
bluemove
Using Bluetoothr to Control a YaMoR Modular Robot

Semester Project
Winter 2004-2005

Cyril Jaquier - Kévin Drapel

Supervisors: Professor Auke Ijspeert, Alessandro Crespi, Andres Upegui

February 11, 2005

Abstract

The Biologically Inspired Robotics Group (BIRG) of the Swiss Federal Institute of Technology
in Lausanne (EPFL) is working on modular robotics. Computer simulations are mainly used
but prototypes also exist. Most of them are controlled by a wired connection. This document
explains how the wires can be replaced by a Bluetooth connection on the YaMoR robot units.
Wireless communication allows better freedom of movements and ease of use. Although complete
autonomous unit is the final aim, a centralised Java application is used to control every module.
The problems and solutions met during the development of this software are discussed in the
following pages.

Using Bluetoothr to Control a YaMoR Modular Robot

Contents

1 Project description 6
1.1 Introduction . 6

2 A literature and projects review 7
2.1 Bluetooth . 7
2.2 Java . 8
2.3 Bluetoothr in robotics . 8
2.4 Dengoro . 8
2.5 Aibo ERS-31xb series . 8
2.6 Autonomous Systems Lab flying robots (EPFL) 9

2.6.1 Blimp . 9
2.6.2 Indoor plane - F2 . 9

2.7 µFR-II . 9
2.8 Monsieur II-P . 10
2.9 Morph (Atom Project) . 10
2.10 Remarks . 10

3 An overview of the Bluetoothr protocol 11
3.1 Introduction . 11
3.2 Piconets and scatternets . 11
3.3 Bluetooth protocol layers and the Bluetooth stack 12
3.4 The Bluetooth packets scheme . 13
3.5 The Bluetooth implementation in the YaMoR modules 13

4 Modules 14
4.1 Summary . 14
4.2 Power board . 14

4.2.1 Description . 14
4.2.2 What went right . 15
4.2.3 What went wrong . 15

4.3 FPGA . 15
4.3.1 Description . 15
4.3.2 What went right . 16
4.3.3 What went wrong . 16

4.4 Bluetooth . 16
4.4.1 Description . 16
4.4.2 Control via an USB dongle . 16
4.4.3 Connection . 17
4.4.4 What went right . 18
4.4.5 What went wrong . 18

C. Jaquier - K. Drapel 1 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

5 Bluemove 19
5.1 Summary . 19
5.2 Java 1.5 . 19

5.2.1 Why Java and not another language ? . 19
5.2.2 The Bluetooth stack . 19
5.2.3 Transmission between Bluemove and the module 20
5.2.4 What went right . 20
5.2.5 What went wrong . 21

5.3 Interface . 22
5.3.1 Description . 22
5.3.2 The different tabs . 23
5.3.3 What went right . 25
5.3.4 What went wrong . 25

5.4 The inners of Bluemove . 26
5.4.1 An overview of Bluemove architecture . 26
5.4.2 Linear and spline interpolation . 26
5.4.3 Persistence . 29

6 Experiments 30
6.1 Two working modules and an inactive skeleton . 30

6.1.1 2-standup . 30
6.1.2 3-stickworm . 30
6.1.3 More examples . 30

7 Further developments 32
7.1 Hardware . 32

7.1.1 Mechanic . 32
7.1.2 Electronic boards . 33

7.2 Software . 33

8 Conclusion 36

A Bluemove short manual 37
A.1 Installation . 37

A.1.1 J2SE 5.0 . 37
A.1.2 Java Bluetooth stack . 37
A.1.3 Bluemove . 38
A.1.4 Launching the application . 38

A.2 User interface . 38
A.2.1 The menu . 38
A.2.2 The tool bar . 38
A.2.3 Timelines tab . 39
A.2.4 Modules Manager tab . 39
A.2.5 Console tab . 39
A.2.6 The status bar . 40

A.3 Tutorial: a small example . 40
A.3.1 Step one: add a module . 40
A.3.2 Step two: edit a module . 40
A.3.3 Step three: add an actuator . 41
A.3.4 Step four: add another module . 41
A.3.5 Step five: draw a module trajectory (spline) 41
A.3.6 Step six: draw a module trajectory (linear) 41
A.3.7 Step seven: save the project . 42
A.3.8 Step eight: play . 42

C. Jaquier - K. Drapel 2 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

A.3.9 Conclusion . 42

C. Jaquier - K. Drapel 3 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

List of Figures

1.1 A complete module . 6

2.1 ”Bluetooth: Connect without Cables” . 7
2.2 ”Bluetooth for Java” - APress . 8
2.3 ”Dengoro” controlled by a Toshiba phone . 8
2.4 ”Dengoro” . 8
2.5 The Sony AIBO ERS-31x family . 9
2.6 The ”Blimp” airship . 9
2.7 The ”F2” plane . 9
2.8 The Seiko Epson micro-flying helicopter . 9
2.9 The ”Monsieur-II” robot . 10
2.10 Morph 3 . 10
2.11 The ”Nuvo” robot . 10

3.1 A piconet . 12
3.2 A scatternet . 12
3.3 Bluetooth protocol - Main layers . 13
3.4 A Bluetooth frame composed of a 5-slots packet and 1-slot packet 13
3.5 A Bluetooth packet . 13

4.1 YaMoR exploded view . 14
4.2 Power board . 14
4.3 Electronic bug tracking . 15
4.4 Power board schematic . 15
4.5 MAX1774 internals and the shortcut . 15
4.6 FPGA board . 16
4.7 The Bluetooth board . 16
4.8 the MSI 6967 Bluetooth dongle . 17
4.9 Communication flow . 17

5.1 From Java application to the Bluetooth device . 20
5.2 JBuilder designer . 22
5.3 Demopaja by Moppi Productions . 23
5.4 Adobe After Effects . 23
5.5 Modules Manager . 24
5.6 Console . 25
5.7 .NET properties . 26
5.8 A schematic view of Bluemove architecture . 26
5.9 An example of an Hermite spline . 28
5.10 The Hermite basis . 28

6.1 A 2 modules example . 30
6.2 A 3 modules example . 30

C. Jaquier - K. Drapel 4 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

7.1 Weak point of the servo . 32
7.2 Milled side panel . 32
7.3 Male and female Velcro-like tape . 33
7.4 Distance measuring sensor . 33
7.5 Real-time control . 34
7.6 Blocks . 35

A.1 Menu . 39
A.2 Tool bar . 39
A.3 Timelines . 39
A.4 Modules Manager . 39
A.5 Console . 40
A.6 Status bar . 40
A.7 Main screen . 40
A.8 Modules manager . 40
A.9 Module edition . 40
A.10 Actuator edition . 41
A.11 Second module . 41
A.12 Timelines tab . 41
A.13 The first curve with spline keys . 41
A.14 The second curve with linear keys . 42
A.15 Saving a project . 42

C. Jaquier - K. Drapel 5 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 1

Project description

1.1 Introduction

The aim of the YaMoR (Yet another Modular
Robot) project at BIRG is to construct a wire-
less autonomous modular robot made of several
units. These units were designed by Elmar Dit-
trich who was in charge of the mechanical as-
pects (motor, case, materials). Rico Moeckel
then worked on the electronics (power supply,
Xilinx FPGA and Bluetooth boards), the con-
trol software in VHDL for pulse width modu-
lation and the Bluetooth protocol. Despite the
fact that a Bluetooth support was available on
each module, a real interface between a com-
puter and the modules was still missing. The
videos produced by Elmar show several modules
without electronics and connected with wires to
an intermediate device. This device was acting
like a multiplexing bridge between the computer
and the modules. Positions were generated by
the PC and sent via the serial interface (RS232)
to the Bluetooth device on the computer. The
Bluetooth signal was then received by the in-
termediate device which would in turn generate
the PWM commands for the servos.

With the new wireless features added by Rico
Moeckel, it was obviously necessary to get rid
of this middle component and provide a direct
wireless communication between the PC and the
robot. With a low budget in mind, the solution
based on Bluetooth had to be simple and easy
to install. This solution is described in Chap-
ter 4. Another point which had to be reevalu-
ated was the software used to communicate with
the modules. Jean-Philippe Egger had writ-
ten a Java application called ”Java-Motion” [15]
where the user could draw trajectories. Elmar
Dittrich slighty modified this application to fit
with the modules. We wrote a new application
from scratch which is called Bluemove. We used

Figure 1.1: A complete module

some concepts already present in Java-Motion.
We added new features such as a project man-
ager or smooth interpolation. Bluemove will be
explained in Chapter 5.

As Rico left the BIRG after only six months,
he did not have time to assemble enough mod-
ules. We were in charge of ordering and assem-
bling the rest of the modules. The goal was to
mount seven modules to form a robot in a pi-
conet network before the end of the semester.
We directly ordered additional components to
reach a total of 17 units (plus some ”rescue”
components from the 18th unit). The delays be-
tween ordering and shipping are quite long and
at the time of writing, we can not construct new
modules. In Chapter 7, we will discuss the prob-
lems and solutions related to hardware. We also
had to experiment and take videos of the wire-
less YaMoR with different configurations.

C. Jaquier - K. Drapel 6 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 2

A literature and projects review

2.1 Bluetooth

As Bluetooth is a complex protocol, we first had
to read some documentation. This helped to
have a better idea of the advantages and lim-
itations of wireless communications based on
this protocol. Knowing the Bluetooth termi-
nology was useful to find the necessary soft-
ware components and understand the steps that
Rico Moeckel went through when he designed
the electronics of the modules.

The Chapter 3 is a reminder of the Bluetooth
protocol and addresses its issues. We also ex-
plain how the specifications relate to the YaMoR
module.

There are more than a dozen books about
Bluetooth. Most of them share chapters about
the protocol. Some books favour low-level and
electronic/physical concepts while others are
meant to be read by people interested in the
communication itself.

We first read some chapters of an in-depth
guide to the version 1.1 of Bluetooth protocol
without many links to a programming language
nor electronics.

The book ”Bluetooth: Connect without Ca-
bles” [10] covers the whole v1.1 specification and
is hence quite complicated. Nonetheless, it is an
excellent source for people who are making their
way through the Bluetooth protocol.

We skipped some chapters about the ra-
dio, power consumption and the low-level as-
pects which were rather part of Rico Moeckel
project and focused on the higher levels of Blue-
tooth protocol (serial communication, devices
discovery, master/slave configuration). ”Blue-
tooth: Connect Without Cables” also features
advanced topics like encryption and security
which our project was not concerned with.

This book as well as the official specifications

Figure 2.1: ”Bluetooth: Connect without Ca-
bles”

of the Bluetooth protocol furnished a clarifica-
tion for the following points:

• rate of Bluetooth communications

• delays related to communication slots and
frequency hopping

• limitations in the slave/master architecture

• amount of devices that could be controlled

• range and maximum distance between de-
vices

• the Bluetooth services useful for the mod-
ular robot

Some of these points are restricted by the soft-
ware and the type of hardware which are used
(the communication range and the maximum
amount of devices in a network may vary).

C. Jaquier - K. Drapel 7 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

2.2 Java

After we decided to use Java as the main pro-
gramming language for the project, we read a
book called ”Bluetooth for Java” [18]. This
document explains the JSR-82 norm, namely
the javax.bluetooth namespace which provides
a standardized interface to communicate with
Bluetooth devices from Java. In Section 5.2.1,
we will discuss the different languages and solu-
tions we examined and why we chose Java.

Figure 2.2: ”Bluetooth for Java” - APress

2.3 Bluetoothr in robotics

We also looked if other research groups had been
working on Bluetooth based robots. Some in-
teresting projects have been developed, mainly
in Japan but also here at EPFL. Most of them
are humanoid robots. We did not find another
project combining modular robotics and Blue-
tooth. The modular robots either work with
wires or radio/IR interfaces. Nonetheless, the
few robots below show that Bluetooth is a good
protocol for short range communication. It also
ensures a compatibility with cellphones.

2.4 Dengoro

This humanoid robot can be controlled using
a Bluetooth cellphone. Toshiba, KDDI and I
Bee worked on the Dengoro (namecoded ”Pirkus
R.Type 01”) which is made of aluminium and
will be sold as a self-assembly-kit for about
$1800 (February/March 2005) [12]. Toshiba was
in charge of the cellphone part and the operat-
ing system, KDDI together with I Bee designed

the mechanical and electronic parts of the robot.
The robot can walk, jump and wave his hands.

Figure 2.3: ”Dengoro” controlled by a Toshiba
phone

Figure 2.4: ”Dengoro”

2.5 Aibo ERS-31xb series

A variant of the famous dog-like robot by Sony
supports Bluetooth communication via a remote
control shipped by Sony. The other Aibo ver-
sions work with IEEE802.11b. The product of
the ERS-311b (white dog on Figure 2.5) has
been discontinued and replaced by a similar
model, ERS-312b (black model on Figure 2.5)
[4]. It also uses Bluetooth. As far as we know,
these Aibos are only available in Japan and not
sold in Europe or the USA.

C. Jaquier - K. Drapel 8 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure 2.5: The Sony AIBO ERS-31x family

2.6 Autonomous Systems
Lab flying robots
(EPFL)

The Autonomous Systems Lab at EPFL works
on flying robots. Obviously, wires between the
robot and a computer or other devices are not
convenient and must be replaced by a wireless
solution. They chose to use a serial communi-
cation based on Bluetooth.

2.6.1 Blimp

The lightweight flying robot developed at ASL
communicates in a wireless manner with a PC
[39]. The channel is bidirectional and ensures
a short-range link between the microcontroller
and the PC. Weight is the main concern and
special care was taken to decrease the size and
the mass of the components. The robot cease-
lessly evolves in a room with black and white
stripes on the wall.

Figure 2.6: The ”Blimp” airship

2.6.2 Indoor plane - F2

This Bluetooth plane is extremely lightweight
with only 30g. With its autonomy of about 20
minutes, F2 can fly using 2 or 3 linear cameras
and additional sensors (gyroscope, accelerome-
ters) [6]. Compared to the Blimp, the plane has
more degrees of freedom but can not be evolved
in a room. A simulator has been specially de-
veloped for this purpose. The communication
is similar to the one in the Blimp with a bidi-
rectional channel between the robot and a PC
[29].

Figure 2.7: The ”F2” plane

2.7 µFR-II

A similar project, µFR-II, concerning a micro-
flying helicopter (8.6 grammes) with Bluetooth
transmission of data (camera snapshots) and
commands has been presented by Seiko Epson
Corporation [32]. An interesting fact about this
robot is that the flight instructions are precalcu-
lated and sent via the Bluetooth channel. More-
over realtime control is supported and signals
can also be transmitted using two LEDs. Power
consumption is, therefore, lowered if only basic
signals must be sent at a short range via LEDs.
The Bluetooth chip can be switched off after
having received the trajectories.

Figure 2.8: The Seiko Epson micro-flying heli-
copter

C. Jaquier - K. Drapel 9 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

2.8 Monsieur II-P

A very small robot with a volume of only 7.8 cm3

and a weight of 12.5g developed by Seiko Epson
Corporation and presented in 2002 [24]. It is
the successor of the ”Monsieur” robot launched
in 1993. Moving at about 7 cm per second
when Bluetooth is activated (15 cm per second
without wireless), it features a promising ultra-
sonic motor designed for tiny devices. With
their built-in Bluetooth support, these robots
can be used simultaneously to create swarms.
The Bluetooth and CPU are powered at 2V and
the running time is approximately 5 hours.

Figure 2.9: The ”Monsieur-II” robot

2.9 Morph (Atom Project)

Another humanoid robot is part of an ambitious
project supported by the Japanese government
at the rate of 50 billion Yen per year over three
decades [25]. However, according to some arti-
cles and the economical situation, this will be
difficult to sustain and the development of the
robot could be delayed.

Figure 2.10: Morph 3

The goal of the Atom Project maintained
by the ERATO (Exploratory Research for Ad-
vanced Technology) is to create an humanoid

with the neural and physical capacity of a 5-
year-old child [26]. Morph would be used to
rescue people in natural disasters. It could also
be sent in dangerous or contaminated environ-
ments.

2.10 Remarks

There are many other humanoid Bluetooth
robots like ”Nuvo”. Unfortunately, they are ei-
ther undocumented or the research pages are in
Japanese. Moreover, companies are competing
each other on the toy market and do not give
much relevant information about the technical
details implemented in their robots.

Figure 2.11: The ”Nuvo” robot

What we can notice is that all these robots
except the ”Monsieur II-P” are supposed to be
used as independent devices. There are no inter-
actions between units to create new behaviours
as in the modular robotics paradigm. The Seiko
Epson Corporation has demonstrated that it
was possible to create Bluetooth robots whose
size does not exceed a few centimetres. The
”Dengoro” robot is a good example of a robot
controlled by a small remote device. Clearly, a
modular robot could receive its commands from
a cellphone or a PDA instead of a desktop com-
puter.

C. Jaquier - K. Drapel 10 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 3

An overview of the Bluetoothr

protocol

3.1 Introduction

Bluetooth was first developed by Ericsson and
then Sony, IBM, Intel, Toshiba and Nokia
joined the project. It was intended to provide
a cheap wireless support for mobile devices
communicating at close range. Bluetooth is
said to be a cable replacement for personal area
network while 802.11x is used for local area
network. Hence, Bluetooth is the best solution
when distances between mobile devices are
relatively short, high transmission rates are not
needed, and power consumption has to be low.
With their 1 mW transmission power, most
Bluetooth devices operate in a range of a few
meters (class 3). There are two other power
classes: 100 mW (class 1) and 2.5 mW (class
2). They obviously allow wider coverage, up to
100 meters with class 1.

The first specification was released in 1999
but it suffered from many issues related to inter-
operability. This was fixed in version 1.1. Sup-
port for non-encrypted channels was also part
of this update. Bluetooth 1.2 is the version cur-
rently used by most devices available, though
chips based on version 2.0 are available since
October 2004. Bluetooth 1.2 contains major
improvements like adaptive frequency hopping,
synchronous connections and information about
the signal strength and timing. The transmis-
sion speed in versions 1.x was set at 723 Kbit/s
but in practise, this rate was only achieved with
version 1.2. Frequency hopping is probably the
most important feature in this revision as it
improves resistance to interferences. Actually,
the license-free 2.4 GHz frequency band used by
Bluetooth is quite crowded. Popular wireless de-

vices and systems (cordless phones, door open-
ers, 802.11 networks) also work in this band and
frequency hopping together with a low power
signal was a solution to avoid collisions between
packets.

Bluetooth devices pseudo randomly switch
between 79 channels available in the 2.4 GHz to
2.4835 GHz range. Although in some countries
like Japan, the bandwidth is more limited
and only 23 channels are available. Hopping
is performed every 625 microseconds (1600
switches per second) and is also supposed
to improve security. This kind of protection
scheme is quite insecure nowadays and has been
replaced by robust cryptographic primitives in
Bluetooth 2.0.

The second generation of Bluetooth is com-
patible with previous versions. Among the new
features in Bluetooth 2.0 are support for broad-
cast/multicast, a faster mode which replaces the
frequency hopping, data rate of 2.1 Mbit/s and
improved response times with less handshak-
ing. Another interesting feature for mobile de-
vices is the power consumption which has been
halved in Bluetooth 2.0, the chip itself needs
more power than an equivalent Bluetooth 1.2
chip but as transmissions are three times faster
with less exchanges, this results in a diminished
consumption.

3.2 Piconets and scatternets

As Bluetooth is intended to connect many de-
vices to create small networks, the protocol
was designed with a master-slave architecture in
mind. Each Bluetooth device can handle up to 7

C. Jaquier - K. Drapel 11 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

connections, one per slave device. Only one con-
nection is fully active (transmission), the others
are in a special semi-active state. In short, they
have an active-member address but are simply
waiting their turn. The frequency hopping de-
fines slots of 625 microseconds, the master trans-
mits its packets in even time slots while slaves
use odd time slots.

Figure 3.1: A piconet

The master can finally handle 255 standby
(parked) slaves. These slaves are synchronised
with the master but do not have a specific ad-
dress. If the master wants to send data to one of
these standby devices, he must first discard one
of the active slaves and send a notification to
the parked slave. It may take some time before
the freshly woken up device gets his address and
becomes active.

A device can either be a slave or a master and
change its state when needed. A master with 7
slaves is called a piconet in the Bluetooth termi-
nology. The master initiates the communication
and defines a hopping sequence. It also main-
tains a clock used for synchronisation between
devices. A device can be part of more than one
piconet. This allows more complex networks
called scatternets. A scatternet is basically a
group of piconets. As some devices belong to
several piconets, they act like bridges and help
to increase the coverage of the network. A de-
vice can be the master of its piconet and on the
other side, it can be a slave in another piconet.
For example, a slave device can send a packet to
its master, the host will then forward the packet
to the master of an adjacent piconet.

Figure 3.2: A scatternet

3.3 Bluetooth protocol lay-
ers and the Bluetooth
stack

Bluetooth protocol is complex and for the mod-
ular robot project only a small subset of the
protocol features is useful. Bluetooth is divided
in many layers starting from the hardware/radio
layer up to the top layer represented by the ap-
plication.

There are mainly two types of data transfer
available between devices. The first one called
SCO (synchronous connection oriented) could
be compared to TCP/IP (a connection is main-
tained between the devices) but is unreliable, it
tries to maintain a constant bandwidth. The
second is the ACL (asynchronous connection-
less) . The ACL transmission rate is higher than
SCO rate. The ACL is a reliable communica-
tion. Bluetooth also supports a third type of
transfer with voice channels for phones.

The host controller interface is mainly re-
lated to hardware and responsible for radio,
frequency hopping and other low level aspects.
The L2CAP layer provides services for connec-
tionless data transfer. Using the SDP (ser-
vice discovery protocol), one can get informa-
tion about a device and what kind of services
are available on this device (file transfer, voice
channels support, modem,...). When one works
with a known kind of device, the service discov-
ery, which is quite long, is not necessary. The
RFCOMM layer is a serial port emulation. It
provides a RS-232 protocol useful for upper level
services like OBEX which is a session protocol
for exchanging objects. The Bluetooth stack
also contains modules for TCP/UDP and can
be used as a bridge between Internet and the

C. Jaquier - K. Drapel 12 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

vCard / vCal

OBEX

WAE

WAP

UDP TCP

IP

PPP

RFCOMM

L2CAP

SDP

LMP

BASEBAND

BLUETOOTH RADIO

Host controller interface

Figure 3.3: Bluetooth protocol - Main layers

Bluetooth device (a phone cell used as a modem
for WAP browsing).

3.4 The Bluetooth packets
scheme

Each packet can be composed of multiple slots
(one slot has a length of 625 microseconds).
Thus, a Bluetooth packet extends itself over 1,3
or 5 slots. A Bluetooth frame consists of a mas-
ter packet (transmit packet) followed by a slave
packet (receive packet). The advantage of multi-
slots packets is that they allow higher data rates,
the packet header overhead is lower compared to
a single-slot communication. With a single-slot
communication, the maximum data rate is set
to 172 Kbps. With 5 slots for the master and 1
slot packets for the slave, Bluetooth can achieve
respectively 721 Kbps and 57.6 Kbps.

The packets have an internal format whic
is fixed and consists of three parts. The first
header called ”access code” has a size of 72 bits.
It contains the master identity which is unique
as long as communication occurs on the same
channel. The access code also contains the mas-
ter clock. A 54-bits header follows the access
code, it features error corrections (for the data
and the header), controls and retransmission in-
formation. The last part is the payload contain-
ing data between 0 and 2745 bits. Depending
on the number of bits, the packet will be spread
on 1, 3 or 5 slots.

Figure 3.4: A Bluetooth frame composed of a
5-slots packet and 1-slot packet

Figure 3.5: A Bluetooth packet

3.5 The Bluetooth im-
plementation in the
YaMoR modules

Some of the features of Bluetooth are not neces-
sary for YaMoR. The service discovery is useless,
the modules are all the same and their char-
acteristics are known in advance. Encryption
and security are aspects which have been left
aside for the YaMoR project since they would
only add superfluous complexity and decrease
the transmission speed.

As the modules work with absolute positions
and not relative parameters (deltas), some loss
of information from time to time will not have
much impact. The ACL communication is reli-
able but discards packets after a given timeout.
If the robot can not be found (out of range),
some positions will be flushed out. As soon as
it gets closer to the transmitter, it will receive
new positions and will synchronize with a cor-
rect motion. If the robot is close but a packet
has not be received for any reason, the trans-
mitter will resend the packet to the module.

The firmware mounted in the Bluetooth chip
was designed by Zeevo and works with a piconet.
It does not support scatternet yet, but Rico
Moeckel is working on this feature and a cus-
tom protocol especially designed for the modu-
lar robot.

C. Jaquier - K. Drapel 13 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 4

Modules

This chapter describes the YaMoR unit. Af-
ter a short summary of the previous work, we
will see the module in more details. This chap-
ter does not present the mechanical pieces of
YaMoR but focuses on the electronic part.

4.1 Summary

The YaMoR unit was designed by Elmar Dit-
trich. One of the main goals was to develop
the cheapest module unit possible. An exploded
view is shown on Figure 4.1. We will not dis-
cuss the mechanical characteristics more in this
chapter except on Section 7.1.1. However, we
recommend the reading of Elmar’s work which
is available at [13] for further information.

Figure 4.1: YaMoR exploded view

During his summer internship [27], Rico
Moeckel developed all electronic boards needed
to make YaMoR units autonomous. The mod-
ules are controlled using a wireless Bluetooth
connection. As explained earlier in Section 2.3
on page 8, Bluetooth does not seem to be widely
used in modular robotic. However, this type
of communication is a good choice in terms of
power consumption and costs which are often

decisive in modular robotics. One of our project
goals was to build more modules and find an
easy way to control them. It allows the user to
focus on the development of new kinds of move-
ment rather than dealing with technical issues
and an unfriendly user interface. We will now
examine in more details each electronic board
embedded in a YaMoR unit.

4.2 Power board

4.2.1 Description

The power board supplies the different voltages
needed by the FPGA board (+3.3V, +1.2V),
the Bluetooth board (+3.3V) and the servo
(+6V). A battery taken from the Amphibot I [8]
provides the energy to this board. An embed-
ded charger is integrated. It can also be pow-
ered with an external power supply. A complete
power board is shown on Figure 4.2.

Figure 4.2: Power board

This board takes place at the top of the mod-
ule. The dimension is 4cm x 3.2cm.

C. Jaquier - K. Drapel 14 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

4.2.2 What went right

Once all the problems listed in Section 4.2.3
were resolved, the power board was really easy
to use. The dip switch allows the user to ef-
fectively control the various functions. The
output voltage stability is good thanks to the
MAX1774. Once the device was running, we
did not encounter further problems because of
this board.

4.2.3 What went wrong

MAX1774 problem

When Rico left the BIRG, he had only one
power board working. The two others did not
work and had the same problem: after connect-
ing the battery, some components’ temperature
highly increased. Therefore, we started compar-
ing the working board with the two others. Af-
ter hours of binocular search, we were not able
to find any differences. André Badertscher and
Fabien Vannel helped us tracking this hardware
bug. We exchanged some components, checked
all the voltages and currents (see Figure 4.3).
Finally, Fabien discovered the source of these
problems: the BIN pin was connected to the
ground as shown on Figure 4.4. Current flowed
across a PMOS transistor inside the MAX1774
because CS- was connected to +3.3V and BIN
to the ground. The problem was that the tran-
sistor was not designed to work in this direction
(see Figure 4.5). The problem was solved by
disconnecting the BIN pin.

Figure 4.3: Electronic bug tracking

Charger problem

The power board has an embedded charger. It
allows to charge the battery without having to

dismount the module. The datasheet and Rico’s
schematic recommend an input voltage of +10V.
We applied this voltage of +10V precisely mea-
sured with a calibrated multimeter. After a few
minutes, the red led started to blink, indicat-
ing a charging error. After some investigation,
we found out that applying a voltage just be-
low +10V allowed the charger to work correctly.
The voltage must be decreased to about +9.5V.

Polarity inversion

The board does not support polarity inversion.
If the battery is connected the wrong way, it
can result in destroyed components. In order
to minimize the risks, André Badertscher sol-
dered a diode between VBAT and GND on a
few boards. This protection should be put on
all power boards in order to enhance the relia-
bility of the circuit.

Figure 4.4: Power board schematic

Figure 4.5: MAX1774 internals and the shortcut

4.3 FPGA

4.3.1 Description

The FPGA board contains a Xilinx Spartan
3 with 400’000 gates and 4 Mbit of high
speed SRAM. FPGA programming is done us-
ing JTAG or slave serial. We currently use the
FPGA as a PWM generator which drives the
servo. The PWM duty is sent by the Bluetooth

C. Jaquier - K. Drapel 15 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

board using a serial line. These duties or posi-
tions are sent to the Bluetooth board (see Sec-
tion 4.4) by an external computer. The ulti-
mate step would be that the FPGA calculates
its servo position and transmits it to the oth-
ers modules. This could be achieved with the
implementation of one or more MicroBlaze into
the FPGA. An external +2.5V reference voltage
is needed in order to program the Spartan.

Figure 4.6: FPGA board

The board dimensions are 7.5cm x 4cm. It
takes place vertically along the servo. There is
a square hole of 2.4cm which allows the battery
to be placed horizontally at the bottom of the
module.

4.3.2 What went right

We never had problems with this card. The
FPGA programming is easily completed with
the Xilinx tools and the JTAG connector. One
must not forget to connect the +2.5V voltage
reference. The PWM design written in VHDL
by Rico Moeckel is used without any modifica-
tion.

4.3.3 What went wrong

During our tests a module sometimes stopped
moving without any apparent reason. The Blue-
tooth connection was established but the servo
did not move anymore. After a reset of the
module and FPGA reprogrammation, the mod-
ule started to work as expected. We were not
able to track this problem down as it only occurs
rarely and randomly.

4.4 Bluetooth

4.4.1 Description

The Bluetooth board on Figure 4.7 is equipped
with a System on Chip from Zeevo [38]. This

chip (ZV4002) is a combination of a Bluetooth
radio frequency system and an ARM core [5].
The board contains 8 Mbit of SRAM and up to
32 Mbit of flash memory. The ARM program-
ming is done by JTAG or via RS232. With its
development kit, Zeevo provides a basic oper-
ating system called BlueOS with a basic multi-
tasking. The communication between processes
are done using messages1. Zeevo also provides a
test application called ”Zerial” which is based
on their BlueOS operating system. It allows
the replacement of serial cable with a Bluetooth
connection.

Figure 4.7: The Bluetooth board

4.4.2 Control via an USB dongle

At its early stage, the modular robot was con-
trolled via a serial interface (RS232) with sig-
nals generated by the desktop computer and for-
warded to its Bluetooth device. The Bluetooth
signal was then received by an intermediate de-
vice connected to the modules with wires. This
middle device generated the appropriate PWM
commands for the servos.

We had to remove this intermediate device
and provide a simple solution to directly com-
municate with the modular robot from the com-
puter. A few solutions appeared:

• A Bluetooth stick connected to the USB
port of the PC

• Many Bluetooth devices connected to a
FPGA which routes data coming from a se-
rial port

1also called ”signals” in BlueOS terminology.

C. Jaquier - K. Drapel 16 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

• A PC with many serial ports, each serial
port is connected to a Bluetooth transmit-
ter

We quickly decided to use Bluetooth sticks.
It was the cheapest way to get a handy Blue-
tooth solution. The USB sticks are available in
all computer shops for a low price. One must
verify that they are compatible with Linux. We
bought two different models (class I with 100m
range) that perfectly work in a Linux envi-
ronnement: MSI (MS-6967 on Figure 4.8) and
ACER (AG.BTCSR.UD3).

Figure 4.8: the MSI 6967 Bluetooth dongle

A custom Bluetooth device would have been
expensive to build and difficult to transport or
deploy. It did not provide any significant ad-
vantages compared to the Bluetooth stick. The
Bluetooth sticks are versatile devices that sup-
port all features needed for the modular robot.
They are particularly useful for laptops as they
are lightweight and small. Compared to the cus-
tom device which would have been a big black
box with maybe an external power supply, they
are the best solution for a seamless integration
into a personal computer.

4.4.3 Connection

The connection establishment between two ”Ze-
rial” interfaces is achieved using special AT com-
mands. Here is an example:

AT+ZV Discovery

This command launches a discovery scan and
returns all the available Bluetooth devices found
in the area. Another example.

AT+ZV SPPCONNECT 00043e000000

This one connects the current ”Zerial” in-
terface to another one whose address is
”00043e000000”. After the connection setup,
the interface switches to ”bridge” mode and just
forwards the received data.

This firmware is distributed in source code
and binary file. This serial line replacement can
be used to communicate with the YaMoR units.
As we do not want a ”Zerial” interface on the
computer side, we tried to find a more flexible
solution. We discovered that it was possible to
make a direct serial connection between a ”Ze-
rial” interface and a standard Bluetooth dongle.
This is the adopted solution in regard to its flex-
ibility and low cost. We will discuss this in more
details in Section 5.2.3. The data flow is repre-
sented on Figure 4.9.

Computer

Serial data PWMBluetooth

Servo

Bluetooth
board

FPGA
board

Figure 4.9: Communication flow

The data are transmitted from the computer
to the Bluetooth board using the Bluetooth pro-
tocol. The packets are then forwarded to the
FPGA board which expresses them into PWM
values. These pulses finally arrive at the servo
which converts them into a mechanical position.

Each Bluetooth device needs to have an
unique address in order to be identified without
any confusion. The address of the ZV4002 can
be statically set with the firmware loader appli-
cation. It is a one time operation. However it is
possible to program the address dynamically af-
terwards. A Bluetooth address is a 48 bits value.
We decided to use the following convention for
YaMoR units.

• The address begins with 42495247.

• The four last positions are the module num-
ber.

• 0000 is reserved and must not be used.

For example, module 1 has the Bluetooth ad-
dress 424952470001. This is not a random num-
ber but the hexadecimal ASCII representation
of ”BIRG” (42 stands for A, ...). These addresses
are statically stored in the ZV4002.

The dimension of this board is 7.5cm x 4cm
like the FPGA board. It takes place vertically

C. Jaquier - K. Drapel 17 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

along the servo on the opposite side. There is
a square hole of 2.4cm which allows the battery
to be placed horizontally at the bottom of the
module.

4.4.4 What went right

The ZV4002 programming is done using JTAG
and the Zeevo flash tool. This operation is easy
to accomplish and needs to be done only once.
Afterwards it is only required to turn the power
on in order to have an operational board.

A green led shows the Bluetooth connection
state. It flashes when no connection is estab-
lished and remains on when connected to our
master Bluetooth device. This was really help-
ful for debugging.

4.4.5 What went wrong

CRC errors

We quickly got three built modules. One was al-
ready flashed by Rico with the ”Zerial” firmware
for his project presentation. The second unit
was flashed by us without any troubles. But
the third one always reported CRC errors when
launching the flash tool. We exchanged the
ZV4002 and the flash memory. Unfortunately,
the CRC failure still occurred. At this time,
we have not yet discovered the reasons of these
errors but we highly suspect the flash memory
component to be faulty. We have not yet re-
ceived these memories, further investigations are
therefore impossible at the moment.

C. Jaquier - K. Drapel 18 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 5

Bluemove

This chapter focuses on the software applica-
tion developed during this project. After a short
summary, we will see in more details the differ-
ent parts of Bluemove, the technologies we used
and the mathematical routines implemented in
this application.

5.1 Summary

When we started this project, the YaMoR units
were quite functional. But it lacked a good soft-
ware. We thus wrote a Java application that
allowed the user to control a robot without hav-
ing to learn a programming or script language.

Even an unskilled person had to be able to
create and play with YaMoR modules. We also
wanted to make an application generic enough
to be reused in other projects with minimal
changes. We will show how we accomplished
these aims.

5.2 Java 1.5

5.2.1 Why Java and not another
language ?

While we were looking for a software solution,
we quickly noticed that Java was the language
that provided the most convenient interface.
Despite its standard status, Bluetooth has
been efficiently implemented only in a small
set of languages including Java, C/C++ and
C#. C# suffers of portability problems as it is
closely related to the Win32 API. We checked if
the open source .NET implementations (Mono,
DotGNU) could provide the needed services.
Their network code being at an alpha stage1,

1about 13 classes are missing in DotGNU, Mono
seems to be a little more advanced

Mono or DotGNU are still missing vital features.

A solution based on C or C++ was not good
either for the portability. We did not find a li-
brary that could transparently work on Linux
or Windows. The remaining language that we
considered was Java 1.5 (J2SE 5.0). It quickly
turned out to be the best candidate for the Blue-
move project. It is indeed exceptionally well-
suited for applications that must be deployed
on several operating systems. Moreover, Java
is the only language with a standard and con-
sistent interface for Bluetooth (JSR-82). Java
via Swing gives a powerful access to graphical
functions which were necessary to design the in-
terface. Thanks to the J2ME (Micro Edition of
the Java 2 Platform) and its wireless toolkit, it
would be possible to create Bluetooth applica-
tions for the modular robot on mobile phones,
PDA or other small systems that support Java
and Bluetooth.

5.2.2 The Bluetooth stack

The Java API for Bluetooth (JSR-82) standard-
izes an interface for the following protocols:

• RFCOMM

• OBEX

• Service Discovery

An expert group composed of engineers
of big companies (IBM, Ericsson, Nokia and
Motorola) has leaded the JSR-82 to a robust
and consistent specification (released in March
2002). Additional protocols could be added in
future versions. However for our project, the
RFCOMM (serial ports emulation) protocol is
enough.

C. Jaquier - K. Drapel 19 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

JSR-82 only defines a set of functions but
does not provide any implementation. The
latest which is called ”Bluetooth stack” is
left to the chips manufacturers and other
commercial third-parties. Some open source
projects have started but their stacks are rather
limited, they do not work with the Bluetooth
stick connected to the USB port of a PC.
Many companies sell more advanced stacks
for both Windows and Linux. One of them,
Rococo offers a special academic edition of
its Bluetooth stack. Moreover, it is free for
universities and works under Linux. Their
development kit called ”Impronto” just needs
a text file license which is stored in the same
directory as the application.

The specifications and the good documenta-
tion ensured that it was the perfect stack to
start our project. If another stack is released
by another company or targeting another
operating system, we could easily replace the
Rococo stack. It basically behaves like a plugin.
The Rococo stack contains some helpers for
advanced Bluetooth functions but we did not
use them because they would break the JSR-82
compatibility. Some of these extra functions
furthermore adds a layer of complexity. They
are unnecessary for a serial communication
to devices whose specifications are known in
advance. For instance, the services discovery
which is essential for mobile phones could be
left apart in Bluemove.

5.2.3 Transmission between Blue-
move and the module

Communicating with a module is a matter of
sending data to a specific URL starting with
”btspp://” and followed by the address of
the device in hexadecimal. The btspp prefix
stands for ”Bluetooth serial port profile”. The
firmware which is mounted on the Zeevo chip
accepts a serial communication. After the
Bluetooth headers, a data containing two bytes
is appended. The first byte indicates a module
ID, the second byte is the servo position.
The system was designed with a broadcasting
support in mind. This turns out to be useful
when all modules are reset to the same value.
The module ID is set to 255 for a broadcast
(all modules receive the same packet). Another
value indicates a packet forwarded to one and

only one unit according to its ID.

In the current version of Bluemove, the ID is
always set to 255 but a packet is transmitted
to its final destination using the btspp URL; no
broadcasting is used.

Java Application

Impronto stack

BlueZ librairies

Hardware

BlueZ stack

User space

Kernel space

Figure 5.1: From Java application to the Blue-
tooth device

Figure 5.1 represents the communication flow
from the Java application to the Bluetooth de-
vice. The Impronto stack does not directly in-
teract with the hardware device. Instead, it uses
the BlueZ [1] libraries which then interact with
the kernel Bluetooth drivers. With this scheme,
Rococo Software do not need to rewrite code
already present in BlueZ and hardware depen-
dent.

5.2.4 What went right

The Rococo stack

We did not have much problem with the Rococo
stack except some unsuccessful scans that ran-
domly happen (devices are not detected at all).
It is hard to tell whether they are caused by the
Rococo stack or the underlying Linux system.
In such cases, it is recommended to reset the
Bluetooth device in Linux using the hciconfig
command or to call hcidump to check the traffic
on the Bluetooth device. If the problem per-
sists, the best is to reset the kernel modules as
follows.

C. Jaquier - K. Drapel 20 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

rmmod hci_usb bluetooth
modprobe bluetooth hci_usb

The Java namespace which is in charge of
the Bluetooth implementation is extremely well-
designed and was straightforward to use. The
Rococo stack is transparently integrated in the
application and sending data is a matter of a
few functions calls.

New features in Java 1.5

We used the latest version of the JDK, J2SE
5.0 which is in fact Java 1.5. Useful features
that were previously missing in the Java lan-
guage have been added in the new version [23].
Among all these major updates, we used the fol-
lowing features which had a significant impact
on the ease of development:

• generic types

• autoboxing

• enhanced ”for” loop

• enums

The generic types are mostly present in code
dealing with Collections (lists, hashmaps, etc.).
In previous versions of Java, the Collections
only contained objects of type Object. It was
up to the programmer to insert casts when he
retrieved objects from a collection. This kind
of syntax was error-prone and could lead to
arduous debug sessions. With generic types,
an additional constraint is appended to a
collection, it must contain objects of a given
type and casts are not needed anymore.

The autoboxing avoids clumsy conversions
between primitive types (int, float, double,
etc.) and their equivalent Object counterparts
(Integer, Float, Double, etc.). Previously to
Java 1.5, one could not store primitive types
in collections. The programmer first had to
convert the primitive to its Object with code
similar to list.add(new Integer(1234)).
With Java 1.5, this extra code is not needed
anymore: list.add(1234). The opposite is
also true. In Java 1.5, a primitive retrieved
from a list does not have to be explicitly casted.

The enhanced ”for” loop was already present
in most high level languages such as C#,
Python or PHP, though often named differently

(”foreach” keyword). It is a powerful syntax
that avoids the creation of ”iterators” when
one just wants to read all elements from a
collection. The code looks like: for (Integer
i : list) {...} and is probably the most
useful feature among the changes from Java 1.4
to Java 1.5.

The enums that all C or C++ programmers
have at least used once, are often used to define
a set of choices. Prior to Java 1.5, the enums had
to be simulated through a sequence of static
final int. It was tedious to write and a value
had to be given to each integer. In Java 1.5,
an enum keyword has been added. Such a defi-
nition looks like this: public enum Choice {
ok, wrong, cancel };. Enums can be used
in switch/case blocks and are considered as ob-
jects.

5.2.5 What went wrong

The Java 1.5 compiler

We faced serious problems with the Java 1.5
compiler2. Our mathematical code raised
strange errors with signs in floating operations.
For example, a float or double variable was
supposed to be negative but the executed
code discarded the sign. This ended up with
totally wrong results in the interpolations and
timelines. It was actually hard to track this
problem as it seemed to depend on external
conditions like the size of the code, previous
recompilations or changes in other classes.

After patiently investigating the different
steps that the compiler went through, we con-
cluded that the issue was not caused by the vir-
tual machine or the operating system as it also
occurred on a Windows XP platform.

We disassembled the generated bytecode and
noticed that the compiler simply removed the
signs of some constants. Code such as float f
= -2.0f + a; could be interpreted like float
f = 2.0f + a; once compiled. One solu-
tion was to move the constant at the end
and add some parenthesis: float f = a -
(2.0f);. Another possibility was to use the
object counterparts of the concerned primitive.
The code would then use declarations like new
Float(-2.0f) but this led to complex code in

2all 1.5.x were plagued by this bug, for Bluemove, we
used build 1.5.0 01-b08

C. Jaquier - K. Drapel 21 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

mathematical routines. We tried to avoid the
latest solution as much as possible.

We filled a complete bug report and sent it to
Sun. Unfortunately, we did not get a response.
We hope they will fix this problem as soon as
possible as it may lead to serious bugs and un-
stable applications.

JBuilder designer

JBuilder comes with an integrated GUI designer
(see Figure 5.2). This tool allows the user to
draw the application interface on screen instead
of coding it. A lot of time is thus saved. More-
over, coding a GUI interface can quickly become
unmanageable when the complexity of the inter-
face grows. However, we faced some problems
with the JBuilder designer.

Figure 5.2: JBuilder designer

When starting the designer on a newly cre-
ated class, it worked as expected and was re-
ally helpful. But as soon as we started to add
our own code, especially constructor parame-
ters or class variables with direct instantiation,
JBuilder crashed. The returned error was the
following.

An unexpected exception has been
detected in native code outside
the VM.

This happened under Windows and Linux and
was a really annoying problem because unsaved
file modifications were lost. We were forced to
modify GUI code directly by hand.

We tried other GUI designer such as JFor-
mDesigner [33] or IntelliJ IDEA [20] but each
one has its own code generation style which did
not integrated well in JBuilder. So we continued
to use JBuilder designer and took the practice
to save our files regularly. For big GUI modifi-
cations, we copied the JBuilder generated code
to a new class file, then worked on this version.

We finally copied the newly generated code to
the original class. Note that the ”JBuilder 2005
Update 1” did not solve the problem.

5.3 Interface

5.3.1 Description

”Java-Motion” by Jean-Philippe Egger was the
software modified and used by Elmar Dittrich
and Rico Moeckel to generate trajectories on
the robots shown in their videos. Unfortu-
nately, Java-Motion lacks many features and
somehow looked too limited for the modular
robot project. One of the main drawbacks in
the version used by Elmar was the fact that only
six modules could be managed. Moreover, Java-
Motion did not provide a tool to draw smooth
curves, the trajectories were linearly interpo-
lated.

We preferred to focus our efforts on a new
software that used some ideas present in Java-
Motion but with a drastic change in the in-
terface and flexibility. Bluemove was written
from scratch because our new features would
have been incompatible with the code present
in Java-Motion. It was more efficient to rewrite
things instead of fixing them. We also wanted
to create an application that could be used with
other robots, not only the Bluetooth modular
robot. If we did not go as far as a plugin system,
we still have a flexible system split in several in-
dependent parts. A given part could be replaced
or slightly modified to fit with constraints and
specifications of another robot, protocol, etc.

As we had a good experience with Java, Swing
and its graphical functions, we aimed at a nice
and convivial GUI with custom controls when
necessary. This was particularly true for the
timelines which were simply too difficult to cre-
ate with the standard Java controls. We also
tried to find the best solution for each problem
related to human interaction, we wanted Blue-
move to be simple and that the user could play
with the main functions without even reading
the documentation.

As said above, we took our inspiration from
Java-Motion and added ideas that we had seen
in other softwares. Systems based on timelines
are present in many applications. Most of them
deal with video or audio editing.

Here is a non-exhaustive list of such softwares:

• Demopaja by Moppi Productions (video)

C. Jaquier - K. Drapel 22 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

• 3DSMAX by Discreet (3d)

• After Effects by Adobe (video)

• Sonar by Cakewalk (audio)

• FruityLoop by FL Studio (audio)

Among the different applications cited in the
above list, one of them had a strong impact on
Bluemove: Demopaja [30]. It is a free realtime-
animation authoring tool similar to Macromedia
Flash and Adobe After Effects [3]. The inter-
face is based on a tree. Its nodes can be ex-
panded to display different types of timelines.
These timelines contain trajectories with linear,
smooth and hold keys, segments of curves can
be displaced or deleted.

Demopaja provides curves for different ob-
jects: colours, scalars, ranges, etc. Another con-
cept that we did not have time to implement in
Bluemove but which is present in Demopaja is
what they call ”time segments”. It is, therefore,
possible to enable or disable some parts of the
sequence.

Figure 5.3: Demopaja by Moppi Productions

As stated by their authors, Demopaja is
strongly based on Adobe After Effects. Look-
ing at a screenshot, we see many similarities in
both the interface and the ideas. There are clear
advantages of such interfaces. They are straight-
forward to use and if they may look eye-candy
at first, they are still the easiest way to define
and work with curves.

5.3.2 The different tabs

The current version of Bluemove is split into
three tabs:

• the timelines manager

• the modules manager

• the console

Figure 5.4: Adobe After Effects

The timelines manager

The timelines manager is in charge of the tra-
jectories for all modules that were loaded in
the modules manager (from a previous project
stored on disk or a new project). It is composed
of three parts which are custom Swing controls
(modules tree, timelines tree and timescale).
The left part is a summary of the project and
its modules (name, range, address). This panel
is in fact a tree whose nodes can be expanded
or collapsed. The user can also disable a mod-
ule or a subcomponent such as an actuator or a
sensor3. When a component is disabled, it turns
red. When activated, the panel is green. When
expanded, the components available in a mod-
ule can be resized. The user just has to drag
the cursor over the grey bar at the bottom of
the component zone.

Changes in the left panel are propagated to
the right panel that contains the curves. The
trajectories can be drawn using the mouse.
Clicking on the left button will add a new key.
The key can be moved with a drag and drop
(pressing the left button and keeping it down
while moving the key). There are currently two
types of keys available in Bluemove:

• Linear key

• Hermite spline key

Both can be mixed within the same curve,
the interpolator will properly compute the tra-
jectory. By default, the user works in a ”spline
mode”. To add linear keys, he must select the
”linear keys tool” icon in the icons bar. He can
switch back to splines keys with the ”spline keys
tool” icon.

3sensors are not available in the current version of
Bluemove

C. Jaquier - K. Drapel 23 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

A right click will bring a popup menu. If
the user right-clicks on a key, a key menu will
appear. It features actions like deleting a key
or converting the key to the opposite type (to
a spline if it’s linear and vice-versa). A right-
click at another place (not on a key) will bring
a global popup menu. The user can delete all
keys or converts them to the same type (linear
or spline). Bluemove does not provide more ad-
vanced features yet such as selecting some keys,
moving or deleting a whole set of keys at once.
These features are planned for the next version.

At the bottom of the timelines manager, a
timescale is available. It gives information
about the frames and the current frame position
on the curve. This position is represented by a
small triangle moving on the timescale. Drag-
ging the mouse cursor over the timescale will
shift the curves in time. The user can also scale
the time range using the zoom-in and zoom-out
icons.

On the lower left part of the timelines tab,
the player zone and its ”play/pause”, ”stop”,
”repeat” buttons allow the user to send the
data to the robot, interrupt the sequence or en-
able/disable looping of the whole sequence. The
end of the sequence is represented by the very
last key in all active trajectories. This is some-
thing to consider when designing the trajecto-
ries.

The modules manager

Bluemove has been built with the idea of stor-
ing everything into a compressed file that we call
”project”. The project contains the information
about a robot, its modules and the trajectories.
In the modules manager, one can modify the
different parts available in a project (see Figure
5.5). The modules manager acts like a serialisa-
tion and management system; it drives all rou-
tines related to loading and storing data. The
user can add, modify or remove modules. He can
also write a description about the robot and up-
load a picture. It is indeed quite useful to have
a sketch or a real picture of the modular robot
when mounted. The modules manager is com-
posed of a tree on the left side and a panel for
settings and information on the opposite side.

A module contains actuators or sensors; the
interface provides a way to deal with all these
parameters. The user can add or remove these
components and change their settings (such as
the range for an actuator).

By pressing on the ”Apply” button, the user
saves the changes to the local version of project.
The project can later be saved on disk using the
menu bar or the save icon in the icons bar. It
is obviously possible to load a previous project
from the menu or the open icon. All parameters
will be restored as well as the trajectories. A
new project can be created using the new com-
mand in the menu or the new icon.

The modules manager is synchronised with
the timelines manager. If a module is removed
from the modules manager, the timelines will
disappear in the timelines manager. The same
applies for the actuators and sensors. Changes
in the modules manager (settings or new compo-
nents) will be notified to the timelines manager.

Figure 5.5: Modules Manager

The console

The console tab (see Figure 5.6) displays the log
messages generated by Bluemove. There are five
levels of messages:

• DEBUG: messages useful in order to debug
the application

• INFO: information messages

• WARN: a problem leading to an error oc-
curred

• ERROR: something that should not have
happened

• FATAL: unrecoverable error

Each level is displayed in a distinct colour with
its specific icon. This allows the user to quickly
diagnose what appended in the application.

C. Jaquier - K. Drapel 24 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure 5.6: Console

5.3.3 What went right

The small learning curve for the end-user

The timelines manager is a nice set of custom
controls. It is easy to use and quite powerful.
The learning curve is small and the user can
quickly add or delete keys, move them around.
The integration with the modules manager is
also quite robust thanks to a last-minute ”inten-
sive software engineering session”. The user will
have a summary of the whole robot with a quick
glance at the left part of the timelines manager.
As everything is based on a tree, the interface
space is optimized and not too crowded.

The console

We did not encounter many problems with this
part. We only noticed that it could slow down
the application and the communications with
the robot if a large amount of messages was
printed. The filter option is hence quite useful
in such cases. Printing a message takes about
15 ns, this delay is insignificant compared to the
rest of the routines executed during runtime.

5.3.4 What went wrong

Writing bugs free and clean Swing con-
trols are tedious

Writing complex Swing controls is quite cryptic
and error-prone. There are many concepts to
deal with, including timing, refreshing, perfor-
mance, interaction with the user (mouse events).
It is quite time consuming because one has to
write everything from scratch. Bluemove still
has some minor issues related to the timelines
but it is sometimes hard to say whether they are
caused by Java or a bug in the application. For

example, when the user wants to resize a mod-
ule component (left part of the timelines man-
ager), the cursor is supposed to change when the
mouse is over the grey rectangle. When the ap-
plication is in fullscreen, this does not work any-
more. Coming back to a windowed mode fixes
the problem. Such a minor bug could also be
caused by the Linux windows managers (metac-
ity, fluxbox, enlightenment, etc.).

When we started writing the code for the
timelines, we quickly noticed that it would be
difficult to come up with a clean solution. A first
version of the code was not satisfying and we de-
cided to rewrite it with a slightly better archi-
tecture. Despite the attempts to design a good
structure using our knowledge in software engi-
neering, we are pretty confident that it could be
improved and simplified if we had more experi-
ence with Swing. The most complex part was
to write the code related to the tree system (ex-
panding, collapsing components), there are still
a few bugs that may appear from time to time
but none of them is critical.

Attempts to tweak standard Java controls
failed

In order to improve the interface, we tried to
use the JTree control (tree control of Swing) for
the settings. We wanted to achieve something
similar to what is proposed by .NET (Figure
5.7) or the L2FProd components [11]. These
controls provide rows with various settings like
color pickers, text, number, sliders, etc. Unfor-
tunately, the JTree and JList controls of Swing
are rather limited. It is impossible to resize a
single row without a large amount of obscure
code. After extensively searching on Google, we
came to the conclusion that everybody had this
problem but only a few bad solutions had been
proposed. It was also difficult to add controls in-
side the row of a JTree/JList, though not impos-
sible. Most of the suggested hacks have a signifi-
cant impact on performance and we preferred to
keep a fast and clean code. The L2FProd could
have been a solution but it lacked a real docu-
mentation. As the settings window was not an
important part of Bluemove, we did not waste
too much of our time on this issue.

C. Jaquier - K. Drapel 25 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure 5.7: .NET properties

5.4 The inners of Bluemove

In order to make a versatile application, we de-
signed Bluemove in such a way that the different
parts were as independent as possible from each
others. The modules manager could be modi-
fied to support for example an I2C communica-
tion instead of Bluetooth without big changes in
the timelines manager. However, there are still
some links between all these parts, we did not
try to make a system based on plugins. It would
have been more complex to handle but we think
that features like scripting could replace parts
of the advantages provided by plugins (more on
this in Section 7.2).

5.4.1 An overview of Bluemove
architecture

On the code side, Bluemove is composed of two
central parts: the timelines manager and the
modules/project manager. They are themselves
split into two conceptual groups: the core and
the GUI. The core is in charge of the logical and
system operations; it is used by the GUI. The
GUI acts like a bridge between the user and the
core.

In Bluemove, the real ”brain” is the modules
manager core. Its purpose is to link the time-
lines, the modules, the communication part and
the rest of the settings. The modules manager is
in charge of serialisation and persistence (load-
ing/storing in files).

The timelines core maintains the curves, this
includes algorithms dealing with keys, interpo-
lation and other mathematical routines. The

modules manager GUI just needs to call the
methods provided by the various objects at-
tached to the modules manager core. On the
other side, the timelines manager gets its infor-
mation from the modules manager. When the
timelines manager asks for the curve X of the
module Y, the modules manager will query the
timelines core. The latest will provide the right
curve that will be transferred to the timelines
GUI via the modules manager.

Modules Manager GUIModules Manager

Communication

Timelines Manager Timelines GUI

XML / Zip

Player

Curves /
Interpolation

Figure 5.8: A schematic view of Bluemove ar-
chitecture

The Bluetooth communication is initialised
by the modules manager after a request by the
timelines GUI. The modules manager delegates
this threaded task to a subgroup of objects spe-
cialized into communication and Bluetooth.

To sum up, there is a clear cut between the
GUI and the underlying core. We could easily
swap two different user interfaces while keeping
the same core.

We invite the reader to look over the Blue-
move programmers documentation for UML
schema and additional information about the
methods, objects, and namespaces.

5.4.2 Linear and spline interpola-
tion

Bluemove can compute linear and smooth tra-
jectories. Each trajectory is made of several
keys. A key is itself composed of two scalars: a
frame 4 and a value. Two keys can not share the
same frame as this would lead to an inconsistent
temporal state. Moreover, a stronger constraint
has to be respected when interpolating a trajec-
tory: it must be a function in the mathematical
sense. For the same frame, we can not have
more than one value. This is a problem when
working with splines that are usually evaluated

4in this section, time or frame are equivalent, they
are proportional to each other

C. Jaquier - K. Drapel 26 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

in a two-dimensional plane. They are not func-
tions but parametric curves that can overlap.
For the modular robot, we needed interpolation
methods, not approximations. Indeed to ensure
correct motions, we had to be sure that the servo
is at the correct position at a given time. This is
not guaranteed by an approximated trajectory.
We will now discuss how we solved these various
mathematical issues.

Linear interpolation

Linear interpolation is straightforward to imple-
ment. Assuming that at least two keys A and B
are available (with At < Bt), we can compute
any intermediate trajectory position y at time t
(t ∈ [At, Bt]) using the following formula:

y(t) = Ay +
t−At

Bt −At
(By −Ay)

The main drawback of a linear interpolation is
that the first derivative is not continuous. The
consequence is a complete absence of smooth-
ness in the generated trajectory.

The smooth interpolation problem

For the modular robot, it was necessary to have
at least one type of interpolation that provided
smooth curve. By smooth, we mean trajectories
with a continuous first derivative (speed). This
avoids the sudden changes of speed that appear
with a simple linear interpolation and produce
jerky motions.

The problem of smooth interpolation has been
widely covered in the numerical analysis field.
Among the many methods developed through-
out the last centuries, Lagrange’s interpolation
is a famous way to pass a polynomial of degree
N − 1 through N points. However, this method
is not convenient for most purposes because it
introduces large oscillations. Moving or adding
a single point on the curve will radically change
the shape of the whole curve. It is actually
quite slow to compute and is consequently not a
good interpolation scheme for a servo trajectory.
Another method, the Chebyshev approximation
minimizes the oscillations but as stated by its
name, it’s an approximation not an interpola-
tion and the errors introduced by such a scheme
are not acceptable.

What we can conclude after playing with
high-order polynomials is that they are very sen-
sitive to small perturbations in the keys posi-

tions and lead to unwanted oscillations (Runge’s
oscillations).

Piecewise interpolation schemes

Another way to solve the interpolation problem
is to split the final trajectory into many pieces.
Such methods are called ”piecewise interpola-
tions” and most of them are based on ”splines”5.
A piecewise interpolation is a good way to con-
trol local conditions and only modify a part of
the curve.

At this point, we can either use Bezier curves
or Hermite splines. There are other types
of splines such as B-Splines but their names
are confusing because they are approximation
schemes.

It would have been possible to use Bezier
curves but one must be careful with the posi-
tions of the control points. In the case of a cu-
bic Bezier curve, four control points are needed.
The first and last points are placed at the keys
locations. The second and third points act like
tangents. The curve is always enclosed by the
convex hull formed by these four points. The
curve reduces to a function under a strict condi-
tion on the X axis: the second and third control
points must not be moved before or after the
first and fourth points.

To keep a continuous first derivative between
two Bezier curves, it is necessary to align the
third point of the first curve with the second
point of the second curve. This adds some
complexity when the user moves a point since
the tangents symbolized by the two middle con-
trol points in both curves must satisfy the con-
straints described above.

Hermite splines

Hermite splines do not exhibit this control prob-
lem though it is more difficult to ensure that the
parametric curve will not overlap in a ”S” shape
and hence lose its function properties. On the
other side, the Hermite splines are simple to im-
plement and in our case, it was easier to get a
continuous first derivative compared to Bezier
curves. We thus used Hermite curves in Blue-
move.

From the mathematical point of view, an Her-
mite curve (often called ”cubic spline”) is a
parametric curve expressed by a parameter s
with s ∈ [0, 1]. It is constructed using a set

5”smooth lines”

C. Jaquier - K. Drapel 27 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure 5.9: An example of an Hermite spline

of four third-order polynomials which form the
Hermite basis functions as seen on Figure 5.10.
An Hermite curve is composed of four vectors: a
starting point and its tangent, the ending point
and its tangent. The four polynomials are also
called ”blending functions”. We will refer to
them using the notation H1(s), H2(s), H3(s)
and H4(s).

H1(s) = 2s3 − 3s2 + 1

H2(s) = −2s3 + 3s2

H3(s) = s3 − 2s2 + s

H4(s) = s3 − s2

Figure 5.10: The Hermite basis

Each of the four vectors is multiplied by its
respective Hermite function. The polynomials
are first evaluated using the parameter s. Next

the vectors are weighted and summed up to get
the final position. The starting point is multi-
plied by H1, the ending point is multiplied by
H2. The tangent for the first point is weighted
using H3 and the second tangent using H4.

Assuming we are working in the two-
dimensional plane and the starting point is P1,
the ending point is P2, the tangent for the start-
ing point is T1 and the tangent for the ending
point is T2, we obtain the following set of para-
metric equations:

x(s) = P1x ∗ H1(s) + P2x ∗ H2(s) + T1x ∗
H3(s) + T2x ∗H4(s)
y(s) = P1y ∗ H1(s) + P2y ∗ H2(s) + T1y ∗
H3(s) + T2y ∗H4(s)

With s at 0, the returned point will be P1.
With s at 1, we will get P2.

Computing the tangents

There is a simple way to compute the tangent
for a key ~Kn. One just needs to retrieve the
position of the previous and next keys: ~Kn−1

and ~Kn+1. The tangent for ~Kn is the vector
~t = (~Kn+1− ~Kn−1) ∗α where α is a smoothness
factor usually between 0 and 1 (a higher value
will give a smoother curve).

There are special cases at the start and end of
the trajectory. When the next key is not avail-
able, we can compute the tangent using the pre-
vious and current key. The similar thing can be
performed to find the tangent for the very first
key. In that case, the tangent is the vector be-
tween the current and next key.

Converting an Hermite spline to a func-
tion

With the description in the previous section, we
supposed that the curve was evaluated in a two-
dimensional plane. It is not a function since the
same value on the x axis could have more than
one position on the y axis. For the trajectory, we
had to find a way to convert the Hermite spline
to a real function. Moreover, the parameter s
defines the position along the curve. It is not
related to the x axis which is the time axis in
our case. To find a s parameter given a time
value along the horizontal axis, we did not use
an analytical solution but a simple numerical
method: the bisection method.

C. Jaquier - K. Drapel 28 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

To find a parameter s for a given X (time
value), we first compute the position on the
curve with s = 0.5. If the value x(0.5) is above
X, it means that the parameter s is too high. In
such a case, we compute the middle value of the
range [0, 0.5], we obtain 0.25 and compute the
curve with the parameter s = 0.25. Otherwise,
we compute the middle value of [0.5, 1.0] which
is 0.75. The algorithm recursively evaluates the
position on the curve and splits the range in two
smaller parts. A stopping condition is met when
N iterations have been done or the error is below
a given threshold.

For Bluemove, 12 iterations are enough for a
good accuracy. The resolution of the s parame-
ter is fully determined by the minimum step size
which is 1

212 = 0.0002.

5.4.3 Persistence

As almost all softwares, Bluemove needs to save
and retrieve its data from disk. This is called
persistence. It can be done using data bases,
XML files, binary or text files. In Bluemove, we
chose to use the XML standard for persistence.
XML is widely used today and lot of libraries are
available. One of the best of them is Xerces [17].
It provides a DOM [35] implementation which is
exactly what we need. DOM is an API which
allows the creation of XML tree with simple
functions. We also used Xalan [16] which pro-
vides XPath [36] features. XPath is a language
which allows retrieving nodes of a XML docu-
ment without complicated XML parsing. Both
of Xerces and Xalan are free softwares.

When saving a project, a DOM tree is created
with all the modules parameters such as mod-
ule name and address, components and sensors.
The DOM tree is transformed afterwards into a
XML file using Xerces serialization possibilities.

When opening a project, the module manager
is regenerated by reading the XML files. This
is done using XPath. A disadvantage of XPath
is its slowness. However we do not handle large
XML files so this is not noticeable.

The timelines are treated in the same way;
they are just stored in a separate file. This al-
lows a better reliability and separation of con-
cepts.

As explained at the beginning of Section 5.3.2,
a Bluemove project is a compressed archive.
The modules and timelines XML files are thus
packed in this archive. We used the ZIP format
because it is widely present and Java has an API

for handling such files. Below is a typical project
archive content.

config/timelines.xml
config/modules.xml
Created on 19 01 2005 - 16 23 09
images/model.png

Note that there is a file called
Created on 19 01 2005 - 16 23 09. This is
an empty file created the first time that the
project is saved. It is indeed impossible to
create an empty ZIP file with the Java API.

C. Jaquier - K. Drapel 29 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 6

Experiments

6.1 Two working modules
and an inactive skeleton

As we only had two fully mounted modules, we
had to play with this limitation in mind and try
to find interesting configurations. Looking at
the videos produced by Elmar Dittrich helped
us to find some robots based on two working
modules and a few inactive units.

Even with the most basic configuration, we
noticed that the smooth interpolation offered
nice motions compared to the jerkiness of the
linearly interpolated trajectories. Using Blue-
move, we were able to quickly test various
curves. Most of them are small oscillations with
a shifted phase between the two working mod-
ules.

6.1.1 2-standup

This modular robot is inspired from 3-
head2tail dragon carpet.avi [13]. The basic idea
is to start from a side position. The robot bends
itself and quickly returns in a straight position.
This fast movement makes it rotate and reach
its moving position. The robot can then move
forward using simple oscillations.

One important thing in this modular robot
to take into consideration is the alignment of
the modules. The centre of gravity may slightly
move according to the main axis and it is there-
fore difficult to predict the motion. Figure 6.1
shows this modular robots.

6.1.2 3-stickworm

This one was discovered almost by accident. As
all modular robots we tried were composed of
units connected in the same axis, we had the
idea to put one module perpendicular to the oth-

Figure 6.1: A 2 modules example

ers. This leaded to an interesting kind of worm
which moved laterally.

Quick movements with low amplitude are re-
quired so as to get a good locomotion. This
modular robot is represented on Figure 6.2.

Figure 6.2: A 3 modules example

6.1.3 More examples

YaMoR units combinations are almost infinite.
Even with only two or three modules, it is possi-
ble to imagine tons of different modular robots.

C. Jaquier - K. Drapel 30 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

The number of trajectories for each unit is even
greater.

A genetic algorithm would no doubt have
helped to discover innovative configuration that
nobody would have expected. We are looking
forward playing with the results of Daniel Mar-
bach and making Bluemove compatible with his
application.

The two examples describe above and more
example videos are available on the web site of
the project [14].

C. Jaquier - K. Drapel 31 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 7

Further developments

7.1 Hardware

7.1.1 Mechanic

Servos

The servos used in YaMoR were selected for
their low cost and high torque. They have a
weak point as shown on Figure 7.1. One of the
wheels inside the servo take place in the plastic
hole. Because of high load on YaMoR arm, the
wheel finally leaves its position and the servo
remains blocked.

Figure 7.1: Weak point of the servo

Maybe a more expensive servo could be a
good investment for an enhanced unit robust-
ness. It would be interesting to test smaller ser-
vos. There is not much space left in the unit
and adding sensors (see Section 7.1.2) would be
problematic with the current design.

Batteries

When designing the YaMoR robot unit, Elmar
planned to put the batteries along the servo.
This can be seen on Figure 4.1. He defined the
size of the module with this idea in mind. When
Rico developed the electronic components, he

found out that the best solution was to put the
boards along the servo. He moved the batteries
to the bottom of the module, in a horizontal
position. The problem is that the module is
50mm large and the batteries is 48mm long. The
batteries are too wide and we could not firmly
fix the sides of the unit. We looked for smaller
batteries but did not find a good replacement.
André Badertscher had the great idea to mill
the two panel at the location of the batteries
(see Figure 7.2). This way, it was possible to
correctly screw the side panel.

Figure 7.2: Milled side panel

Modules connection

The connection of a module to another is done
with Velcro-like tape. There is a male and fe-
male version which should be used together.
These two types are visible on the arm of the
robot on Figure 7.3. This Velcro-like tape al-
lows to quickly reconfigure a modular robot and
try new configurations. Although the link be-
tween the two modules is strong, it is not stable
enough to ensure reliable operations. It would
be interesting to try other solutions such as mag-
netic or mechanical ones.

C. Jaquier - K. Drapel 32 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure 7.3: Male and female Velcro-like tape

Note that we finally use only the male version
(in foreground on Figure 7.3). They connect
without any problem but a male/female connec-
tion is definitely too weak.

7.1.2 Electronic boards

Sensors

YaMoR units are totally blind. There is no
feedback for the module about its environment.
Adding sensors like distance sensors (see Fig-
ure 7.4), cameras, shocks sensors or temper-
ature sensors to the units could provide use-
ful information about the environment. These
data could be used in order to adapt the com-
portment of the modular robot. We have al-
ready taken sensors into account in Bluemove
although they are not yet available.

Figure 7.4: Distance measuring sensor

Sensors also imply bidirectional communica-
tion. Bluetooth is naturally designed for this
kind of communication. Moreover, the Zerial
firmware is a serial cable replacement and thus
allows transmission in both ways. Most of the

work would be on the FPGA part which should
send the sensors values to the Bluetooth board.
Slight modifications should also be done in the
communication package of Bluemove in order to
receive the data.

FPGA board

Distributed control The Xilinx Spartan 3 of
the FPGA board is clearly under used. It only
features a PWM generator although it could
support up to six MicroBlaze [37] soft proces-
sor cores. One big improvement would be to
have completely autonomous modules with all
the controls delegated to the FPGA and com-
municating with each other using the Bluetooth
board. However, the actual Zerial firmware will
not be adapted for this task because it only al-
lows one connection at a time. A more sophis-
ticated protocol should be implemented. More
low-level investigations about Bluetooth proto-
col are certainly required.

FPGA configuration In the current YaMoR
unit, FPGA configuration must be done with
Xilinx tools and programming hardware inter-
face. With a lot of modules, this operation is re-
ally demanding. A wireless configuration could
be done by the Bluetoothboard. The ARM
processor of the ZV4002 would be responsible
for providing the needed signals. The Zerial
firmware should be modified in order to recog-
nise a given information telling it that config-
uration bitstreams will follow. This probably
represents the main work. Some output pins of
the GPIO should be dedicated and connected to
the corresponding inputs on the FPGA board ei-
ther on the JTAG or serial lines 1. This feature
will avoid a lot of waste of time.

Software related information are given on Sec-
tion 7.2. We also recommend the reading of ”An
FPGA Dynamically Reconfigurable Framework
for Modular Robotics” [34].

7.2 Software

FPGA configuration

As explained in Section 7.1.2, Bluemove should
be adapted in order to send the bitstreams gen-
erated by Xilinx tools. A specific data sequence

1FPGA boards provide JTAG and Slave Serial pro-
gramming mode

C. Jaquier - K. Drapel 33 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

should also be defined so as to inform the Blue-
tooth board software that configuration data
will follow. Moreover a ”done” information
should be sent back to Bluemove. Algorithm
1 represents a possible implementation.

Algorithm 1 Wireless FPGA configuration
1: CFG = {modules to be configured}
2: ERR = {}
3: for all m such that m ∈ CFG do
4: create a connection to m
5: if connection succeeded then
6: send the configuration mode sequence

to m
7: send the bitstreams to m
8: if not received done message then
9: add m to ERR

10: error message for m
11: else
12: remove m from CFG
13: configuration succeeded for m
14: end if
15: end if
16: end for
17: if CFG = {} then
18: all configurations succeeded
19: else
20: check modules which are in ERR
21: end if

Maximum of allowed robots

The Bluetooth protocol allows a maximum of
7 devices in a piconet and a maximum of 10
fully loaded piconets in a scatternet. This gives
a total of 80 devices. However, for physical2

and technical reason, it will be almost impos-
sible to reach this limit. A 80 units modular
robot would be too heavy and the communica-
tion latency probably too high. However, we
do not have enough working modules to experi-
ment. We estimate that a modular robot using
12 units would be probably the physical limit.
We can hardly predict the Bluetooth commu-
nication capacity but we estimate that it could
support the physical limit. The Bluemove ca-
pacity is, however, not limited and depends on
the computer capacity.

2The servos have limited torque.

Real-time control

The current version of Bluemove allows the user
to change keys position while playing. This pro-
vides a kind of interactive play with the mod-
ular robot. An additional way to perform real-
time control would be the use of box connected
to other boxes. Figure 7.5 shows an example.
The boxes on the left represents inputs (sensors,
key pressed, mouse position, ...), boxes in the
middle are transformations (addition, multipli-
cation, if-then-else, ...) and finally the box on
the right applies the previous transformations
on the given parameter. This interactive con-
trol is more ”robot centred” than changing the
keys position (”module centred”).

Module 1
Amplitude

Sensor 2Sensor 1 Mouse X

Add

Multiply

Figure 7.5: Real-time control

Scripts

An interesting feature could be the scripting of
curves. Instead of drawing the curve by hand,
a scripting language could be used. One of the
possible solution is BeanShell [7]. It allows the
user to easily write loops, branches and even
complete programs. Below is an example of
BeanShell usage.

% for(i=0;i<10;i++) {
y = Math.sin(i);
print(y);

}
0.0
0.8414709848078965
0.9092974268256817
0.1411200080598672
-0.7568024953079282
-0.9589242746631385
-0.27941549819892586
0.6569865987187891

C. Jaquier - K. Drapel 34 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

0.9893582466233818
0.4121184852417566

This scripting language does not require vari-
able declaration or strict typing. Thus, the
user could draw curves by writing a script and
storing the wanted position in a given variable.
This would be more efficient to get curves from
mathematical functions such as sinus. More-
over, BeanShell is specially designed for Java so
it could be integrated without too many prob-
lems in Bluemove.

Module templates

When building a modular robot with Bluemove,
it is necessary to describe the structure of the
modules. At the moment of writing, Bluemove
can only control YaMoR units. So instead of
describing these units every time, it would be
more efficient to have a template module which
represents the YaMoR unit.

Import/Export

There is several projects related to YaMoR mod-
ular robot at the BIRG. All of them use com-
puter simulations in order to evolve modular
robot. The reader is invited to read works of
Yvan Bourquin [9] and Daniel Marbach [21].
Here the idea is to retrieve data from simula-
tions and import them into Bluemove in order
to recreate curves. This could be really inter-
esting for comparisons between simulation and
real world. Another possible feature is to export
data from Bluemove and import them into com-
puter simulations. The data can thus be evolved
and imported back into Bluemove.

XML would be a perfect data exchange for-
mat for this. A possible example would be the
following.

<bluemove>
<module name="Head">

<key time="0.0" position="0.0">
<key time="1.0" position="-1.0">
<key time="2.0" position="0.5">

</module>
<module name="Tail">

<key time="0.0" position="0.3">
<key time="1.0" position="0.5">
<key time="2.0" position="-0.8">

</module>
</bluemove>

There would be certainly some work to do in
the computer simulation softwares so as to make
them speak the same language as Bluemove.

Blocks

An interesting feature would be the ability to de-
fine blocks in Bluemove. We can imagine repeat,
ping-pong or skip blocks. It is often necessary
to have a first step in which the modular robot
sets its default position. After that, it moves
with a cyclic movement and finally goes back
to its initial state. This could be achieved by
drawing the cyclic movement into a loop block
surrounded by the one time initialisation and
stopping steps. This is represented on Figure
7.6.

Figure 7.6: Blocks

C. Jaquier - K. Drapel 35 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Chapter 8

Conclusion

We have seen in this report that Bluetooth
via an USB stick was the best way to control
the YaMoR robot from a desktop computer. De-
spite the problems we had with Java 1.5, we are
pretty confident when we look at the final result
that it was the right choice to write a portable
and robust Bluetooth application. Thanks to
the Rococo stack and the Swing interface, our
timelines based Bluemove tool provides an easy
control over the robot for the end-user.

Unfortunately, we did not have time to con-
struct more modules due to the long delays to
get the ordered electronic components. Nev-
ertheless, we enjoyed the soldering sessions
and discussions about mechanical and electronic
problems related to this project.

Acknowledgments We want to especially
acknowledge Prof. Auke Ijspeert, Alessandro
Crespi, Andres Upegui, André Badertscher and
the rest of BIRG and LSL members. We are
grateful to Rico Moeckel for his precious help
with the electronic boards and Elmar Dittrich
for his work on the module. We thank Ariane
Knuesel for reading this paper and making use-
ful suggestions to improve its readability.

C. Jaquier - K. Drapel 36 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Appendix A

Bluemove short manual

This chapter quickly describes the user inter-
face of the Bluemove application. It is divided
into three parts: the first one explains how to in-
stall the software and its requirements, the sec-
ond one gives an overview of the user interface
and, finally, the third part provides a step by
step example which shows how to create a sim-
ple project with Bluemove.

A.1 Installation

In order to run properly, Bluemove requires
some additional softwares and libraries. The fol-
lowing list summarizes the requirements for this
application:

• A Linux system on a x86 machine

• J2SE 5.0 (Java JDK 5.0 or JRE 5.0)

• Java Bluetooth stack JSR-82 compliant

Other needed libraries (log4j, xerces, ...) are
already included into the application. You do
not need to care about them.

A.1.1 J2SE 5.0

Bluemove needs the J2SE 5.0 from Sun Mi-
crosystems. Bluemove takes advantage of the
latest features of J2SE 5.0. In order to get the
best performance, it is important to use the lat-
est J2SE 5.0 version. You can choose to in-
stall the J2SE Development Kit (JDK) or the
J2SE Runtime Environment (JRE) depending
on whetever you are a developer or not. You
can find the latest J2SE 5.0 here [22]. We will
not present the installation of the Java Environ-
ment. Instructions are available in the down-
loaded archive.

In order to see if the J2SE 5.0 is correctly
installed, open a new terminal and type the fol-
lowing command.

$ java -version
java version "1.5.0_01"
...

You should get a string with "1.5". If not,
please reinstall the J2SE environment and fol-
low carefully the instructions.

A.1.2 Java Bluetooth stack

In order to communicate with the module, you
need a Java Bluetooth stack . There is a lot
of different stacks available for Linux, Windows
and embedded systems. Rococo [31] offers a
free implementation of the JSR-82 [19] called
Impronto for University students. Other Java
Bluetooth stacks can be found here [2]. By de-
fault, Bluemove is compiled to run with the Ro-
coco Impronto stack.

Rococo Impronto

Rococo distributes its Impronto Developer
Kit for students under a license which does
not allow us to distribute it with our soft-
ware. Instead you must fill in the form
available on Rococo website1 and wait for
the confirmation e-mail. After you get
the impronto-1.3-1.i386.rpm, you can sim-
ply install the Rococo Bluetooth stack with
rpm -ivh impronto-1.3-1.i386.rpm. This
should install the required BlueZ libraries [1]. If
you encounter any problems, please make sure
that BlueZ is correctly installed and configured
on your system. Further information about
the Impronto installation can be found in the
file impronto/user_guide.pdf of the Bluemove
archive.

Finally, you have to read and agree the
LinuxLicense.txt file. If you agree with the

1http://www.rococosoft.com/registration linux.html

C. Jaquier - K. Drapel 37 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

license, you must copy it into the same direc-
tory as Bluemove.jar. The Impronto stack will
not work without this license file.

A.1.3 Bluemove

Bluemove is distributed as a JAR archive. Ev-
erything you need to run the application is em-
bedded into this file. Thus, the only thing you
need to install Bluemove is to copy the JAR
archive named Bluemove.jar in a directory. We
recommend to unpack the Bluemove archive in
your home directory and run the application di-
rectly from that location.

As seen above, do not forget to copy the Im-
pronto license file in the same directory as Blue-
move.

A.1.4 Launching the application

Once the J2SE 5.0, the Java Bluetooth stack
and Bluemove are installed, you can finally
launch the application. To start with, you need
to initialise your Bluetooth device. Open a
terminal and type the following command as
”root”.

hciconfig hci0 up
hciconfig hci0
hci0: Type: USB

BD Address: 00:0C:76:48:87:7A
...

Your ”BD Address” should not be equal to
00:00:00:00:00:00. If so, please check your
kernel configuration and make sure that the
needed modules are loaded or compiled into the
kernel.

You can now go into the Bluemove directory
and type the following command.

$ LD_LIBRARY_PATH=/usr/lib java \
-classpath .:Bluemove.jar \
birg.bluemove.main.core.Bluemove

The path /usr/lib represents the location of
the file libimpronto.so which is normally in-
stalled in /usr/lib.

You should now see the Bluemove splash
screen and then the main screen. If not, please
check that all the previous steps were success-
fully completed.

You are ready to discover the power of Blue-
move and the pleasure of modular robotic.

A.2 User interface

When you start Bluemove, you see the main
view of the application which contains four im-
portant parts:

• the menu bar

• the tool bar

• the tabbed pane

• the status bar

The tabbed pane contains several tabs which are
respectively used to draw the module curves, to
manage the modules, and to view the log mes-
sages. In the next section, we will take a close
look at the different items available in the menu
bar.

A.2.1 The menu

The menu bar is located at the top of the win-
dow. It is composed of three menus, each one
containing several menu items.

The File menu

This menu allows you to do the main operations
on a project. You can create a new project,
open or save a project. You can also quit the
application. The last opened or saved project is
remembered and can thus be quickly reopened.

The Options menu

This menu allows you to set the properties of the
application. All the settings are locally stored
on your computer.

The Help menu

This menu contains a menu entry called ”Help”.
It opens your favourite browser and redirects
it to the Bluemove help site. The menu item
”About” displays information about your sys-
tem.

A.2.2 The tool bar

The toolbar contains shortcuts for useful actions
like creating a new project, saving or opening a
project.

C. Jaquier - K. Drapel 38 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure A.1: Menu

Figure A.2: Tool bar

A.2.3 Timelines tab

The timelines tab is the heart of Bluemove to-
gether with the modules manager. You can
draw trajectories for modules in the timelines
listed there.

Left part

Each module is composed of one or more actua-
tors2. Sensors can also be part of a module. At
the moment, sensors are displayed but no man-
agement is available. The name and the address
of the module is displayed.

Right part

In this right part, you will be able to draw the
trajectories of an actuator. There are two key
types:

• Linear key

• Hermite spline key

You can mix these two kind of keys in the same
actuator timeline without any restriction. The
interpolation algorithm will take care of curves
composed of these two types of keys.

A.2.4 Modules Manager tab

Within the modules manager you can declare
the different parts of your modular robot. You
can describe every module, set its name and
address. Each module can have several actu-
ators. These components have a name and a

2A YaMoR module contains one actuator (a ”S-71”
servo)

Figure A.3: Timelines

range which will be used to send the position to
the module.

Please notice that the YaMoR servo name is
”Servo1”. You must use this name for the actu-
ator when using a YaMoR unit.

Figure A.4: Modules Manager

A.2.5 Console tab

The console tab displays the log messages gen-
erated by Bluemove. You can set the level of
the output and the refresh rate. There are five
levels of messages:

• DEBUG: messages useful in order to debug
the application

• INFO: information messages

• WARN: a problem leading to an error oc-
curred

• ERROR: something that should not have
happened

• FATAL: unrecoverable error

Each level is displayed in a distinct colour with
its specific icon. This allows you to quickly di-
agnose what appended in the application.

C. Jaquier - K. Drapel 39 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Figure A.5: Console

A.2.6 The status bar

The status bar displays information about the
current action. It is also used to display impor-
tant messages.

Figure A.6: Status bar

A.3 Tutorial: a small exam-
ple

In this section, you will get to know how to
create a simple Bluemove project. We consider
that you have already installed the application
and that you are able to start it. You will also
need to have two functional YaMoR units.

A.3.1 Step one: add a module

First of all, start the Bluemove application. Af-
ter the splash screen, you get a window similar
to Figure A.7.

Figure A.7: Main screen

Now you have to describe the modular robot
physically. In order to do this, switch to the
modules manager tab. At the top of the left
part, you should see a small icon representing
a salamander followed by the text ”Project”.
Click on this label. This should enable the
”Add” button at the bottom of the left part.
Click on ”Add”. A new module called ”Mod-
ule1” is inserted.

A.3.2 Step two: edit a module

Click on the label ”Module1”. You should get a
screen similar to Figure A.8.

Figure A.8: Modules manager

Now, on the right part, edit the ”Mod-
ule name” field and type ”Head”. Enter the
address corresponding to this module. Here
we suppose that our module has the address
”424952470001”3. Edit the ”Comment” text
area and type ”This is the head of our mod-
ular robot.”. You can now click on the ”Apply”
button. Your window should look like Figure
A.9.

Figure A.9: Module edition

3You can also use the inquiry function to found the
available modules.

C. Jaquier - K. Drapel 40 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

A.3.3 Step three: add an actuator

A module without an actuator can not move.
The YaMoR units have one actuator named
”Servo1”. Let us add it to our ”Head” module.
Expand the node ”Head” on the left part. Two
nodes should appear: ”Actuators” and ”Sen-
sors”. Click on ”Actuators” and then click on
the ”Add” button. You get a new actuator
called ”Actuator1”. Click on the label ”Ac-
tuator1”. You notice that the right part has
changed. Edit the field ”Actuator name” and
type ”Servo1”. This is the servo name of the
YaMoR units. Set a ”Min value” of ”-90” and a
”Max value” of ”90”. Click on ”Apply”. Your
window should be similar to Figure A.10.

Figure A.10: Actuator edition

A.3.4 Step four: add another
module

You should now be able to add another mod-
ule without any problems. So restart at step
one and add a new module called ”Tail” with
one actuator named ”Servo1” which range is be-
tween ”-90” and ”90”. We suppose that this
module address is ”424952470002”. You should
end with a screen similar to Figure A.11.

A.3.5 Step five: draw a module
trajectory (spline)

We have finished the physical description of our
modular robot. In order to see our animal mov-
ing, we have to draw the trajectory of its actu-
ators. Here you will see the power of this soft-
ware. Let us move to the ”Timelines tab”. Your
screen should look like Figure A.12.

Expand the ”Head” module by clicking on the
small blue arrow located close to the label. Do
the same with the actuator ”Servo1”. Now you

Figure A.11: Second module

Figure A.12: Timelines tab

should see the timeline on the right. Enlarge
the timeline a bit by dragging the bottom line.
Select the ”Spline tool” in the tool bar. Draw
the same curve as the one on Figure A.13. You
surely noticed that spline keys are represented
by a blue round.

Figure A.13: The first curve with spline keys

A.3.6 Step six: draw a module
trajectory (linear)

Repeat the above step for the ”Tail” module.
This time you will use only linear keys. Select
the ”Linear tool” in the tool bar. Linear keys

C. Jaquier - K. Drapel 41 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

are represented by a green rhombus. You should
end with a window similiar to Figure A.14.

Figure A.14: The second curve with linear keys

A.3.7 Step seven: save the project

Before going further, it is high time to save your
project. Click on the menu named ”File” and
select the item ”Save As...”. A file chooser dia-
log appears. Choose the directory you want and
name your project ”first bluemove.zip” like on
Figure A.15. You probably noticed that Blue-
move projects are simply ZIP archives.

Figure A.15: Saving a project

A.3.8 Step eight: play

We arrive at the last step of this tutorial. Power
on the modules and program the YaMoR FPGA.
This operation is described at Section 7.3.3 of
[28]. Build the modular robot as shown on Fig-
ure \ref{fig:step-10}. Click on the ”Play”
button located at the bottom of the timelines
tab. After a few seconds, the modules should
start to move. If so, congratulations, you have
successfully completed this tutorial. If nothing
is moving then maybe your Bluetooth device is
not correctly initialised. You can switch to the

”Console” tab and set the debug level to ”ALL”.
Retry this step and look at the console.

A.3.9 Conclusion

We briefly looked at the basic operations of
Bluemove. There are a lot of other features
that were not described in this tutorial. How-
ever, you should be able to discover them on
your own. Do not forget to periodically check
the help website [14]. Lots of information on
Bluemove are available there.

C. Jaquier - K. Drapel 42 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Bibliography

[1] Bluez. http://www.bluez.org.

[2] Java bluetooth. http://www.
javabluetooth.com.

[3] Adobe. After effects. http://www.adobe.
com/products/aftereffects/main.html.

[4] Aibo - Sony Japan http://www.
jp.sonystyle.com/Product/Aibo/
Ers-311b_312b/Store/.

[5] ARM. Processor core. http://www.arm.
com/products/CPUs/index.html.

[6] ASL Flying robots http://asl.
epfl.ch/research/projects/
AdaptiveVisionbasedFlyingRobots/
index.php.

[7] BeanShell. Lightweight scripting for java.
http://www.beanshell.org.

[8] BIRG. Amphibot i: an amphibious snake
robot. http://birg.epfl.ch/page53468.
html, 2003.

[9] Yvan Bourquin. Self-organization of loco-
motion in modular robots. http://birg.
epfl.ch/page53073.html.

[10] Jennifer Bray and Charles F. Sturman.
Bluetooth: Connect Without Cables. Pren-
tice Hall, 2000.

[11] L2FProd components. L2fprod compo-
nents. http://www.l2fprod.com.

[12] Robot Labs http://www.robot-labs.jp/
top.html.

[13] Elmar Dittrich. Modular robot unit - char-
acterisation, design and realisation. http:
//birg.epfl.ch/page50163.html, 2004.

[14] Kévin Drapel and Cyril Jaquier. Us-
ing bluetooth to control a yamor modular
robot. http://birg.epfl.ch/page56602.
html.

[15] Jean-Philippe Egger. Roboka. http://
birg.epfl.ch/page48822.html.

[16] The Apache Software Foundation. Xalan
java. http://xml.apache.org/xalan-j.

[17] The Apache Software Foundation. Xerces2
java parser. http://xml.apache.org/
xerces2-j.

[18] Bruce Hopkins and Ranjith Antony. Blue-
tooth for Java. APress, 2003.

[19] JCP. Jsr-82. http://www.jcp.org/
aboutJava/communityprocess/review/
jsr082/.

[20] JetBrains. Intellij idea, an intelligent java
ide intensely focused on developer produc-
tivity. http://www.jetbrains.com/idea.

[21] Daniel Marbach. http://birg.epfl.ch/
page32031.html.

[22] Sun Microsystems. J2se 5.0. http://java.
sun.com/j2se/1.5.0/download.jsp.

[23] Sun Microsystems. J2se 5.0 in a nut-
shell. http://java.sun.com/developer/
technicalArticles/releases/j2se15/.

[24] Seiko Epson Corporation - Monsieur
2 http://www.epson.co.jp/e/newsroom/
news_2003_03_10.htm.

[25] Morph 3 (Atom Project) - http:
//www.japantimes.co.jp/cgi-bin/
getarticle.pl5?nn20030820b8.htm.

[26] Murata about Morph3 - http://www.
murata.com/articles/ta0255.pdf.

[27] Rico Möckel. Design and construction of
an autonomous modular robot unit with
bluetooth and fpga. http://birg.epfl.
ch/page53075.html, 2004.

[28] Rico Möckel. Getting started user
guide. http://birg.epfl.ch/page53075.
html, 2004.

C. Jaquier - K. Drapel 43 v1.0 - February 11, 2005

http://www.bluez.org
http://www.javabluetooth.com
http://www.javabluetooth.com
http://www.adobe.com/products/aftereffects/main.html
http://www.adobe.com/products/aftereffects/main.html
http://www.jp.sonystyle.com/Product/Aibo/Ers-311b_312b/Store/
http://www.jp.sonystyle.com/Product/Aibo/Ers-311b_312b/Store/
http://www.jp.sonystyle.com/Product/Aibo/Ers-311b_312b/Store/
http://www.arm.com/products/CPUs/index.html
http://www.arm.com/products/CPUs/index.html
 http://asl.epfl.ch/research/projects/AdaptiveVisionbasedFlyingRobots/index.php
 http://asl.epfl.ch/research/projects/AdaptiveVisionbasedFlyingRobots/index.php
 http://asl.epfl.ch/research/projects/AdaptiveVisionbasedFlyingRobots/index.php
 http://asl.epfl.ch/research/projects/AdaptiveVisionbasedFlyingRobots/index.php
http://www.beanshell.org
http://birg.epfl.ch/page53468.html
http://birg.epfl.ch/page53468.html
http://birg.epfl.ch/page53073.html
http://birg.epfl.ch/page53073.html
http://www.l2fprod.com
http://www.robot-labs.jp/top.html
http://www.robot-labs.jp/top.html
http://birg.epfl.ch/page50163.html
http://birg.epfl.ch/page50163.html
http://birg.epfl.ch/page56602.html
http://birg.epfl.ch/page56602.html
http://birg.epfl.ch/page48822.html
http://birg.epfl.ch/page48822.html
http://xml.apache.org/xalan-j
http://xml.apache.org/xerces2-j
http://xml.apache.org/xerces2-j
http://www.jcp.org/aboutJava/communityprocess/review/jsr082/
http://www.jcp.org/aboutJava/communityprocess/review/jsr082/
http://www.jcp.org/aboutJava/communityprocess/review/jsr082/
http://www.jetbrains.com/idea
http://birg.epfl.ch/page32031.html
http://birg.epfl.ch/page32031.html
http://java.sun.com/j2se/1.5.0/download.jsp
http://java.sun.com/j2se/1.5.0/download.jsp
http://java.sun.com/developer/technicalArticles/releases/j2se15/
http://java.sun.com/developer/technicalArticles/releases/j2se15/
http://www.epson.co.jp/e/newsroom/news_2003_03_10.htm
http://www.epson.co.jp/e/newsroom/news_2003_03_10.htm
http://www.japantimes.co.jp/cgi-bin/getarticle.pl5?nn20030820b8.htm
http://www.japantimes.co.jp/cgi-bin/getarticle.pl5?nn20030820b8.htm
http://www.japantimes.co.jp/cgi-bin/getarticle.pl5?nn20030820b8.htm
http://www.murata.com/articles/ta0255.pdf
http://www.murata.com/articles/ta0255.pdf
http://birg.epfl.ch/page53075.html
http://birg.epfl.ch/page53075.html
http://birg.epfl.ch/page53075.html
http://birg.epfl.ch/page53075.html

Using Bluetoothr to Control a YaMoR Modular Robot

[29] J.D. Nicoud and J.C. Zufferey. Toward
indoor flying robots. In Proceedings of
the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages
787–792, 2002.

[30] Moppi Productions. Demopaja. http://
moppi.inside.org/demopaja/.

[31] Rococo. http://www.rococosoft.com.

[32] Seiko Epson Corporation - Lightweight
Helicopter http://www.epson.co.jp/e/
newsroom/news_2004_08_18.htm.

[33] Karl Tauber. Jformdesigner, wysi-
wyg gui designer for java swing user
interfaces. http://www.ktauber.com/
formdesigner.html.

[34] A. Upegui, R. Moeckel, E. Dittrich,
A. Ijspeert, and E. Sanchez. An fpga
dynamically reconfigurable framework for
modular robotics. 2005.

[35] W3C. Document object model (dom).
http://www.w3.org/DOM.

[36] W3C. Xml path language (xpath). http:
//www.w3.org/TR/xpath.

[37] Xilinx. Microblaze soft processor core.
http://www.xilinx.com/xlnx/xebiz/
designResources/ip_product_details.
jsp?key=micro_blaze.

[38] Zeevo. System-on-chip solutions for blue-
tooth and other wireless communications
applications. http://www.zeevo.com.

[39] J.C. Zufferey, D. Floreano, M. van
Leeuwen, and T. Merenda. Evolving vision-
based flying robots. Proceedings of the
2nd International Workshop on Biologi-
cally Motivated Computer Vision (LNCS),
2002.

C. Jaquier - K. Drapel 44 v1.0 - February 11, 2005

http://moppi.inside.org/demopaja/
http://moppi.inside.org/demopaja/
http://www.rococosoft.com
http://www.epson.co.jp/e/newsroom/news_2004_08_18.htm
http://www.epson.co.jp/e/newsroom/news_2004_08_18.htm
http://www.ktauber.com/formdesigner.html
http://www.ktauber.com/formdesigner.html
http://www.w3.org/DOM
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
http://www.zeevo.com

Using Bluetoothr to Control a YaMoR Modular Robot

Index

µFR-II, 9
Bluetooth

stack, 37

ACL, 12
Adobe After Effecs, 23
Aibo, 8
ARM, 16
ASL, 9

Bezier curve, 27
Bisection method, 28
Blimp, 9
BlueOS, 16
Bluetooth, 7, 11

btspp, 20
Connect Without Cables, 7

Bluetooth packet, 13
BlueZ, 20

C++, 19
C#, 19
Console, 24

Demopaja, 22
Dengoro, 8
DotGNU, 19

Ericsson, 11

F2 plane, 9
FPGA, 42
frequency hopping, 11

Hermite spline, 27
humanoid robot, 8

I Bee, 8
IBM, 11
Intel, 11
Interpolation, 26

Lagrange polynomials, 27
Linear, 27
Piecewise interpolation, 27
Smooth, 27

Java

autoboxing, 21
DOM, 29
enhanced for loop, 21
enums, 21
generic types, 21
J2SE, 37
JAR, 38
Java 1.5, 21
javac, 21
JSR-82, 8, 19, 20, 37
log4j, 37
Swing, 19, 25
xalan, 29
xerces, 29, 37

Java-Motion, 6, 22
JBuilder, 22
JTAG, 15, 16

KDDI, 8

L2CAP, 12

MAX1774, 15
MicroBlaze, 16
Module, 14

Bluetooth, 16
charger, 14
FPGA, 15
Power, 14

Mono, 19
Monsieur II-P, 10
Morph, 10
Motorola, 19

Nokia, 11, 19
Nuvo, 10

OBEX, 12, 19
operating system, 16

Persistence, 29
piconet, 11
pulse wide modulation, 6
PWM, 6, 16

RFCOMM, 12, 19

C. Jaquier - K. Drapel 45 v1.0 - February 11, 2005

Using Bluetoothr to Control a YaMoR Modular Robot

Rococo, 37
Impronto, 37
license, 38

RS232, 6, 16

scatternet, 11
SCO, 12
SDP, 12, 19
Seiko Epson Corporation, 9, 10
Sony, 11
System on Chip, 16

Timelines Manager, 25
timelines manager, 23
timescale, 24
Toshiba, 8, 11

VHDL, 6, 16

XML, 29

YaMoR, 14

Zeevo, 16, 20
Zerial, 16
Zip, 29

C. Jaquier - K. Drapel 46 v1.0 - February 11, 2005

	Project description
	Introduction

	A literature and projects review
	Bluetooth
	Java
	Bluetooth"472 in robotics
	Dengoro
	Aibo ERS-31xb series
	Autonomous Systems Lab flying robots (EPFL)
	Blimp
	Indoor plane - F2

	FR-II
	Monsieur II-P
	Morph (Atom Project)
	Remarks

	An overview of the Bluetooth"472 protocol
	Introduction
	Piconets and scatternets
	Bluetooth protocol layers and the Bluetooth stack
	The Bluetooth packets scheme
	The Bluetooth implementation in the YaMoR modules

	Modules
	Summary
	Power board
	Description
	What went right
	What went wrong

	FPGA
	Description
	What went right
	What went wrong

	Bluetooth
	Description
	Control via an USB dongle
	Connection
	What went right
	What went wrong

	Bluemove
	Summary
	Java 1.5
	Why Java and not another language ?
	The Bluetooth stack
	Transmission between Bluemove and the module
	What went right
	What went wrong

	Interface
	Description
	The different tabs
	What went right
	What went wrong

	The inners of Bluemove
	An overview of Bluemove architecture
	Linear and spline interpolation
	Persistence

	Experiments
	Two working modules and an inactive skeleton
	2-standup
	3-stickworm
	More examples

	Further developments
	Hardware
	Mechanic
	Electronic boards

	Software

	Conclusion
	Bluemove short manual
	Installation
	J2SE 5.0
	Java Bluetooth stack
	Bluemove
	Launching the application

	User interface
	The menu
	The tool bar
	Timelines tab
	Modules Manager tab
	Console tab
	The status bar

	Tutorial: a small example
	Step one: add a module
	Step two: edit a module
	Step three: add an actuator
	Step four: add another module
	Step five: draw a module trajectory (spline)
	Step six: draw a module trajectory (linear)
	Step seven: save the project
	Step eight: play
	Conclusion

