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Abstract

Animals have demonstrated an impressive adaptive behavior along evolu-
tion, allowing them to survive into hostile and constantly changing environ-
ments. Such a level of adaptation is possible because the neuronal structure of
the animal is not prenatally determined and it does not remain fixed through-
out the entire life of the organism, but is shaped according to experience. A
mechanism called synaptic plasticity performs such short and long-term mod-
ifications of the connections in the brain.

Our goal was to implement and perform a qualitative analysis of an inter-
esting model of associative memory based on coupled oscillators, that is able
to learn input signals by adapting the natural frequencies of the oscillators.

In the second part of this project, we describe a new model of memory
we have developed by modifying the oscillator we analyzed by adding some
interesting features, and we show that this new model is able theoretically to
learn any kind of periodic complex signal. Finally, we show that our model is
extremely robust when the presented signal is noisy, or when the oscillators
are unreliable and can fail.

Our work should not be considered as an attempt to find a universal model
able to perform the same tasks as the animal brain with comparable perfor-
mance, but rather as an attempt to show that it is possible, at least from
a mathematical point of view, to learn any periodic complex signal using a
network coupled oscillating systems that mutually influence their behavior
according to the relationship between their respective phases.
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Chapter 1
Introduction

”Thus memory belongs to the faculty of the soul to which imagination
belongs; all objects which are imaginable are essentially objects of memory;

all those that necessarily involve images are objects of memory incidentally.”
Aristotle (384-322 B.C.)

Biological systems, in particular animals have demonstrated an impressive
ability to adapt to constantly changing environments by finding food, escaping
predators, and by reproducing themselves. A fundamental mechanism allow-
ing this level of flexibility is learning, which consists of a permanent modifi-
cation of the brain structure of an organism. Such physical modifications are
performed by a phenomena commonly called synaptic plasticity, which con-
sists of reinforcing the connections in the brain between concepts that occur
together, as it was shown by the experiments of Pavlov on animal condition-
ing. The idea that memory works by association of concepts is not new, as the
first to propose it was Aristotle in the 3rd century before our era. Nowadays,
neurophysiological studies have shown that the synaptic connections between
neurons that show synchronous activity tend to get strengthened, and that os-
cillatory activity underlies many cognitive processes in the mammalian brain.

Many formal models that could account for memory formation have been
proposed for since the early 80’s, but they were usually idealized in that they
neglected many of the important aspects of real neurons. It is not until re-
cently that a new family of models based on oscillating systems have been
proposed, but this field is still in its infancy. In the first part of this project
we analyze one of these models and we discuss about its properties and draw-
backs. Then, in the second part we take inspiration of this model in order
to derive a new one that is able to learn virtually any kind of complex signal
reliably, and we also discuss what is interesting in this new model.
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Hardware implementations of these memories is a very common applica-
tion in many fields ranging from hand-written pattern recognition on PDAs,
face recognition for physical access to secure sites, or other high-performance
computer memories. For that purpose, many research has been performed
towards design of analog VSLI or optical chips, in order to implement such
memories. In this direction, the models we describe in this project have even
more evident and impressive implementation properties as they rely solely on
oscillating systems, which is a common concept that can be found in a myr-
iad of biological entities such as neurons, populations of animals and insects,
pendulums, chemical reactions, lasers, voltage-controlled oscillators, Joseph-
son junctions, etc.

Outline of this report

Chapter 2 gives an introduction to non-linear dynamics, especially oscillat-
ing systems and gives many examples of biological systems where such behavior
has been observed. Then we review some associative memory models starting
with the well known Hopfield, and then we describe more recent models of
learning systems based using sets of coupled oscillators. We will try to give
some performance evaluation metrics and discuss about the advantages and
drawbacks of these classical models.

Chapter 3 describes the oscillatory model we implemented, and gives a de-
tailed analysis of the behavior and properties of the model. Then a discussion
concerning the important issues that could affect the performance of this model
is done. Finally, a discussion about the interesting properties and about the
drawbacks of this model is proposed.

Chapter 4 is an attempt towards creating a more performant model of asso-
ciative memory. This model is shown to be able to learn in theory any kind of
complex periodic signal, then performance of this model in comparison with
the model investigated in Chapter 3 is discussed. In particular, we show that
our model of oscillatory associative memory is robust to noisy input signals,
and stored data is not affected when some oscillators of the system fail.

Chapter 5 concludes this work and presents future directions where to inves-
tigate and what aspects must be wisely studied for further research in neural
modeling.



Chapter 2
Memory literature review

”He who loves practice without theory is like a seafarer who boards a ship
without wheel or compass and doesn’t know whether he travels.”

Leonardo Da Vinci (1452-1519)

We start this chapter with a short introduction to the concepts we think
essential in order to understand what is an associative memory, the different
models that were devised to account for biological memory formation, and
what aspects we think are essential in order to devise more efficient models
having a performance similar to the human brain. Then we present a short
introduction to the concepts of non-linear dynamics and oscillating systems.
Finally, we will discuss what makes biological neurons so efficient compared
to classical neural networks, and what are the capital properties one should
not neglect when devising such models.

2.1 Associative memory models

Memory in biological systems has been one of the less understood mysteries
since the early days of humanity. The ability of animals to retain information
in a reliable manner has intrigued the ancient philosophers, who were among
the first to wonder how are we able to store information for long periods
and then to recall information learned many years before with an astonishing
speed. Unfortunately, their explanations were solely qualitative due to the
lack of scientific knowledge of their time, and we had to wait until the first
bricks of neuroscience were laid by many psychologists and physiologists and
the work they performed throughout the 20th century in order to have a more
formal description of what happens in the brain. Experiments performed by
Pavlov in 1927, showed that animals are able to learn useful information al-
lowing them to survive by associating concepts. These experiments showed
us that some neural mechanisms are able to create mappings between action
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and sensory information, that is animals tend to recreate actions that brings
them joyful rewards, and on the contrary, they try to avoid as much as pos-
sible actions that inflicts them unpleasant sensations as pain. The neuronal
mechanisms allowing such a permanent association has been studied by Don-
ald Hebb (Gerstner, 2002), which proposed that connected neurons that are
activated at the same time tend to strengthen the connections linking them.
At that time, the most renowned psychological school was the behaviorism1,
and many scientists thought that intelligence was simply a complex form of
reinforcement learning. This paradigm is effectively able to explain animal
behavior, but unfortunately human behavior is not regulated by a fixed set of
rules to determine which response corresponds to a given stimulus. Humans
do not simply associate the same action to a given sensory input in a deter-
ministic fashion as animals do, because we are endowed with consciousness
and each of us has it’s own history, feelings, education, knowledge of life, and
all these experiences definitely influence the choices we make throughout our
life.

It’s interesting to note that Aristotle (384-322 B.C.) was the first to in-
troduce the concepts we call the Classical Laws of Association. These laws
state that mental items such as ideas, perceptions, sensations or feelings can
be linked in memory under the following conditions :

• If they occur simultaneously (”spatial contact”)

• If they occur in close succession (”temporal contact”)

• If they are similar

• If they are contrary

However, such simple mathematical models are far from explaining the real
processes involved into such a complex system as is the human brain, be-
cause they neglect a lot of details concerning many aspects of the plethora of
interacting neural processing units bathing in a soup of hormones, neurotrans-
mitters and other chemicals. Nonetheless, these primitive models provided to
computer science a very simple and high-level abstraction of the basic cogni-
tive abilities found in animals that can be easily implemented on a computer
due to their formal mathematical modeling. Despite the fact that Hebb’s con-
jecture on synaptic plasticity is more than 50 years old, it still remained one
of the more viable and productive theoretical framework.

1Behaviorism is a movement in psychology and philosophy, which denies importance of
mind. One of the assumptions of behaviorist thought is that free will is illusory, and that all
behavior is determined by the environment either through association or reinforcement.
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Figure 2.1: Task of an associative memory. Noisy input (1) is presented and
an unique location in the state space of the network corresponds to it. Then the
dynamics of the network will move the state towards the nearest local minima (3
in this case), as when when a gradient system energy through diffusion and falls
into a potential well.

In the classical memories used in computers, data is stored at a specific
location designated by an unique address and thus can be accessed only if the
address of the desired item is known. On the contrary, Associative Memory
(AM) we will talk about throughout this project, refers to so-called content-
addressable memory in which data is retrieved directly upon presentation of
sufficient partial information about data we look for. More formally, the basic
task of an associative memory is to store a set of p patterns ~ξµ, with 1 ≤ µ ≤ p
the index of the pattern, in such a way that when presented with a new
pattern ~ζ, the network responds by producing whichever one of the stored
patterns most closely resembles to ~ζ. To be more precise, we should use
the term auto-associative memory because the input used for retrieval is of
the same nature as the stored data in the sense that the key is the input
pattern. The interesting property of this kind of memory is that the data can
be retrieved even when partial or noisy information is presented as input, thus
enabling a certain fault-tolerance, a property found in any natural system.
This retrieval methodology requires the introduction of a metric assessing the
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similarity between two patterns, and this measure will depend entirely on
the characteristics of the network under consideration. For example, if the
patterns are binary, we usually use the Hamming distance, that is the number
of different bits between the two patterns, formally the number of 1’s in the
result of the XOR operation between the patterns.

2.2 Hopfield Model

The model described in (Hopfield, 1982), was among the first formal model
describing an associative memory. When this article was published in 1982, it
had the effect of a bomb in the young field of neural networks. The efferves-
cence around that model was not exactly due to its novelty, as actually many
concepts it contained were already well known at that time and for this reason
many scientist criticized his work (see for example (Anderson and Rosenfeld,
1988)). Nonetheless, the way these ideas were combined together to form an
efficient and easily implementable memory model was totally new, and for that
reason this paper deserved the noise he made. One of its major improvement
was that he took inspiration from statistical mechanics and introduced the
concepts of energy function and attractors into the field of neural networks, as
the concepts used in this field of physics were well known from a mathematical
point of view.

There are classes of physical systems that present interesting properties
that can be used to form a model of a general, dynamic, and error-correcting
content-addressable memory. Imagine a physical system whose time evolution
can be interpreted in an n-dimensional coordinate system, where each point
in this state space (either discrete or continuous) represents the instantaneous
condition (state) of the whole system (see for example Figure 2.1). Motion
of a particle in such a system is described by a set of dynamical equations
and can be represented by a flow in the state space. The behavior desired
in memory models requires a particular kind of motion where at any place in
the state space there exist a single flow that is directed towards the nearest
attractor2, and which corresponds to a pattern in the memory. The trivial
globally stable and unique attractor case becomes clearly non-deterministic
under high stochasticity when multiple stable points are present, each with
its own basin of attraction3. If we generalize this idea, we could say that any
system governed by dynamical motion in a state space dominated by a substan-
tial number of stable states, can be regarded as a general content-addressable

2A locally stable point, where the flux is equal to 0 in all directions, so the state of the
networks will stabilize at that place. Formally, it corresponds to a local minima of the energy
function E (see Equation 2.6).

3The set of initial conditions where the state will converge unambigously towards the
stable state.
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memory. The interesting point resides in the possibility of turning any pre-
scribed set of information to memorize into the stable states of the system,
and this exactly the role of a learning function. The processing units used
in this model4 are simple binary units similar to those used by McCullough
and Pitts (see (Gerstner, 2002; Haykin, 1999)) with two states : xi = −1 (not
firing) and xi = 1 (firing). This can seem quite similar to the Perceptron, but
there is an essential difference in that the Perceptron was designed to work
in a feed-forward manner. On the contrary, the full recurrent connections
used in Hopfield networks is exactly what endows this model with such inter-
esting emergent computational properties. Moreover, the Perceptron uses a
synchronous update function, which has clearly not been observed at a global
level in any animal brain, as the existence of neural delays prevents such kind
of perfect and global synchrony to occur. This last statement, should be han-
dled with care as the exact properties of brain dynamics are not yet known,
and many works show that sub-millisecond precision between distant neural
assemblies can be attained.

2.2.1 Mathematical formulation

Any pattern one might want to store, for example an image, is divided into
pixels. Each pixel i has a value xi = ±1 with 1 ≤ N where N is the number of
pixels to store, and so we can define an image as the vector x. The memorized
patterns are denoted ~ξµ with 1 ≤ µ ≤ P with P the total number of stored
patterns. An associative memory is then constructed using a neuron for each
pixel.

We can now define an overlap metric between the current image x (at time
t) and a stored pattern µ as follows

mµ(t) =
1
N

N∑
i=1

ξµ
i xi(t) (2.1)

We can see that ξµ
i xi(t) is equal to 1 if ξµ

i = xi(t), else it is equal to −1. This
implies that mµ(t) = 1 if and only if all pixels are identical, meaning that the
overlap measures the degree of similarity. An algorithm able to retrieve the
most similar pattern ξµ upon presentation of an input image (that is ξµ such
as mµ(t) is maximal) is easily implementable with a computer, but we can also
resolve this task using a set of parallel processors (neurons) with a distributed
memory (connections between neurons) and an implicit storage and retrieval
algorithm embedded into the dynamic interactions between these neurons, and
this is exactly what the Hopfield model does.

4We assume to discuss only about the discrete Hopfield only.
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The neuron dynamics are described in discrete time and the value of a pixel
xi at the time t + ∆t is given by a sigmoid function of the potential of this
neuron at the time t as follows

xi(t+ ∆t) = g[hi(t)] = tanh[β · hi(t)] (2.2)

where β is a positive parameter regulating the shape of the sigmoid and hi(t)
is the potential at time t defined as follows

hi(t) =
N∑

k=1

wikxk(t) (2.3)

where wik is the connexion strength between neuron i and k defined as follows

wik =
1
N

P∑
µ=1

ξµ
i (t)ξµ

k (t) (2.4)

It is interesting to note that this factor can be seen as the result of the
learning of the network. The initial weights are set to wik = 0 and the following
learning rule (similar to Hebb’s rule) is applied incrementally for each pattern
µ one wants to store :

∆wik =
1
N
ξµ
i (t)ξµ

k (t) (2.5)

Now we arrive at the hot spot we wanted to reach through the description of
the Hopfield model. The most important aspect of the article, is that Hopfield
described an energy function E for the his network, that is a function which
returns a scalar value for each possible state S of the network

E = −1
2

∑
i

∑
j

wijSiSj (2.6)

As long as this function is bounded and monotonically decreasing with
each update of the state, the network has a limited number of local point
attractors. This is what ensures a convergence towards a stable state. This
is somewhat similar to a physical system that seeks to minimize its potential
energy. By ensuring that the weight matrix after learning is symmetric and
was constructed using an asynchronous update function, one can guarantee
(see for instance (Davey et al., 2004)) that such stable states do exist, and for
any initial state the nearest stable state will always be found. Although these
conditions are not necessary in order to make this model practically useful,
and even if these conditions were satisfied, one cannot always guarantee that
all attractors in the network are fundamental memories : the inverse of each
stable state is also stable.
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The concept of energy function is similar to the Lyapunov functions that are
commonly used in control and optimization theory, which states that if one is
able to find a continuously differentiable function V (x), such as V (xs) = 0 for
a specific xs, and ∀x ∈ D− xs : V (x) > 0 and V̇ (x) < 0, then xs is an asymp-
totically stable point, and for any starting point into the neighborhood D5 of
xs the network state will converge towards that stable point. Unfortunately,
no methodology has yet been found in order to find such a function for any
system, and in practice it is even very difficult to do so, except for very simple
cases. Please note carefully that the importance of such an energy function
is that it guarantees mathematically that for any starting point, the network
state always converges towards an stable state (a local minima of the energy
function), and this is what makes associative memory models useful.

2.2.2 Performance evaluation

As engineers, we might be interested into finding an objective criteria that
can quantify the efficiency of a given model. In the case of a memory, a
relevant performance metric is the capacity C, that is the maximal number
of fundamental memories (patterns) we can store within the memory. The
loading α of a network, measures the size of the training set6 (p), relative to
the numberN of processing elements in the network and is defined as α = p/N .
There is a maximal value of α above which some vectors of the training set
will not be memorized correctly, and we call this value αmax as the maximal
loading of the network. For the standard Hopfield model, if a small amount of
error is allowed the capacity is approximately C ≈ 0.14N , thus αmax ≈ 0.14.
If no error is admitted, the capacity is reduced and proportional to 1

log N . This
value can be different for each model, so the higher the αmax, the larger the
amount of information that can be stored with the model under consideration.
Another criterion for practical implementation is the maximal error rate one
might encounter, which is commonly used to measure the reliability of the
network.

2.2.3 High capacity associative memories

Hopfield neural networks are well known from a theoretical point of view,
and allows one to improve the efficiency of the model. The work presented in
(Davey et al., 2004), is an interesting analysis attempting to evaluate quan-
titatively the performance of the Hopfield models. This work shows that
the weakness of the standard Hopfield model performance lies in the hebbian
’one-shot’7 learning rule proposed, which makes resulting networks have low
capacity and poor attractor performance. The conclusion is that the perfor-

5D in this case is the basin of attraction of xs.
6This is the set of patterns that were stored in the memory.
7One-shot means that the learning rule is asynchronous and learns serially each pattern.
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mance of the standard model can be drastically improved solely by selecting
a more elaborated (as compared to the basic one-shot hebbian learning given
in Equation 2.5) learning rule at the cost of an increased computational com-
plexity.

2.2.4 Discussion

Let us first discuss the benefits and limitations of the original Hopfield
model. Conceptually, this model has been an important landmark in the
neural networks history, but it failed to continue on the physiological path
entailed by the hebbian theory on a biologically plausible learning mecha-
nism. The problem of the pioneering neural network models, as for example
the McCullough-Pitts and Hopfield (see (Gerstner, 2002)), is that they are
unable to cope with the highly complex dynamical behavior shown by real
biological neurons, as for example neuronal and synaptic plasticity, structured
architectures, and biological features of spatiotemporal coding as stated in
(Sommer and Wennekers, 1999), whereas this is a capital aspect of the biolog-
ical networks. For that reason, more extended models have been developed, as
networks of Integrate-and-fire neurons, able to accumulate pre-synaptic activ-
ity by increasing their membrane potential in a non-linear fashion, and then
generate an action potential (or more usually a spike) when this potential ex-
ceeds a certain threshold.

However, this is definitely not a reason to under-estimate the usefulness
of associative memories derived from this model. In particular, Hopfield-like
models have been widely used by many researchers from various fields, for ex-
ample by neuroscientists in their attempt to explain both normal and abnormal
human memory, including phenomena such as unlearning, schizophrenia and
tremors caused by dementia in Alzheimer’s patients (more details can be found
in (Davey et al., 2004)). The lesson to draw from physiological data and from
bio-inspiration is that for a learning rule to be biologically plausible, weights
should be adjusted by a mechanism that relies largely on purely local infor-
mation, else we would assume that learning in biological systems is governed
by a global supervisor 8, which is clearly not the case.

We can conclude by factoring out what are the important properties an
efficient implementation of an associative memory should possess:

• Real neurons are not binary units, and so should be the computational
units used in our model.

8In classical literature about Artificial Intelligence, such a hero is called generally a ho-
munculus.
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• A regular connection topology, not all-to-all connections, but rather a
high connectivity degree in local neuronal assemblies with a low connec-
tivity level for long range connections across assemblies.

• A simple method to determine whether the network reached a stable
state, and if the state is a fundamental memory.

• We must be able to add new memories without forgetting the old ones,
and we should not need to retrain the whole network as new memories
are added.

• A fast, local, and dynamic learning rule that must mainly rely on infor-
mation that is local in time and space.

• Information can be recalled even when noisy input cues are presented to
the network.

• Parameters and the time to learn new stimuli and to recall it should be
linear with the number of computational units N in the network, that is
the complexity of interactions should be of order O(N) in order to make
the system scalable.

2.3 Biological memory formation

Recent investigations shows that there does not exist a specific organ ded-
icated to memory, but on the contrary information retainment is rather dis-
tributed throughout the whole brain. However, the hippocampus (see Fig-
ure 2.2) has been identified as a central structure playing an important role
in many information processing mechanisms. As stated in (Borisyuk et al.,
2001), spatiotemporal coherence of activity in the hippocampus can provide
basic mechanisms for the wide range of functionalities observed in the hip-
pocampus such as short and long-term memory, attention focusing, detection
and storage of new stimuli. The hippocampus is also very important in naviga-
tion as it serves as a space map. Experiments done with rats (see the work by
O’Keefe and Recce (1993) referenced in (Borisyuk et al., 2001)) demonstrated
that animals are able to create internal representation of the environment and
memorize a path in the environment. Moreover, they can plan an alternative
path to the goal if the known one is blocked. Once the hippocampus is dam-
aged, we denote that the ability to form such mental maps is lost.

Each slice of the hippocampus contains three main regions called the den-
tate gyrus, the CA1 field and the CA3 field. These regions contain both ex-
citatory pyramidal neurons and inhibitory interneurons that are extensively
connected in a highly organized manner along the septotemporal axis. It is
stated in (Borisyuk and Hoppensteadt, 1999) that this structure is able to
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Figure 2.2: Left: Location of the hippocampus in the human brain. Right: A
slice of the hippocampus with the important structures it contains.

support endogenous oscillatory activity, that is without any external periodic
input. The frequencies of these oscillation have been identified being in the
range of gamma rhythms (40-70 Hz). The hippocampus receives two primary
inputs at low frequency in the range of theta rhythms (3-9 Hz), that are cur-
rents injected from afferents of the entorhinal cortex, and of the medial septum.
The dynamics of the network are regulated by the phase relationships between
these signals. The CA3 cells outputs to the lateral septum and complete thus
a feedback loop which controls the theta rhythms generated by the medial
septum. Finally, many experiments show that these inputs are propagated
throughout the hippocampus during a certain amount of time τ = 25−50 ms,
due to delays introduced by synaptic transmissions, and this can lead to dif-
ferent phase shifts for the same input depending on its location along the hip-
pocampus. This complex wiring and the induced interaction of theta rhythms
can result in highly complex dynamics, including synchronization or chaotic
behavior. The first experimental electroencephalogram (EEG) recordings in
the 30’s, have already shown some kind of rhythmic activity, but nowadays it
is commonly agreed that such an oscillatory activity in the brain is a crucial
component of many cognitive process such as movement generation, visual
awareness, sensory perception and even consciousness. This is very important
in that the oscillatory activity does not convey information upon the stimulus
per se, but is rather the tool that can establish synchrony over large distances
and different neurons groups.
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When a new stimulus is presented to the network, the activity of the hip-
pocampus increases and becomes stable. This activity remains and decreases
slowly after the stimulus is switched off, and this reaction is said to be tonic.
After a sufficient number of presentations, the stimulus becomes familiar, and
in this case the activity is brief and decays quickly when the stimulation is
halted, and we denote this reaction as phasic. This phasic reaction is impor-
tant in that it selects what information needs to be stored, and thus avoid to
treat data that is already known.

The question of how information is carried and processed into the brain has
always been central in neuroscience, and scientists have been convinced during
a long period that the information was encoded only by using frequency codes9,
as it has been experimentally shown that the firing rate of sensory neurons
encodes directly the intensity of a stimulus (see (Gerstner and Kistler, 2002)).
However, now it is commonly agreed that most of information is rather encoded
by position10 and temporal11 codes. Position (or assembly) coding is a very
plausible hypothesis that could account for the impressive performance of the
visual memory. For example face recognition is extremely efficient and no
computer is able to compete with a human yet. The idea that a single object
is represented by a single neuron is not intuitive because

• The combinatorial complexity of images would require an immense num-
ber of neurons, one for each possible combination of color, shape, pro-
jection, even for a simple object.

• There should be a vast reservoir of unallocated and unused cells necessary
in order to learn new concepts.

• The brain would not be able to cope with such a high degree of fault
tolerance, in that loss of a part of the brain would result of an immediate
loss of all concepts stored in the necrosed gray matter.

To give an explanation of how does the visual cortex process and store in-
formation so efficiently, the Gestalt12 principle has been proposed at beginning
of the century by the German psychologists. Due to the columnar organization
of cortical areas, neurons more sensitive to the same features (color, depth,
etc) or responding for adjacent points of the visual field are often grouped in
spatially distributed cell assemblies. This is called the retinotopic organization
of the visual cortex. A particular visual stimuli activates a large number of

9Frequency code: the information is contained in the firing rate (frequency) of neurons.
10Position code: each aspect of metal processing takes place into a specific cortical area.
11Temporal coding: the information is contained in the exact time of spiking.
12From german gestellt=put together. The idea that a ”whole” is greater than the sum of

its parts. Associative theorists broke down the ”whole” and emphasized the analysis of the
constituent parts of the mind.
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such spatially distributed cell assemblies, each of which encode only a partial
aspect of an object (a feature). They proposed that such disjoint represen-
tations of the relevant features composing an image are reassembled at lower
levels in order to give us the global structure rather than the composing parts.
The question raised, commonly called the binding problem, is how are these
distributed activities reintegrated in order to generate a representation of an
object as a whole? To answer this question, the second coding method we
discussed above, namely the temporal coding, comes into play. This type of
coding emphasizes the fact that fine temporal structure of spike trains con-
tains relevant information. Recent works have shown that synchronization of
activity can be achieved with a precision in the millisecond range, and syn-
chronization can be established over brief intervals, leading to rapid temporal
succession of synchronization in different assemblies. This precise times of
spiking allows synchronization of the neural activity across different areas of
the brain to occur. As hypothesized by the work of (Singer, 1993; Singer and
Gray, 1995), the synchronization of oscillatory activity of distributed and fea-
ture selective cells might be a way to establish relations between the different
features of a visual stimuli. In other words, all neurons that belong to the same
assembly should synchronize their activity, and all groups having such internal
synchrony represent the different features that compose the object looked at.
The advantage is that several assemblies can be active simultaneously in the
same cortical area without risks of confusion, as each assembly has its own
rhythm. This concept of binding by synchrony is an interesting explanation of
the processes underlying attention (von der Malsburg, 1995) or consciousness
(Crick and Koch, 1990), as it provides new solutions to problems that are
difficult to solve with position and rate codes only.

It’s also interesting to understand how does this oscillatory activity arise and
how does the coupling connections between the cell assemblies be formed. It’s
important to note that there exist genetically determined features of neural
architecture, such as the laminar structure commonly found in the cortices,
which is phylogenetically preserved and determine the functional properties
of the network. Nonetheless, the architecture is not prenatally fixed, but is
rather extensively modified through epigenetic modifications, which implies an
experience-dependent associative learning rule. Recent investigations suggest
(see (Gerstner and Kistler, 2002; Singer, 1993)) that synaptic connections are
strengthened (Long-term potentiation (LTP)) or weakened (Long-term depres-
sion (LTD)) according to the relative timing between the presynaptic and the
postsynanptic spike. This clearly supports the idea that the connections are
formed according to the correlation between the activity of different assem-
blies.

The reason we summarized here these aspects of mental processing is to
show the reader that synchronization of the oscillatory activity is a very effi-
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cient method able to solve complex problems, and is not only crucial in nervous
signal transmission, but also for synaptic plasticity. Additionally, it is pointed
out in (Buszáki and Draguhn, 2004) that oscillation-based synchrony is the
most energy-efficient physical mechanism for temporal coordination. We want
to show that efficient models of memory can be implemented using the inher-
ent properties of oscillating systems at a low computational cost, and binding
mechanism using temporal signal correlation is undemanding in terms of struc-
tural requirements and consequently ubiquitous and extremely flexible. Thus
idea to form models where the computing units are coupled oscillators and
where learning is performed through adaptation of the frequencies of the os-
cillators rose at the end of the 70’s, and some models were proposed in the
following decade. An evident advantage over Hopfield model is that memory
formation in a network of N oscillators posses N parameters (the natural fre-
quencies of each oscillator), while a Hopfield network has 1

2N
2, parameters

which are the connection weights.

2.4 Oscillators theory

First, we will introduce the mathematical concepts that are used for the
analysis of dynamical systems (DS), and then we are going to focus on a
specific subset of dynamical systems, called oscillators. The goal is to find
mathematical models able to describe the evolution of a system in time, and
to understand how the evolution can be affected when the parameters regu-
lating the system are changed. This field of mathematics has recently been
extensively studied and there exist a vast literature on this topic. Further
details and good bibliographical references can be found in (Strogatz, 1994),
(Murray, 2002), and (Pikovsky et al., 2001). Many definitions and examples
we give in throughout this section are taken from these books.

A dynamical system is a set of possibly interacting elements that evolves
with time. As explained in any good physics book, Newton was the first to try
to give a scientific explanation to these phenomena largely present in nature
and laid the basis of the discipline called dynamics. There exist a subclass of
these systems, the one which is of interest here, that shows a particular kind
of behavior in that the dynamics show a recurrent pattern of time evolution
that is repeated at regular intervals. These systems are said to be periodic or
cyclic. Formally a value that repeats the same pattern again and again can
be seen as ∀n : f(t) = f(t + nT ), where f(a) is the value of the variable at
time a (for example the quantity of wolves in a given ecosystem), n ∈ N and
T is the period of the system. One should not underestimate the importance
of this class of systems, as many natural phenomenon are subject to periodic
motion. To name just a few, animal populations, chemical reactions, electronic
circuits, neurons, hormonal regulations, respiration and heart beats, circadian
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rhythms, and many other are all oscillating systems in their own rhythms. In
some cases, the rhythmic behavior is produced by an internal source of energy
and the system continues to oscillate autonomously even when isolated, in
which case the oscillator is said to be self-sustained.

However, is is not enough to know the value of the system at a given time
only, as we are much more interested in discover how the systems will evolve
starting from a specific state, and for that we need additional variables to de-
termine the state of the system unambiguously. Fortunately, in many cases two
variables are often sufficient for this purpose. As an illustration, we present
now a well-known population dynamics model dealing with predator-prey sys-
tem called the Lotka-Volterra. We need to know the quantity of predators at
time t, denoted P (t) and the quantity of preys the same time, let’s say N(t).
When many predators are present, they eat the preys. In the absence of preys,
the predator population decays exponentially, and this allows the prey popu-
lation to grow again with low predation.

The dynamics of this system evolve as follows

Ṅ = aN − bNP (2.7)
Ṗ = cNP − dP (2.8)

where a, b, c and d are positive constants, a is the growth rate of preys, while
d is the predators death rate. Note that predators’ growth rate (cNP ) is
proportional to the size of both populations, as well as preys’ death rate bNP .
Then, we can nondimensionalise the system by setting

u(τ) =
cN

d
, v(τ) =

bP

a
, τ = at, α =

d

a
(2.9)

and the system becomes

u̇ = u(1− v) (2.10)
v̇ = αv(u− 1) (2.11)

This cyclic motion can be easily visualized as a point flowing on a circle
(see Figure 2.3, right), whose position can be represented as the angle between
the point and the horizontal (denoted the phase θ) and the distance from the
center of the circle (denoted the radius r). Such periodic systems can be seen
as closed trajectories when they are plotted in the phase plane. It has been
shown (Pikovsky et al., 2001) that almost any periodic system can be reduced
to two variables namely the phase, denoted θ and the amplitude or radius
denoted r. Actually, it is much easier to compute and analyze a dynamical
behavior using this polar coordinate system. For example, the simplest case
is where the phase grows constantly:

θ̇ = ω (2.12)
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Figure 2.3: Dynamics of the Lotka-Volterra model. Left: population dynamics
in the predator-prey system with initial values top: u, v = 0.8, middle: u, v = 0.5,
bottom: u, v = 0.3. The solid line is the prey population and the dashed one
is the predators population. Right: Limit cycles in the phase plane for the three
initial conditions on the left.

Now we want to know how the phase changes along time, so after inte-
gration we get the solution of this system, that is θ(t) = ωt + θ0. As you
can deduce represents uniform motion along a circle with a constant angular
frequency ω. The periodicity can be seen when the phase is increased by 2π,
that means we performed a turn along the circle. In this case the phase corre-
sponds to the angle, but this statement is not true anymore if the limit cycle
is not a perfect circle. For example, the ACPO model described in (Buchli
and Ijspeert, 2004) the phase evolution is described as follows :

ṙ = −g(r − r0) (2.13)

We can clearly see that this equation admits a single fixed point (find by
resolving ṙ = 0) being r0, and g is a parameter called the damping factor which
regulates the way the amplitude returns to r0 when a perturbation drives the
r value away of the limit cycle. A perturbation can be described by a displace-
ment of the point away from the limit cycle due to external influence, and we
want to know the evolution of the disturbance. In this case (Equation 2.13), it
is clear that the perturbation of the amplitude decays back to the limit cycle,
while a change in phase induced by a external force neither grows, nor decays.
The consequence of this fact is that the phase can be easily adjusted by an
external influence allowing the oscillator to synchronize (see next section), and
this is the reason why coupled oscillators are so interesting.

If the phase variation rate is not constant anymore, we face a much more
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interesting model belonging to the category of nonlinear oscillators:

θ̇ = ω − a sin θ (2.14)

The nonlinearity shown by this model arises from the sin θ term, which makes
theoretical analysis difficult to perform as it is not easy to derive a function
f(t) such as θ(t) = f(t). The class of non-linear oscillators is the one all
scientists prefer (or hate), as this kind of oscillator underlies the behavior of
almost all natural systems we discussed so far. Many models have been devised
using non-linear oscillators in order to account for dynamics of the membrane
potential of neurons (Moris-Lecar, Fitzhugh-Nagumo, Hodgkin-Huxley, see
(Gerstner and Kistler, 2002)), for electrical circuits (Van der Pol, which was
used in early radios, see (Strogatz, 1994)), or even a simple pendulum.

2.4.1 Synchronization

A very interesting property of oscillators resides in the fact that when they
interact together in a way or another, they are able to influence the activity
of the others, and eventually lead to synchronization between their phases.
Synchronization can be understood as an adjustment of rhythms of oscillating
objects due to their weak interaction13. This phenomenon has been observed
for the first time in 1658 by the famous Dutch scientist Huygens who noticed
that two clocks hanging on the same wall synchronize the motion of their pen-
dulae due to the weak interaction through the vibration of the wall. Nowadays,
this property of oscillating objects has been observed in a myriad of natural
systems: millions of fireflies are able to synchronize and act as a single ho-
mogeneous giant light bulb, girls living together in a college synchronize their
menstrual cycles, applauding tends to be rhythmic, etc. This property is cap-
ital in our case as this is what allows us to memorize data with oscillators as
we will explain very soon.

Frequency locking

It has been shown that two coupled oscillating systems having their own fre-
quencies f1 and f2 are able to synchronize, even if their interaction is weak.
That is they can adjust their rhythms and start to oscillate with a common fre-
quency f , with f1 < f < f2. Appearance of this phenomenon, called frequency
entrainment or locking, depends on two factors :

• Frequency detuning: that is the difference between their respective
frequencies, i.e. |f2 − f1|. The smaller the difference, the easier to
synchronize the oscillators, that is the weaker must be the interaction
strength required synchronize them.

13Weak coupling in the context of interacting oscillators, means that the influence of an
oscillator is low compared to its own autonomous motion.
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• Coupling strength: this the strength of the influence of one oscillator
upon the other. The greater the detuning, the stronger must be the
coupling strength in order to allow oscillators to synchronize.

Phase-locking

A very simple model of phase synchronization can be found in (Strogatz, 1994),
and is briefly explained here in order to give the reader a quick mathematical
model of how this behavior is possible. Imagine a global stimulus, that is a
periodic and uniform signal whose phase obeys the following equation

Θ̇ = Ω (2.15)

Now imagine a non-uniform oscillator who tries to synchronize with this global
signal, in that he accelerates if the stimulus is ahead in the cycle and slows
down in the other case. This behavior is easily modeled as follows

θ̇ = ω +A sin(Θ− θ) (2.16)

where A is a positive parameter we call the resetting strength, and measures
the oscillators ability to modify its instantaneous frequency. Now to see if en-
trainment can occur, we must look at the phase difference φ = Θ−θ dynamics
and analyze it’s stability. This is done by subtracting (2.16) from (2.15), which
yields

φ̇ =
dΘ
dt

− dθ
dt

= Ω− ω −A sinφ (2.17)

if we divide 2.17 by A, we can derive the dimensionless equation

dφ
dAt

= φ′ =
Ω− ω

A
− sinφ = µ− sinφ (2.18)

This equation admits a fixed point, i.e. φ′ = 0, only in case when −1 ≤ µ ≤ 1,
that is synchronization can occur only if ω −A ≤ Ω ≤ ω +A. This interval is
called the range of entrainment, or basin of attraction.

2.5 Learning with oscillators

Having briefly introduced the important concepts needed to understand how
do oscillators work, we are now able to describe how these systems can be used
in order to store information. As the phase of a self-sustained oscillator is free
and can be easily adjusted, when many of them are coupled together, the
whole system will evolve towards different synchronized states with specific
phase relationships among them, and these phase patterns can used to store
information.
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Figure 2.4: Typical phase and frequency locking. Top: Frequency-locking :
15 oscillators with different initial natural frequencies converge towards a single
frequency. Bottom: Phase-locking of the oscillatory activity of these oscillators,
they all will synchronize and evolve with a unique common phase.

Connections in neural networks are said to be weak. This assumption
emanates from the fact that a presynaptic potential is rather small (approx. 1
mV) in comparison to the change in potential induced by a spike (approx. 100
mV). A very interesting model can be found in (Hoppensteadt and Izhikevich,
2001), where a model of such weakly connected neural network is proposed
and described as follows

ẋi = f(xi, λi) + ε
n∑

j=1

gij(xi,xj) (2.19)

where each vector xi describes the state of the i-th neuron (membrane poten-
tial, ions channels states, and other electrophysiological aspects). the function
f describes dynamics depending on the bio-physical parameters (λi) of the
neuron. The coupling is described by the function gij , and the parameter
ε � 1, reflects the weak coupling between them. The authors show how this
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system can be turned into the following canonical form

ẏi = ri − y3
i +

n∑
j=1

sijyj (2.20)

This canonical model is much simpler, as its form does not depend on the
functions f, gij , and on the value of λij . The authors also show that the
Cohen-Grossberg-Hopfield Convergence Theorem states that if the connection
matrix S (composed of the elements sij) is symmetric, then the canonical sys-
tem is a gradient one, meaning that for each value corresponds an energy level.
This result is very important because it implies that an energy function could
be found, and under some conditions the network will always converge to an
oscillatory phase-locked pattern. There can be many such pattern each corre-
sponding to memorized information, meaning that we have an oscillatory as-
sociative memory. The key difference between the Hopfield and the oscillatory
network is that memorized images correspond to equilibrium points (attrac-
tors) in the former and to limit cycle attractors in the latter. The authors of
(Hoppensteadt and Izhikevich, 2001) suggest that as the form of the functions
f and gij in Equation 2.19 were not specified, one could claim that anything
that oscillates can also be used for computing, the only problem is to find how
to couple the oscillators. The key is that the canonical models can provide a lot
of information about the universal neuro-computational properties underlying
neural systems, regardless of the details of the equation describing the models.

Most of oscillatory associative memory models rely on a renowned phase-
locking model proposed by Kuramoto in 1984 (see (Nishikawa et al., 2004;
Seliger et al., 2002)). These models usually consist of interacting oscillators,
where memorized patterns are stored as phase-locked oscillations. Such a
simple model for excitatory coupling between a set of oscillators describes the
phase variation θi of the i-th oscillator as being

θ̇i = ωi +
n∑

j=1

Γij(θj − θi) = ωi +
n∑

j=1

Cij sin(θj − θi + ψij) (2.21)

where Cij is the coupling coefficient and ψij the synaptic phase delay between
oscillator i and j. A careful reader should note the similarity between this gen-
eralized model and the simple one proposed in Equation 2.16. The interesting
aspect is that a theorem given in (Hoppensteadt and Izhikevich, 2001) states
that if a set of oscillators having equal frequencies and if the coupling function
Γij has a pairwise odd form, i.e. Γij(−ψ) = −Γji(ψ), then the phase model
2.21 converges to a phase-locked pattern. This property is what allows this
model to be used as an associative memory. This simple and intuitive model
has been often used to design models of oscillatory associative memories (see
(Nishikawa et al., 2004)), but usually error-free retrieval is usually unstable,
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and such memories have a lower capacity compared to the Hopfield model.
Recent work in (Nishikawa et al., 2004) suggest a more complex form for the
term Γij(θj − θi), such as the capacity of the network becomes 2ε2/ log(n).
Note that the capacity also scale with the number of processing units n, but
it can be increased with ε. The problem is that when ε is increased too much,
the solutions encoding patterns other than the stored ones can also become
stable, thus making the system unable to distinguish memory patterns from
non-memorized solutions. A rigorous proof is also given, and it shows that in
the range ε ∈ [ε1; ε2], the optimal performance is achieved : no error occurs
in the retrieval process and no solution other than the memorized patterns is
stable. It is clear that in this case, the size of the basins of attraction of the
encoded patterns is maximal. This article is very interesting in our work as
it links the classical associative memory (e.g. Hopfield) with the oscillatory
associative memory models, and it shows that with a simple modification of
the classical Kuramoto model (Equation 2.21), oscillatory associative memo-
ries based on phase-locking with a hebbian connection scheme are capable of
performing as well as the Hopfield network.

2.5.1 Central pattern generators

Movement production in animals has been shown as being performed by a
Central Pattern Generator (CPG), a neuronal network capable of generating
a rhythmic pattern of motor activity even in absence of sensory input. These
kind of systems have been identified in many animals as being the basis that
generate movement gaits as walking, swimming, trotting, flying, etc. The in-
teresting part is that the oscillatory activity of CPGs can be modulated by
different parameters, which are in turn modulated through modification of
sensory input. This means that the same network can be used for multiple
gaits, and switching from one to the other occurs when the sensory land-
scape changes as well, for example a salamander swimming in water is able to
switch to walking as it gets out on sand. At the neuronal level, the oscillatory
mechanism can be induced by alternated mutual inhibition between a pair
of neurons, and other time-dependent processes such as synaptic depression
and differences in time courses of synaptic activity along parallel pathways,
rate recovery from inhibition (for more details, please refer to (Kandel, 2000)).
This area has been widely studied by biologists from an analytical point of
view by biologists, as well as by roboticists who attempted to design artifi-
cial CPGs that can be used to control locomotion in robots, as for example
in (Buchli and Ijspeert, 2004; Righetti et al., 2005). The use of CPGs to
generate movement in robots is a very promitting direction because they are
robust against perturbations and faults, as they rely on limit-cycle oscillators.
The use of CPGs could in the long run even replace well-known robot control
paradigms such as behavior-based robotics or schema control as they are able
to behave differently according to the sensory information from peripheral
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receptors (e.g. camera, laser range-finders, etc.) or other high-level control
centers (eg. path planner), so a central control center is not required anymore.

Although many theoretical works about movement generation by the CPG,
only a few learning models have been proposed for the acquisition of an ad-
equate parameter set that generate a desired phase pattern. One of them is
worth noting as it is able to learn a specific phase pattern according to the
correlation between the effects of the signal from the CPG and the teacher
signal.

Nishii et al.

An interesting model of a learning algorithm for networks of coupled neural
oscillators was proposed by Nishii (Nishii, 1998, 1999), where a CPG model
able to learn a phase pattern imposed by a teacher signal is proposed. Once
the pattern is learned, it is able to generate it without any signal emanating
from a higher control center. Even though there exist physiological evidence
that CPG receive efferent signals from higher center, we do not know if they
are really used as teacher signals in order to tune the CPG parameters. This
models suffers from the use of this external signal, whereas many living organ-
ism might be able to learn gait patterns without any instructions. The interest
to present this model, is that a learning rule modifying the intrinsic frequen-
cies of the oscillators and their coupling weights according to the effects of the
input signal on the dynamics of the oscillator is proposed. Although, even if
this model is interesting for robotic implementation (e.g. learn a specific gait
for example), many animals seem to learn the desired patterns without any
explicit teacher signal.

Aoyagi

Another model of a neural oscillatory network was proposed by Aoyagi (Aoy-
agi, 1995; Aoyagi and Nomura, 1999), in which the oscillators are able to store
and retrieve sparsely coded phase patterns. They model neurons as being
oscillators, some of which are in nonfiring state, while others do encode infor-
mation in the timing of their spikes. An interesting point is that the proposes
a Lyapunov function ensuring, under suitable conditions, that this model per-
forms a stable retrieval process. At the same time, they show that even near
saturation of the memory, the basins of attraction remain sufficiently wide to
allow for the recall of a memorized pattern even from a noisy input pattern.

2.6 Discussion

We briefly introduced the theory of oscillating dynamical systems, and we
tried to give an idea on how important these systems are. Oscillating systems
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regulate everything around us, from the microscopical world (interaction be-
tween molecules) to the macroscopical one (periodic motion of planets in our
solar system), and a key to understand how do all that work, lies in under-
standing the complex behavior of such interacting systems, and the emergence
of new phenomena due to these interactions. Science of complexity is a freshly
born science where only the tip of the iceberg is known, and many discover-
ies still remain to be done, not only in neuroscience, but also in all sciences
dealing with networks of interacting elements (gene regulation networks, dis-
ease propagation due to sexual interactions, virus propagation in computer
networks, self-organized behavior in animal swarms, etc.)



Chapter 3
Analysis of the model

”The true art of memory is the art of attention.”
Samuel Johnson (1709-1784)

We present the model we implemented in detail and we discuss about
the performance measures we used to derive its efficiency. We conclude this
chapter with a discussion about the properties and drawbacks of this model,
and what aspects should be improved to get a more efficient model.

3.1 Description of the model

The model we investigate in this project is described into (Borisyuk et al.,
2001). This paper proposes a novel kind of memory that differs from the clas-
sical models we discussed in the previously, as the idea is that many coupled
oscillators are able to store multiple signal and recognize when signals are
already learned. Depending on the phase relations between these signals, spe-
cific regions of the network are activated by a stimulus and memory is created
through hebbian modification of the connexion strengths between oscillators.
Their model is composed of an oscillatory mechanism of memory formation in
that the input information is encoded into a constant frequency input signal,
and storage is done through adaptation of the natural frequencies of the oscil-
lators in the network. Recognition of stored patterns is done through resonant
amplification of the activity in the network.

The new idea proposed by this model is that there is not only a modification
of connection strengths between the oscillators such as is usually the case in
the classical connectionist theory, but also a permanent modification of the
natural frequencies of the oscillators.
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Figure 3.1: Structure of the network. Each square refers to an independent group
of q all-to-all connected oscillators (here q = 4), the arrows entering into each
group correspond to the ith component of the input signal Ci (here 1 ≤ i ≤ n =
4). Even if each group gets all components of the input signal, each arrow has
its own phase shift ψij , where i refers to the group the arrow is related to, while
j is the index of the component of the input signal, so left-most arrow has phase
shift ψ11, the one immediately on its right has ψ12 and so on and so forth.

3.1.1 Network architecture

This model consists of a network of oscillators combined into m groups Gj(j =
1, . . . ,m) with q oscillators into each group, with all-to-all connections for the
oscillators belonging to the same group and no connections taking place be-
tween members of different groups. It is assumed that each oscillator repre-
sents the average activity of locally coupled excitatory and inhibitory neurons,
where the local field potential1 is represented by the activity of the oscillator.
Before the network is initialized, the natural frequency of each oscillator (ωij

for oscillator i in group j) is chosen in the range [ωmin, ωmax] in a homogenous
manner. An n-dimensional input signal is fed into each oscillator in the net-
work and each dimensional component Ci(i = 1, . . . , n) is a sinusoidal function

1The local field potential is the local activity of the neuronal population.
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of the form

Ci = sin(2πω0t+ ψij) (3.1)

where ω0 is the frequency of the input signal that is in the range [ωmin, ωmax]
and ψij are phase shifts that imitate different time-lags during signal trans-
mission to a particular group of oscillators. When the network is initialized,
each ψij is chosen randomly in the interval [−τ, τ ].

This network is able to learn input signals by tuning a certain amount of
oscillators to the frequency of the input signal (ω0). The signal is presented
to the network, thus turning some oscillators of the network into a resonant
state, who will attract all oscillators in their group to the input frequency. An
external supervisor monitors the amount of resonant oscillators in the network
and counts the time needed for the amount to exceed a fixed threshold H. Of
course the time needed to reach the threshold decreases at each presentation
of the stimulus, as the number of tuned oscillators increase after each stimulus
presentation. If the time to reach the threshold if inferior to the critical time
Tcr, then we infer that the signal has been learned by the network and is not
novel.

3.1.2 Dynamics of the network

Now we described the coupling architecture of the network, we can give
the three equations regulating the dynamical behavior of the network, that is
the evolution in time of the phase θj

k, amplitude aj
k, and frequency ωj

k of the
oscillators.

θ̇j
k = 2πωj

k +
v

n

n∑
i=1

sin(2πω0t+ ψij − θj
k) +

w

q

q∑
l=1

g1 sin(θj
l − θj

k) (3.2)

ȧj
k = −βaj

k + γg2

(
1
n

n∑
i=1

cos2+(2πω0t+ ψij − θj
k)

)
(3.3)

ω̇j
k = −αg1

(
ωj

k −
θ̇j
k

2π

)
(3.4)

where v, w, α, β, γ, ξi, ρi, are all positive parameters with values as de-
fined in Table 3.1. Attention, the g1 must be read as g1(a

j
l ).

The gi(x) function, with i = 1, 2 is a sigmoid function defined as

gi(x) =
exp((x− ξi)/ρi)

1 + exp((x− ξi)/ρi)
(3.5)

The cos+(x) is defined as

cos+(x) =

{
cos(x) if cos(x) > 0;
0 otherwise.
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Phase dynamics

Note that Equation 3.2, leads to phase-locking behavior described by the
sum of three components. The first term alone, describes a simple oscillator
whose phase grows uniformly in time, and growth is proportional to its natural
frequency.

Then, the second term drives the oscillator to phase-lock with the input
signal. For an oscillator having the same natural frequency as the input signal,
this term is gradually reduced to 0, that is the phase difference between the
oscillator and the input signal also converges to 0. The parameter v weighting
this term influences how quickly will the oscillator locks to the phase of the
input signal, or better said the strength of the influence of the input signal on
the oscillator.

Finally, the rightmost term influences the phase-locking according to the
phase difference between the oscillator and all other members of the same
group. In one word, it makes all oscillators in the group converge to a common
phase. The g1(a

j
l ) factor allows only resonant oscillators (whose instantaneous

amplitude is above a certain threshold determined by the parameter ξ1) to
influence efficiently the other oscillators in their group, so that convergence
is towards the ”most” resonant oscillators. The w parameter denotes the
coupling strength between a resonant oscillator and its neighborhood, that is
the strength of attraction of the common phase onto the phase variation.

Amplitude dynamics

The differential equation governing the amplitude evolution is used to regu-
late the resonant response of an oscillator. The function g2(x) is as described
by Equation 3.5. The second term grows exponentially as the phase difference
between input signal and group phase of the oscillators decreases, and we can
easily notice that the sum in Equation 3.3 will tend to γ as the phase difference
between the oscillator and the input signal decreases, and will equal to γ only
if the sigmoid returns 1, that is if the value of the sum is above the threshold
ξ2. For these phase-locked oscillators, we can find a fixed point by setting the
value of ȧj

k = 0, and we find the value of aj
k where the amplitude stabilizes,

and we denote this value a∗ = γ/β. This is the maximal amplitude that can
be reached by perfectly in-phase signal. However, we define that an oscillator
with an amplitude aj

k ≥
4
5a

∗ is said to be resonant. If the phase and frequency
difference is large enough to prevent the oscillator to phase-lock to the input
signal, its amplitude will remain small and thus it will not be considered as
resonant.
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Frequency dynamics

The frequency change of the oscillators is where the learning process re-
ally takes place, and we can see the variation is a product of three factors.
First, the α parameter determines the learning speed. Then, the g1(a

j
k) term

prevents non-resonant oscillators from changing their frequency, so only oscil-
lators located in groups with an appropriate phase shift will learn the signal.
Finally, the difference between internal frequency and the phase variation is
what quantifies the amount and direction of the frequency change. We can see
in Equation 3.2 that for phase-locked oscillators, the phase variation equals
2πωj

k (as the second and third term decrease as they become in-phase with
the input signal and with their resonant neighbors), thus the frequency is not
changed anymore.

3.1.3 Implementation

The implementation of the model was done in C++ using the LANDS2 basis
created by Jonas Buchli, at the BIRG group. Moreover, we created a MAT-
LAB GUI3 that allows one to choose parameters, launch a simulation, and
analyze results directly, or even create scripts that allow you to run several
simulations automatically and analyze the results afterwards. Finally, we also
implemented the same models in MATLAB in order to perform rapid evalua-
tion and debugging of the models. The implementation part of the simulation
was done rather quickly, but we spent an enormous amount of time in order to
asses the correctness of our implementation as the results we obtained using
exactly the same parameters were totally different from the ones in the paper.
After thorough analysis, we concluded that our implementation behaves cor-
rectly according to the mathematics underlying the proposed model, but not
with the parameters as given in the paper. We noticed that the equations were
mistyped in the original paper, as the 2π term was missing in two equations.
Also, the value of the parameter τ = π/2 as given in the paper was wrong,
and we proved mathematically (see below) that the model cannot work with
such a high value for τ . We decided thus to contact the authors of the paper
who agreed with our assumptions, and indicated us that the value they used
in their experiments was actually around τ = π/6. In our simulations, we used
τ = 0.7.

3.2 Dynamics of the network

We are going to discuss some important aspects concerning the dynamics of
this model. Let us start with the Equation 3.2 which describes the evolution

2An efficient framework for easy implementation and simulation of dynamical systems.
For download, check http://birg.epfl.ch.

3GUI : Graphic User Interface
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of the phase for each oscillator. The third term indicates the mean phase for
all the resonant oscillators in the same group. The way this term evolves is
obvious, as all members will be attracted towards a common phase, which is
regulated by the most in-phase oscillators having the highest amplitude due to
the factor g1(a

j
l ). As the standard deviation between the phase of all oscillators

decreases as they learn the appropriate frequency, this term decreases as well.
The evolution of the second term is much harder to visualize, due to the

non-linearity introduced by the term
n∑

i=1
sin(2πω0t + ψij − θj

k). This term

attempts to adjust the phase of the oscillator so as to phase-lock with the input
signal, and has the same structure as the phase-locking behavior described by
Kuramotos’ model we defined in Equation 2.21 where the dynamics also seek
to minimize their phase difference with the input signal. You can see the
dynamics of this second term in Figure 3.2, where this term converges to 0
for any oscillator having the the the same frequency as the input signal, that
is ωi = ω0, while it fluctuates without converging when the frequencies are
different. As learning changes the frequencies of the oscillators towards ω0,
we can conclude that all oscillators in the network will sooner or later phase-
lock to the input signal. Even if this statement could seem appealing, we will
show later that it is not true for any group of oscillators due to the different
phase shifts, and this is exactly what makes the model interesting. As long as
τ < π/2, this term will always converge towards 0 for any value of n, it is only
a matter of time. Then you can see the behavior of one group of oscillators
having an good phase combination in Figure 3.3, whereas the behavior of a
non-resonant group can be seen in 3.4.

3.3 Analysis of the parameters

Let us now describe the effects of the parameters regulating the model.
First, you can have a look at the values used in the original paper in Table
3.1.

Parameter Value Parameter Value Parameter Value
m 500 n 20 q 50
α 1 β 4 γ 4
v 0.5 w 16 ξ1 0.7
ρ1 0.02 ξ2 0.86 ρ2 0.02
T 3 Tcr 1.5 H 450

Table 3.1: Numerical values of the parameters as proposed in the paper.
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Figure 3.2: Dynamics of the term v
n

n∑
i=1

sin(2πω0t + ψij − θj
k) of Equation 3.2

with parameters α, β, γ = 0 for three oscillators with different natural frequencies
(resp. ω = 6.8, ω = 7, and ω = 7.2) when exited with the same 20-dimensional
input signal with frequency ω0 = 7, and identical phase shifts (chosen randomly
in the range [−τ, τ ]). Note the asymmetry between the oscillators with ω = 6.8
and ω = 7.2. Note also the phase-locking behavior of the oscillator having the
same frequency as the input signal (regardless of the input dimension n), whereas
this term do not converge to 0 for oscillators having a different frequency.

3.3.1 Phase differences (ψij)

The major problem encountered was the initial distribution of the values in
the ψij matrix. As these values are initialized randomly at the beginning of
each experiment, the results can vary significantly even if no other parameters
are changed, due to the complex (and non-linear!) interactions between the
components of the model. This random initialization prevents us to deduce the
real effect of a given parameter on the behavior of the network, regardless of the
initial conditions. To capture the influence of a single parameter we decided
to run some experiments using a single group (m = 1) with a unidimensional
input signal (n = 1), and in this case the matrix ψij becomes a single variable
we set to ψ = 0. Unfortunately, this is what makes our model interesting, as it
takes advantage of the great number of available groups, thus leading to some
kind of distributed memorization of the signal in multiple groups.
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Figure 3.3: Dynamics of the evolution for a group with a coherent input signal.
A stimulus with a frequency ω0 = 7 has been presented during a time T = 3,
to n = 20 oscillators with ωmin = 6 and ωmax = 8. Top left: Evolution of

the second term of Equation 3.2 ( v
n

n∑
i=1

sin(2πω0t + ψij − θj
k)) which indicates

the phase difference with the input signal. Note the way this term stabilizes
towards a null value as all oscillators in the group phase-lock and their frequency
converge towards ω0. Top right: evolution of the third term of Equation 3.2

(w
q

q∑
l=1

g1 sin(θj
l − θj

k)). Note how this term also converges to 0. Center left:

second term of Equation 3.3 (g2

(
1
n

n∑
i=1

cos2+(2πω0t+ ψij − θj
k)
)

). Center right:

This is the value of |θ̇i − 2πωi|. Bottom left: Amplitudes of all oscillators in the
group. Bottom right up: evolution of the natural frequencies towards ω0. Bottom
right down:The standard deviation of the θi of all oscillators in the group. We
can clearly see the phase-locking behavior between all oscillators in the group.
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Figure 3.4: Dynamics of the evolution for a group with an incoherent input
signal. A stimulus with a frequency ω0 = 7 has been presented during a time
T = 3 to n = 20 oscillators with ωmin = 6 and ωmax = 8. Top left: the evolution

of the second term in of Equation 3.2 ( v
n

n∑
i=1

sin(2πω0t + ψij − θj
k)). Note the

this term fluctuates without stabilizing. Top right: evolution of the third term

of Equation 3.2(w
q

q∑
l=1

g1 sin(θj
l − θj

k)). Center left: Evolution of the second term

of Equation 3.3 (g2

(
1
n

n∑
i=1

cos2+(2πω0t+ ψij − θj
k)
)

). Center right: This is the

value of |θ̇i − 2πωi|. Bottom left: Amplitudes of all oscillators in the group.
Bottom right up: Natural frequencies of the oscillators in the network. Bottom
right down:The standard deviation of the θi of all oscillators in the group. We can
clearly see that no phase-locking takes place, because the deviation of the phases
of the oscillators keeps increasing, and there is no convergence of the frequencies
towards ω0.
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3.3.2 Basin of attraction (v)

If one wants to be able to control the way the amplitudes evolve, we need to
find a mathematical expression that yields the width of the basin of attraction
of each oscillator according to the chosen parameters and to the current state
of the network. With this function we can control the way the evolution of
the amplitude, and we are able to decide when the learning must be stopped.
Above all, we can restrict the number of oscillators that will learn an input
signal. For the effects of this parameters, have a look at Figure 3.5, where the
plots on the left were done using v = 0.5, while on the right we used v = 2.
Note how the behavior is similar for the same value of β, γ, but how the width
of the cluster composed by the resonant oscillators is increased.

3.3.3 Amplitude behavior (β, γ)

We discuss only the case where β = γ, as this is the required condition in
order for the amplitude to be in the range [0, 1] for the amplitude. As you can
see in Figure 3.5, this value to a higher value makes our system stabilize to
the maximal value the amplitudes of resonant oscillators.

3.3.4 Neighborhood attraction (w)

The parameter w is important in that it asses how long it take for an
oscillator to phase lock to an input signal according to the difference between
its natural frequency and the input signal frequency. As can be seen in the
equations, it weights the impact of the phase difference between the phases
of all oscillators in the group onto the phase-locking behavior, if they are in
a resonant state. A low weight will turn only oscillators with a very close
frequency to phase-lock (if they are resonant of course), while a high value of
w will turn all oscillators in the group to phase-lock. You can see the effect
of this parameter onto the amplitude evolution in Figure 3.6, and onto the
frequency adaptation of the oscillators in Figure 3.7.

3.3.5 Learning speed (α)

Ideally, we want to design a system which is able to learn as quickly as
possible, but this is not always feasible without introducing other drawbacks.
The learning speed is influenced by the factor α, but one should be aware of
concluding that setting this factor to a higher value will directly improve the
performance of the network. The problem is that if we increase the learning
speed, the systems will becomes less unstable, as it it will become very respon-
sive to small perturbation that can be considered as noise. As all oscillators
will tune their frequency to this signal very quickly, the obvious drawback
is that the flexibility of the network is drastically reduced in the sense that
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Figure 3.5: Effects of the parameters β, γ and v on the evolution of the am-
plitudes. We set α and w to 0 in order to prevent the influence of frequency
adaptation and of attraction between neighbors. Left top: v = 0.5, β, γ = 1,
Left middle: v = 0.5, β, γ = 4,Left bottom: v = 0.5, β, γ = 8,Right top: v = 2,
β, γ = 0.5, Right middle: v = 2, β, γ = 4, Right bottom: v = 2, β, γ = 8.
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Figure 3.6: Influence of the resonance attraction for parameter w for 5 consec-
utive presentations of an input signal with ω0 = 7 during T = 3, with a single
input on a signal group of 50 oscillators with a null phase shift (ψ = 0). We
can see the dynamics of amplitudes for each oscillator when varying the factor w.
The other parameters were α = 0, to prevent influence of learning falsifying the
amplitudes evolution, β, γ = 2 to prevent all oscillators to resonate too quickly.
The feedback was blocked in order to see the full evolution of the amplitude. All
other parameters are as given by Table 3.1. From left to right w = 2, w = 8,
w = 10, w = 14, and w = 24.
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Figure 3.7: Influence of the resonance attraction for parameter w for 5 consecu-
tive presentations of an input signal with w0 = 7 during T = 3, with a single input
on a group of 40 oscillators with a null phase shift (ψ = 0). In this experiment the
threshold is not used, so the oscillator learns the frequency of the input signal as
long as it is present. We can see the influence of the factor w upon the frequency
locking behavior. All other parameters are as given by Table 3.1. (a)w = 3, (b)
w = 6, (c) w = 8, (d) w = 9, (e) w = 10, (f) w = 16.
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all available oscillators will be used solely to encode this unique information.
The duration of the stimuli presentation is simply a design issue in that it
changes only the time scale. One should not concentrate on the exact time of
presentation, but rather a good way to prevent under-learning.

3.3.6 Sigmoid functions(ξi, ρi)

The parameters used in the sigmoid functions depends only on the other pa-
rameters so there is no real interest to study the global behavior according
to these parameters. For example, the ξ, are chosen according to the mini-
mal value of the amplitude where an oscillator is considered as being resonant
(0.8), so we will not discuss further this aspect.

3.4 Resonant oscillators

Now, let’s get into the heart of this model. The fact that phase-locking
occurs in some groups, that is the second term of Equation 3.3 converges to 0,
does not imply that the second term of the amplitude dynamics (Equations
3.3) (

∑
cos+(t)) will converge to 1. This is a very important remark, as

it implies that only a fraction of the oscillators in the network can become
resonant (reach an amplitude of 0.8) for each signal, independently of the
time the signal is presented. We are interested into deriving the condition
where an oscillator is considered as resonant, that is when its amplitude is
superior to R = 0.8. From Equation 3.3, we want

aj
k =

γ

β
g2

(
1
n

n∑
i=1

cos2+(2πω0t+ ψij − θj
k)

)
≥ R = 0.8

let’s expand the g2(x) function, and isolate the exp(x) term

exp


1
n

n∑
i=1

cos2+(2πω0t+ ψij − θj
k)− ξ2

ρ2

 ≥ Rβ

γ −Rβ

which gives the condition to satisfy if we want our oscillator to become resonant

1
n

n∑
i=1

cos2+(2πω0t+ ψij − θj
k) ≥ ξ2 + ρ2 ln

(
Rβ

γ −Rβ

)
Additionally, if we assume that the oscillator is perfectly in phase with the
input signal and with all his neighbors, θ̇ becomes 2πω, whose solution is
simply θ(t) = 2πωt, thus the condition becomes :

cs =
1
n

n∑
i=1

cos2+(ψij) ≥ ξ2 + ρ2 ln
(

Rβ

γ −Rβ

)
= csmin (3.6)
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With the parameters given in the paper, the value of the left term is
csmin = 0.8877, which is perfectly consistent with the parameters proposed
in the paper for the sigmoid g2(x) as g2(csmin) = g2(0.8877) = 0.8, which is
exactly the minimal value of the fixed point of the amplitude dynamics so that
the oscillator is considered resonant.

In order to estimate the probability for an oscillator to become resonant,
one needs to approximate the statistical distribution (also called the Probability
Density Function (PDF)) of the left term of Eq. 3.6 (cs) for different values of
τ and n. We performed Monte Carlo experiments over 100′000 trials, each one
with a random initialization of the phase shifts ψ, and recorded all the values
of cs. In order to estimate the probability for an oscillator to be considered as
resonant, we want find the probability for the value of cs to be greater than
csmin. We can do that in two ways : either empirically counting the number
of trials where this assumption is true, or else by stating that the distribution
is Gaussian. This statement is just an assumption and not a proven fact, but
as we performed a huge number of trials, the Central Limit Theorem states
that the distribution tends towards a normal one, with mean and variance
estimates extracted from experimental results. From a statistical point of
view, the probability we are looking for corresponds to the area of the dark
surface under the curve in the right plot of Figure 3.9. Finally we performed
the same number of runs of the complete simulation with a single oscillator
having random phase shifts (ψij) at each trial, and counted how many times
the oscillator had an amplitude superior to 0.8. The numerical results are
given in Table 3.2. We can see that the first and the third column are very
similar thus confirming the validity of Equation 3.6, whereas the values yielded
by the Gaussian approximation are more different. The reason is obvious, we
cannot be sure that the distribution is Gaussian, and as you can see in the left
plot of Figure 3.9, the histogram does not fit perfectly the exact distribution
having the same mean and variance. Also, the more runs we perform, the
better should be the results of the Gaussian approximation.

3.5 Discussion

3.5.1 Performance analysis

In order to asses the performances of the model, it could be interesting to
find an analogy to the concept of basin of attraction as used in the Hopfield
model we could apply for this model. We define the basin of attraction as
the range of frequencies where an oscillator phase-locks to a signal, or more
exactly the range of entrainment as defined in the previous chapter. This is a
capital aspect in the model as it determines the amount of oscillators that will
be dedicated to store each input signal. Ideally, the user should not have to
tune so many params in order to use the network, but he should only choose
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Figure 3.8: Value of the term 1
n

∑n
i=1 cos2+(ψi) of Equation 3.2. We have 5

distinct groups, each corresponding to a different value of τ . Exp. 1-5: τ = 0.3,
Exp. 6-10: τ = 0.5, Exp. 11-15: τ = 0.7, Exp. 16-20: τ = 1, and Exp. 21-25:
τ = π/2. For each experiment we vary the dimension n of the input signal. The
first column of each group corresponds to n = 5, the second to n = 10, the 3rd

to n = 20, the 4th to n = 50, and the 5th to n = 100.
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τ n Experimentally Gaussian approximation Simulation

τ = 0.3

n = 5 1 1 1
n = 10 1 1 1
n = 20 1 1 1
n = 50 1 1 1
n = 100 1 1 1

τ = 0.5

n = 5 0.8568 0.8513 0.9269
n = 10 0.9337 0.9286 0.9602
n = 20 0.9834 0.9807 0.9884
n = 50 0.9996 0.9992 0.9996
n = 100 1 1 1

τ = 0.7

n = 5 0.2632 0.2795 0.4633
n = 10 0.1851 0.1889 0.2995
n = 20 0.1038 0.1034 0.1562
n = 50 0.0229 0.0203 0.0283
n = 100 0.0024 0.0016 0.0026

τ = 1

n = 5 0.053 0.0484 0.14
n = 10 0.01146 0.00708 0.0214
n = 20 0.00065 0.00031 0.00067
n = 50 0 0 0
n = 100 0 0 0

τ = π/2

n = 5 0.0074 0.005 0.018
n = 10 0.0027 0.0001 0.0003
n = 20 0 0 0
n = 50 0 0 0
n = 100 0 0 0

Table 3.2: Probability for a perfectly phase-locked oscillator with the same fre-
quency as the input signal and synchronized with its neighborhood to be considered
as resonant (i.e. its amplitude reaches 0.8). The first column corresponds to the
experiment described in the basic Monte Carlo simulation where the densities are
counted empirically. The data in the middle column is obtained by approximating
the results of the experiment by a Gaussian with mean and variance given by the
samples, and we used the MATLAB normspec function in order to get the proba-
bility. The last column is the real density of oscillators that reached the resonance
threshold in a complete simulation of the network.
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Figure 3.9: Densities found experimentally in Experiment 15 of Figure 3.8. Left:
the gaussian approximation of the data. Right: the same gaussian, but with dark
area corresponding to the part of the distribution whose cs is superior to 0.8877,
and thus will reach a resonant state.

how many oscillators he wants to dedicate for a signal to learn. The problem
is that the amount of overlapping groups for the different signals is not easy
to compute due to the random initialization of the phase shifts.

Error rate vs. memory filling

This is clearly one of the most annoying drawbacks of oscillatory memory
models. The point is that, due to the simplicity of the mathematical models,
there is no mechanism embedded in the system to prevent ”overwriting”, in
the sense that there is no way to ensure whether previously stored data will
not be affected by adding a new memory. In this model, the place where a
signal is learned is define according to the phase shifts coincidence between the
input and the group. As this is not an bijective function, where there exist
a single group for each signal and viceversa, it may happen that the same
group could be used to encode more than a single signal, thus implying that
the retrieval error increases as the memory is filled.

3.5.2 Input signal dimension

As we have shown in Figure 3.8, the effect of increasing the dimensionality
of the input signal, does not change the mean value of the second term of
Equation 3.3, but the more dimensions we add, the lower is the variance
around the mean. We know much better the probability of the sum to have a
precise desired value, and thus we can control much better what will be the
value of the term. This could be used in order to know exactly the ratio of
oscillators that will be activated by an input signal, and how many of them
will be used to store the signal.
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3.5.3 Distributiveness of learning

A very interesting aspect of this model is that without the groups being
actually connected, many of them are used to store the same input signal,
which makes the model more robust, as the data is distributed over many
groups, and loss of a group doesn’t result in total loss of previously stored
data. Unfortunately, recalling is done through counting of resonant oscillators
in the network without autonomous feedback regulation embedded into the
equations of the system. Recall of a stored signal is done through the time it
takes for a certain threshold of resonant oscillator is reached, and this is also
used to cut the learning activity in the network to prevent all oscillators from
the network converging to the input signal. This an interesting feature as it
allows a spatial distribution of an input signal onto many groups, and that can
be very useful to increase the overall robustness of the system. This feature
is found in biological systems, but unfortunately, a global watchdog keeping
track of the number of resonant oscillators, is out of question concerning bio-
logical plausibility.

You can see in Figure 3.10 how many resonant oscillators are located in
each groups, for a simulation of the experiment proposed in the paper. It’s
clear that some of groups have all oscillators tuned to same frequency, and
some other groups have only a part of their oscillators into a resonant state.
In fact, the number of oscillators in a group that codes the stimulus depends
on how good the coincidence of the phase shifts is at this group. This prevents
the method used in the paper to be rigorous. The problem is that a group
is not totally ”dedicated” for a specific signal, and this can be viewed as a
huge waste of oscillators. But on the other hand, this is also the property that
allows a distributed storage, thus increasing the robustness of the model.

3.5.4 Threshold function

The utility of a threshold function should be discussed. On one hand, it is a
very raw technique to stop the learning process as soon as a certain amount
of oscillators enter a resonant state and prevent overlearning of the network.
Such a global function is clearly not biologically plausible and it can be seen
rather as a hack, or artifact than an embedded property of the model. On the
other hand, it’s clearly an easily implementable and efficient way to ensure a
control of the learning able to ensure a distributed representation of the learned
signal. Unfortunately, the authors propose just a numerical value (H = 450),
without giving any explanation motivating the choice of this particular value
of the threshold other than the fact this value performs well according to the
other parameters.



44 Analysis of the model

Figure 3.10: Number of resonant oscillators into each group after learning when
the learned signal is presented and when the threshold is reached. Note that this
is not an all-or-none scheme as there exist groups where only a few oscillators are
resonant.
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3.5.5 Positive aspects

First of all, the most innovative and promitting aspect is that this model is
based on the nonlinear dynamical systems framework. As many natural sys-
tems have similar properties, this gives us the possibility to implement it in
hardware (for example, we could use Phase-Locked Loops (PLLs)). This as-
pect gives an analogical memory compared the digital aspect of the classical
memories.

Another interesting aspect of this model is that a very smart mechanism
is proposed in order to find the spatial location of the storage site for a signal
to memorize, according to the phase relationship between the stimuli and the
groups in the network. This is very similar to what happens in the human
brain. Moreover, data is stored in a distributed manner, so we do not lose all
the stored information when a group is lost.

3.5.6 Negative aspects

The problem we face is that due to the relative young age of this field, there
do not yet exist formal tools in order to evaluate the performance of this kind
of network analytically, and we can only test it empirically under different
assumptions.

Let us present what we think are the weakest points of this model

• A huge problem of this network is the number of parameters required
to make it work. The problem is that many combinations of different
values of the parameters can lead to apparently identical behavior.

• Due to the random initialization of the phase shifts, the efficiency of
this model can vary significantly even when running exactly the same
experiment several times. This prevents using the novelty detection
criteria they propose, as the time needed to reach the threshold can
change a lot across trials.

• Another big problem is the fact that the time is used only for learning
dynamics, so it is reset at the end of each presentation of a signal. Ad-
ditionally, the model is sensitive to the phase relationships between the
input and the oscillators in the network, so if the phase is changed by
noise the situation can become problematic. This non-absolute timing
prevents to learn temporal sequences, where the order of presentation
of the signals is not captured. This aspect would have been useful for
robot programming by demonstration for example.

• The way the signal is given explicitly in the equations implies that we can
only memorize a single frequency presented as a sum of cosine functions
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with the same frequency (which is still a cosine). This drawback is clearly
the bottleneck of this models as it prevents us to use this network to store
more complex signals.

• The reason of using a multi-dimensional input has not been clearly
stated. As we have shown in Figure 3.8, this parameter broadens or
the variation of the sum. This parameter seems only to contribute to
a better distribution without any efficiency and capacity improvement,
nor complexity of the signal we want to store.

• Last but not the least, the amount of oscillators used to memorize a single
frequency is by far too large to provide an efficient storage, and moreover,
even with so many oscillators, we cannot ensure that information is
stored reliably (due to overlapping between groups).



Chapter 4
Further improvements

”The search for truth is more important than its possession.”
Albert Einstein (1879-1955)

In this chapter we propose how to modify the model we described in the
previous chapter by combining it with another oscillator model that is able to
learn complex signals.

4.1 What was done

We had two directions where search a way to improve the model. The
first direction was to derive new dynamic equations and learning rules. The
other was to investigate the network architecture and the coupling between
oscillators.

4.1.1 Complex signal learning

Our starting point was to take inspiration from the model described in
(Righetti et al., 2005), where an oscillator able to learn the period of any peri-
odic signal is proposed. The originality of this model is that it is able to learn
any kind of periodic signal, without any a priori knowledge upon its spectral
decomposition and does not require any explicit signal processing (e.g. no
FFT, nor setting of a time window). This model has also a very innovative
feature, unusual in the classical neural networks theory, which is the learning
phase to be directly embedded in the dynamics and not as an offline optimiza-
tion process.

The oscillator used in the model is based on a Hopf oscillator (perturbed
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by a external stimuli F ) whose dynamics are

ẋ = (µ− r2)x− ωy + εF (4.1)
ẏ = (µ− r2)y + ωx (4.2)

with radius r =
√
x2 + y2. As you can see, this oscillator is perturbed along

the x-axis with an unknown periodic signal F , defined as a weighted sum of
sine (or cosine) functions with respective frequencies ωi,

F (t) =
n∑

i=1

ai cos(ωit) (4.3)

If we prefer to express this system with polar coordinates (x = r cos(θ), y =
r sin(θ)), the system becomes

θ̇ = ω − ε

r
F sin(θ) (4.4)

ṙ = (µ− r2)r + εF cos(θ) (4.5)

It is well known that such an oscillator having a natural frequency close to
the frequency of a component of the input signal will lock to the most attract-
ing frequency (the nearest one if all components have the same coefficient ai),
this is the frequency entrainment behavior we described in Chapter 2. But if
the frequency difference is too high (high is relative as it depends on the value
of ε), the phase-locking cannot take place. To allow any oscillator to learn
an input frequency component regardless of the detuning, a learning rule that
adapts the frequency in function of the correlation between the phase of the
oscillator and of the input signal has been introduced. This rule is simply
described as follows

ω̇ = −εF sin(θ) (4.6)

This rule is the most important aspect of the model, as it allows a per-
manent form of learning to take place. Once an oscillator changes its natural
frequency towards a presented input, when the detuning becomes low enough,
entrainment takes place and the oscillator phase locks to the component of
the input signal. This behavior is plotted in Figure 4.1 where you can see
that once the entrainment takes place, the natural frequency of the learning
oscillator stabilizes around the target frequency with small oscillations in am-
plitude, but the average value of these oscillations is the learned frequency.

This oscillator has an interesting property in that it is not sensitive to
phase shifts between the input signal and the internal phases of the oscillator.
Whether this property is an advantage or not can be discussed. On one hand,
this insensitivity to phase shifts increases the robustness of the oscillator in
that the property of phase-locking and frequency learning is independent of the
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Figure 4.1: Adaptation of the natural frequencies for some perturbed oscillators
with dynamics described by Equations 4.4-4.6, for different initial frequencies. We
used µ = 1, ε = 1, and the perturbation is F (t) = cos(25t). Note that there
are two time scales, small-amplitude oscillations are taking place very quickly
compared to the time scale on which learning takes place.

phase difference between an oscillator and the input signal, so phase shifts due
to noise will not affect the behavior (except in the time required by an oscillator
to lock to the input signal). On the other hand, a major drawback introduced
by this robustness, is that we cannot use the phase difference anymore to
determine the spatial location where to store an information, and this was one
of the most interesting property proposed in (Borisyuk et al., 2001). Another
method for storing multiple data without the risk of overwriting previously
stored data is thus needed.

4.1.2 Improve the model

Our task was to take inspiration from the model we analyzed in the previous
chapter, and design an oscillatory memory able to learn complex signals, as
allows the oscillator we have just described. As we have to couple these oscilla-
tors in a way or another, and we want also to store more than a single signal in
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a network, we must be able to define precisely the range of attraction for each
frequency composing the input signal, in order to prevent that all oscillators
in the group will learn a unique input signal. Thus, we had to find a method
that discriminates between the oscillators belonging to the basin of attraction
of a frequency component of the input signal and the other oscillators, so as to
limit the amount of oscillators that will be used to learn that component. The
solution we propose to do that is to rely on the fact that a Hopf oscillator per-
turbed with a frequency close to its natural one enters into a resonant1 state.
So we can fix a threshold and state that only oscillators having an amplitude
superior to the threshold will learn the frequency in question. This is done
multiplying θ̇ with the factor g(ai), that is a sigmoid function of the amplitude
as defined in Equation 3.5 with the threshold being ξ, which returns 1 only if
ai > ξ, and 0 if not. Unfortunately, the value of r keeps oscillating on a small
scale of order O(ε), and this instability is very annoying as the amplitude os-
cillations are greater than the difference of amplitude between the oscillators
themselves, thus it was impossible to determine a relevant threshold that can
discriminate efficiently and correctly. For that reason, we had to find another
way to clusterize2 the oscillators belonging to a basin of attraction, as well as
reduce the tiny oscillations we discussed above. This was done by replacing
the original amplitude in the original model by this one

ȧi = −ai

β
+ F cos(θi) (4.7)

This model has the advantage of amplifying the difference of the amplitude
between resonant and non-resonant oscillators, and at the same time stabilizes
the small oscillations of the amplitude. But, it is not (yet) a true limit-cycle
oscillator, which requires a non-null fixed point of the amplitude when no per-
turbation is presented. This is important especially if one wants to implement
this model using oscillators commonly found in nature, as they usually have
a non-null fixed point.

Finally, we noticed that using this learning rule yields much better results:

ω̇i = −εg(ai)
(
ωi − θ̇i

)
(4.8)

Functionally, both equations are equivalent with the single difference that
Equation 4.8, has ε2 instead of ε. When a local neighborhood coupling is used
to compute the phase variation as is the case in Equation 4.9, the difference is
even stronger. You can see the behavior of both learning rules, and the effects
of the ε2 and of the local coupling in Figure 4.2.

1The amplitude of oscillations increases suddenly when it’s excited by a signal close in
frequency.

2We will refer a lot to the term cluster in this chapter, and we use it to refer to all
oscillators that are located in the range of entrainment of a frequency component of the
input signal, thus entering into resonance.
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Figure 4.2: We present a signal F (t) = cos(ωt), with ω = 7, µ = 0, ε = 0.5.
Top: The original learning rule as defined in Equation 4.6, and amplitudes defined
as in Equation 4.7. Bottom: The final learning rule as given by Equation 4.8,
with 1-local coupling.
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After many experiments and iterations, we devised the final model. We
noticed that coupling each oscillator with its two nearest neighbors (upper
and lower) in frequency, and let the oscillator be influenced if its neighbors
and itself are resonant, yields a much quicker and precise convergence. You
can also see that the oscillator became a limit-cycle one, as the amplitude
now admits a non-null fixed point when there is no perturbation. This feature
corresponds to the third term of the equation θ̇i of system 4.9.

θ̇i = ωi − εF sin(θi) + vg(ai)
∑

j=i−1,i+1

g(aj) sin(θi − θj) (4.9)

ȧi =
(
µ− ai

β

)
+ γF cos(θi) (4.10)

ω̇i = −αg(ai)
(
ωi − θ̇i

)
(4.11)

where α, β, γ, ε, v, µ are all positive parameters, and g(x) is a sigmoid as
defined in Equation 3.5 with parameter ξ and ρ.

First, a crucial aspect of this model is the way the amplitudes of the
oscillators evolve in time. The shape can be modeled by many parameters :

• ε defines the width of the basin of entrainment for each component. A
larger value allows oscillators with a larger detuning to phase lock to the
signal. We used a value of ε = 1.

• v defines the influence of the neighboring resonant oscillators, that is how
quickly will the resonant oscillators within a group converge towards a
common phase. Note also that this term appears also in the frequency
dynamics, which means that the frequencies will be influenced in the
same way as the phase. We used a value of v = 4.

• µ that is the value of the fixed-point of the oscillator when no input
signal is presented. We used a value of µ = 0.01.

• β that is how does the shape of the amplitude evolve (see Figure). The
larger these values, the clearer the difference between the amplitudes of
neighbors oscillators. We used a value of β = 25.

• γ regulates how differently will the amplitudes of the resonant oscillators
evolve depending on their detuning. The larger this parameter, the more
different will be the variation of the amplitudes of the oscillators in a
cluster. We used a value of γ = 6.

• α regulates how quickly will the frequency evolve. A low value should
be used, as the frequencies will oscillate around the frequencies they
have learned (the mean of the oscillations is that frequency), and the
amplitudes of the oscillations are proportional to this parameter. We
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used a value of α = 0.2. which allows a quick learning of the frequency
along with small amplitudes of oscillation in the frequency.

• ξ is the minimal amplitude for an oscillator to be considered resonant
enough in order to adapt the frequency. The ρ parameter for the sigmoid
g(x) was chosen to be 1, and we choose ξ = 25. These value must be
tuned according to the task to perform.

4.1.3 Memory recall

We had to define a method assessing whether a signal has been learned or not.
With the previous model, we measured the time needed for a fixed number of
oscillators to increase their amplitude above a certain threshold. But with the
model we propose here, as we are now able to learn complex signals having
multiple frequency components, we need more flexibility as the amount of os-
cillators entering a resonant state can vary according to the complexity of the
input signal. As we have explained, for each frequency composing the input
signal, a cluster of oscillators will become resonant (see Figure 4.3). When the
signal has not been learned, we can see that the amplitudes of the oscillators
in the cluster have a parabolic shape, due to the phase difference induced by
frequency variation among the members of the cluster. But once the signal
has been learned, in which case all oscillators will have the same phase, the
shape of the amplitude will be much sharper. A good method to discriminate
between learned and non-learned signals is to look at the standard deviation
of the amplitude between the members in each cluster. If this value is lower
than a certain threshold, this means that all resonant oscillators are tuned to
approximately the same frequency, so we can conclude that all these oscilla-
tors have learned the signal being presented. The question now is, how do
we form these assemblies or how to infer to which group does an oscillator
belong? This is another parameter we found empirically, and according to the
parameters we propose, we consider that all oscillators having an amplitude
greater than 10 are considered to be into a cluster.

The physical implementation of such a process can be easily done using an
array of correlation detecting neurons. If all signals arrive with the same phase
shifts at the neuron the activation output level should be maximal, reflecting
the fact that the variance in the group is minimal.

4.2 Experiments

We tested our model in order to show empirically that it works. Our tests
were done with a network of 100 oscillators with frequencies distributed be-
tween ω1 = ωmin and ω100 = ωmax, we presented a signal to the network
during T = 1000, and we reset the amplitudes of all oscillators at T = 500.
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Cluster : 1 2 3 4
Before learning 0.566405 0.560635 0.432205 0.845195
After learning 0.025737 0.000680 0.001751 0.000154

Table 4.1: Variance in amplitude for each cluster presented in the first experiment
taken before learning at time t=50, and after learning at t=550.

Note: In order to be able to make plots of the evolution of the amplitudes
as clean as possible, we plotted a time average over 10 time steps of the value
of the amplitude, so one unit on the plots corresponds actually to 10t.

4.2.1 First experiment: simple signal

This is the most trivial case : we want to learn a signal where each component
has the same coefficient ai. We trained our network with the following signal

F (t) = cos(3t) + cos(5t) + cos(7t) + cos(9t) (4.12)

As you can see in Figure 4.3, everything is good as the oscillators learn the fre-
quencies they need to. You can see the variance in amplitude for the members
of each cluster before and after the learning phase in Table 4.1.

4.2.2 Second experiment: simple signal with close components

Now we want to know what happens if the frequency components of the input
signal are closer. We want to learn the following signal

F (t) = cos(3t) + cos(3.7t) + cos(4.4t) + cos(5.1t) (4.13)

In this case, you can see in Figure 4.4 that the amplitudes evolve at the same
speed in each cluster, but that the frequencies are much more irregular and
oscillate with a bigger amplitude as compared to the previous experiment.
The reason is that the influence of neighboring oscillator is much greater due
to lower detuning between neighboring frequencies. In average, the value is
still the learned frequency.

4.2.3 Third experiment: complex signal

We want to show that our model is able to learn any kind of signal, even when
the coefficients of the components are different. We want to learn this signal

F (t) = cos(3t) + 2 cos(7t) + 3 cos(11t) (4.14)

We see clearly in Figure 4.5 that the width of the basin of attraction increases
with the coefficient of the corresponding frequency component, as do the am-
plitudes. This is a very useful property in that we can retrieve the coefficient
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Figure 4.3: Results of the first experiment. You can see how the network learns
a signal composed by 4 cosine functions, each with a coefficient 1. Top: The
amplitudes of all oscillators in the network, with 4 clusters corresponding to each
frequency component. Note how the amplitudes grow identically when the signal
is presented again, meaning that this component has been learned. Bottom: You
can see the tuning of the frequencies of the concerned oscillators in the network.
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Figure 4.4: Results of the second experiment. Top: See how the amplitudes
fluctuates much more due to interferences caused by closer frequency components.
Bottom: You can see the tuning of the frequencies of the concerned oscillators
in the network, but now fluctuations are much stronger compared to the previous
experiment.
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ai of each component as we know the number of oscillators that are dedicated
for a component having a coefficient ai = 1. So, the more oscillators we use to
cover the same range [ωmin;ωmax], the better the resolution of the retrieval.

4.2.4 Fourth experiment: complex signal with close components

This is the same as the previous experiment, but we want to show the effects
of different coefficients when the frequencies of the components are close. We
learn this signal

F (t) = cos(3t) + 2 cos(4t) + 3 cos(8t) (4.15)

The results of this experiment, shown in Figure 4.6, clearly state the limits
of our model. The stronger the coefficients of the different components, the
more separated must be the corresponding frequencies, else the stronger will
influence neighboring oscillators that should tune to another frequency, as the
size of the basins of attraction is proportional to the ratio of energy of the
corresponding frequency component to the total energy of the signal. In that
case, our criteria which states if a signal has been learned, will note that the
variance into each cluster is very low, so this will be a false positive, even
though the frequencies were not learned carefully. Moreover, if a component
has a very low coefficient compared to the others, the amplitude of the excited
oscillators will be very low, so they event won’t be considered as resonant and
they won’t learn the component they should. This is the price to pay for the
gain in genericity brought by our model.

4.2.5 Fifth experiment: robustness against noisy signal

This is the same as the previous experiment, but we want to show the effects
of different coefficient when the frequencies of the components are close. We
learn this signal:

F (t) = cos(6t) + cos(7t) + ρ(t) (4.16)

where ρ(t) is a gaussian noise between [−n
100 ,

n
100 ], with n being the percentage

of noise added. We tested the network with n = 0, 50, 100 and 200%, in order
to get an idea of how robust is our model to external noise. The results are
shown in Figure 4.7. You can see that even if we add a great amount of
noise, the appropriate frequency is still learned correctly. If the noise would
be different for each oscillator, the results would be worse, as the variation
of the amplitudes into the same cluster would have been proportional to the
amount of noise added, thus the recall procedure would fail.
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Figure 4.5: Results of the third experiment. Top: See how the amplitudes and
width of the different clusters change according to the coefficient of the different
components of the signal. Bottom: The tuning of the frequencies of all oscillators
in the network.
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Figure 4.6: Results of the fourth experiment. Top: See how the amplitudes
and width of the different clusters change according to the coefficient of different
components of the signal. Bottom: Note how the weaker component learned the
frequency of a neighboring component.
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Figure 4.7: Results of the fifth experiment, where the frequency components of
a noisy input signal are learned. We used in these experiments a) n = 0%, b)
n = 50%, c) n = 100%, d) n = 200%. You can see that the frequencies are still
correctly learned even when a random value between [−2; 2] is added to the input
signal.
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4.2.6 Sixth experiment: robustness against unreliable elements

In this experiment we want to show that our model is robust with faulty
oscillators. We present the following signal to the network

F (t) = cos(6t) + cos(7t) (4.17)

Then, at time t = 50, a user-specified ratio of all oscillators are disabled (in
this experiment we removed 50% of them), i.e. their amplitudes are set to
0, and their phase and frequency are not changed any more. You can see on
Figure 4.7 how does the network behave when such oscillators are disabled.
Fortunately, removal of the members has no influence on the amplitudes of in-
dividual oscillators. The only noticeable effect is that we now have many small
clusters of resonant oscillators, instead of the two we had before disabling the
oscillators, but this does not change the results of our retrieval methodology
as the variance in all these newly formed clusters is even lower than before. In
this idea we have shown experimentally that our model is robust even when
oscillators are prone to failure.

4.3 Performance comparison

As mentioned before, the maximal performance one can reach with our
model is directly a function of the number of oscillators one wants to dedicate
for each component we want to learn. This issue is clearly a tradeoff between
capacity and reliability. The more oscillators are dedicated to a single com-
ponent the more reliable will the retrieval be. This issue is even less trivial
compared to the first model we analyzed in Chapter 3, as our model is able to
learn signal composed of multiple frequencies, and each component will mo-
nopolize a full cluster. That means, the more complex our signals are (without
overlapping frequencies), the less of them can be memorized within the same
group. Additionally, as we have just shown, the stronger are the coefficients
the more oscillators will be used per component, also reducing the capacity of
the network. The advantage of our model is that we can restrict much better
the quantity of oscillators that resonate when excited by the input signal, so
we have a more efficient control over the number of oscillators dedicated to
learn a frequency component.

However, the problem of this model is that if we want to memorize multiple
frequencies with overlapping basins of attraction, there’s a potential that the
latest signal will attract all oscillators having a too close natural frequency, so
all oscillators that were used to memorize the previous frequency will be used
for the new one if this frequency is located in the basin of attraction of the
new frequency to learn.
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Figure 4.8: Results of the sixth experiment. Top: See how the amplitudes of
the different clusters are identical after removal of some oscillators. Bottom: You
can see that the correct frequencies are still memorized, even if some oscillators
are removed.
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4.4 Results and discussions

We have proposed here an interesting model of an associative memory able
to learn any kind of complex periodic signal. Even if we do not argue that our
model is biologically plausible, many features of this system are similar to the
real processes involved in the mammalian brain. As for example, a local cou-
pling between units and a learning method based on the correlation between
units activity and the input stimulus. Also, our retrieval methodology states
that the level of synchrony between oscillators activated by an input signal is
a function of the habituation of the oscillators to the presented signal, that is
the more synchronous is the oscillatory activity within a cluster, the more has
the corresponding frequency of the oscillations been presented to the network.

Using this method we gained a lot of things:

• First we don’t need a global coupling between all oscillators, which is of
course much more computationally efficient.

• Then we don’t need to use multiple dimensions to encode a single signal,
which is also more computationally efficient.

• The only parameter we really need to tune is the width of the cluster
of resonant oscillators activated by a standard signal. The other param-
eters should be adapted to shape the amplitudes evolution, which will
definitely depend on the task at hand.

• The behavior of these oscillators can be more easily analyzed numeri-
cally as the model studied in the previous chapter, because it does not
use a strong non linear term as is the sum regulating the phase-locking
behavior, nor does it use random phase shifts that influence strongly the
performance of the system. These increased simplicity makes the con-
trol of the quantity of oscillators that will be dedicated to learn a single
component frequency more easy to perform.

• We don’t need to reset the time after stimulus presentation, nor present
the input signal with a specific phase relationship as this model is not
sensitive to the phase differences.

4.5 Future work

Spatial storage location

In order to implement a fully functional version of our model, we shall need
a dynamic mechanism that chooses the spatial location where to store each
input signal according to its properties, so as to avoid the problem we face
with our model when the frequency components are too close and the learning
might be affected.
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Oscillator coupling

We must define a dynamic and adaptive connectivity between oscillators,
and find a way to change weights between oscillators and/or groups. For the
moment, we decided to implement a fixed local neighborhood restricted to the
2 nearest oscillators.

Components links

A very interesting feature we envisioned would be to have a link between
different oscillator assemblies in order to be able to have a more robust and
biologically plausible model. Our idea is to create links between all the clus-
ters activated by a single signal. This would permit to recall signals where a
frequency component is weakened or missing, emulating the associative learn-
ing process. However, we must use a more complex Hebbian learning rule for
these connections, in order to prevent all clusters being activated upon a sin-
gle signal presentation, and also to prevent that all signals become associated
altogether.

Random phase shifts

The real interest is to reduce the effects of the random initialization of the
phase shifts between groups which has a strong impact on the performance
of the network, and rather take advantage of this feature as randomness can
significantly increase the robustness of the system.

Too many parameters

Even if this model has many parameters, many of them only affect the scale
in time and amplitude of the system. Basically, one should need only to define
the width of the basins of attraction and the time to learn a desired input
signal, and according to these parameters, the shape of the amplitudes in a
cluster and the g(x) function should be tuned automatically.

Learn action sequences

One could be interested into implementing ”virtual delay lines” between
clusters able to capture the timing between each step of a sequence of actions,
in that the oscillators are more resonant when multiple actions are presented
in the same order as they have been learned.
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Conclusion

”Memory is the mother of all wisdom.”
Aeschylus (525-456 B.C.)

Computers can do very fast computation that would require centuries for as
single human, but humans can recognize patterns so much better than com-
puters. The mechanism used by humans into face recognition for example,
are much more efficient even if the raw switching speed in the brain is much
slower compared to computers. Early associative memory models proposed
some twenty years ago are well-suited to be implemented efficiently onto a
computer, but these idealized model do not reflect properties of real neurons,
which are not binary and synchronous, but rather very complex and highly
dynamic computational units.

Mother Nature designed impressive ”machines” able to perform highly
complex tasks with very low energy requirements and processing power by
using a totally different framework from the traditional computing paradigms
used in computer science. Even if very accurate model of neurons, such as the
Hodgkin-Huxley, were devised half a century ago, neuroscience is still in its
childhood, as these models do not explain the roots of human cognition. It is
clear that our intellectual abilities cannot be explained simply by understand-
ing the behavior of individual neurons. Intelligence is an emergent property
that arises due to interactions between a huge amount of ”simple” units. A
careful analysis of these interactions and of their emergent properties are nec-
essary to allow the design of realistic models of cognitive processes with similar
performance. Neuroantomy revealed that neurons are neither fully connected,
nor statistically distributed but are rather organized in spatially distributed
in clusters of sparsely connected neurons linked by long-range connections. It
is also admitted that oscillatory activity of neurons is ubiquitous in the brain.
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In this direction, we have analyzed in this project an associative memory
model based on such oscillatory activity. We discussed the properties and
limitations of this model, and we try to factorize what aspects are essential
into modeling of memorization processes. In the second part of this project,
we propose a similar model of memory we devised by taking inspiration of a
single oscillator which able to learn any kind of periodic complex signals. We
have shown that our model based on properties of oscillating systems is robust
against noise and units failure.

I think that the real payoff of this project is what it might provide in terms
of brain research and neuronal modeling. Not because we think that the model
we propose in this project can account for the real processes involved in bio-
logical memory, but rather because we have shown from a mathematical point
of view that reliable storage of information encoded as a complex periodic sig-
nals can be done by using populations of limit-cycle oscillators that are able
to synchronize.

Development of a good and accurate model of the brain that is able to
imitate the processes involved into reasoning might help into understanding
the operational basis and how it developed into the organ. This could give us
a tool that can be used in order to heal mental disorders, repair broken verte-
bras or even lead to the development of brain-machine interfaces. In the long
run, this could even allow engineers to design artificial entities with cognitive
abilities that can compete with ours. However, this perspective raises ethical
questions that are far beyond the scope of this project.

It can be quite astonishing to imagine that we could have one day a com-
puter composed of biological parts replacing silicon, and this idea provides
an interesting alternative to the well-known universal computing paradigm of
the Turing Machine that has been dominating the computing domain. Who
knows, maybe that day we would have to feed our computer before using it
instead of plugging a power chord.



Appendix A

Installation of the package

Unzip the file assmem.zip in any directory, let’s say ASSDIR. Then you have
to recompile the source of the simulator. In order to do that modify the file
ASSDIR/Makefile, and add the path of GSL (GNU mathematical library).
Then type into the terminal

[user@mycomputer ASSDIR]$ make

Once the files needed have been recompiled, start MATLAB from the ASSDIR
directory and type assmem in the command window in order to launch the
GUI. A general view of the user interface that appears is shown in Figure 5.1.

This interface allows user to test both the original model (described in
Chapter 3) and the modified version we devised (described in Chapter 4).
The upper panel contains general parameters used by both models. Please
refer to the report in order as reference of the different parameters you can
tune. Then change the parameters and click on Run simulation, in order to
execute a simulation immediately. The Create sim is used in order to create
a set of experiments (the scripts that will be fed into the simulator), you can
launch in batch (serial processing) by using the test.sh shell script located
into the ASSDIR directory. The directory ASSDIR/simulations will contain a
folder for each experiment you create and it will contain the script to run the
experiment, the log file resulting from the experiment, and the plots in the
experiment.

Simulator

The simulator is run using the following command:

./assmem simname



68 Conclusion

where simname is the name of a simulation created using the MATLAB in-
terface.

Figure 5.1: The main interface of the MATLAB application. You can see on the
left the panel that controls the simulation using the model analyzed in Chapter 3,
and on the right the panel to control the model we described in Chapter 4.

Scripts

The signals are presented to the network by means of a script appended to
the end of the configuration file (the simname.log), which contains a line for
each stimulus to present. Here’s an extract of such a script:

L 7 3
L 7 3
L 7 3

The syntax is very simple as each line has three tokens. The first is the
action (L is for learning, no other actions were implemented), the second is
the frequency to present, and the last token is the duration the stimulus is
presented.
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