
Towards an improved framework for YaMoR :

Simulation and real-time control

Semester Project
Summer 2004-2005

Cyril Jaquier - Kévin Drapel

Supervisors: Professor Auke Ijspeert, Alessandro Crespi, Andres Upegui

June 21, 2005

Abstract

The Biologically Inspired Robotics Group (BIRG) of the Swiss Federal Institute of Technology
in Lausanne (EPFL) is working on modular robotics. We developed a Java application called
Bluemove to remotely control the first version of the YaMoR modules using Bluetooth. The user
can directly describe the position sent to the servos in a graphical manner. However, despite the
fact that the user can drag the control points in a trajectory, he can only do that with a single
curve at once. We tried to find new ways to improve the control via a scripting and plugins
system with a graph interface. The user can then explore complex behaviors which were not
possible with the first version of the application. Moreover, the commands can be mapped to the
keyboard. As testing new robots can be a tedious job, we also worked on a 3D simulator that
receives information from our Bluemove application and allows the user to quickly try various
configurations in a virtual world.

Towards an improved framework for YaMoR :
Simulation and real-time control

Contents

1 Project description 5
1.1 Introduction . 5

2 Inauguration of the IC building at EPFL 6
2.1 Introduction . 6
2.2 Demonstrations . 6
2.3 Conclusion . 7

3 Eve, the YaMoR simulator 8
3.1 Brief overview . 8
3.2 Simulation in robotics . 9

3.2.1 The gap between simulation and reality . 9
3.2.2 Reviews of some simulated robots . 10

3.3 Introduction to Eve . 11
3.3.1 Physics engine . 11

3.4 Quake maps . 12
3.5 Modeling . 12
3.6 Setting up YaMoR in Eve . 13
3.7 Communication between Bluemove and Eve . 14

3.7.1 Java RMI . 14
3.7.2 Corba . 14
3.7.3 Shared memory . 14
3.7.4 Sockets . 15
3.7.5 XML-RPC . 15

4 Bluemove, further improvements 16
4.1 Introduction . 16
4.2 Possible new features . 16
4.3 Implemented features . 17

4.3.1 Blocks . 17
4.3.2 Function generator . 17
4.3.3 Plugins and real-time control . 17
4.3.4 FPGA programming with Bluemove . 22

5 Hardware issues and improvements 24
5.1 FPGA problems . 24
5.2 Bluetooth problems . 24
5.3 Power supply problems . 24
5.4 Second generation . 25

5.4.1 Replace velcro connectors . 25
5.4.2 Change the way the batteries are charged 25
5.4.3 Smaller batteries . 25

C. Jaquier - K. Drapel 1 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

5.4.4 Small servos . 25
5.4.5 Wires and soldering issues . 25
5.4.6 Multi-layers PCBs . 26
5.4.7 Sensors . 26

A Tutorial: Using Eve with Bluemove 27
A.1 Compilation and installation . 27
A.2 User interface . 27
A.3 XML data . 28
A.4 Step by step tutorial . 28

A.4.1 Step one: setup the simulator and Bluemove 28
A.4.2 Step two: sending data from Bluemove . 29
A.4.3 Step three: editing the robot . 29

B Bluemove short manual 2 30
B.1 User interface . 30

B.1.1 Plugins tab . 30
B.1.2 Script editor . 30

B.2 Tutorial: a small example . 30
B.2.1 Step one: add a new plugin . 31
B.2.2 Step two: edit the plugin . 31
B.2.3 Step three: add options to the plugin . 31
B.2.4 Step four: write a script . 32
B.2.5 Step five: add real-time interaction . 32
B.2.6 Step six: add a plugin to the graph panel 32
B.2.7 Step seven: connect the plugins . 33
B.2.8 Step eight: delete plugin and edit default values 33
B.2.9 Step nine: delete connection . 33
B.2.10 Step ten: evaluation steps . 33
B.2.11 Step eleven: set the FPGA bitstream . 33
B.2.12 Step twelve: play . 34
B.2.13 Optional step: function generator . 34
B.2.14 Conclusion . 34

C. Jaquier - K. Drapel 2 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

List of Figures

1.1 Bluemove, timelines editor . 5
1.2 Bluemove, real-time control and scripts . 5

2.1 The BIRG table during the inauguration of the IC building 6

3.1 The Omni-2 robot . 10
3.2 A screenshot of the SubSim simulator . 10
3.3 Quake III . 12
3.4 View of the YaMoR module mesh . 12
3.5 The six connectors on a module and their respective names in the XML file 13

4.1 Bluemove, the YaMoR controller software . 16
4.2 Plugins design . 18
4.3 Graph representation . 20
4.4 NML, a texture generator . 21
4.5 Virtual waves . 21
4.6 Plugins in Bluemove . 21
4.7 Script editor . 22
4.8 FPGA programming packets . 23

5.1 Not to solder pin . 24
5.2 Capacitors to be replaced . 24
5.3 Patch under a component . 25
5.4 A (large) flat cable. Narrow cables could replace the wires in YaMoR. 26
5.5 Sockets connectors . 26

A.1 The six connectors on a module and their respective names in the XML file 28
A.2 IP and port of the server in Bluemove settings . 29
A.3 Enable the ”simulator” device . 29
A.4 The robot before pressing the ”play” icon . 29
A.5 The robot after displacement . 29
A.6 A new robot . 29

B.1 Plugins tab . 30
B.2 Script editor . 31
B.3 Plugins tab with three modules . 31
B.4 Edit the plugin . 31
B.5 Create an input option . 31
B.6 Create an output option . 31
B.7 Create a parameter . 32
B.8 Create parameters . 32
B.9 Write a script . 32
B.10 Add real-time interaction . 32

C. Jaquier - K. Drapel 3 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

B.11 Add a plugin to the graph panel . 32
B.12 Delete a plugin . 33
B.13 Edit the default values . 33
B.14 Delete a connection . 33
B.15 Evaluation steps . 33
B.16 FPGA bitstream . 34
B.17 Send bitstreams . 34
B.18 Enable the plugins system . 34
B.19 Function generator . 34

C. Jaquier - K. Drapel 4 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Chapter 1

Project description

1.1 Introduction

The aim of the YaMoR (Yet another Modular
Robot) project at BIRG is to construct a wire-
less autonomous modular robot made of several
units. During the winter semester 2004/2005,
we worked on a Java application, Bluemove,
that could remotely control the modules. Using
trajectories drawn by hand, it was possible to
quickly try new configurations and check how
the curves sent to the servos would behave on
the real robot.

Figure 1.1: Bluemove, timelines editor

However, despite the fact that the user can
drag the control points in a trajectory, he can
only do that with a single curve at once. We
tried to find new ways to improve the control
via a scripting and plugins system. The user
can now add processing nodes to a graph
which will be evaluated at each step. These
nodes are either generators, trajectories, filters
and outputs, they affect the signals sent to
the modules. The user can therefore explore
complex behaviors which were not possible with
the first version of the application. Moreover,
the commands can be mapped to peripherals
like the keyboard. As testing new robots can be

a tedious job, we also worked on a 3D simulator
that receives information from our Bluemove
application and allows the user to quickly try
various configurations in a virtual world.

Figure 1.2: Bluemove, real-time control and
scripts

We also had the opportunity to present the
robot and the concept of modular robotics to
the audience during the inauguration of the IC
building at EPFL. We were able to clarify the
directions that should be taken for the second
generation of the modules.

C. Jaquier - K. Drapel 5 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Chapter 2

Inauguration of the IC building at
EPFL

2.1 Introduction

On 21 March 2005, the EPFL inaugurated its
new IC (computer and communication science)
building. Some laboratories including BIRG
were invited to present their projects. About
600 people attended the event and we made
some demonstrations of the modular robot. As
the audience was not strictly restricted to en-
gineers or computer science students, it was
the opportunity to have a feedback about this
project from an external and neutral point of
view.

This event took place a few days after we
noticed some problems with the new FPGA
boards. We will discuss in details about these
electronic issues in chapter 5

Figure 2.1: The BIRG table during the inaugu-
ration of the IC building

2.2 Demonstrations

We created a video of about 3 minutes showing
the work that had been done on the YaMoR
project, including projects by Yvan Bourquin,

Daniel Marbach, Elmar Dittrich, Rico Moeckel
and ourselves. This short video clip was con-
tinuously played on a screen. This way, people
could have a visually appealing summary of the
project.

For the demonstration, four working modules
were available. As we did not have much time
to make an innovative robot, we decided to
build an old model we had called Trebuchet.
We discovered that the Trebuchet could be
quickly transformed into another type of robot
by detaching a single module and attaching
it to the other end. This would make a con-
figuration similar to a sliding stick. We could
therefore show the modularity of the whole
system and how a robot could evolve to another
morphology.

This event was also a good torture test for
Bluemove and the Bluetooth protocol. While
making the first tests at the place where the
event was going on, we noticed that there was
a large amount of Bluetooth cellphones in the
area. This was a situation we had never faced
as in the laboratory where we usually work, the
number of non-YaMoR Bluetooth devices never
exceed two or three units.

We feared this would make interferences with
our robot but finally, this did not have any im-
pact on the communication with the modules.
We only had a few stalls which needed a reset of
the Bluetooth board but this issue was already
known prior to this event.

We could also test the autonomy of the robot.
During the show, the robot was often moving
around. We did not expect the modules to have

C. Jaquier - K. Drapel 6 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

enough energy for more than 90 minutes. The
batteries finally provided a sufficient amount of
power for about 120 minutes. Most consump-
tion was caused by the servos, the Bluetooth
card and the FPGA only need a marginal part
of the batteries energy.

On the other side, this event confirmed
that the velcro connections were definitely too
weak for other purposes than rapid testing and
could not sustain the constraints which are
present in such a modular robot. Attaching and
detaching the modules to present new robots
quickly worn out the velcro connections. At the
very end of the show, the connections would
barely stand the weight of a single module.
A reconfigurable and robust solution is hence
strongly recommended for future versions of
YaMoR modules.

2.3 Conclusion

People have shown interest into this project.
Many of them asked us about the applications
of modular robotics which was a fresh concept
for them. We tried to show that there was
a strong link between nature and this type
of robots, and how adaptation could occur in
various environments thanks to the reconfigura-
tion. Unfortunately, it was not possible to show
an automatic reconfiguration as the YaMoR
project is still in an early stage of development
and modules do not have this feature yet.

We were glad to be able to show this project
to attenders of this inauguration. While hu-
manoid robots such as Asimo or mammal-
like robots (Aibo) are often present in medias
or movies thanks to the Japanese efforts in
this field, modular robotics is less known and
may positively surprise people who never heard
about such researches.

C. Jaquier - K. Drapel 7 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Chapter 3

Eve, the YaMoR simulator

3.1 Brief overview

Professor Ijspeert suggested that it would be
convenient to have a simulator where one
could test the trajectories drawn in Bluemove.
Previous works on YaMoR simulation were
done by Yvan Bourquin and Daniel Marbach
but they focused on evolution and exploration
of new configurations. Interaction with the
user was mainly restricted to setting initial
parameters for the evolutionary algorithms.
Our simulator aims at filling the gap between
the user and the virtual robot while it is
moving. The current version of our simulator
works with the same configuration during
runtime (ie. no morphological evolution)
but the way the modules are connected can
be quickly changed to conduct a new simulation.

A simulation offers many advantages :

• one can test an infinite set of configurations
with a large number of modules

• a simulation is quickly launched compared
to assembling and configuring real modules
by hand

• a real modular robot autonomy is limited
and will not last for more than two hours

• YaMoR connections are weak and real
robots tend to lose some modules while
moving, a simulation is not subject to these
issues

• the same robot can be tested in various en-
vironments (flat floor, stairs, etc.) with dif-
ferent parameters such as gravity

• the user can visualize the effects of trajecto-
ries on the robot motion, he can then mod-
ify these trajectories

• the simulator can be extended to include
new commands such as reconfiguration or-
ders

• the simulator may help to test new hypoth-
esis and features like sensors, neural net-
works, etc.

• a complex simulation could be performed
and visualized on a computer while con-
trolling is done on another computer, the
low bandwidth traffic between the two ma-
chines would be restricted to simple com-
mands such as position of the servos

Unfortunately, virtual robotics also brings its
own list of problems which are mostly related to
physics :

• numerical instabilities due to the physics
engine, especially its integration scheme

• noise, imperfections, friction are difficult to
reproduce and setting them aside would not
be realistic

• collisions in the physics engine may lead
to unexpected motions, this is caused by
the simplified shape, weight balance in the
meshes representing the modules as well as
improper restitution after collisions

• applying the same trajectories on the real
robot will produce a different motion, ini-
tial conditions are important

• a good and accurate simulation with many
modules may need a powerful computer,
though this is not a big deal with modern
hardware

We will now discuss the pro and cons re-
lated to simulation in robotics. We will also

C. Jaquier - K. Drapel 8 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

talk about the implementation of our simulator
called Eve1

3.2 Simulation in robotics

Robotics is a field where simulation is very
important. It allows the researchers to check
whether their assumptions are correct and
test new ideas without any specific hardware.
Most of them make intensive use of physics
libraries like ODE, Tokamak, Newton or Havok
(commercial). Many projects including some at
BIRG use the application Webots developed by
Cyberbotics.

Physics on a computer is though prone to
numerical errors and the mapping from the
simulation to the real robot is a complex
problem. Libraries like ODE are not designed
for engineering problems but rather real-time
applications like games where a large margin
of error is acceptable. The physics is also
simplified to speed up computation. It is
difficult to properly simulate a complex system
like a robot when some restrictive hypothesis
are set on the software side.

3.2.1 The gap between simulation
and reality

Natural imperfections are also extremely dif-
ficult to quantify. Noise is inherent to all
real physical phenomena but these chaotic
aspects are hard to insert into a simulation
without bringing instabilities or unwanted side
effects. Servos are not perfect and a small
glitch in the gears may lead to an unexpected
motion. We have noticed that the current
prototype of YaMoR module is highly sensitive
to parameters related to friction. This is due to
the design of the case where pads, legs or hooks
are missing. The modules are mainly sliding
on their sharp edges. The surface in contact
with the medium is hence drastically reduced
compared to other kind of robots where the
contact area is larger (robots with wheels or
tracks such as on the Millibot modular robot).

Some YaMoR configurations take advantage
of the sliding properties of the current prototype

1named after the Adam framework by Daniel Mar-
bach

to move forward. Without sensors, the robot
has no feedback about the effect of friction
on its motion. Adding real-time monitoring
together with an advanced processing to cope
with unreliable measurements could help the
robot to recover from errors and unwanted
situations. For more information on the latest
point, we invite the reader to explore [8] and its
references.

In conclusion, tribology2 is a vast field which
is unfortunately too complex for real-time
simulations. To some extent, it could be
included in a non-real-time simulation but in
that case, one loose the user interaction that
we were looking for. In physical routines like
those implemented in ODE, some efforts have
been put into adding a basic support for things
like friction with a simplified Coulomb model
and parameterizable restitution.

But most problems with ODE and other
physics engines are caused by numerical errors
which may lead to unstable simulations where
objects are exploding. This is particularly
visible with joints moving away from their orig-
inal axis and producing an oscillating motion.
ODE provides some parameters to reduce these
problems without completely fixing them. On
the other side, this may look more realistic as
YaMoR modules are connected using velcro.
These connections proved to be quite weak in
some situations where forces are acting on a
direction parallel to the connector. Such forces
on the velcro induce loose joints.

With some fine-tuning, one is able to produce
satisfying results but tests and validation on
the real hardware are undoubtedly needed. It
would be interesting to minimize the errors be-
tween the virtual robot and its real counterpart
by tweaking the physics and objects settings.
However with the numerical problems in mind,
it is probably impossible to find a fixed set
of parameters for the physics engine that will
nicely work for all possible configurations.

2tribology is the science of friction, lubrication, and
wear

C. Jaquier - K. Drapel 9 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

3.2.2 Reviews of some simulated
robots

It would be pretentious to give a complete list
of all simulations done in robotics. Robotics
is tightly related to numerical analysis and
computations performed with the help of
computers. But nonetheless, it is interesting
to pick a few projects and check how their
teams managed the simulations. Obviously,
many of them have features that target a par-
ticular robot but some ideas can be expanded
to other types of robots. We also examinate
how some concepts could be mapped to YaMoR.

EyeSim

EyeSim is simulator which can handle more
than one type of robot. It is comparable to
Webots. It has been developed at the Mobile
Robot Lab of the University of Western Aus-
tralia at Perth [10]. The simulator is quite
simple and uses OpenGL. The controlling is
more interesting with a TCL/TK software that
provides a visualization of the sensors values
and allows tweaking the error models. As their
vision-based robots makes an intensive use
of sensors via distance detection and camera,
they had to find ways to properly take noise
and perturbations into account. A zero-mean
Gaussian noise is simply added to the loco-
motion signals. The simulator has been used
with several robots including a strange looking
wheel-based vehicle, the Omni-2.

Figure 3.1: The Omni-2 robot

Another point that is worth mentioning is
that they also created an error model for the
wireless communication, they call it ”channel
noise” and their model reflects a binary sym-
metric channel. While this sounds appealing,

it would be difficult to adapt such errors to a
Bluetooth communication for the YaMoR sim-
ulator. The Bluetooth protocol is complex and
provides error detection schemes with packets
being sent again in case of corruption. This
would add a large overhead to the simulator for
a small gain. On the other side, one could use
a simplified model based on distance between
the transmitter and the modules. A YaMoR
module could be ”disabled” from time to time
during a short period and hence reproduce
problems with transmission.

In our simulator, transmission is supposed to
be reliable. However, due to the underlying
protocol, packets never arrive at the same time
from Bluemove. These small delays bring a non-
determinist component into the application, but
synchronization is still enabled as Bluemove will
wait an acknowledgment from the simulator be-
fore sending another position.

The team of EyeSim also included multi-
threading and synchronization between robots.
Interaction between YaMoR modules is some-
thing that will probably be addressed in the
future. We did not add any support for syn-
chronization between modules in our simulator
as this feature is not available in our control
software, Bluemove, as well as in the FPGAs
mounted on the modules.

SubSim

SubSim is an autonomous underwater vehicles
simulation which was developed by the same
laboratory at Perth and which is freely dis-
tributed.

Figure 3.2: A screenshot of the SubSim simula-
tor

One interesting feature is the use of XML files
to store the data and settings about the objects.

C. Jaquier - K. Drapel 10 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

In our simulator, we also used XML as it was a
convenient choice compared to binary files. We
will discuss in details about XML in the next
section. SubSim comes with an API called Eye-
Bot, it acts like an emulator for the embedded
code present on the micro-controllers and a sys-
tem of plugins allows the user to expand the
behavior of a robot. We encourage the reader
to browse the homepage of this laboratory [3] as
many other simulations are available.

3.3 Introduction to Eve

Our simulator, Eve, is based on ODE (Open
Dynamics Engine) and an open-source 3D en-
gine called Irrlicht. It is written in C++. We
wanted to build a realistic simulator that would
allow the user to insert the robot inside a com-
plete virtual word. Most simulators have a sim-
ple world consisting of a simple floor and at best
a few static obstacles. As a modular robot could
be deployed in various situations such as a res-
cue mission in a hostile environment, we decided
to implement this feature using Quake III maps.

3.3.1 Physics engine

There are not many physics engines of quality
that can be implemented in real-time applica-
tions such as simulations or games. Well-known
libraries are ODE, Tokamak, Newton and
Havok. Unfortunately all of them but ODE are
not open source engines. Havok is an expensive
physics engine while Tokamak and Newton
have restrictions on their license and do not
provide their source code.

ODE (Open Dynamics Engine) is an open-
source physics engine. It is mainly dedicated
to simulations and games that use rigid bodies
connected with joints. Collisions are handled
using hard contacts.

YaMoR servos are not perfect from the me-
chanical point of view and the lack of encoder do
not allow the correction of errors. Updating the
servo position in ODE is done by giving a speed
which is computed using the difference between
the actual and the desired position. As there
is no generic method to simulate flaws in actu-
ators, we first used an uniform noise between
-1 and 1 degree. This is a smaller value than
what is usually proposed in the literature for

sensors (about 5%) as suggested in [14] and [15].

We then noticed that something comparable
to noise was already brought by the delays
between the packets sent to Eve from Blue-
move. While the transmission is reliable, the
time between two remote commands always
fluctuate. This depends on several parameters
such as processor speed, network load, etc. If
the update arrives a few milliseconds before
what is expected, the behavior will be different.
Accordingly, we decided to remove the noise on
the servos.

ODE dimensions and parameters have been
converted to S.I units. The integration step
must be set between 1/500th and 1/700th of
seconds. Unfortunately, converting to S.I units
also decreased the frame rate of the simulator.
Before the conversion, a physics step of 1/700
was used but ODE was updated only every
1/300th of seconds. This way, we could keep a
smooth frame rate at the cost of non S.I values.
As S.I values are more convenient to deal with,
the XML file contains values in S.I units.

To deal with the performance vs. accuracy
concept, we introduced two parameters in the
configuration of Eve (eve config.xml). One
tag is called ”steps” and another is called
”substeps”. The first one is equal to 1.0 over
the ODE integrator step while the latest is the
rate of ODE update. For example, if ”steps” is
set to 1000 and ”substeps” is set to 100, it will
mean that an integration is performed every 10
milliseconds with a 1 millisecond integration
delta. This can dramatically increase the frame
rate of the simulator but will spoil the S.I units.
Everything is consequently scaled. If the ratio
between the ”steps” and ”substeps” is 10, the
gravity must be multiplied by 10. To keep
S.I units, these ”steps” and ”substeps” must
be equal, above 500 but expect the rendering
performance and response to drop.

If the computer can not achieve the physics
rate, several integration steps will be computed
before rendering the frame. The physics do not
have its own thread and is inserted inside the
main loop of the simulator together with the
rendering calls. For example, if the last frame
was rendered 7.5 milliseconds ago, we would call
two times the integrator and then render the
virtual world. The remaining 1.5 milliseconds

C. Jaquier - K. Drapel 11 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

are reported to the next frame. Using what
is called a canonical loop by game developers,
we achieve a constant rate on any computer.
The same system is used for the rendering.
Constant steps are also recommended for
physics as they usually produce less numerical
problems, adaptive steps are less predictive in
terms of stability3.

3.4 Quake maps

Quake III is a game developed by ID Software
where the player must shoot enemies moving
inside rooms and corridors. There is a large
community around this game on the Internet
and many free maps are available. These worlds
contain many interesting architectural construc-
tions like stairs, pipes, holes or pits, bridges, etc.
We decided to use the demonstration version of
Quake III, all data (textures and four maps) are
contained in a zip file that can be freely dis-
tributed.

Figure 3.3: Quake III

Irrlicht, the 3D engine we used for this simu-
lation, can load Quake maps. The import code
is not perfect, it misses some features present in
Quake maps such as Bezier patches (curved sur-
faces) or sprites, but the remaining geometry is
correctly loaded and is largely sufficient. Most
of the job came down to linking the geometry
of a Quake level with the collision system of
ODE. It is basically a matter of extracting the
triangles using Irrlicht and converting them
to a Trimesh structure provided by ODE. We
noticed that some triangles were defined in a
clockwise way and others had an anti-clockwise

3dividing the integration step by two do not mean the
accuracy will be doubled

order. This produced unexpected collisions
where the robot would dive into the floor as
the normal was inverted. It was corrected by
setting all triangles to a consistent vertices
order.

At first, we thought that limiting the num-
ber of triangles sent to ODE would improve the
performances, a normal Quake map can contain
up to 15000 triangles, this amount can be much
larger and sometimes reaches 50000 triangles for
complex levels. But we noticed that creating a
new collision mesh for each frame using a bound-
ing sphere around the robot would not improve
the speed. We thus removed this code overhead
and used a single Trimesh for the whole Quake
level, ODE optimizes the collisions thanks to its
hash space support.

3.5 Modeling

To add more realism to the simulation, we de-
cided to build a fully textured mesh represent-
ing a YaMoR module using 3DSMax. This low-
poly object is made of about 200 triangles and
do not take much time to be rendered on mod-
ern graphic cards. The main mesh is only used
for rendering, the collisions are performed on a
simplified mesh consisting of a cube. Using a
mesh of 200 triangles dramatically reduce the
frame rate when collisions are happening. With
a rough approximation of the shape, no slow-
down is happening when many collisions are de-
tected.

Figure 3.4: View of the YaMoR module mesh

The meshes (in 3DS format) are then im-
ported into Irrlicht and can be easily added to
the main scenegraph.

C. Jaquier - K. Drapel 12 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

3.6 Setting up YaMoR in
Eve

The robot configuration is stored in a XML files.
It is described as a tree. Each module has 6
faces: the 4 sides, the bottom face and the lev-
eler. These connectors have been given names
which are used in the XML file (see on figure
3.5).

Figure 3.5: The six connectors on a module and
their respective names in the XML file

In his evolutionary simulator Adam, Daniel
Marbach used his own text format to describe
the initial configuration of the robot. We
decided to build another format based on XML
instead of relying on a format that would need
an additional parser. Our robot description is
also much easier to use compared to Daniel’s
approach as the user do not have to give the
numerical values of angles and positions. The
user just needs to provide the names of two
modules and their respective connectors, an
angle around the pivot of the connection is also
necessary. Eve will then automatically align
and move the modules to match the connections
settings. This way, a robot can be quickly set
up and will not need much fine tuning before
finding the correct configuration.

A possible configuration in XML may look
like this :

<?xml version="1.0" encoding="ISO-8859-1"?>

<eve>

<modules>

<address value="424952470001" alias="head"/>

<address value="424952470002" alias="body1"/>

<address value="424952470004" alias="body2"/>

<address value="424952470005" alias="tail"/>

</modules>

<connections>

<connection moduleA="head" moduleB="body1"

faceA="FACE_0" faceB="FACE_2"

angle="0"/>

<connection moduleA="body1" moduleB="body2"

faceA="FACE_2" faceB="FACE_3"

angle="0"/>

<connection moduleA="body2" moduleB="taile"

faceA="FACE_0" faceB="FACE_BOTTOM"

angle="0"/>

</connections>

</eve>

Each module has its own alias and this alias is
then used to describe the connections. The user
do not have to follow a special order to specify
the connections. He must just avoid creating
connections which produce cycles as we will see
later.

Aligning connectors

Each face has a normal in the object space,
an additional up vector is necessary to define
a complete referential4. The center of each
face is also known. The alignment between
the face A and face B is based on quaternions.
Quaternions are a convenient way to rotate ob-
jects around an axis. They are an extension of
complex numbers with one real component and
three imaginary values. The imaginary values
can be compared to an axis in 3D and the real
value is the angle of rotation around this axis.
One advantage with quaternions is that they
avoid the gimbal-lock problem caused by Euler
angles5. A gimbal lock occurs when two main
axis are aligned, this is caused by the successive
evaluation of the x, y and z rotations with Euler
angles. In some cases, one reference is canceled
and the direct consequence is a wrong rotation.

For more information about quaternions, the
reader is invited to read the pages available at
this link [1].

The normals are ~nA and ~nB . The up vectors
are ~upA and ~upB . Aligning two faces is per-
formed via the following operations :

1. Normalize all normals and up vectors

2. Compute the crossproduct ~nAB between
the two normals ~nA and ~nB

3. Compute the angle between the two nor-
mals : θ = acos(~nA · ~nB)

4. Define a quaternion q1 with angle θ and axis
~nAB

4the third side vector can be obtained via a cross
product

5Euler angles define angles on the x, y and z axis

C. Jaquier - K. Drapel 13 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

5. Transform the referential of both faces us-
ing the quaternion q1. The faces are now
aligned but the angle of rotation around the
connector is still undefined.

6. Compute the angle between the two up vec-
tors : ρ = acos(~upA · ~upB)

7. Define a quaternion q2 with angle ρ and axis
~upAB

8. Transform the referential of both faces us-
ing the quaternion q2. The faces are now
completely aligned and the angle of rota-
tion around the pivot axis is consistent.

9. Displace the second module to match the
position of the first face.

Note that the description above lacks some
tests in case of degenerated results (colinear nor-
mals or up vectors). These tests are actually
performed in the code.

Restriction on cycles

The only restriction with our system is that
cycles are not allowed. Robots based on cycles
only represent a small part of all possible
configurations. We also noticed that a config-
uration such as the ”wheel” (Elmar Dittrich)
heavily rely on the fragility of the velcro
connections. With robust connections and stiff
servos, getting the same effect would need an
accurate synchronization between the modules.
We consequently decided to discard this type
of configurations.

3.7 Communication be-
tween Bluemove and
Eve

Bluemove is completely programmed in Java
(JDK 1.5) while Eve is in pure C++. Interfac-
ing between two applications written in these
languages is possible using different methods.
We will now discuss about the various choices
at disposal and what we decided to use to send
data between Eve and Bluemove. Our main cri-
teria were simplicity and ease of integration in
both Java and C++ languages.

3.7.1 Java RMI

Java provides its own remote method invocation
implementation : Java RMI. Without an addi-
tional Corba-related layer called IIOP (Internet
InterORB Protocol), the original RMI is incom-
patible with applications which were not written
in Java. We left this solution apart due to its
complexity (see the next section about Corba).
A server first needs to launch a naming service
(comparable to a port listener) and then the
server itself can be executed. The client will
then have to connect to the reference provided
by the naming service.

3.7.2 Corba

Corba (Common Object Request Broker Ar-
chitecture) is a standard for interoperation
between various languages and different op-
erating systems. It allows remote invocation
of methods and access to objects which are
distributed between applications. Objects,
methods and variables are defined using IDL
(interface definition language). These standard
specifications are then mapped to an imple-
mentation (Object Request Broker) which will
interact with the native language (C, C++,
Java, Python, etc.).

Corba is powerful but adds a lot of complexity
to the whole system. As we had only a limited
experience with Corba, we preferred to find a
simpler solution.

3.7.3 Shared memory

This solution uses part of the memory to
store variables which are shared between the
two applications. Using JNI (Java Native
Interface), it is possible to write some code in
C that will manage the memory mapping. The
main problem with this solution is inherent
to JNI, some non-portable low level code is
necessary to expand the restricted API of Java.

Another problem is that both applications
must run on the same station, with the same
operating system. But shared memory is very
fast and if the real-time constraints were higher,
it would have been a possible candidate.

C. Jaquier - K. Drapel 14 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

3.7.4 Sockets

Sockets are basic communication primitives
that open ports where one can write or read
data using a TCP/IP protocol. For example,
a server creates a socket on port 1234 and the
client an access to the port 1234. It can also
specify an IP address, it is hence quite easy to
make an application that will be deployed in
a network. Sockets are available in most pro-
gramming languages and several free libraries
provide the needed functions. The Java API
has a namespace dedicated to communication
and a complete library to handle sockets by the
mean of data streams.

The main problem with sockets is that they
are operating at a low level and a real protocol
must be added. They were our main solution
until we find the XML-RPC protocol.

3.7.5 XML-RPC

This is the solution we adopted for the interop-
eration between Eve and Bluemove.

XML-RPC is similar to Corba or Java RMI
except that the protocol uses calls encoded
in XML over HTTP. It is also much simpler
than Corba6. XML-RPC was first created
by Microsoft which then evolved it to a more
advanced version (SOAP) [18]. XML-RPC is
available in many popular languages, most im-
plementations are free or open source libraries.
For Bluemove, we use the Apache XML-RPC
Java implementation, Bluemove operates in
client mode. Eve is the C++ server, XML-RPC
is provided by a library on Sourceforge called
XML-RPC for C and C++.

XML-RPC basically allows one to perform
remote method invocation with a set of param-
eters. The client communicates with the remote
server by sending XML documents to an address
such as : ”http://128.178.45.154:9999/RPC2”.

The methods are registered by the server,
each function receives a name and a pointer to
the function is kept. The XML-RPC server is
then launched in its own thread. In Eve, we
have for example a method called ”eve.ping”
which accepts two integers and returns the sum

6The specifications of XML-RPC lies on a few pages
while Corba requires several books

of these two values.

Several types have been defined, they are suf-
ficient for most applications :

• array (composite)

• base64

• boolean

• date/time

• double

• integer

• string

• struct (composite)

The composite types can contain other types.
In other words, it is possible to create an
infinite set of parameters. For Eve, we only
needed an array containing the information
about each module (string for the address and
double for the position).

Setting up the parameters and executing a
call from Bluemove is quite simple, one just
needs to create a vector with all parameters,
provide the URL and the remote method name
and execute the call. When the server receives
the XML document, it dispatches the call to the
proper function which will then ”decompose”
the parameters and store them in variables.
The server and client must agree on the types
of the variables otherwise cast errors happen.

On the whole, it would be straightforward
to add new methods if new features would be
added to the simulator. One drawback of XML-
RPC is that it needs more bandwidth than con-
ventional RMI due to the XML encoding. Our
experience with the protocol shows it is not a
concern with a good network. A more crucial
point with the simulation in mind is the ping
value between the client and the server. De-
lays have a direct impact on the response of the
simulator. High and varying pings will produce
jerky motions in the simulator. This is the case
when using two computers over a wireless link.

C. Jaquier - K. Drapel 15 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Chapter 4

Bluemove, further improvements

4.1 Introduction

Bluemove is the application we developed dur-
ing our first project on YaMoR. This software
has been rather well tested during the project
and the inauguration of the IC building at
EPFL (see Chapter 2). Every time, Bluemove
gave us entire satisfaction. A screenshot of this
application is shown on Figure 4.1.

Figure 4.1: Bluemove, the YaMoR controller
software

We already planned lots of features but had
no time to implement them during the winter
semester. We preferred to have a more solid
framework rather than a weak structure with
several half-finished features. One of the goal
of the summer project was to add some of these
features.

As of the end of the winter project, Bluemove
allows the user to

• easily draw trajectories with the mouse

• inquiry for available YaMoR units

• create the description of the modular robot

• view the log messages printed in a nice con-
sole

These are the minimal features required in or-
der to efficiently build modular robots. In the
next sections, we will discuss in more details the
new features available in Bluemove.

4.2 Possible new features

Right after the inauguration of the IC building
(see Chapter 2), we did a meeting with Auke,
Andres and Alessandro to talk about the direc-
tions to take during this semester. One of them
was to implement new features into Bluemove.
The following list summarizes the possible fea-
tures that emerged from the meeting. We al-
ready had most of them in mind during our first
project but they were not clearly defined.

• blocks in the timelines (loops, ping-pong,
etc)

• real-time control of the units

• plugins

• data import/export

• integration with a simulator

• scripting

• FPGA programming with Bluetooth

We chose to implement real-time control,
plugins, scripting and the integration with
a simulator. FPGA programming is part of
another semester project [12] but was also
integrated into Bluemove. Data import/export
did not seem very useful for the moment and
would have served the same purpose as the

C. Jaquier - K. Drapel 16 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

integration with a simulator.

The next section will cover the implementa-
tion of these features into Bluemove.

4.3 Implemented features

4.3.1 Blocks

Due to lack of time and redundancy with the
real-time module, we decided to discard this
feature and concentrate on more important
features. It is still possible to produce loops
or other timing blocks with dedicated plugins
inserted in the control tree. For example, a
plugin could act as a multiplexor that would
switch between many inputs according to keys
pressed by the user, by looking at a counter or
at the current frame.

We also think that the purpose of the timing
blocks was to allow using different gaits. Blocks
in the timelines could not change during runtime
while blocks in the real-time control are subject
to actions performed by the user. The interac-
tion with the user and the robot is coarser with
fixed timing blocks in timelines, an issue that is
solved with the real-time control.

4.3.2 Function generator

At the end of the winter semester, one feature
was cruelly missing in Bluemove: a mathe-
matical trajectory generator. We noticed that
during our tests, we often had to draw sinu-
soidal signals with shifted phases/frequencies.
This was a tedious task and each time we
wanted to change the frequency of a module,
we had to completely redefine its keys.

Using a free project called Math Expres-
sion String Parser (MESP) [16], we could
add a simple but effective mathematical gen-
erator. MESP allows writing the expres-
sions in a handy way compared to Java syn-
tax. For example in Java, one could write
Math.sin(x*x*x+Math.PI). In MESP, the later
is written using sin(x3 + PI) which is closer to
what is usually seen in mathematical softwares
such as Matlab, Octave or Mathematica. MESP
allows mapping a numerical value to a string. It
is then extremely easy to add constants and new
variables which will then be mapped to their

textual counterpart. Evaluating the formula is a
matter of calling a single function and we really
enjoyed the way MESP was designed. It helped
us a lot during the inauguration (cf. Chapter
2). We could quickly set up new trajectories in
a few seconds and demonstrate to the audience
the results on the robot.

4.3.3 Plugins and real-time con-
trol

Bluemove allows to draw trajectories for each
unit. The user can change the keys positions
while playing allowing a kind of real-time
control of the modular robot. We are able
to reproduce basic gaits or speed control as
demonstrated on the serpent video [7]. How-
ever, these manipulations are quite limited as
it is only possible to move one trajectory key at
a time.

The idea of plugins and real-time control is
to have higher level functions which act on the
whole curve or a set of curves. For example,
the user could set an amplitude filter on a given
trajectory. We can go a step further and change
the amplitude parameter while playing the
timelines. This parameter could be obtained
from another curve output (coupled oscillators)
or from an user input such as keyboard or
mouse events.

With the combination of multiple filters, in-
puts, generators and outputs, it is now possible
to control the movements of a modular robot in
a very flexible way.

Core

This is the main part of the plugins system.
Even without the graphical user interface (see
below), it would be possible to setup a fully
working plugins graph. As this part really
needed to be well designed, we spent quite a
lot of time in order to find the best classes
organization. The final model is presented on
Figure 4.2 in an UML like diagram.

There are mainly three singletons:
PluginsFactory, PluginsManager and
GraphManager.

The PluginsFactory is responsible for
the creation of the plugins. It receives the

C. Jaquier - K. Drapel 17 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

PluginsFactory

+createPlugin(id)

Plugin
+script

+options

OptionScript

PluginsManager
+plugins

+createPlugin(id)

GraphManager
+connections

+createConnection(in,out)

Connection
+input

+output

Figure 4.2: Plugins design

plugin identifier and generates it by taking the
information from a XML file (see below). In
order to create a plugin, the PluginsFactory
generates the needed Option, Script and
Plugin instances. It then merges the options
and the script into the plugin. It is important
to notice that each generated plugin is different
from another plugin of the same type. In other
words, two plugins of the same type do not
share any data. Some objects should have been
shared. For example, the script object is always
the same for a given type of plugin. But for
sake of simplicity, we have decided not to do
it. PluginsManager also implements a kind of
cache. For example, when trying to retrieve a
script, a query is sent to the cache. In case of
cache miss, the script is read from the XML file.
Otherwise, the cache returns a new instance
of the script object. The same mechanism
happens for every components of a plugin such
as the type, the inputs or the outputs.

The PluginsManager takes care of the
created plugins via a linked list. It also
redirects the plugin creation requests to the
PluginsFactory. When the user edits a script,
the PluginsManager is responsible of the
propagation of the modifications. This is due
to our choice of not sharing objects between
plugins.

The GraphManager is charged of the creation
and maintenance of the connections between the
plugins. It is also responsible of the execution
of the scripts in the right order and propagate
the data between plugins. This is not a trivial
task and requires good knowledges in graph
theory. However, by adding some constraints,
it is possible to implement simple algorithms
which will explore the graph the right way.
Moreover, we needed a quick algorithm in
order to calculate the plugins transformations

between two steps without significant slowdown.

We added the following constraints.

• Only one connection per option.

• No cycles allowed in the graph.

The first one is not a limitation but rather a
simplification in the graph management. This is
the case not only for the programmers but also
for the user who does not have to think about
how many connections he can set for a given
option. It also avoids to deal with a crowded
tree which would be difficult to visualize.

The second constraint is a limitation which
allowed us to implement a quick and simple
algorithm for graph evaluation. However, part
of this limitation can be circumvent. In fact, a
feedback loop can be useful so as to memorize
a state by propagation to the next step. For
example, state machines, which are often used
in algorithms, need such a feature. It is im-
plemented in BeanShell using static variables.
The idea is to use persistent variables that keep
their value between each call to the eval()
method. We thus set the default value of each
persistent variable before the first evaluation
of the scripts. Afterwards, the last value of
the variables are used in the next evaluation
step of the plugin. For example, assume a
variable named foo with a default value of 0.
A script performs a simple incrementation and
prints the result, say foo++; print(foo);.
On the first iteration, the printed value
will be 1. After the next step, the value of
foo is still memorized and the script will print 2.

The algorithm is described in Algorithm 1.
We first add the output plugins to the exe-

cution list and set their state to ready. These
plugins are the main sources of data and do
not depend on others plugins. Then, we iterate
over the plugins until all of them are ready.
A plugin is ready when all of its predecessors
are already in the ready state. It means that
all the required inputs are updated and that
the plugin has all the data needed to compute
its own outputs. An infinite loop in the while
statement indicates the presence of one or more
cycles in the graph. This is checked before the
start of Algorithm 1.

C. Jaquier - K. Drapel 18 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Algorithm 1 Graph evaluation
1: clear the list execList
2: for all plugin in plugins of type OUTPUT

do
3: set plugin ready
4: add plugin to execList
5: end for
6: while not all plugins are ready do
7: for all plugin not in execList do
8: if all plugins connected to the inputs of

plugin are ready then
9: set plugin ready

10: add plugin to execList
11: end if
12: end for
13: end while

A simple optimization is to run the Algorithm
1 only once and store the plugin order into a
list. Then, a simple iteration over this list will
evaluate the plugins in the right order. We
implemented this optimization into Bluemove.

We also added the possibility to run the
script more than one time per step. This can be
really useful when using the plugins system as
a trajectories generator because you often need
to integrate values. In order to avoid too high
integration steps which make the integrator less
stable, a possible solution is to run the script
several time per step using a small delta.

Several solutions were discussed for the script
implementation. We wanted an easy scripting
language, a lightweight and well-documented in-
terpreter offering good performance. Four solu-
tions were considered.

• Jacl: Tcl Java implementation [4]

• Jython: Python Java implementation [9]

• Rhino: JavaScript Java implementation [2]

• BeanShell: Java source interpreter written
in Java [13]

Jacl is a Tcl interpreter. As Tcl is not widely
used and we lacked good knowledges in this
language, we quickly skipped this solution.
Moreover, Jacl performances seemed to be
really poor.

Jython would have been a more reasonable
solution. The Python language is really effi-
cient for scripting. Despite all its advantages,
Python is still marginal and the goal of Blue-
move was to facilitate as much as possible
its usage. On the other side, Jython looked
like a convenient solution if speed was a concern.

Rhino is the JavaScript interpreter of the
Mozilla project. Lots of people associate
JavaScript with web page programming. But
this scripting language can be used for ap-
plication scripting with the help of Rhino.
Rhino was a good candidate for our needs.
JavaScript is widely used and quite similar to
Java. Moreover, Rhino performances are really
good but it is quite complex to integrate and
use. We preferred to focus on a solution with a
small learning curve.

We finally chose BeanShell. BeanShell is a
scripting language for Java. It has been recently
approved by the Java Community Process as the
standard JSR-274. It will be thus integrated
in the future J2SE. Its parsing and interpret-
ing performances are not as high as the routines
provided by Rhino but they are nonetheless rea-
sonable. BeanShell is really easy to integrate
into a Java application too. The script is a sub-
set of the Java language except for some handy
shortcuts which allow the user to quickly write
scripts. For example, one do not need to declare
variables. With BeanShell, a simple routine will
be written this way:

i = 10;
while(i > 10) {

print(i);
i--;

}

In pure Java, the same example would have
been written as follow:

int i = 10;
while(i > 10) {

System.out.println(i);
i--;

}

Of course, BeanShell perfectly interprets the
pure Java form. As it optionally accepts typed
variables, we did not set a specific type to the
plugin option. We thought BeanShell would
make the necessary casts for us. In practice,

C. Jaquier - K. Drapel 19 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

it did not work as well as we expected. To han-
dle these conversions, we introduced a type for
each option. The user can choose between the
following types:

• int

• float

• double

• char

• String

• Object

Additional types can easily be added but the
ones we are providing should meet most user
needs. It is always possible to use the Object
type for any other type. The user must check
that the corresponding cast is correctly done
in the script. The input and output plugins
for the modules always take a double value for
their actuators.

Two variables are global and can be accessed
in any script. The first one is the variable
named t. It represents the current frame.
This is useful when the user wants to generate
trajectories with a plugin. A possible script
example could be out = 50 * Math.sin(t);.
Another use of this variable could be to
generate an event at a given frame. A
simple trajectory multiplexer could be
if (t < 100) out = in1; else out = in2;.
This can replace the blocks as explained in
Section 4.3.1. The second one is an array of
256 boolean values which contains the state
of the keys. This variable is called keyTable.
Thus, a plugin can react to the user inputs.
The following script shows a possible example.

if (keyTable[(int) ’,’]) {
offset -= 1;

}
else if (keyTable[(int) ’.’]) {

offset += 1;
}
out = 100 * Math.sin(t) + offset;

In order to catch the key events, the mouse
must be on the plugins panel. A global key
listener could have also done this task but we
found that catching the key events only when
the plugins panel has the focus was a cleaner

solution. It also allows the user to edit prefer-
ences while playing without interfering with the
real-time control system.

GUI

Bluemove was designed with simplicity in mind.
So we had to find a user friendly interface
for manipulating the plugins. Our first idea
and probably one of the best was a graph
representation as shown on the Figure 4.3.

Plugin 1

Plugin 3

Plugin 2

Plugin 4

Figure 4.3: Graph representation

This kind of representation allows a good
visualization of the data flow and an easy
edition of the connections between plugins.
However, it is not the easiest user interface
to program. There are lots of graphical com-
ponents to draw and several mouse events
to take care of. Invalid user operation such
as connecting an input with another input
should also be detected during the graph con-
struction. All of these operations are not trivial.

An alternative solution would have been
a scripted language to describe the different
plugins and their connections. This solution is
a way easier to implement but is more difficult
for the user to learn. This is definitely not the
philosophy of Bluemove.

We looked at different softwares which use
this kind of graph representation. Figure 4.4
shows NML [5], a texture generator developed
by Kévin Drapel. NML takes advantage of
graph representation to easily generate complex
textures. The user can choose between several
kind of plugins such as function generators,
filters or blending boxes. The texture is then
saved as a graph representation and a small
decoder is available to regenerate the texture in
any C/C++ software.

C. Jaquier - K. Drapel 20 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Figure 4.4: NML, a texture generator

Another software which uses a graph repre-
sentation of plugins is Virtual Waves[17]. It is
an audio generator. The idea of this software
is quite the same as NML except that the user
creates sounds. Figure 4.5 represents a screen
shot of this application.

Figure 4.5: Virtual waves

After playing a bit with these two applica-
tions, we were convinced that such a interface
would perfectly match our needs in terms of
usage simplicity and representation power.

So, we tried to implemented the same graph-
ical user interface into Bluemove. The panel is
composed of two parts. The first one, on the
left, shows the available plugins using a tree.
The tree representation was chosen because it is
already used in the modules manager (cf. [6]).
Thus, this interface is familiar to the user. The
second one, on the right, is the panel dedicated
to the construction of the graph. You can see
these two parts on Figure 4.6.

Figure 4.6: Plugins in Bluemove

This interface is a front end to the core of
the plugins system. Please refer to the previous
section 4.3.3 for more details. Thus, it is
possible to easily implement a new graphical
user interface. In Bluemove, we focused on
a good separation between the core and the
graphical interfaces.

Every time the user adds a plugin to the graph
panel, a core and GUI plugin are created. The
GUI plugin has a reference on the core plugin so
as to propagate the changes made by the user.
This also applies to the connections. Possible
user interactions are listed below.

• create/delete/modify plugins

• add/remove plugins to/from the graph

• create/delete/modify connections between
plugins

• edit plugins parameters and script

The script editor allows the user to create
and modify plugins. You can see a screen shot
on Figure 4.7.

It is possible to change the name of a plugin,
to create or delete options, set their type and
default value. In order to provide a more usable
editor than a simple textarea component, we in-
tegrated an editor from the UJAC project [11].
This editor gives basic features such as undo,
insert mode or highlight of the current line. A
syntax highlight mode for BeanShell would be
possible but we had not enough time to imple-
ment it.

C. Jaquier - K. Drapel 21 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Figure 4.7: Script editor

Persistence

Every configuration file in Bluemove is a XML
one. You are invited to refer to [6] for more
information. Each plugin is saved with the
project. This allows the user to design project
specific filters without having to care about the
availability of his plugins. The disadvantage is
that the project files take more disk space. But
this is insignificant as the project archives are
packed.

There are three configuration files for the plu-
gins system. The first one takes care of the
persistence of the plugins themselves. Practi-
cally, it serializes the PluginsFactory. The
second one saves the user graph with all its pa-
rameters. It serializes the PluginsManager and
the GraphManager. Below is an example of the
PluginsFactory file.

<?xml version="1.0" encoding="ISO-8859-1"?>

<bluemove>

<plugins>

<plugin id="bd493121-fa26-46a1"

name="Adder" type="STANDARD">

<input name="foo" value="0"/>

<input name="goo" value="0"/>

<output name="zoo" value="0"/>

<param name="state" value="start"/>

<script><![CDATA[zoo = foo + goo;]]>

</script>

</plugin>

</plugins>

</bluemove>

The script depends on the plugin and not on
its instance. For example, you can add two
Adder plugin to the project. If you decide to
change the script to zoo = foo + goo + 10;
then the two instance of the plugin will add 10
to the output zoo. But the default values of the
parameters of a plugin are instance related. For

example, you can set the initial value of foo to
0 for the first instance and set it to 10 for the
second instance. These data are stored in the
second XML files as shown below. Notice that
this file is not valid. It is just an illustration of
the possibilities.

<?xml version="1.0" encoding="ISO-8859-1"?>

<bluemove>

<plugins>

<plugin id="d17e6537-4cd7-4987"

type="bd493121-fa26-46a1">

<option name="foo" value="-50.0"/>

<option name="goo" value="123"/>

<option name="zoo" value="73.0"/>

<option name="state" value="start"/>

</plugin>

<plugin id="3b018a7d-7d1f-4df0"

type="Module2-output">

<option name="Servo1" value="-50.0"/>

</plugin>

</plugins>

</bluemove>

The option tag represents the initial value
of the given option. For consistency’s sake,
the GraphManager is stored into another file as
shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<bluemove>

<plugins>

<plugin id="d17e6537-4cd7-4987">

<pos x="204" y="275"/>

</plugin>

<plugin id="3b018a7d-7d1f-4df0">

<pos x="351" y="158"/>

</plugin>

</plugins>

<connections>

<connection oin="Servo1" oout="foo"

pin="3b018a7d-7d1f-4df0"

pout="d17e6537-4cd7-4987"/>

</connections>

<graphmanager>

<steps value="10"/>

</graphmanager>

</bluemove>

The persistence of the plugins system take ad-
vantage of the XML API already available in
Bluemove.

4.3.4 FPGA programming with
Bluemove

Jérôme Maye did his semester project [12]
about programming FPGA over a Bluetooth
connection using the YaMoR platform. The
main idea was to send the bitstream to the
Bluetooth board and store it into the memory.
Afterwards, the ARM processor programs the

C. Jaquier - K. Drapel 22 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

FPGA using the JTAG protocol. All these op-
erations are done with a modified version of the
Zeevo Zerial software. Thus, we had nothing
to change with the Bluetooth communication
system in Bluemove. Moreover, this allows us
to configure the FPGA directly from Bluemove.
Figure 4.8 represents the packets sent to the
Bluetooth board in order to program the FPGA.

0x43 0x57 Config
Type

Config
Param

Bitstream size

Bitstrm
Param

Bitstream data

1 byte

Figure 4.8: FPGA programming packets

Two bytes that contain an unique sequence
are first sent. The modified Zerial detects
them and switches to FPGA programming
mode. Then, the configuration mode and its
parameters are sent. The next four bytes
contain the bitstream size. A last bitstream
header is sent followed by the data. You can
find more information about this protocol in
Jérôme’s report [12].

For each module in Bluemove, the user
can load a specific bitstream. Afterwards, all
bitstreams are sent with a single manipulation.

This wireless programming is a great improve-
ment for the YaMoR project. An extra com-
puter with the Xilinx software was previously
needed to configure the FPGA. It is now possi-
ble to work with the YaMoR units with a single
computer. One just has to store the .xsvf bit-
stream file somewhere on the hard disk of the
computer.

C. Jaquier - K. Drapel 23 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Chapter 5

Hardware issues and
improvements

5.1 FPGA problems

We only had one problem with the new FPGA
board. Some FPGA designs seemed to work but
most of them hung up the FPGA. After more
investigations, we found out that a pin of the
reset button was soldered on the new cards but
not on the old ones. This caused the reset signal
to be always asserted. Depending on the FPGA
design, this produced a constant FPGA reset.
You can see the pin which must not be soldered
on Figure 5.1.

Figure 5.1: Not to solder pin

5.2 Bluetooth problems

At the end of the winter semester, we could not
communicate with some Bluetooth cards that
had been recently soldered. They were detected
by a mobile phone but the dongles failed to scan
them. The problem was caused by a frequency
shift, the communication was slighty out of the
spectrum window for a normal Bluetooth com-
munication. The mobile phone was probably
more tolerant than the dongles. The Zeevo chip

contains a bank of capacitors that allow fine-
tuning of the frequency, 16 possible values can
be used but we quickly noticed that it was not
sufficient. After reading the data sheet, we dis-
covered that two capacitors around the crystal
oscillator had wrong values. We increased them
from 15 pF to 18 pF as shown on Figure 5.2.
This fixed the communication problems.

Figure 5.2: Capacitors to be replaced

5.3 Power supply problems

We also had problems with the newly soldered
power boards. The 3.3V and 1.2V outputs did
not work. We immediately thought that the
MAX1774 were defect. We spent a lot of time
testing this component as well as the others.
Finally, Fabien Vannel, once again, found the
problem. A well hidden patch had been made
under the FDS8928A on the previous board. Ap-
plying this patch on the new boards solved the
problem. However, André Badertscher preferred
to make a visible, clean patch instead of cutting
the PCB track.

C. Jaquier - K. Drapel 24 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Figure 5.3: Patch under a component

5.4 Second generation

It is clear that the first prototype exhibits many
problems. We have listed some of them in
this report and our document of last semester
[6]. After talking with the different people
who were involved in the project, we have
defined some ways that should be taken for the
next version of YaMoR. The main trend is to
reduce the size of the components as sensors
will be probably added in the second generation.

Here is a non-exhaustive list summing up im-
provements that could be achieved on the hard-
ware. We are just providing guidelines for peo-
ple who would work on this project in the future.

5.4.1 Replace velcro connectors

As already discussed in the chapter about the
inauguration of the IC building, the velcro con-
nections are weak and do not allow reconfigu-
ration. A stronger and better solution is highly
recommended for the second prototype. Ideas
with magnets or mechanical fixing were already
discussed but need more investigations. Several
solutions are possible and one of the most im-
portant question has still to be answered: do we
need self or manual reconfiguration?

5.4.2 Change the way the batter-
ies are charged

During fall 2005, a fire incident was caused
by batteries which were charged in serial. A
battery exploded inside a robot and burnt part
of a room at ASL laboratory. Fortunately,
people who were nearby could restrict the fire.
These batteries were similar to the ones we are

using in YaMoR.

After months of discharging and recharging
cycles, a battery may shortcut and behave like a
simple wire. As the second battery is connected
in serial with this first battery, this single
battery receives the voltage for two batteries.
This extra charge may lead to explosion and
fire. It is hence strongly recommended
to stop charging batteries which are in
serial unless there is a way to perform the
same operation in a parallel way. Old batteries
should be replaced after a few months to avoid
these incidents.

For security reasons, the charging protocol
is something that must be addressed as soon
as possible. For the second generation, there
should be a way to separate the batteries with-
out opening the case and charge them in paral-
lel.

5.4.3 Smaller batteries

Manufacturers now sell smaller batteries with
similar electrical properties. As reducing the
size of the components inside a module is nec-
essary if we want to add sensors, a new battery
model is something to consider for the second
generation.

5.4.4 Small servos

Although it is true that the current servo used
in YaMoR is inexpensive and provides enough
torque for most configurations, one must admit
that it is quickly damaged. A better, smaller but
more expensive servo would be probably a wise
choice as it would leave more room for other
components and would need less replacements
compared to the cheap servos. At the end, the
advantages brought by another servo is probably
worth the extra price.

5.4.5 Wires and soldering issues

Due to the restricted room available in the mod-
ule, wires of the power board hardly fit in the
small gap between the servo and the top of the
module. We encountered many problems re-
lated to bad electronic contacts, wires with sol-
dering that would break after a while or short-
cuts at worst. A new solution should be con-

C. Jaquier - K. Drapel 25 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

sidered for the second generation. The boards
could be connected using flat parallel bus cables.

Figure 5.4: A (large) flat cable. Narrow cables
could replace the wires in YaMoR.

Another solution consists in using wires to
board connectors as shown on Figure 5.5. The
boards could form a stack.

Figure 5.5: Sockets connectors

This approach allows unplugging a board
from the rest and make a limited version of the
module. Board to board connections are also
more versatile as boards dedicated to specific
jobs (DSP, other sensors, etc.) could be added
to the rest of the components.

5.4.6 Multi-layers PCBs

André Badertscher stressed on the fact that it
would be better to have multi-layers PCBs in-
stead of two-sided PCBs. While they are more
expensive, one board can contain more compo-
nents and this would help to reduce the size of
the module.

5.4.7 Sensors

During his semester project, a student in
micro-engineering added sensors to our system.
The idea was to design another board which
contains the sensors and can be connected to
our Bluetooth board. This sensor board was
not designed to be used with the YaMoR units
but rather for a distributed sensors network.
However, the design can be adapted to meet
the needs of the next generation of YaMoR
units.

YaMoR units are built using PCBs and a
promising way could be to directly integrate the
sensors on the side of the module. Thus, a lot of
place could be saved and the biological concept
would be interesting.

C. Jaquier - K. Drapel 26 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Appendix A

Tutorial: Using Eve with
Bluemove

This chapter quickly describes the user inter-
face of the Eve application. It is divided into
three parts: the first one explains how to install
the application and its requirements, the second
one gives an overview of the user interface and
the XML data, the third part provides a step
by step example which shows how to simulate a
robot from Bluemove.

A.1 Compilation and instal-
lation

Compiling Eve requires a few libraries. They are
provided with the sources in the /libs directory.
Compiling under Linux is a matter of calling the
following command in a terminal :

$ make distclean

$[Cleaning]

$[Removing .depend]

$[HINT: Type ’make dep’ to rebuild dep]

$[Removing covering informations]

$[Dist cleaning]

$

$ make dep

The ”distclean” command cleans all tempo-
rary and executable files (only those related to
Bluemove, not the external libs). The ”dep”
command creates the dependency file which is
useful for partial recompilation.

You can then build the executable using
make:
$ make

The simulator can be launched with the fol-
lowing command:
$ make execute

This command is a shortcut for "./bin/eve".
Note that "make execute" will compile files if
this has not been done before.

A.2 User interface

With the default settings, you should see a
Quake map with the modular robot in the
middle of the room. Moving the mouse while
the left button is pressed will rotate the cam-
era. The camera can be displaced by using the
following keys :

q move down
e move up
a strafe left
d strafe right
w move forward
s move backward

On top of the screen, three buttons are used
to control the simulator. The left button, ”ro-
tation”, is used to change the orientation of the
robot. The middle button, ”translate” is used to
change the position of the robot in space. The
last button, ”play”, launches the simulation and
waits for commands sent by Bluemove.

The ”rotation” mode uses the following digits
keys :

1 clockwise rotation on X axis
2 anticlockwise rotation on X axis
3 clockwise rotation on Y axis
4 anticlockwise rotation on Y axis
5 clockwise rotation on Z axis
6 anticlockwise rotation on Z axis
7 cancel all torques

The ”translation” mode uses the following
digits keys :

1 move forward on X axis
2 move backward on X axis
3 move forward on Y axis
4 move backward on Y axis
5 move forward on Z axis
6 move backward on Z axis
7 cancel all forces

C. Jaquier - K. Drapel 27 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

The rotation and translation use torques and
forces applied on the first module of the robot.
The simulation is stopped when the rotation or
translation modes are enabled. It is also rec-
ommended to stop sending new positions from
Bluemove while the robot is moving or rotating.

Clicking on the ”play” will activate gravity
and the robot will fall on the floor with full col-
lisions support. It is now ready to receive com-
mands from Bluemove.

Pressing on ”tab” key will slighty tilt the
robot in case it gets stuck in a corner.

Pressing on ”esc” key will close the simulator.

A.3 XML data

The configuration of Eve and the description
of the robot are stored in XML files. They
can be found in the /bin/data directory. The
"eve_config.xml" file stores information about
the 3D world, ODE parameters and XML-RPC
server port. It is possible to change the reso-
lution of the rendering window as well as the
integration step of ODE.

The "robot_desc.xml" file contains the de-
scription of the robot topology with the vari-
ous modules (Bluetooth address and alias). The
connections are also described in a handy way.
In the following XML, four modules have been
defined with four distinct aliases. Three con-
nections have been created. A connection must
follow a strict format with the alias of the first
module, the alias of the second module, the con-
nector of face A, the connector of face B and the
angle of rotation around the connector pivot.

<?xml version="1.0" encoding="ISO-8859-1"?>

<eve>

<modules>

<address value="424952470001" alias="head"/>

<address value="424952470002" alias="body1"/>

<address value="424952470004" alias="body2"/>

<address value="424952470005" alias="tail"/>

</modules>

<connections>

<connection moduleA="head" moduleB="body1"

faceA="FACE_0" faceB="FACE_2"

angle="0"/>

<connection moduleA="body1" moduleB="body2"

faceA="FACE_2" faceB="FACE_3"

angle="0"/>

<connection moduleA="body2" moduleB="taile"

faceA="FACE_0" faceB="FACE_BOTTOM"

angle="0"/>

</connections>

</eve>

Each face of a YaMoR module has its own
connector as described on A.1. You must use
these names for the faceA and faceB values in-
side a connection tag.

Figure A.1: The six connectors on a module and
their respective names in the XML file

Please note that not all modules must be con-
nected. A non-connected module will receive or-
ders from Bluemove but will not interact with
the robot.

All changes applied on the XML files require
the simulator to be restarted. You can close it
by pressing the ”esc” key.

A.4 Step by step tutorial

In this section, you will get to know how to use
the simulator and send commands from Blue-
move. We will also modify the robot by adding
a new module to the default configuration. We
consider that you have already installed the ap-
plication and that you are able to start it. We
also assume that you have some experience with
Bluemove.

A.4.1 Step one: setup the simula-
tor and Bluemove

Start the simulator and introduces the address
and port used by the simulator server in Blue-
move. You will find the port of the server in
the "eve_config.xml" file (default 9999). The
address is either your IP or localhost if both the
simulator and Bluemove run on the same sta-
tion. You can use "ipconfig" on Linux to find
your IP. The parameters window should be sim-
ilar to what is seen on A.2. You must also ac-
tivate the ”simulator” device in Bluemove. You
can activate another device while the simulator
is running and test the result on both the real
robot and the simulator.

C. Jaquier - K. Drapel 28 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Figure A.2: IP and port of the server in Blue-
move settings

Figure A.3: Enable the ”simulator” device

A.4.2 Step two: sending data
from Bluemove

The simulator is ready to receive data from
Bluemove. In Eve, press the ”play” icon on the
top of the screen, it should start to blink and
the robot should fall on the floor.

Figure A.4: The robot before pressing the
”play” icon

In Bluemove, by pressing the play button, the
trajectories will be sent to the modules. You
should now have a moving version of the robot.
You can displace the robot while it is moving by
clicking on the ”rotation” or ”translate” icons
and then pressing the digits keys (see above).

Figure A.5: The robot after displacement

A.4.3 Step three: editing the
robot

The default robot is a spider-like creature.
We will simply change the position of two
modules on the rear legs by editing the file
"robot_desc.xml".

The modules will be connected to "FACE_2"
instead of "FACE_BOTTOM", this will produce two
legs bent at 90◦. Change the last four lines in
the file such that the result looks like this :

<connection moduleA="tail" moduleB="legC1"

faceA="FACE_0" faceB="FACE_LEVELER" angle="90"/>

<connection moduleA="legC1" moduleB="legC2"

faceA="FACE_2" faceB="FACE_LEVELER" angle="0"/>

<connection moduleA="tail" moduleB="legD1"

faceA="FACE_2" faceB="FACE_LEVELER" angle="90"/>

<connection moduleA="legD1" moduleB="legD2"

faceA="FACE_2" faceB="FACE_LEVELER" angle="0"/>

Figure A.6: A new robot

C. Jaquier - K. Drapel 29 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Appendix B

Bluemove short manual 2

This chapter quickly describes the new fea-
tures introduced in Bluemove v2.0. The first
part gives an overview of the user interface and
the second one provides a step by step exam-
ple showing how to create a simple project with
plugins. If you have not yet installed Blue-
move, please refer to the Bluemove short man-
ual. Moreover, you have to be familiar with
Bluemove before starting this manual.

B.1 User interface

After starting Bluemove, you will see the main
view of the application which contains four im-
portant parts:

• the menu bar

• the tool bar

• the tabbed pane

• the status bar

The tabbed pane contains several tabs which are
respectively used to draw the module curves, to
manage the modules, and to view the log mes-
sages. In the next section, we will take a closer
look at a new tabbed pane added in Bluemove
v2.0.

B.1.1 Plugins tab

The main new feature of Bluemove v2.0 is the
plugins system. It allows the creation of plugins
which can filter trajectories of the timelines tab
or generate new ones from scripts. This system
is really powerful and adds a new dimension in
the use of Bluemove.

The interface is split in two parts. On the
left, the plugins management which allows you

to create new plugins, modify them and add
them to the right part of the plugins system.
This part, on the right, allows you to connect
plugin outputs to other plugins easily. You can
see an example on Figure B.1.

Figure B.1: Plugins tab

B.1.2 Script editor

Another important feature of the plugins
system is the script editor. You can see it on
Figure B.2. It allows the creation of the options
of a plugin and the writing of the script. The
script uses BeanShell and is hence quite similar
to the Java syntax.

The interface is also split in two parts. On the
left, the options management which allow you
to add inputs and outputs as well as internal
parameters to your plugins. On the right, the
editor allows you to write the script that will
achieve your needs.

B.2 Tutorial: a small exam-
ple

In this section, you will get to know how to cre-
ate a simple Bluemove project which take ad-
vantage of the plugins system. A simple oscil-
lator will be used to create a basic locomotion

C. Jaquier - K. Drapel 30 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Figure B.2: Script editor

movement. We consider that you already have
installed the application and that you are famil-
iar with it.

B.2.1 Step one: add a new plugin

First of all, start the Bluemove application.
Add three modules in the Modules manager and
switch to the ”Plugins” tab. Your screen should
be similar to Figure B.3. If you do not see
the modules in the tree, expand the nodes by
double-clicking on them.

Figure B.3: Plugins tab with three modules

Now you are ready to create your first plugin.
In order to do this, select ”Filters” on the left
and click on ”Add”. This action is shown on
Figure B.3. A new plugin is inserted under the
”Filters” node.

B.2.2 Step two: edit the plugin

Click on the newly created plugin and then click
on ”Edit”. A dialog window will appear and you
should get a screen similar to Figure B.4.

Change the name of the plugin and call it ”Os-
cillator”. Do not forget to click on ”Apply” in
order to save your changes.

Figure B.4: Edit the plugin

B.2.3 Step three: add options to
the plugin

In order to interact with other plugins, one
needs to define input and output options. Cre-
ate an input option by selecting the ”Inputs”
node and clicking the ”Add” option. Then, se-
lect the newly created option and edit the pa-
rameters as describe on Figure B.5. Once you
click ”Apply”, the screen should be similar to
the Figure B.5.

Figure B.5: Create an input option

Create an output option called ”oOut” in the
same manner. You should end up with a screen
similar to the Figure B.6.

Figure B.6: Create an output option

Add another output option called ”out” with
the type ”Double” and a value of ”0”. You can
now create a parameter called ”b1” and set it

C. Jaquier - K. Drapel 31 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

with the value shown on Figure B.7.

Figure B.7: Create a parameter

Finally, you can add all the parameters shown
on Figure B.8. They are all of type ”Dou-
ble”. You can set the value to ”1.0” except for
”deltaT” which needs a smaller value. Set it to
”0.001”.

Figure B.8: Create parameters

B.2.4 Step four: write a script

You can now write the script of this plugin. Re-
member that we are trying to implement a cou-
pled oscillator. Copy the script shown on Figure
B.9. Note how the options are used. The third
line is our simple integrator based on the explicit
Euler integration.

Figure B.9: Write a script

B.2.5 Step five: add real-time in-
teraction

The script you wrote in the previous step is now
fully functional. However, we want to show you
another feature of Bluemove v2.0. Add the five
first lines shown on Figure B.10 at the beginning
of your script.

Figure B.10: Add real-time interaction

The variable keyTable is a special one. It is
global to all plugins and contains the keyboard
state. This allows you to create a real-time
control of your plugin. In our example, pressing
”,” or ”.” while the system is playing will
modify the variable w. You can therefore
control the locomotion of your modular robot
in real-time.

You can now click the ”Apply” button and
then ”Close” button so as to return to the plu-
gins panel.

B.2.6 Step six: add a plugin to the
graph panel

The next step is to add our plugin to the graph
panel, the right one. Click on the ”Oscillator”
node on the left and click on ”Add”. An orange
plugin called ”Oscillator” should appear at the
top-left of the graph panel as shown on Figure
B.11. You can move it by drag and drop.

Figure B.11: Add a plugin to the graph panel

C. Jaquier - K. Drapel 32 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

In order to complete our system, add three
”Oscillator” plugins and three ”Inputs” plugins
for the modules 1, 2 and 3.

B.2.7 Step seven: connect the
plugins

Once the plugins are placed on the panel, you
can connect them. Click on the small triangle
of a plugin option and drag the mouse to an-
other plugin option. You should see a connec-
tion which follows your mouse while dragging.
Remember that you can only connect options of
the same type and only connect an input to an
output. You should end up with a graph similar
to the one shown on Figure B.1.

B.2.8 Step eight: delete plugin
and edit default values

If you want to delete a plugin, you can simply
right click on it. A popup menu will appear and
you can click on ”delete plugin” as shown on
Figure B.12. The plugin and all of its connec-
tions will be removed.

Figure B.12: Delete a plugin

You can notice that another menu entry called
”properties...” is available. It allows you to set
the default value of the plugin parameters. This
dialog is represented on Figure B.13.

Figure B.13: Edit the default values

B.2.9 Step nine: delete connec-
tion

If you want to delete a connection, you can right
click on the blue circle in the middle of the con-
nection and click on ”delete connection”. You
can also drag the connection by clicking on the
corresponding option and drop the wire some-
where in the panel.

Figure B.14: Delete a connection

B.2.10 Step ten: evaluation steps

Our plugins system is now ready to be tested.
We still have to set the evaluation steps. In or-
der to integrate omega, we need to execute the
script more than one time per frame. This pa-
rameter can be adjusted in the menu ”Options”,
”Preferences...” and ”Plugins”. Set the ”Eval-
uation steps” to ”10”. This will run the script
ten times per frame.

Figure B.15: Evaluation steps

B.2.11 Step eleven: set the FPGA
bitstream

A new feature available in Bluemove v2.0 is the
possibility to send the FPGA bitstream with
Bluetooth. Switch to the ”Modules Manager”
tab and select ”Module1”. Click on the ”...”
button close to the ”Bitstream” field. Select the
”motor.xsvf” bitstream. Save your change with

C. Jaquier - K. Drapel 33 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

”Apply”. Your screen should be similar to Fig-
ure B.16.

Figure B.16: FPGA bitstream

Repeat the same operation for every module.
Click on the ”Project” node in the left tree. You
can now send the bitstreams by clicking on the
”Send” button as shown on Figure B.17.

Figure B.17: Send bitstreams

B.2.12 Step twelve: play

You are now ready to click on the ”Play” button
available on the ”Timelines” tab. Remember to
switch the ”Plugins” mode on by clicking on the
fourth button near the ”Repeat” one. Refer to
the Figure B.18.

Figure B.18: Enable the plugins system

B.2.13 Optional step: function
generator

The function generator is also a new feature of
Bluemove v2.0. It allows you to draw trajec-
tories in the ”Timelines” tab with the help of

mathematical functions. Click on the square
root button in the ”Module1” timeline. This
button is visible on Figure B.18. A dialog will
appear as shown on Figure B.19. You can enter
a function and set the wanted parameters.

Figure B.19: Function generator

B.2.14 Conclusion

We briefly looked at the new operations of Blue-
move. There are a lot of other features that
were not described in this tutorial. However,
you should be able to discover them on your
own. Do not forget to periodically check the
help website [6]. Lots of information on Blue-
move are available there.

C. Jaquier - K. Drapel 34 v1.0 - June 21, 2005

Towards an improved framework for YaMoR :
Simulation and real-time control

Bibliography

[1] Martin John Baker. Quaternions.
http://www.euclideanspace.com/
maths/algebra/realNormedAlgebra/
quaternions/index.htm.

[2] Norris Boyd. Rhino: Javascript for java.
http://www.mozilla.org/rhino.

[3] Prof Thomas Bräunl. Mobile robot lab.
http://robotics.ee.uwa.edu.au.

[4] Mo DeJong. Jacl is an implementa-
tion of tcl in java. http://tcljava.
sourceforge.net.

[5] Kévin Drapel. Nakedmonalisa.
http://icwww.epfl.ch/∼drapel/
softwares.html.

[6] Kévin Drapel and Cyril Jaquier. Us-
ing bluetooth to control a yamor modular
robot. http://birg.epfl.ch/page56602.
html.

[7] Kévin Drapel and Cyril Jaquier. Video
demonstrating trajectory changes with
bluemove. http://birg.epfl.ch/
webdav/site/birg/shared/bluetooth/
serpent-bluemove.avi.

[8] Geir E. Hovland and Brenan J. McCar-
ragher. A hidden markov approach to the
monitoring of robotic assembly.

[9] Jim Hugunin. Jython is an implementation
of python in java. http://www.jython.
org.

[10] Andreas Koestler and Thomas Bräunl. Mo-
bile robot simulation with realistic er-
ror models. 2nd International Conference
on Autonomous Robots and Agents, New
Zealand, 2004.

[11] Christian Lauer. Useful java application
components. http://ujac.sourceforge.
net.

[12] Jérôme Maye. Fpga configuration with
bluetooth. http://birg.epfl.ch/.

[13] Pat Niemeyer. Beanshell: Lightweight
scripting for java. http://www.
beanshell.org.

[14] Henrik Hautop Lund Orazio Miglino and
Stefano Nolfi. Evolving mobile robots in
simulated and real environments. Artificial
Life 2:4, pages 417–434, 1995.

[15] Anil Seth. Noise and the pursuit of
complexity : A study in evolutionary
robotics. Centre for Computational Neuro-
science and Robotics, University of Sussex,
Brighton, 1998.

[16] Stormdollar. Mesp: Math expression
string parser. http://sourceforge.net/
projects/expression-tree.

[17] Synoptic. Virtual waves. http:
//www.sonicspot.com/virtualwaves/
virtualwaves.html.

[18] Xmlrpc-c. Xml-rpc vs. soap.
http://xmlrpc-c.sourceforge.net/
xmlrpc-howto/xmlrpc-howto-soap.
html.

C. Jaquier - K. Drapel 35 v1.0 - June 21, 2005

http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm
http://www.mozilla.org/rhino
http://robotics.ee.uwa.edu.au
http://tcljava.sourceforge.net
http://tcljava.sourceforge.net
http://icwww.epfl.ch/~drapel/softwares.html
http://icwww.epfl.ch/~drapel/softwares.html
http://birg.epfl.ch/page56602.html
http://birg.epfl.ch/page56602.html
http://birg.epfl.ch/webdav/site/birg/shared/bluetooth/serpent-bluemove.avi
http://birg.epfl.ch/webdav/site/birg/shared/bluetooth/serpent-bluemove.avi
http://birg.epfl.ch/webdav/site/birg/shared/bluetooth/serpent-bluemove.avi
http://www.jython.org
http://www.jython.org
http://ujac.sourceforge.net
http://ujac.sourceforge.net
http://birg.epfl.ch/
http://www.beanshell.org
http://www.beanshell.org
http://sourceforge.net/projects/expression-tree
http://sourceforge.net/projects/expression-tree
http://www.sonicspot.com/virtualwaves/virtualwaves.html
http://www.sonicspot.com/virtualwaves/virtualwaves.html
http://www.sonicspot.com/virtualwaves/virtualwaves.html
http://xmlrpc-c.sourceforge.net/xmlrpc-howto/xmlrpc-howto-soap.html
http://xmlrpc-c.sourceforge.net/xmlrpc-howto/xmlrpc-howto-soap.html
http://xmlrpc-c.sourceforge.net/xmlrpc-howto/xmlrpc-howto-soap.html

	Project description
	Introduction

	Inauguration of the IC building at EPFL
	Introduction
	Demonstrations
	Conclusion

	Eve, the YaMoR simulator
	Brief overview
	Simulation in robotics
	The gap between simulation and reality
	Reviews of some simulated robots

	Introduction to Eve
	Physics engine

	Quake maps
	Modeling
	Setting up YaMoR in Eve
	Communication between Bluemove and Eve
	Java RMI
	Corba
	Shared memory
	Sockets
	XML-RPC

	Bluemove, further improvements
	Introduction
	Possible new features
	Implemented features
	Blocks
	Function generator
	Plugins and real-time control
	FPGA programming with Bluemove

	Hardware issues and improvements
	FPGA problems
	Bluetooth problems
	Power supply problems
	Second generation
	Replace velcro connectors
	Change the way the batteries are charged
	Smaller batteries
	Small servos
	Wires and soldering issues
	Multi-layers PCBs
	Sensors

	Tutorial: Using Eve with Bluemove
	Compilation and installation
	User interface
	XML data
	Step by step tutorial
	Step one: setup the simulator and Bluemove
	Step two: sending data from Bluemove
	Step three: editing the robot

	Bluemove short manual 2
	User interface
	Plugins tab
	Script editor

	Tutorial: a small example
	Step one: add a new plugin
	Step two: edit the plugin
	Step three: add options to the plugin
	Step four: write a script
	Step five: add real-time interaction
	Step six: add a plugin to the graph panel
	Step seven: connect the plugins
	Step eight: delete plugin and edit default values
	Step nine: delete connection
	Step ten: evaluation steps
	Step eleven: set the FPGA bitstream
	Step twelve: play
	Optional step: function generator
	Conclusion

