III. CPG CONTROLLER

A. Coupled Nonlinear Oscillators

We choose the following coupled nonlinear oscillator as ca-

nonical sub system of the CPG:

� �xi = vi

� �vi = ��
xi
2 + vi

2 � Ei

Ei

vi � xi + pi

�

�
�

�
�

(2)

where �, � and Ei are positive constants. The variable pi is

the perturbation of the oscillator due to interoscillator coupling

(see below). The state variable xi provides the oscillatory sig-

nal for the YaMoR unit. A similar CPG was used in ref. [8] to

model salamander locomotion. The limit cycle behavior of an

unperturbed oscillator (pi=0) is a sinusoidal signal:

�xi (t) = Ei sin(t / � + �i) (4)

where the phase �i depends on the initial conditions. In or-

der to drive the system to specific phase differences, the os-

cillators (Eq. 2) of the CPG are coupled by projecting signals

to each other proportional to their x and v states:

pi �=� wij

sin �ij()x j + cos �ij()vj
x j
2 + vj

2
���

v i
xi
2 + vi

2

�

�
�
�

�

	

j

� (3)

The positive constant wij determines the strength of the cou-

pling from oscillator j to oscillator i and the parameter �ij sets

the phase difference between the two oscillators. Indeed, xi

converges to a sine (Eq. 4) and the phase difference with os-

cillator j stabilizes at �ij if the network is acyclic. This holds

for arbitrary initial states except for the singularity where all xi

and vi are zero. See [19] for additional discussion.

B. Connection scheme

We follow the paradigm of strictly local interaction and use

nearest neighbor couplings from parent to child oscillators

(see Figure 2). In our case, the parent-child relation stems

from the tree genome (see next section). Generally, one could

use a distributed algorithm to construct a spanning tree over

all modules [3]. We use unidirectional and not bidirectional

couplings because of faster convergence to the limit cycle in

large networks. Parameters are summarized in Table I.

Besides from the modules that are controlled by an oscilla-

tor, we also use rigid modules. The hinge joint of YaMoR

modules cannot be locked mechanically, thus the trajectory of

the module is set to the desired (constant) angle. Having no

active oscillator, a rigid module simply relays the couplings

from its children to the parent. Refer to Figure 2.

A module with an active oscillator periodically communi-

cates its state (xi, vi) to the children (every 0.01s). With the

state information received from the parent, the module com-

putes the coupling term (Eq. 3) and integrates the differential

equation of its oscillator (Eq. 2) with embedded Runge-Kutta-

Fehlberg 4,5 [20] method using adaptive step-size control.

Rigid modules simply forward the state information from

their parent to all children. Note that the modules do not need

Figure 1: The YaMoR module.

TABLE I. PARAMETERS OF THE CPG

Parameter Value/Range Description

� 1/� Determines the oscillation period (typically 2 sec)

� 1 Controls the ‚attracting force’ of the limit cycle.

wij 1.5 Coupling strength (parent-child couplings only)

Ei (0, �/4] Free parameter, desired amplitude Ai = sqrt(Ei).

�ij [0, 2�) Free parameter, desired phase difference

249

to be reset to get synchronized; the CPG smoothly converges

to constant phase differences through strictly local interaction.

IV. CO-EVOLUTION OF CONFIGURATION AND CONTROL

In [18] we presented a GA for the co-evolution of configu-

ration and control of chain-type modular robots. Fictive mod-

ules, controlled by harmonic oscillators were used. Now we

take the same approach to co-evolve YaMoR configurations

with CPGs. As a novelty, we apply a genotype-to-phenotype

mapping for symmetric structures. The evolved robots are

used as a benchmark and testbed for the online optimization

(see Section 6). The GA is not discussed in detail; the inter-

ested reader may refer to [19] for a comprehensive review.

The genotype is a tree, where nodes represent modules and

links physical connections between modules. Nodes encapsu-

late the free parameters of a module. We distinguish structural

parameters and control parameters. The former ones define the

structure of the modular robot (e.g. docking positions and

initial joint angles); the latter ones are the free parameters of

the CPG, namely the energy Ei and the phase difference with

the parent oscillator �ij (see Table I). In addition, each node

has a Boolean parameter defining if the module is rigid or

oscillating. We use the same standard mutation, crossover,

selection and replacement operators as in [18].

Inspired by symmetry in nature and the tendency of the GA

to evolve quasi-symmetric individuals, we designed a geno-

type-to-phenotype mapping that mirrors the configuration

along the spine (the robots axis of symmetry). Refer to Figure

2. The genotype is the same as discussed above, the only dif-

ference being that each node must not only encode its own

phase �ij, but also the phase of its mirrored counterpart. As in

nature, the amplitudes of corresponding joints in left and right

limbs are the same. Thus, only an additional phase parameter

must be added to the nodes. Refer to [19].

V. ONLINE OPTIMIZATION

GAs are by far the most popular offline optimization

method for multiple degree of freedom locomotion [1][5-8].

GAs and other stochastic optimization algorithms (e.g. simu-

lated annealing [14]) avoid small local optima to a certain

point by exploring large areas of the search space. The payoff

is a very slow convergence, which is the main reason why

they are not well suited for online optimization. Here we take

a radically different approach. By applying a ‘classical’ func-

tion optimization algorithm (Powell’s method) to optimize the

fitness function f we get fast convergence, the payoff being the

risk to converge to local optima. The next two sections are a

brief introduction to Brent’s and Powell’s algorithms. Subse-

quently we discuss how we apply them to robot locomotion.

A. One-Dimensional Function Optimization

The goal of function optimization is to find x such that f(x)

is the highest or lowest value in a finite neighborhood. From

now on we just consider the problem of function minimiza-

tion. Note that function maximization is trivially related be-

cause one can minimize –f.

The main idea of one-dimensional function optimization is

to bracket the minimum with three points a < b < c such that

f(b) is less than both f(a) and f(c). In this case and if f is non-

singular, f must have a minimum between a and c. Now sup-

pose that a new point x is chosen between b and c. If f(b) <

f(x), the minimum is bracketed by the triplet (a, b, x). In the

other case if f(x) < f(b), the new bracketing points are (b, x, c).

In both cases, the bracketing interval decreases and the func-

tion value of the middle point is the minimum found so far.

Bracketing continues until the distance between the two outer

points is tolerably small [14].

The challenge is finding the best strategy for choosing the

new point x in the bracketing interval at each iteration. We use

Brent’s method, which is a clever combination of golden sec-

tion search and parabolic interpolation [13,14,19].

B. Powell’s method in multidimensions

Consider a line defined by a starting point P and a direction

n in N-dimensional space. It is possible to find the minimum

of a multidimensional function f on this line using a one-

dimensional optimization algorithm [14] (e.g. Brent’s method,

see above). Direction-set methods for multidimensional func-

tion minimization consist of sequences of such line minimiza-

tions. The methods differ by the strategies in choosing a new

direction for the next line minimization at each stage. Powell’s

method [13,14] is best explained with an example. Consider a

function with a ‘valley’ along x=y that descends to the origin:

f x, y()��=�� x2 + y2 � +�� x � y()2 (5)

Powell’s method starts with the unit vectors e1, e2, …eN of

the N-dimensional search space as a set of directions. One

iteration of the algorithm does N line minimizations along the

N directions in the set. The algorithm is illustrated in Figure 3

for the two-dimensional function introduced above (Eq. 5).

Starting at the initial point p0=(2,5), the first line minimization

along the direction given by the unit vector [1,0]
T

takes us to

the point p1. From this point the second line minimization

along [0,1]
T

takes us to p2 and completes the first iteration. As

Figure 2: Genotype, phenotype and CPG of an evolved YaMoR robot. a) The

genotype is a tree, where nodes represent modules and links physical con-

nections. b) The symmetric genotype-to-phenotype mapping ‘mirrors’ the

limbs along the spine, resulting in a symmetric structure. Rigid modules are

in black, oscillating modules in white. c) Unidirectional nearest neighbor

couplings are used. Rigid modules relay the coupling from their parent to the

children. The root of the tree must always have an active oscillator (even if it

is set rigid) to ensure that the network is a spanning tree over all oscillators.

b) Phenotype c) CPGa) Genotype

250

you can see on Figure 3, repeated line minimizations along the

unit vectors would involve many iterations because the mini-

mum would be approached in small steps. After each iteration,

Powell’s method checks if it is beneficial to replace one of the

directions in the set by vi = p0 – pN where p0 was the starting

point at the current iteration and pN the new point after the N

line minimizations. In the example of Figure 3, v2 replaces

[1,0]
T

in the second iteration. The algorithm correctly decides

not to include new directions in all other iterations as this

would actually slow down convergence. The mechanisms for

deciding whether or not to include the new direction vi after

each iteration and which direction in the set should be re-

placed are described in [13,14]. Note that there is no learning

rate; the algorithm simply always goes to the optimum in the

next direction.

C. Optimization of Locomotion

We shall now explain how Powell’s method can be used to

optimize the fitness function f(x). The vector x contains all

free parameters of the CPG (remember Table I). At each step

of the algorithm, Powell’s method gives the next parameter

vector xi that should be evaluated. The CPG parameters are

then reset to xi and the gait is evaluated during approximately

10 seconds as described below. Afterward the fitness f(xi) is

returned to Powell’s method, which will give the following

parameter vector to be tested.

We define the fitness as the average speed of the modular

robot. The aim is to estimate the fitness f(x) in as little time as

possible. It is assumed that the robot has the ability to estimate

its speed, even though YaMoR is not yet equipped with the

necessary sensors. In order to promote locomotion in a straight

line, the average speed is not computed from the total distance

traveled, but from the distance between the starting and the

end point after a certain amount of time. The speed of the

robot is defined as the speed of a single, specific module (the

root of the configuration tree, which lies in the axis of sym-

metry). Optimizing this module’s speed ultimately leads to

optimization of the robot’s speed as a whole.

The average speed is always estimated over one period (2

seconds). The fitness evaluation of a gait is only done when

the difference between the three last estimated speeds is

smaller than 0.02m/s. If this is the case, the fitness of the gait

is defined as the average of these three estimates. Thus, the

fitness is the average speed over three periods (6 seconds), but

only if the speed was stable during that time.

Depending on the configuration and the gait, one fitness

evaluation takes roughly 10 seconds (5 periods). Experience

showed that fitness evaluation is quite noisy and that it is not

beneficial to use a precision of more than 0.1 radians for

Brent’s method. Using this precision, a line minimization over

an interval of 2� (largest possible bracketing interval for a

phase difference) involves less than 10 fitness evaluations

(generally about 5). An iteration of Powell’s method consists

of N line minimizations, where N is the number of parameters.

Therefore, it takes in the order of 10*N fitness evaluations for

one iteration of Powell’s method (N is generally between 10

and 30 for the configurations that we tested).

For fast optimization, the number of free parameters must

be reduced to a minimum. The CPG model introduced in Sec-

tion 3 fits well within this context because there are only two

parameters per oscillating module: The amplitude and the

phase difference with the parent. Symmetric configurations

allow further reduction of the search space by using equal

parameter values for corresponding modules in symmetric

limbs. In other words, symmetric limbs share the same control

parameters; only the phase difference to the spine (i.e. the

phase of the first module of the limb) must be independent.

As the algorithm converges towards the optimum, line

minimizations are often unable to improve the current opti-

mum, i.e. the starting point is already optimal on the consid-

ered line. In this case it is important to re-evaluate the current

optimum because the environment and consequently also the

fitness landscape might be dynamic. By taking the average

over the last k re-evaluations of the same optimum (we use

k=4) resistance to noise in the fitness estimation is improved.

A master module, for example the root of the configuration

tree, runs the optimization algorithm. In contrast to locomo-

tion control, a distributed approach is not essential because the

optimization algorithm has negligible computational cost

(compared to integration of the nonlinear oscillators) and

involves little communication (sending new parameter values

to all modules upon completion of fitness evaluation, i.e.

roughly every 10 seconds).

VI. RESULTS

Typical CPG trajectories are illustrated on Figure 4. The

system smoothly synchronizes from random initial states (x0,

v0) to a stable gait. Minor gait changes (e.g. modification of

one parameter value), which are common during online opti-

mization, are very fast and smooth. Even major gait transitions

where many parameters are brutally reset to new values take

less than two periods (4 seconds) and are smooth. This

smoothness is a key feature of nonlinear oscillators, and al-

lows us to avoid brutal resets that might damage the motors.

We test online optimization in two scenarios with the body

configurations that have previously been evolved with the co-

evolutionary algorithm: i) Optimization from scratch. All CPG

parameters of the evolved robot are reset to random values.

Online optimization starts from this random gait. ii) Adapta-

Figure 3: Powell optimization of the two-dimensional function f (Eq. 5).

Succeeding line minimizations starting at point p0 are plotted in black.

The vectors v1 and v2 correspond to the new directions tested after the

first and second iteration respectively. Further explanation in main text.

251

tion to module failures. The evolved CPG parameters are not

reset, but one of the oscillating modules is set rigid to simulate

a module failure. In this case the robot may not be considered

symmetric anymore, hence control parameters of correspond-

ing limbs are not shared any longer. Consequently, the number

of free parameters augments, which improves adaptability of

the system to the module failure.

We choose the configuration introduced in Figure 2 for dis-

cussion because with eleven DOF and a very sophisticated

locomotion gait it was one of the most complex robots

evolved by the GA. The results are summarized in Table 2.

Using random initial parameter values, the fitness (speed) of

the robot is improved from 0.14m/s to 0.38m/s in only 44

minutes in the average, thus outperforming the gait that had

been evolved by the GA (0.37m/s) in dozens of hours. (Note

that we always refer to simulated time, which is real time and

not computation time). The current optimum after each itera-

tion of Powell’s method is plotted in Figure 5 for ten runs.

Qualitatively, the eight runs that achieved a speed of more

than 0.35m/s converged all to the same type of gait as the GA.

The remaining two runs converged to a less efficient gait (i.e.

a local optimum).

Figure 6 illustrates how the parameter space is explored and

how fitness typically evolves during the optimization process.

The ‘spikes’ correspond to the line minimizations. The first

iteration of Powell’s method is completed after 12 minutes and

the line minimization along the new direction can be observed

by the simultaneous change of several parameters at that time.

The second and third line of Table 2 concern adaptation to

module failures. As mentioned above, there are more free

parameters in this case (22) than in optimization from scratch

Figure 4: CPG Trajectories of the robot from Figures 2,7. Three kinds of gait

transitions are illustrated: i) Initial synchronization in the first 4s. ii) Minor

gait change after 12s. iii) Major gait change after 20s.

Figure 5: Online optimization from scratch. The current optimum after each

iteration is plotted for 10 independent runs. The horizontal lines indicate

the average after random initialization, after two iterations and the speed

of the gait that had been evolved with the GA. Fitness (average speed)

may drop in the last iteration due to re-evaluation and estimation error.

Figure 6: Evolution of CPG parameter values (top) and maximum and current

fitness (bottom) during Powell optimization. Maximum fitness (bold) drops

occasionally because of re-evaluation and estimation error. Current fitness
fluctuates as optimization explores the parameter space.

Figure 7: Locomotion gait of the robot from Figure 2 after online optimization from scratch. Rigid modules are in black, oscillating modules in white. The robot is

moving from left to right. Arrows pointing to the right indicate that the corresponding limb is in the air and moving in the direction of locomotion. Left arrows
mean that the corresponding limb is on the ground, pushing to the left. Movies are available at: http://birg.epfl.ch/page56514.html

TABLE II. PERFORMANCE OF THE ONLINE OPTIMIZATION

Initial speed

(m/s)

Speed after

Powell (m/s)

Time in

minutes

fitness

evaluations

powell

iterations

0.17 0.40 49.23 273.1 3.40
Random

(0.08) (0.07) (19.13) (100.55) (1.26)

0.37 0.44 59.84 344.67 4
Evolved gait

(0.03) (0.03) (20.68) (124.28) (1.12)

0.22 0.39 72.03 368.71 4.71Evolved gait

w/ failure (0.06) (0.08) (40.39) (219.82) (2.06)

The 1st line corresponds to online optimization from randomly initialized

CPGs. The 2nd and 3rd line start both with the gait from the GA , the

latter one with failure of the module that connects the left limb to the

spine. Each cell contains the average (top) and the standard deviation

(below in parenthesis) from 10 runs.

252

(13) because the robot is not considered symmetric anymore.

As starting point we take the evolved gait, which has an aver-

age speed of 0.37m/s. One hour of online optimization im-

proved the performance to 0.44m/s in the average. Deactivat-

ing the first module of the left arm caused fitness to drop to

0.22m/s. Subsequently the algorithm successfully adapted the

gait to the module failure, achieving still superior fitness

(0.38m/s) than the GA without module failure.

We have tested online optimization with various configura-

tions from the GA (e.g. a salamander-like quadruped, a simple

two-armed crawler). Outcomes concur with the results pre-

sented above: i) Optimization from scratch performs well in

the average even though some runs converge to local optima.

ii) After a module failure, the gait is successfully adapted to

the new constraints. Provided that the configuration is redun-

dant, adaptation almost restores original fitness. iii) Optimiza-

tion is extremely fast. Locomotion gaits close to the optimum

are generally found already after the first iteration of Powell’s

method, i.e. after about 10 minutes. Movies are available at:

http://birg.epfl.ch/page56514.html

VII. CONCLUSIONS – FUTURE WORK

Using coupled nonlinear oscillators as canonical subsystems

of the CPG, we have designed a distributed modular robot

controller that is characterized by few parameters as well as

fast and smooth gait transitions. These features are essential

for successful online optimization.

Employing symmetric structures and control architectures

improved the performance of both offline and online optimi-

zation. This is explained by a limited and better structured

search space and the fact that symmetric robots are better

suited for locomotion in a straight line than asymmetric ones.

This paper is a proof of concept that it is possible to apply

Powell’s method (and potentially other direction-set methods

for multidimensional function optimization) to optimize mul-

tiple DOF robot locomotion online. We have demonstrated

that using Powell’s method, a modular robot can learn effi-

cient locomotion in a new, previously unknown configuration

which might be the result of a self-assembly or self-

reconfiguration procedure. Exploiting the same approach, we

have successfully tested adaptation to module failures.

As with any other optimization algorithm, there is a certain

risk to converge to a local optimum. This risk is higher for

Powell’s method than for stochastic optimization algorithms

(e.g. GAs) that explore large areas of the search space. In

practice we found that Powell’s method finds the same gait as

the GA in the majority of cases. It seems that efficient loco-

motion gaits correspond to strong attractors in the fitness land-

scape (figuratively speaking high mountains with a wide

base). We suspect that the noise in fitness estimation might

actually be beneficial to avoid small local optima because a

line minimization may step away from them due to estimation

error. A similar concept is used in simulated annealing to

avoid local optima [14] (the system can always jump to a

higher energy state, i.e. lower fitness).

Our next goals are: including sensory feedback in the non-

linear oscillators, evolving higher-level controllers for naviga-

tion and reproducing the experiments that we have conducted

in simulation with the YaMoR hardware.

ACKNOWLEDGMENTS

We would like to acknowledge support from a Swiss National Science Foun-

dation Young Professorship grant to Auke Ijspeert.

REFERENCES

[1] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, S.

Kokaji. Distributed Adaptive Locomotion by a Modular Robotic System,

M-TRAN II (From Local Adaptation to Global Coordinated Motion us-

ing CPG Controllers). Proc. of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS2004), 2004, pp. 2370-2377.

[2] M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, S. Homans,

Modular Reconfigurable Robots in Space Applications. Autonomous

Robots, vol. 14, issue 2-3, Mar 2003, pp.225 – 237.

[3] W. Shen, B. Salemi, P. Will. Hormone-inspired adaptive communication

and distributed control for CONRO self-reconfigurable robots. IEEE

Transactions on Robotics and Automation, 18(5):700-712, 2002.

[4] A. Ijspeert. Vertebrate locomotion. In M.A. Arbib, editor, The handbook

of brain theory and neural networks, pp.649-654. MIT Press, 2003.

[5] G. Taga, Y. Yamaguchi, H. Shimizu. Selforganized control of bipedal

locomotion by neural oscillators in unpredictable environment. Biologi-

cal Cybernetics, 65:147–159, 1991.

[6] Y. Fukuoka, H. Kimura, A. Cohen. Adaptive dynamic walking of a

quadruped robot on irregular terrain based on biological concepts. The

International Journal of Robotics Research, 3–4:187–202, 2003.

[7] A. Ijspeert, J. Hallam, D. Willshaw. Evolving swimming controllers for a

simulated lamprey with inspiration from neurobiology. Adaptive Be-

havior 7:2, pp 151-172, 1999.

[8] A. Ijspeert. A connectionist central pattern generator for the aquatic and

terrestrial gaits of a simulated salamander. Biological Cybernetics,

85(5):331–348, 2001.

[9] M. Yim, Locomotion with a Unit Modular Reconfigurable Robot, Stanford

University Mechanical Engineering Dept. thesis, 1994.

[10] K. Støy K, W.-M. Shen, P. Will. Implementing configuration dependent

gaits in a self-reconfigurable robot. Proc. of the IEEE International

conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003.

[11] Y. Zhang, M. Fromherz, L. Crawford, Y. Shang. A General Constraint-

Based Control Framework with Examples in Modular Self-

Reconfigurable Robots. IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems, Lausanne, Switzerland, Oct. 2002.

[12] A. Kamimura, H. Kurokawa, E. Toshida, K. Tomita, S. Murata, S. Ko-

kaji. Automatic locomotion pattern generation for modular robots. Proc.

of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2003.

[13] R. Brent. Algorithms for Minimization without Derivatives. Englewood

Cliffs, NJ: Prentice-Hall, 1973.

[14] W. Press, S. Teukolsky, W. Vetterling, B. Flannery. Numerical Recipies

in C: the art of scientific computing (2nd ed.), Cambridge University

Press, 1992. Online: http://www.library.cornell.edu/nr/bookcpdf.html

[15] A. Upegui, R. Moeckel, E. Dittrich, A. Ijspeert, E. Sanchez. An FPGA

Dynamically Reconfigurable Framework for Modular Robotics. in

U. Brinkschulte, editor, Workshop Proceedings of the 18th International

Conference on Architecture of Computing Systems 2005 (ARCS'05).

VDE Verlag, Berlin, 2005.

[16] Biologically Inspired Robotics Group (BIRG): http://birg.epfl.ch/

[17] Russell Smith. Open Dynamics Engine (ODE): http://q12.org/ode/

[18] D. Marbach, and A.J. Ijspeert. Co-evolution of Configuration and Con-

trol for Homogenous Modular Robots. In Proc. of the Eighth Conf. on

Intelligent Autonomous Systems (IAS8), F. Groen et al. (Eds.), IOS Press,

pp 712-719, 2004.

[19] D. Marbach. Evolution and Online Optimization of Central Pattern

Generators for Modular Robot Locomotion. Unpublished Master Thesis,

Swiss Federal Institute of Technology Lausanne, 2004.

http://birg.epfl.ch/page56514.html

[20] GNU Scientific Library (GSL): http://www.gnu.org/software/gsl

[21] Moeckel R., Jaquier C., Drapel K., Dittrich E., Upegui A., and Ijspeert

A.J. YaMoR and Bluemove – an autonomous modular robot with Blue-

tooth interface for exploring adaptive locomotion. In Proc. of the Eighth

Intl. Conf. on Climbing and Walking Robots (CLAWAR 2005), to appear.

253

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

