Using Bluetooth to control a YaMoR modular robot

Kevin Drapel - Cyril Jaquier

February 11, 2005
Using Bluetooth to control a YaMoR modular robot

- **The YaMoR project**

1. **Bluetooth**
 - Solution

2. **Bluemove**
 - Application

3. **Hardware**
 - Modules

4. **Experiments**
 - Wireless robots

5. **Closing words**
 - Future development
 - Conclusion
 - Questions
YaMoR is a modular robot composed of wireless modules. A module contains three boards: a *Xilinx* FPGA, a *Zeevo* Bluetooth chip and a power board.

The YaMoR module was designed by Elmar Dittrich. Rico Moeckel added electronic boards. Jean-Philippe Egger is the author of Java-Motion, the tool used by Elmar to control the robot with wires.
Using Bluetooth to control a YaMoR modular robot

Kevin Drapel - Cyril Jaquier

The YaMoR project

Introduction
Bluetooth
Bluemove
Hardware
Experiments
Closing words
We had to:

- Find a cheap Bluetooth solution for a desktop computer
- Create a new application to control the robot
- Order components and mount more modules
- Reproduce the previous videos without the wires
Project description

We had to:

- Find a cheap Bluetooth solution for a desktop computer
- Create a new application to control the robot
- Order components and mount more modules
- Reproduce the previous videos without the wires
Project description

We had to:

- Find a cheap Bluetooth solution for a desktop computer
- Create a new application to control the robot
- Order components and mount more modules
- Reproduce the previous videos without the wires
Project description

We had to:

- Find a cheap Bluetooth solution for a desktop computer
- Create a new application to control the robot
- Order components and mount more modules
- Reproduce the previous videos without the wires
Communicating with the modules from a PC

A cheap, versatile, handy and easy to install solution on the desktop computer. Three ideas:

- Many Bluetooth devices connected to a FPGA which routes data coming from a serial port.
- Several serial ports with a Bluetooth device on each port.
- A Bluetooth USB stick connected to the PC.

Bluetooth stick is the winner: small, available everywhere, low price for good performance, handy, good for laptops.
Communicating with the modules from a PC

A cheap, versatile, handy and easy to install solution on the desktop computer. Three ideas:

- Many Bluetooth devices connected to a FPGA which routes data coming from a serial port.
- Several serial ports with a Bluetooth device on each port.
- A Bluetooth USB stick connected to the PC.

Bluetooth stick is the winner: small, available everywhere, low price for good performance, handy, good for laptops.
Communicating with the modules from a PC

A cheap, versatile, handy and easy to install solution on the desktop computer. Three ideas:

- Many Bluetooth devices connected to a FPGA which routes data coming from a serial port.
- Several serial ports with a Bluetooth device on each port.
- A Bluetooth USB stick connected to the PC.

Bluetooth stick is the winner: small, available everywhere, low price for good performance, handy, good for laptops.
A cheap, versatile, handy and easy to install solution on the desktop computer. Three ideas:

- Many Bluetooth devices connected to a FPGA which routes data coming from a serial port.
- Several serial ports with a Bluetooth device on each port.
- A Bluetooth USB stick connected to the PC.

Bluetooth stick is the winner: small, available everywhere, low price for good performance, handy, good for laptops.
Communicating with the modules from a PC

A cheap, versatile, handy and easy to install solution on the desktop computer. Three ideas:

- Many Bluetooth devices connected to a FPGA which routes data coming from a serial port.
- Several serial ports with a Bluetooth device on each port.
- A Bluetooth USB stick connected to the PC.

Bluetooth stick is the winner: small, available everywhere, low price for good performance, handy, good for laptops.
Bluemove is our new application written in Java 1.5. It allows the user to control the robot in a powerful graphical interface.

Main features:

- Modules manager to maintain projects and modules settings
- Timelines interface for linear and smooth trajectories
- Support for several actuators / sensors per module
- Not only for YaMoR project but designed for other robots / protocols
Bluemove is our new application written in Java 1.5. It allows the user to control the robot in a powerful graphical interface.

Main features:

- Modules manager to maintain projects and modules settings
- Timelines interface for linear and smooth trajectories
- Support for several actuators / sensors per module
- Not only for YaMoR project but designed for other robots / protocols
Bluemove is our new application written in Java 1.5. It allows the user to control the robot in a powerful graphical interface.

Main features:

- Modules manager to maintain projects and modules settings
- Timelines interface for linear and smooth trajectories
- Support for several actuators / sensors per module
- Not only for YaMoR project but designed for other robots / protocols
Bluemove is our new application written in Java 1.5. It allows the user to control the robot in a powerful graphical interface.

Main features:

- Modules manager to maintain projects and modules settings
- Timelines interface for linear and smooth trajectories
- Support for several actuators / sensors per module
- Not only for YaMoR project but designed for other robots / protocols
Bluemove is our new application written in Java 1.5. It allows the user to control the robot in a powerful graphical interface.

Main features:

- Modules manager to maintain projects and modules settings
- Timelines interface for linear and smooth trajectories
- Support for several actuators / sensors per module
- Not only for YaMoR project but designed for other robots / protocols
Using Bluetooth to control a YaMoR modular robot
Using Bluetooth to control a YaMoR modular robot

Kevin Drapel - Cyril Jaquier
Kevin Drapel - Cyril Jaquier

Using Bluetooth to control a YaMoR modular robot
New modules

We were in charge of mounting more modules to reach a total of 20 units. We have only two fully-working modules at this time.

What went wrong with hardware:

- Burnt components due to power board shortcut (solved by Fabien)
- Batteries did not fit into case (solved by Andre)
- Long delays between ordering and shipping of components (expected)
- Impossible to detect the new Bluetooth cards with the USB sticks (under investigation)

Bluetooth issues are blocking the project.
New modules

We were in charge of mounting more modules to reach a total of 20 units. We have only two fully-working modules at this time.

What went wrong with hardware:

- Burnt components due to power board shortcut (solved by Fabien)
- Batteries did not fit into case (solved by Andre)
- Long delays between ordering and shipping of components (expected)
- Impossible to detect the new Bluetooth cards with the USB sticks (under investigation)

Bluetooth issues are blocking the project.
New modules

We were in charge of mounting more modules to reach a total of 20 units. We have only two fully-working modules at this time. What went wrong with hardware:

- Burnt components due to power board shortcut (solved by Fabien)
- Batteries did not fit into case (solved by Andre)
- Long delays between ordering and shipping of components (expected)
- Impossible to detect the new Bluetooth cards with the USB sticks (under investigation)

Bluetooth issues are blocking the project.
New modules

We were in charge of mounting more modules to reach a total of 20 units. We have only two fully-working modules at this time.

What went wrong with hardware:

- Burnt components due to power board shortcut (solved by Fabien)
- Batteries did not fit into case (solved by Andre)
- Long delays between ordering and shipping of components (expected)
- Impossible to detect the new Bluetooth cards with the USB sticks (under investigation)

Bluetooth issues are blocking the project.
New modules

We were in charge of mounting more modules to reach a total of 20 units. We have only two fully-working modules at this time.

What went wrong with hardware:

- Burnt components due to power board shortcut (solved by Fabien)
- Batteries did not fit into case (solved by Andre)
- Long delays between ordering and shipping of components (expected)
- Impossible to detect the new Bluetooth cards with the USB sticks (under investigation)

Bluetooth issues are blocking the project.
New modules

We were in charge of mounting more modules to reach a total of 20 units. We have only two fully-working modules at this time.

What went wrong with hardware:

- Burnt components due to power board shortcut (solved by Fabien)
- Batteries did not fit into case (solved by Andre)
- Long delays between ordering and shipping of components (expected)
- Impossible to detect the new Bluetooth cards with the USB sticks (under investigation)

Bluetooth issues are blocking the project.
Experimenting with the wireless robot

With two active modules and a few inactive units, we were able to create some interesting configurations.

Compared to Elmar’s videos, the modules have a different behaviour because they are heavier.

A module autonomy is about 30 minutes (full charge). Charging the battery is a matter of 45 minutes.
Wireless robots
We will improve Bluemove and the modules. Rico Moeckel is working on a scatternet version of the protocol to handle more than 7 modules.

Possible features:

- Realtime control
- Scripting
- Timing blocks
- At long term: sensors, servos, FPGA (wireless programming)
Future development

We will improve Bluemove and the modules. Rico Moeckel is working on a scatternet version of the protocol to handle more than 7 modules.

Possible features:

- Realtime control
- Scripting
- Timing blocks
- At long term: sensors, servos, FPGA (wireless programming)
Future development

We will improve Bluemove and the modules. Rico Moeckel is working on a scatternet version of the protocol to handle more than 7 modules.

Possible features:

- Realtime control
- Scripting
- Timing blocks
- At long term : sensors, servos, FPGA (wireless programming)
Future development

We will improve Bluemove and the modules. Rico Moeckel is working on a scatternet version of the protocol to handle more than 7 modules.

Possible features:

- Realtime control
- Scripting
- Timing blocks
- At long term: sensors, servos, FPGA (wireless programming)
Future development

We will improve Bluemove and the modules. Rico Moeckel is working on a scatternet version of the protocol to handle more than 7 modules.

Possible features:

- Realtime control
- Scripting
- Timing blocks
- At long term: sensors, servos, FPGA (wireless programming)
Conclusion

We enjoyed...

- Working with both hardware and software concepts.
- Discovery of modular robotics and Bluetooth.
- Soldering sessions, electronic and mechanical talks.
- Great atmosphere at BIRG.
Conclusion

We enjoyed...

- Working with both hardware and software concepts.
- Discovery of modular robotics and Bluetooth.
- Soldering sessions, electronic and mechanical talks
- Great atmosphere at BIRG
Conclusion

We enjoyed...

- Working with both hardware and software concepts.
- Discovery of modular robotics and Bluetooth.
- Soldering sessions, electronic and mechanical talks
- Great atmosphere at BIRG
Conclusion

We enjoyed...

- Working with both hardware and software concepts.
- Discovery of modular robotics and Bluetooth.
- Soldering sessions, electronic and mechanical talks
- Great atmosphere at BIRG
We enjoyed...

- Working with both hardware and software concepts.
- Discovery of modular robotics and Bluetooth.
- Soldering sessions, electronic and mechanical talks
- Great atmosphere at BIRG
Questions?