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Chapter 2

Objectives

Millions of years of evolution made humans able to walk and run with an
incredible precision. Although bipedal locomotion could seem to be a simple
mechanical problem, researches done on artificial locomotion proved that it
is far from obvious to generate a walking gait that is as fast and stable as
humans do.
In this work, we will directly inspire us from biological considerations by
using CPG based controllers and artificial evolution. First, several models
of CPGs, implemented on a simulated robot, will be explored using genetic
algorithms to find which system is best suited to locomotion. After that,
we will try to improve our model by adding feedback pathways in the CPGs
in order to be able to modify the speed of locomotion. In the same time,
feedback pathways will be used to let our robot deal with external pertur-
bations.
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Chapter 3

Introduction

3.1 Biological bipedal locomotion

Amongst all skills of living species, locomotion is certainly one of the cru-
cial ability that emerged from millions of years of evolution. Almost each
species, going from unicellulars to humans, developed a form of locomotion
perfectly suited to its morphology and environment to ensure its survival.
In spite of the huge diversity of the animal reign, it has been shown that
animals, and in particular vertebrates, share some common properties al-
though they use completely different forms of locomotion [9].
To achieve locomotion the neural system generates rhythmic signals that are
sent to the musculo-skeletal system in order to produce torques on the differ-
ent joints of the animal [2]. Locomotion can be described by the interaction
of three elements:

1. spinal central pattern generators (CPG).

2. sensory feedback.

3. descending supra-spinal control.

Bipedal locomotion seems to be more complicated than the process shown
above since the balance is much more important with only two legs, making
control crucial. It is not proved that humans use a simple CPG based
locomotion like a lamprey or a fish would do, but we still have some evidences
that the locomotion pattern are generated at the spinal level and are sent
through the reticulospinal pathways. We can consider that humans use a
system that is comparable to a CPG for their locomotion.
Studying bipedal locomotion in animals and in particular humans, gives us a
good idea on how their gait could be modeled. Although bipedal locomotion
has been studied by scientists of different domains, this problem has not been
completely solved yet.
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3.2 Bipedal locomotion in robotics

Researches made on bipedal locomotion in robotics have shown that we must
mainly consider three different approaches to control walking:

Statically stable walking This corresponds to the case when the
projection on the ground of the robot’s center of gravity always lies within
the footprint or the area between the two footprints of the robot. With this
hypothesis the locomotion is quite easier to perform but is very slow.

Dynamic walking In this case, the robot’s center of gravity can be
elsewhere and corrections must be done at any time to maintain the robot
on his feet. To achieve stability in those conditions it is mandatory to know
everything from the robot’s dynamics and in particular the speed and inertia
of each of its parts. This method is without a doubt the more efficient in
terms of velocity but is very tricky to implement. It also corresponds to the
human locomotion.
The next section introduces different approaches based on dynamic walking.

Passive walking A third type of biped locomotion that has been stud-
ied by many researchers is called passive walking [6]. In this case no actua-
tors are used and the robot uses its own weight and dynamics to walk down
a slope without external input or control. The system has a stable limit
cycle and the robots are even able to deal with small perturbations. We
can also mention the concept of passive dynamic walkers. In this case small
power sources on their ankles and/or hips are included to simulate gravity,
which allows the robots to walk on a level ground without control servos.
This approach is very important since it allows to learn many features of
robot’s dynamics that are also useful for other kind of locomotion [5, 4].

3.2.1 Trajectory based methods

The basic idea of this method is to find walking trajectories and uses a
criterion based on dynamic equations to test and prove that the locomotion
is stable. These trajectories could be designed by trial-and-error or from
predefined human recordings (motion capture). This approach does not
provide any methodology to implement locomotion in a robot. It only allows
to prove and measure the stability of the gait which is still an useful tool to
analyze artificial motion.
In 1990, Vukobratovic [7] proposed a method called Zero Moment Point
(ZMP) which seems to be the most promising trajectory based method.
The Zero Moment Point is the point on the ground where the moment of
inertial forces and gravitational forces has no component along the horizontal
plane. To achieve the stability of the locomotion, the ZMP must always be
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located within the robot’s footprint. We can also notice that Vukobratovic
distinguishes to different phases: single-support when only one foot touches
the ground and double-support when both feet are on the ground. During
this last phase, the locomotion is stable if the ZMP is located between
the two footprints. This method also allows to deal with perturbations by
introducing online stabilization.
This method has been successfully implemented on several robots such as
Sony’s QRIO and Honda robot.

Advantages

• Can be used to prove stability.

• Resistant against small perturbations.

• Well-suited for implementations on real robots.

• Can be adapted to dynamic walking.

Drawbacks

• A perfect knowledge of the robot’s dynamics is mandatory.

• Not suited for unknown environment.

• Switching from online control to wanted trajectory is hard to achieve.

• Not suited to design locomotion controllers.

3.2.2 Heuristic control methods

As the ZMP method does not provide any methodology to design controllers,
heuristics were developed to deal with that problem. In addition, heuristics
decrease considerably the complexity of the dynamic equations involved in
trajectory based methods and make implementation much easier.
One of the most efficient and interesting method using heuristics called
Virtual Model Control (VMC) has been developed by J. Pratt [8] at the
MIT’s Leglab. This approach is based on virtual mechanical components
like springs, dampers, dashpots,... These elements generate real torques or
forces on the actuators. These torques create the same effect as that the
virtual components would have produced if they were real. This method
allows to achieve different kinds of movements just by choosing the appro-
priate virtual elements. The torque needed to produce the virtual force is
typically computed using the Jacobian relating the reference frame of the
virtual component to the robot.
In practice, movements are relatively easy to implement on controllers. For
each different motion or behavior, an appropriate set of virtual components
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has to be defined. For example, to maintain the robot in an upright and
stable position, a kind of granny walker has to be introduced as virtual com-
ponent to guarantee stability. To make the robot walk, a typical component
is a virtual dogtrack bunny associated with a damper mechanism (cf fig 3.1).
This model implies to consider different states to deal with the different ac-
tuation phases this means that, in a given phase, only certain motors are
activated. This problem can be solved using a finite state machine.
The MIT’s Leglab successfully implemented the method described above on
their Flamingo and Turkey robots1

Figure 3.1: Example of virtual components

Advantages

• Detailed methodology to design controllers.

• Very intuitive approach.

• Complete knowledge of the environment is not required.

• Can deal with small perturbations.
1More details are given in [8]
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• Efficient online control.

Drawbacks

• A perfect knowledge of the robot’s dynamics is mandatory.

• The designer must ensure that the torques generated on the joints are
supported by the robot to avoid damages.

• The mechanism based on finite state machines causes brutal transi-
tions between the different phases.

3.2.3 CPG and reflex methods

The approach described in this section is based on Central Pattern Generator
(CPG) and is directly inspired from biological considerations as mentioned
in section 3.1. The main advantage of this method, compared to those de-
scribed above, is that here, we do not need a perfect knowledge of the robot’s
dynamics. It is a more general and adaptive method to design controllers
for bided robots. Reflexes are produced by the robot’s feedback sensors and
are used to manage perturbations and balance control.
The work done by Taga [11] proves that CPGs and reflexes can be used for
locomotion on biped robots.
CPGs can be represented by different mathematical models such as oscil-
lators, artificial neurons, vector fields,... Each CPG usually represent one
degree of freedom (DOF) of a joint. Oscillator based CPGs are using the
concept of limit cycles which are very convenient in the case of locomotion
since they can return to their stable state after a small perturbation and are
almost not influenced by a change in the initial conditions.

CPG and reflex loop Different models could be used to represent the in-
teraction between the CPG and the reflex system. The choice of the system
depends on the complexity of the feedback mechanism we want to represent.
Note that a system with complicated feedback will be much more difficult
to design as more parameters are involved in the system. Some models of
feedback pathways are described below.

Open-loop Here, we present a simple model based on CPGs known
as open-loop model (cf. fig 3.2). The CPG interacts directly with the
actuators but receives no feedback from the sensors and the actuators (open-
loop). Such a model has the advantage that it allows a relatively simple
implementation since no sensors are used. However it is not very well suited
to deal with perturbations in the environment.
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Figure 3.2: A simple open-loop model with no feedback. This model will be
used in the first part of this project

Closed-loop In this case, we use sensor feedback to close the loop, this
means that the CPG receives information from different kinds of sensors.
The simplest method is to consider feedback pathways going only from the
actuators to the CPGs (cf. fig 3.3). This approach allows us to maintain a
system that is still relatively simple to represent and has the ability to be
robust against small external perturbations.
A more complete and promising closed-loop model consists of three levels of
feedback (cf. fig 3.4):

1. The fast reflex interferes directly on the joint’s actuators and do not
modify the CPG. It should correct the robot’s position very quickly.

2. The CPG reflex influences the middle level of the system and corre-
sponds to the feedback used on the simplified version of the closed-loop
model described above. This kind of feedback has been introduced to
deal with external perturbations such as wind, ground deformation,...

3. The global reflex interacts with the system on its higher level and will
be used to modify the global behavior of the robot when encountering
a new situation such as a slope.

In addition to the mechanism described above, two control system are added:

1. The visual system interacts with the CPG and directly with the actu-
ators.

2. The vestibular system is also connected to the CPGs and the actua-
tors. It is used to control the global balance of the robot.

This method seems to be very promising since it has already been success-
fully implemented on an artificial lamprey [14] and more recently on an
artificial salamander [12] that even has the ability to switch between swim-
ming and walking [13].
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Figure 3.3: A minimal closed-loop model. Only the actuators interact with
the CPGs

Figure 3.4: A closed loop model with three different reflexes type influencing
different parts of the system. On the top left, the visual system interacts
with the CPG and directly on the actuators. The vestibular system controls
the balance of the robot and influences the CPG and the actuators.

Advantages

• A perfect knowledge of the robot’s dynamics is not required.

• Robust against small perturbations.

• Almost not influenced by a change in the initial conditions.

• Oscillations produce smooth locomotion.

• Complex control input not required since the oscillation is generated
by itself.

Drawbacks

• No clear methodology to design controllers.

• Parameters are hard to find by hand. So it is recommended to use
learning algorithms.
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Chapter 4

The robot

4.1 Real biped robots

In this last decade a lot of improvements have been done in the development
of autonomous biped robots. Big companies like Honda, Fujitsu or Sony
began developing expensive robots for research. Since a few year, robots
like Qrio or Sony’s Aibo are available at a reasonable price and are subject
to several studies.
In this project, we will focus on Fujitsu’s robot called HOAP 2 (Humanoid
for Open Architecture Platform) [23]. HOAP 2 is 50 cm tall and is only 7
kg which makes it really easy to handle. Its 24 degree of freedom allows it
to perform a lot of movements including hands and head control (fig 4.1).
This robot also has servo angle sensors, gyroscope and pressure sensors in
their feet, useful for locomotion with feedback.
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Figure 4.1: Left: The Hoap2 robot. Right: The different DOFs available on
Hoap 2

4.2 The simulator

One of the drawbacks of these robots is that they are very fragile and expen-
sive. As artificial evolution will be used to tune the controller parameters,
we expect the robot to fall hundred times before finding a good trajectory.
Experimenting controllers on the real robot would then certainly break it.
Another advantage of simulated robots in the context of this project is that
we can launch many simulations with different parameters.
The reasons given above clearly encouraged us to perform our research on a
simulated robot. For this purpose, we used Webots [20], which is a complete
toolkit to model, program and test robot’s behaviors in their environment.
Webots is developed by Cyberbotics and has become a reference software
used by many universities and researchers. This software includes many use-
ful devices such as cameras, light sensors, touch sensors, emitters/receivers,
gps,... One of the most powerful feature of Webots is its fully customizable
VRML based environment. For example, this will allow us to add external
perturbations such as wind, slopes, steps,... This simulator also uses a pow-
erful dynamic engine based on ODE (Open Dynamic Engine), which is an
open-source library for simulating rigid body dynamics.
Webots also provides a collection of existing robots including Hoap 2 that
was designed by Pascal Cominoli during his Master’s thesis at the BIRG
(EPFL) [21]. This virtual robot corresponds exactly to the real one in terms
of weight, size and servo specifications.
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Chapter 5

The CPG model

As described in 3.2.3 the model studied in this work uses Central Pattern
Generators to control the robot’s servos. To represent these CPGs and to
generate signals, we use one or several non linear oscillators that are coupled
together. A very interesting property of non linear oscillators is the concept
of limit cycle [15][16]. A limit cycle can be described as an isolated closed
trajectory of the system, which can be stable or unstable. The first case is
very important since all trajectories close to the limit cycle are attracted by
it. This principle will be useful to generate robust signals that can return to
their stable position after a small perturbation. This section describes the
different oscillators and coupling models used in this work.
For each experiment described in this chapter, we will use a simplified model
of the robot this means that not all the servos will be used since some of
them are not relevant for locomotion. We will then focus on 11 servos (1 for
the body, 2 for each hip, 1 for each knee and 2 for each ankle). Both legs
are connected to the body’s servo and a phase difference of π is imposed
between them since there is an obvious symmetry between the joints’ angles
of each leg. The servos responsible for the twist of the hip and the ankle are
not used because they do not play an important role in walking.
As the servos’ position is not always oscillating around 0, we add a bias to
the output of each oscillators. Note that this bias will also be evolved and
is used in every model described below.

5.1 Open-loop

5.1.1 Hopf oscillator

The first model used in this work is based on the Hopf’s oscillator, a rela-
tively simple system for preliminary experiments. Its main advantage is the
possibility to easily control the amplitude and the frequency of the signal
independently. The following equations describe this oscillator.
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ẋ = (µ− r2)x− ωy (5.1)
ẏ = (µ− r2)y − ωx (5.2)

Where r =
√

x2 + y2, µ > 0 determines the amplitude of the signal and ω
controls the frequency of the oscillator. This oscillator has a stable limit
cycle with radius

√
µ and angular velocity ω rad/s.

Figure 5.1: Phase plot of the Hopf’s oscillator with different initial condi-
tions. Here we set µ = 1.0 and ω = 1.0.

The coupling

1-way coupling With this first model, we will start with a one-way cou-
pling, It acts only from one oscillator to the other in one direction (not in
reverse) as shown on figure 5.2. This coupling is described by the following
equations

ẋi = (µi − r2
i )xi − ωyi + εixi−1 (5.3)

ẏi = (µi − r2
i )yi − ωxi (5.4)

Where εi is the coupling strength (ε1 = 0 since the first servo is not coupled
with any other joint) and ω has the same value for each oscillator. With
this coupling model, the amplitude of the coupled oscillator’s signal cannot
be controlled as in the case of a single oscillator. This means that the
amplitude depends on the µi parameter but is also influenced by the coupling
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strength εi. This phenomenon is explained by the fact that the two involved
oscillators are in resonance since their respective frequencies are the same.
To deal with this problem, we will set a sufficiently large interval of possible
values for the amplitude parameters, which will allow us to roughly set
these values. The genetic algorithm will tune these values more precisely.
An interesting property of this coupling model is that we can introduce a
simple phase difference by changing the sign of εi. If εi < 0, then the phase
difference is equal to π and if εi > 0 the phase difference is null (cf. fig 5.4).
This allowed us to impose phase differences between the different servos as
shown on figure 5.2. However, this simple model does not allow to produce
other phase differences than those mentioned above and will probably not
produce a very realistic gait. Completely arbitrary phase differences could
have been introduced by using the two variables xi and yi in the coupling,
but this would consequently enlarge the search space of the GA (five extra
parameters). As the GA took approximately 12 hours to find a good solution
for the model described above, we tried to simplify each model used as much
as possible.

Figure 5.2: The different DOF used in this work. The arrows represent the
unidirectional coupling of this first model. The values on the arrows corre-
spond to the phase differences we imposed between the different oscillators.
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Figure 5.3: These figures show the first variables (x1 and x2) of two coupled
oscillators. We can see here that for εi < 0, the phase difference after a
few steps is π (top plot). For εi > 0 we have a phase difference equal to 0
(bottom plot). We can also see that the amplitude of x2 is slightly changed
due to the phenomenon of resonance. The parameters used here are the
followings: µ1 = µ2 = 1.0, ω = 1.0 and ε2 = ±0.3

2-way coupling The second coupling model we are using is the same
as the previous one but with influence in both directions. Two adjacent
oscillators are coupled in both directions. Note that the oscillators are also
chained along the leg (cf. fig 5.5). With this coupling we are now able to
introduce more complex phase differences like π/2 and −π/2 as described
in table 5.1. Notice that, to reduce the search space, we set the phase
differences between the different servos by hand (cf. fig 5.5). These phase
differences were found empirically after a few tests and seemed to be the
most realistic ones for this model. The following equations describe that
model.

ẋi = (µi − r2
i )xi − ωyi + εi,i−1xi−1 + εi,i+1xi+1 (5.5)

ẏi = (µi − r2
i )yi − ωxi (5.6)

In this case, there are two parameters for the coupling strength (εi,i−1 and
εi,i+1), one for each adjacent oscillator.

19



value of the coupling coefficients ε1,2 and ε2,1 phase difference
ε1,2 = ε2,1 > 0 0

ε1,2 > 0 and ε2,1 = −ε1,2
π
2

ε2,1 > 0 and ε1,2 = −ε2,1, −π
2

ε1,2, ε2,1 < 0 and ε1,2 > ε2,1 π
ε1,2, ε2,1 < 0 and ε1,2 < ε2,1 −π

Table 5.1: Phase differences between two Hopf oscillators with 2-way cou-
pling for different value of the coupling coefficients. The relation between
these parameters will be used to produce a phase difference between the
different servos of the robot.

Figure 5.4: First variables (x1 and x2) of two oscillators coupled in both
directions. This example shows a phase difference of π/2 between both
signals. The parameters used here are the followings: µ1 = µ2 = 1.0, ω =
1.0, ε1,2 = 0.5 and ε2,1 = −0.5
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Figure 5.5: Bidirectional coupling between the servos. The phase differences
we imposed are shown on the arrows.

Hopf with 2 oscillators per DOF In spite of its simplicity, Hopf oscilla-
tor has one major drawback for our use: it only generates simple sinusoidal
signals. Even if such signals could be suited for locomotion, we know that
real walking trajectories are more complex. In this section, we will intro-
duce a new model in which two Hopf oscillators are used for each degree of
freedom. More precisely we will use a weighted sum of the output of two
coupled oscillators as global output of the system for each servo. As in the
previous experiment, each pair of oscillator is coupled unidirectionally along
the leg (cf. fig 5.7). The following equations describe this model.

ẋ1,i = (µi − r2
1,i)x1,i − ωy1,i + εix1,i−1x2 (5.7)

ẏ1,i = (µi − r2
1,i)y1,i − ωx1,i (5.8)

ẋ2,i = (µi − r2
2,i)x2,i − 2ωy2,i + dix1,i (5.9)

ẏ2,i = (µi − r2
2,i)y2,i − 2ωx2,i (5.10)

sout,i = h1,ix1,i + h2,ix2,i (5.11)

with ε1 = 0 since the corresponding servo is not coupled to any other joint.
Here the parameters of each oscillators are the same as for the simple

Hopf oscillator. The εi parameters correspond to the coupling strength be-
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tween the two adjacent systems and the coefficient di allows us to introduce
a phase difference between the two oscillators of each DOF.
The output sent to the servos corresponds to a weighted sum of the first vari-
ables of each oscillator. The parameters h1,i and h2,i represent the weights
of this sum. We can also notice that the natural frequency of the second
oscillator (x2,i, y2,i) is the double (and by consequence the first harmonic) of
the one that rules the first oscillator (x1,i, y1,i). This model is then designed
to produce a signal that corresponds to the first two terms of a Fourier series
and should be closer to the real biped locomotion.

Figure 5.6: Example of evolution of the output sout,i generated by the pair
of oscillators described above. We see that the shape of the signal is more
complex and can be modified by changing the weights of the output sum.
Here the parameters are µi = 1.0, ω = 2.0, di = 0.3, h1,1 = 0.4 and h2,1 =
0.2.

For this experiment, we kept some parameters found with the simple 1-
way Hopf model, in particular we reused the values found for the amplitudes
µi, the frequency ω and the bias. So the only parameters that are evolved
here are the different coupling strengths and weights (εi, h1,i, h2,i and di).
The phase difference between two consecutive pairs of oscillators can be
modified by changing the εi parameter as it was done with the simple 1-way
Hopf model (cf. fig 5.2).

22



Figure 5.7: Model used with 2 oscillators for each DOF. The same coupling
applies to the right leg. The weight of the different couplings involved is
shown on the arrows.

5.1.2 Rayleigh’s oscillator

The oscillator

To explore different signal shapes, we chose to use a relaxation oscillator
as next model. More precisely the model used in this second experiment
is based on the Rayleigh’s oscillator. The following equations describe this
model.

ẋ = y (5.12)
ẏ = δ(1− qy2)y − ω2 (5.13)

In order to reduce the search space of the genetic algorithm, we set δ = 1.
The q coefficient allowed us to control the amplitude of the signal and the
parameter ω was used to modify the frequency. Note that a variation of
ω slightly changes the amplitude of the signal, but the genetic algorithm
should deal with that.
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Figure 5.8: Evolution of the variable y for the Rayleigh oscillator. We see
that the shape of the signal is very different from a simple sinus and is typical
of relaxation oscillators. Here we set ρ = 1.0, q = 1.0 and ω = 0.5.

Figure 5.9: Phase plot for the Rayleigh oscillator with different initial con-
ditions. The system converges to a stable limit cycle. Here we set ρ = 1.0,
q = 1.0 and ω = 1.0.

The coupling

ẋi = yi (5.14)
ẏi = (1− qiy

2
i )yi − ω2xi − εiyi−1 (5.15)

As for the first coupling model used with the Hopf oscillator, we chose
to use an unidirectional coupling along the leg from the hip to the ankle (cf.
fig 5.2). Notice that εi can be used to impose a phase difference between two
coupled oscillators. Here again, εi < 0 produces a phase opposition while
with εi > 0, the oscillators are in phase. With this model, we also set the
phase differences by hand (cf. fig 5.2).
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5.1.3 Matsuoka’s oscillator

The oscillator

The third oscillator model used in this work has been first studied by Mat-
suoka [17, 18] and is widely used in many researches on robotics and CPGs.
It is based on the mutual inhibition of two artificial neurons that generate
a periodic signal as output. The model consists of four state variables (cf.
figure 5.11) and is governed by the following equations.

τ1ẋ1 = c− x1 − βv1 − µ[x2]+ −
∑
j

hj [gj ]+ (5.16)

τ2v̇1 = [x1]+ − v1 (5.17)
τ1ẋ2 = c− x2 − βv2 − µ[x1]+ −

∑
j

hj [gj ]− (5.18)

τ2v̇2 = [x2]+ − v2 (5.19)
yk = [xk]+ = max(xk, 0) (5.20)

yout = y1 − y2 (5.21)

Each neuron is represented by two equations and has a state variable
x that corresponds to the firing rate and a variable v that represents the
self-inhibition. The two neurons inhibit and excite each other alternatively
producing, as output, an oscillation that is given by 5.21. The parameter c
corresponds to a tonic input and is directly proportional to the output signal
and so allows to control the amplitude. The β and µ coefficients are constant
values that are fixed arbitrarily in our experiment. The terms −

∑
j hj [gj ]+

and −
∑

j hj [gj ]− define the external input of the system. They correspond
to a feedback term and allow the oscillator to be entrained at the same
frequency of the input. The time constants τ1 and τ2 determine the natural
frequency of the oscillator when no external input is applied. The frequency
of the output is roughly proportional to 1/τ1 and we set τ1 equals 2τ2. Note
that in our case, the external input will not be used here as we are dealing
with an open-loop CPG model.

Figure 5.10: Typical output of the Matsuoka oscillator when no external
input is applied. The parameters used here are: c = 1.0, β = 2.0, µ = 2.0,
τ1 = 0.5 and τ2 = 1.0.
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Figure 5.11: The two coupled neurons of the Matsuoka oscillator. The black
circles correspond to inhibitory connections and white circles to excitatory
connections. The self-inhibition is governed by the βvi connections while
mutual inhibition is done through the µ[xi]+ connections.

The coupling

The coupling model used for that oscillator is once again an unidirectional
coupling (cf. fig 5.13). This model has been studied by M. Williamson [19]
and seems to be well-suited to our needs. The coupling is done by adding
coupling terms to the equations of x′1 and x′2 as described in equations 5.23
to 5.27.
With this model it is also possible to introduce a phase difference between
two coupled oscillators. The γi parameter can be used to achieve phase dif-
ferences of 0, π/2 and π as described in table 5.2.
We also set the phase differences between the different servos by hand. These
values are shown in figure 5.12.
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value of γi phase difference
[0.0, 0.3] π
[0.3, 0.5] −π/2
[0.5, 0.7] π/2
[0.7, 1.0] 0

Table 5.2: The phase differences produced by changing the γi coefficient.
Notice that for values of γ1 in [0.3, 0.7] the phase difference is not precisely
equal to ±π/2 and varies for some intermediate values of γ1 in this interval.
However the GA should find the best values.

Figure 5.12: Couplings between the servos for the model based on Matsuoka
oscillators. The phase differences we imposed between the different servos
is shown on the arrows.

Notice that, with this model, the signals for the ankle1 servo are not
evolved but are computed to be roughly parallel to the ground (cf. figure
5.12). The servo position then depends on the hip2 and knee joints’ angle
and the ankle2 servo is thus coupled directly to the knee’s oscillator. We
also fixed some parameter values (the central position of hip1 and ankle2
servos were set to 0).

27



τ1ẋ1,i = ci − x1,i − βv1,i − µ[x2,i]+ −
− αi,i+1γi[x1,i+1]+ − αi,i+1(1− γi)[x2,i+1]+ (5.22)

τ2v̇1,i = [x1]+ − v1,i (5.23)
τ1ẋ2,i = ci − x2,i − βv2,i − µ[x1,i]+ −

− αi,i+1γi[x2,i+1]+ − αi,i+1(1− γi)[x1,i+1]+ (5.24)
τ2v̇2,i = [x2,i]+ − v2,i (5.25)

yk,i = [xk,i]+ = max(xk,i, 0) (5.26)
yout,i = y1,i − y2,i (5.27)

Where αi,i+1 corresponds to the global coupling strength between oscil-
lator i and i+1 and γi controls the relative coupling of each neuron.

Figure 5.13: Coupling between two Matsuoka oscillators. They are only
coupled in one direction (from 1 to 2). Each neuron of 1 (1,i and 2,1) is
connected to both neurons of 2 (1,i+1 and 2,i+1). The relative strength of
coupling 1,i → 1,i+1 against coupling 1,i → 2,i+1 can be modified through
parameter γi.

5.2 Closed-loop

We will now introduce a more complex CPG model based on the closed-loop
concept. As described above, this concept add the notion of feedback to the
open-loop model. Feedback can be integrated at different levels of the robot
depending of the task and the environment of the robot. (cf. section 3.2.3).

28



The results of certain experiments described above with the open-loop CPG
model will be used here as starting point. We will try to integrate different
feedback pathways to the best trajectories found in the first part of this
project.

5.2.1 Speed adaptation and pendulum effect compensation

The feedback pathway we used is designed to guarantee the stability of the
tilt of the robot in the sagital plane. This feedback pathway is very useful
when one tries to modify the robots’ speed because most of the time this
results with the robot to fall in the direction of the walking. To achieve that,
we will try to modify the amplitude of the signal of certain servos in order
to compensate the variation of the angle of tilt ξTilt.This angle is measured
by the GPS function of the simulated robot which is located in its chest
(the real robot uses gyroscopes to determine these angles). The feedback is
added to the oscillators representing the hip2 and knee joints by introducing
feedback terms to the appropriate equations as described below.
To introduce feedback in the Matsuoka oscillator based model, we simply add
a feedback term to the two equations x′1 and x′2 of the oscillator responsible
for the hip2 and knee servo as described in the following equations.

τ1ẋ1,i = ci − x1,i − βv1,i − µ[x2,i]+ −
− αi,i+1γi[x1,i+1]+ − αi,i+1(1− γi)[x2,i+1]+ +
+ Kiξtilt (5.28)

τ2v̇1,i = [x1]+ − v1,i (5.29)
τ1ẋ2,i = ci − x2,i − βv2,i − µ[x1,i]+ −

− αi,i+1γi[x2,i+1]+ − αi,i+1(1− γi)[x1,i+1]+ +
+ Kiξtilt (5.30)

τ2v̇2,i = [x2,i]+ − v2,i (5.31)
yk,i = [xk,i]+ = max(xk,i, 0) (5.32)

yout,i = y1,i − y2,i (5.33)

where Ki is the gain and is null for each oscillator except hip2 and knee.
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Chapter 6

The genetic algorithm

Artificial evolution and in particular genetic algorithms (GA) are optimiza-
tion methods directly inspired on the evolution of species. They are used
in a lot of different domains for their ability to deal with high dimensional
space problems. GA are based on the concept of exploration and exploita-
tion. This means that the algorithm tries to explore the search space to find
the most interesting parts and then tries to exploit those regions to find the
extrema more precisely. Notice that these algorithms do not guarantee to
find the global optimum of the problem and usually rather converge to local
optima.
The first step a GA does is to create a randomly distributed initial popu-
lation of individuals (in our case CPGs) that contain all the parameters we
want to evolve. Then it evaluates these individuals to obtain a score for
each of them, which is called fitness and corresponds to a specific pheno-
type of the individual. The fitness function describes how well an individual
behaves (in our case we test its ability to walk). In the next step of the al-
gorithm, the best individuals are selected and kept for the next generation.
Before joining the new generation’s population, operators like mutation and
crossing-over are applied to these individuals to ensure genotypical diversity.
All these steps are then iterated (except the initialization phase) until an
ending criterion is satisfied.
To implement this algorithm we use Galib which is a free C/C++ library
for designing genetic algorithms [22].

6.1 The genome

In this section, we will describe the different parameters that are evolved
with the GA for each model described above. For each gene, according to
the expected values of the parameters, we set by hand an interval of possible
values to reduce the solution space.

30



6.1.1 Hopf model

1-way coupling

ω µ1 ... µ6 x01 ... x06 ε1 ... ε5

Table 6.1: The genome of an individual with a simple unidirectional cou-
pling. We have 11 DOF. For each of them we have 2 parameters corre-
sponding to the amplitude µ and bias x0. We also have 5 parameters for
the coupling strength ε and one for the frequency ω, which is the same for
every oscillator. This gives us a total of 18 parameters that correspond to
the 18 genes (represented as float) of the genome.

2-way coupling

ω µ1 ... µ6 x01 ... x06 ε12 ... ε54

Table 6.2: The genome of an individual with coupling in both directions
(Hopf). The genome is the same as the one described above except that we
added five genes corresponding to the coupling strength of connection going
in reverse (from feet to hips)

2 oscillators per DOF

In this case the parameters that are evolved are different since some of
them are taken from previous experiments. We will only try to optimize the
weights of the sum and the coupling strength as described in section 5.1.1.
The following table shows the genome used with that model.

d1 ... d6 h1,1 ... h2,6 ε1 ... ε5

Table 6.3: The 23 genes genome of an individual for the model with 2 oscil-
lators for each DOF. Some parameters are kept from previous experiments
and are not evolved. We have 6 genes for the phase relation between two
oscillators within a same DOF, 12 genes for the weights of the output sum
of each DOF and 5 genes governing the coupling strength between two con-
secutive pairs of oscillators.

6.1.2 Rayleigh model

The coding of the genome for the Rayleigh oscillator is rather similar to
the one used with Hopf (1-way coupling). The following table describes the
genome representation.
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ω q1 ... q6 x01 ... x06 ε1 ... ε5

Table 6.4: The genome encoding the parameters of coupled Rayleigh oscil-
lators. It is similar to the one used with the Hopf based model with 1-way
coupling, except the parameters qi are responsible for the amplitude of the
signals.

6.1.3 Matsuoka model

We present here the coding of the genome for the parameters used with the
model based on Matsuoka oscillator. The role of the different parameters
are described in section 5.1.3.

τ1,i c1 ... c5 x01 ... x03 γ1 ... γ3 α1 ... α4

Table 6.5: The genome encoding the parameters of coupled Matsuoka oscil-
lators. Notice that, as τ2 is set to 2τ1, we will not evolve this parameter.

6.2 The algorithm

In this work we use a steady-state algorithm, which means that the popu-
lation of two consecutive generations is overlapping.

6.3 The fitness function

The fitness function is certainly the crucial part of the GA as it defines the
goal our individuals will try to reach. The aim of that experiment is to make
the robot walk and not fall. So the fitness function takes into account two
abilities of the robot: the distance it reaches and the time before he falls.
The fitness function is described as follow

f = Dz ∗ (
T

TotalT ime
) (6.1)

where Dz corresponds to the distance (in the z direction) reached by the
robot before falling and T is the time before it falls. With this fitness we
will avoid the robot just to stand up without going forward or just fall as far
as it can without trying to walk. If the robot does not fall, the simulation
stops after a certain time. Also notice that the simulation starts later than
the oscillators to be sure that all of them are stable.
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6.4 The GA parameters

The intrinsic parameters of the GA are clearly not the most important part
of this experiment. Therefore we used very common values indicated in
the following table. As stopping criterion we set the maximum number
of generations to 150, but for some experiments we ended the algorithm
manually when the fitness no longer increased.

parameter value
population size 100

maxnumber of generation 200
probability of mutation 0.25

probability of crossing over 0.9
proportion of replacement 0.5

selection scheme Roulette Wheel

Table 6.6: Parameters of the genetic algorithm

Notice that, as we are dealing with real numbers genes, we use a Gaussian
mutation operator. The crossing-over operator is only allowed to select a
crossing-over point between two genes to make sure that the genome remains
coherent. The selection scheme used here is the roulette wheel selector,
which means that the probability of an individual to be kept for the next
generation is proportional to its fitness.
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Chapter 7

Analysis of the results

In this chapter, the different results found with each model will be presented
and compared. As genetic algorithms does not guarantee to find global
optima, the solutions proposed here might not be the best ones. Therefore
several simulations were performed with different initial populations to try
to explore the space search as widely as possible. For each model, we expose
the solution that seemed to be the most efficient and realistic. Notice that,
with some models, the GA did not manage to find any good solution in a
reasonable time.

7.1 Open-loop

7.1.1 Hopf’s oscillator

1-way coupling

After having tuned the intervals of possible values for the CPGs’ parame-
ters, quite fast convergence was achieved. A good solution was found after
around 120 generations. Note that we had to run the algorithm several
times to find a good solution as most of the simulations led to the robot to
fall after a few steps. This shows us that the GA was far from exploring the
whole solution space.

With that model, the robot managed to walk for about 30 steps before
falling. The robot did not walk in straight line, it was significantly turning
on its left. As the step amplitude was quite large, the robot’s direction was
slightly modified by each step. The contact of the feet and the ground was
also not very realistic, because it was mostly done on the feet edges. The
walking speed is approximately 0.25 m/s (cf. figure 7.2). A video of the
robot walking is available on the web page of this project1.

1birg.epfl.ch/page58711.html
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Figure 7.1: Output of the CPG of the best individual found by evolution for
the model based on Hopf oscillators with unidirectional coupling. The blue
curves correspond to the left leg and the red ones to the right leg. This plot
only starts when the simulation begins (the oscillators are started earlier).

Figure 7.2: The robot is walking at 0.25 m/s.
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The first thing we noticed is that the oscillators reached their limit cycle
in approximately 6 periods from any initial conditions. As imposed the
left and right leg were in phase opposition. Another important result, was
that the resulting amplitude of the oscillators was pretty different from the
natural amplitude because of the strong influence of the coupling. As we
only introduced phase difference of 0 and π, the symmetry of the system
(left/right leg) was not really correct since the body’s servo was positive
when the left leg was ahead and negative when the right leg was ahead. We
also noticed that the servos that should control the lateral stability (hip1
and ankle2) played almost no role in locomotion (cf. figure 7.1).
With this model, we managed to make the robot walk for a few steps, but
the solution found was not stable at all and the locomotion is clearly far
from a realistic walking gait, because of the too simple phase differences
used. To make a more realistic system, phase difference of π/2 and −π/2
should have been used.

2-way coupling

With this model we were able to impose phase differences of π/2 and −π/2,
which should lead to a more realistic gait than with the previous model. As
explained above, five extra parameters were added. The search space was
then significantly enlarged and the impact on the evolution was negative:
we did not observe any convergence within a reasonable time.
The best result allowed the robot to perform only two or three steps before
falling. As the evolution for 200 generations took about 12 hours of sim-
ulation, we did not perform simulation any further with that model. The
results obtained will not be analyzed as they are clearly not relevant enough.

2 oscillators per DOF

By adding a second oscillator on each joint, much more complex signals were
generated and a large variety of signal shape could then be used. Unfortu-
nately, the genetic algorithm was unable to find any good solution, even if
there were less parameters to evolve. One possible explanation of this fact,
is that the experiment was based on the best trajectory found with the 1-
way Hopf model. As mentioned above, this trajectory does not reflect real
bipedal locomotion in terms of phase differences between the different parts
of the leg. This trajectory is certainly not robust enough to be modified as
it was done by adding a second oscillator.

7.1.2 Rayleigh’s oscillator

As explained above, the next system studied is based on relaxation oscillator
and in particular the Rayleigh oscillator.
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As expected, signals with a different shape from a simple sinus were pro-
duced but just like with the 2-way Hopf model. We ran several simulations
of the GA and none of them seemed to converge significantly even after 200
generations. The result on the simulated robot was that it never managed
to do more than one step.
The possible explanation of such bad performances of the evolution is that
the possible intervals for the oscillators’ parameters (mainly qi that controls
the amplitude) are much too large. To generate signal amplitude going from
0 to 1, we needed to set an interval for the parameter q roughly comprised
between 0 and 10. This caused to enlarge the solution space consequently.
In comparison with the Hopf oscillator, the interval for the parameter re-
sponsible for the amplitude is only approximately comprised between 0 and
1 for the same range of amplitude of the resulting signal.

7.1.3 Matsuoka’s oscillator

Just like with the other models, we tuned the interval of possible values for
the CPG’s parameters by hand. We achieved a relatively fast convergence
since the best individuals were found after approximately 60 generations as
shown on figure 7.3. It was not useful to go on with more generations, as
most of the time the fitness was the same, even after 200 generations.

Figure 7.3: Evolution of the fitness function through generations with the
genetic algorithm described above.

The best trajectories found with this model were significantly different
from those found with Hopf oscillators. The steps were a bit smaller and
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allowed the robot to walk in straight line. We managed to make the robot
walk at approximately 0.28 m/s (cf. figure 7.4). We also noticed that the
contact between the robot’s feet and the ground was not perfect due to the
tilt of the whole robot. Evolution showed that the Ankle2 servo was a crit-
ical part as the contact between feet and ground plays an important role.
Computing the position of this servo to make the feet remaining parallel to
the ground was then certainly an important modification in terms of sta-
bility. Videos of the robot walking are available on the web page of this
project2.

Concerning the CPG, we observed that it stabilized slowlier than with the
Hopf model (10-15 periods). As shown on fig 7.5, the shape of the signals
generated by the CPG are different from a simple sinus due to the mutual
and self inhibition of the neurons. On this plot we can also see a small phase
shift between the different oscillators along the leg.
According to the amplitude of the different servos, we can see that the Hip1
joint is more implied in lateral stability than the Ankle2 joint and is there-
fore an important DOF to produce a lateral movement that helps the legs
going from behind to front without touching the ground.
An important result is that the oscillator responsible for the body servo plays
no role in this solution as its amplitude is null. This might be a problem
since the left an right hip1 servos are coupled to the body servo. It means
that these two oscillators will not be synchronized with the body oscillator
because it does not oscillate. However, the solution found by evolution works
because the two hip1 oscillators have the same amplitude, initial conditions
and are in phase. But as soon as there will be perturbations in the system,
which could happen when introducing feedback, the two hip1 oscillators will
not stay in phase any longer. To deal with that problem, some modifica-
tions were done on the model in order to keep it robust against perturbations
when adding feedback pathways. These modifications are described in 7.2.

Figure 7.4: The robot is walking at 0.28 m/s.
2birg.epfl.ch/page58711.html
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Figure 7.5: The 11 CPG’s outputs of the best individual found by evolution.
The blue curves correspond to the left leg and the red ones to the right leg.
This plot only starts when the simulation begins (the oscillators are started
earlier).

The considerations mentioned above only deal with the output of the
CPG but not with the real movements produced by the servos during sim-
ulation. Figure 7.6 clearly shows a gap between the desired and measured
values. Hence, the amplitude of the measured signals are much smaller than
the desired ones and there is small phase delay between the two curves.
These differences occur because the servos’ gains implemented in Webots
are too low and the signal frequency and amplitude we tried to impose
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were too important. The shape of the measured signal is also different from
the desire one, hence the trajectories look more like simple sinuses. We
also noticed, on figure 7.6, there were small perturbations on the measured
trajectory of the hip2 servos. These perturbations occurred when the feet
touched the ground because the friction with the ground created a small re-
sistance for the actuators. We will discuss about the servos’ behavior under
different frequencies more in details in the next section. Also notice that, at
the beginning of the simulation, the positions of the desired and measured
positions are very different since the initial conditions of the oscillators were
not set to fit the initial position of the robot.

Figure 7.6: Deviation between the signals we try to impose to the servos
(blue line) and the measured movements of the actuators (green line) during
simulation.
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7.2 Closed-loop

This section describes the results found when adding feedback pathways to
the open-loop model that gave the best results, as described in section 5.2.
We did not try to add feedback to models that use Hopf oscillators and
to the model based on Rayleigh oscillators and focus on the model using
Matsuoka oscillators since it gave by far the best results in an open-loop
approach.
To find the optimal parameters for the gain of the feedback, we made an
exhaustive search for the two parameters Kknee and Khip (cf. figure 7.7)
with different values of the time constant τ1, which is inversely proportional
to the frequency of the oscillators output. The results of this search are
described in this section.
In addition, we tried to test the robustness of our closed-loop model against
small perturbations.

7.2.1 Speed adaptation

To modify the walking velocity of the robot, the global frequency of the
oscillators was increased. Starting from the best trajectories found with
the open-loop approach, the frequency was modified after three steps of the
robots. The frequency was not changed at the beginning of the simulation
because it had too much impact on the initial conditions. With some fre-
quencies the robot started to walk with the wrong leg. Changing the value
of the frequency while the robot was already walking was then a good solu-
tion since the aim of this experiment is to modify the walking speed online.
Notice that the best open-loop model found was slightly modified for the
purpose of this experiment. First tests of that feedback model showed that
the feedback pathways generated a small change of the oscillators’ frequen-
cies. The consequence of that phenomenon was that the oscillators directly
or indirectly (through coupling) implied in feedback pathways (hip2, knee,
ankle1 and ankle2) were no more synchronized with the oscillators that are
not concerned by feedback pathways (body and hip1). In order to avoid
this frequency modification, the coupling between the hip1 and hip2 ser-
vos and between the hip2 and knee servos was reinforced (by increasing the
coupling strength) to keep the whole system synchronized. More precisely,
every oscillator involved in the feedback pathways were synchronized with
the hip1 oscillator. This could have been done by changing only the coupling
strength between the hip1 and hip2 oscillators. But as the gains ghip and
gknee are different, the modification of the hip2 and knee frequency was also
different and thus prevented these two oscillators from synchronizing. By
reinforcing the coupling between these servos, the knee oscillator was then
synchronized with the hip2 oscillator. Also notice that, with the new model,
a small phase shift could be seen in the oscillators involved in feedback path-
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ways (cf. figure 7.9). This slightly changed the phase relation between the
hip1 oscillator and the other oscillators. This phase shift is too small to have
a real impact on the locomotion since the output of the hip1 oscillator was
still close to its maximum when both legs are parallel. This is important
since it allowed the swing leg to go from back to front without hitting the
ground.
As explained above (cf. section 7.1.3), the global coupling model had to
be modified because the two legs were not synchronized since the body os-
cillator’s amplitude is null. To deal with that problem, the same oscillator
was used for the left and right hip1 servos since, in our open-loop model,
they are forced to have both the same amplitude, frequency and phase. To
ensure that the both legs are synchronized and in phase opposition, phase
differences of π/2 and −π/2 between the unique hip1 servo and the left and
right hip2 servos were respectively imposed. The drawback of this modifica-
tion was that the left and right hip1 joints, that mainly control the lateral
stability of the robot, always generated the same movements. This could be
a limitation since it could be useful to have two distinct signal, for example,
if a feedback pathway controlling the lateral stability is added to the system.
As the systematic search for system’s gains for one given frequency took ap-
proximately 8 hours, we decremented the frequency by steps of 5% of the
initial value of τinitial found with the open-loop model. Figure 7.7 shows the
result of this search
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Figure 7.7: Velocity of the robot with different gains. Each plot corresponds
to a different frequency. Only individuals that do not fall during the simu-
lation are considered. The speed of the other ones is set to 0.
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The gains giving the fastest locomotion for each frequencies are summa-
rized in table 7.1.

τ1 frequency [Hz] Khip Kknee velocity [m/s]
0.16698 (-0%) 1.66 -0.2 -1.0 0.31
0.15863 (-5%) 1.76 0.0 -1.4 0.23
0.15028 (-10%) 1.85 -0.3 -1.4 0.32
0.14193 (-15%) 1.96 -0.6 -2.2 0.35
0.13358 (-20%) 2.12 -0.4 -1.3 0.36
0.12523 (-25%) 2.23 -0.7 -1.0 0.36
0.11688 (-30%) 2.40 -0.8 -2.0 0.37

Table 7.1: Best gains found for different frequencies and the corresponding
speeds. Notice that τ1 is inversely proportional to the frequency of the
oscillator’s output. Typical signals produced by the oscillators with feedback
can be seen on figure 7.8.

With the systematic search described above, we found optimal gains for
different values of the global frequency of the system. As shown on figure
7.7, we noticed that, up to 10% of frequency diminution, there were only a
few values for the gains that made the robot walk without falling. From 15%
to 20% of diminution, we found much more gains that produced stable loco-
motion. These values were also roughly distributed within a limited range
of the gain space we explored. A possible explanation is that, as we had to
change our system when we added feedback pathways, the modified model
could be better adapted to a range of frequencies going approximately from
2 Hz to 2.4 Hz. On the contrary, the model used with the open-loop ap-
proach seemed to work better under lower frequency. Also notice that over
2.4 Hz, we did not find any values for the gains that did not make the robot
fall. As explained, we found values for the gains at given frequencies, but
unfortunately we did not manage to find a monotone function that would
link the values of Khip and Kknee to the frequency, in order to be able to
set the frequency of the system to any value in a continuous interval. This
would have allowed us to perform online modifications of the robot’s veloc-
ity. We also tried to find gains when the frequency is decreased but even
with a diminution of 5%, the robot always fell.
As shown in table 7.1, we managed to make the robot walk at a speed of
approximately 0.37 m/s for a frequency of 2.4 Hz, which represents an in-
crease of 24% of the velocity found without using feedback pathways.

44



Figure 7.8: Signals sent to the different actuators when adding feedback to
the model based on Matsuoka oscillators. The parameters are τ1 = 0.11688
(frequency = 2,4 Hz), Khip = −0.8 and Kknee = −2.0. The bottom plot
shows the tilt of the robot in the sagital plane (ξtilt).

To analyze the effect of the feedback, we plotted the signals generated by
the oscillators during time (cf. figure 7.9). The first observation was that,
as expected, the body behaved like an inverted pendulum, its frequency
being half the natural frequency of the oscillators (cf. figure 7.9 (bottom
right plot)), since the tilt angle is maximum each time the feet touched
the ground. During the first 3-4 steps after the change of frequency, the
tilt angle of the robot’s body varied irregularly because perturbations were
created by the sudden modification of the frequency, which often changed the
robot’s direction. After a few steps, the feedback pathways provided a global
stabilization of the robot’s tilt. The tilt angle variation became more regular,
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which made the robot walk in straight line. The effect of the feedback on
the signals produced by the oscillators emphasized a modification of the
trajectories amplitude. This was an expected consequence since we simply
added a proportional term to the oscillators. As all the best gains Khip

and Kknee found were negative, the amplitude was increased when the tilt
angle was negative and decreased when the tilt angle was positive, which
actually produced a modification of the step length. As explained above, the
feedback we used also generated a small phase shift. Also notice that, as the
ankle1 servo’s position was computed from the position of the hip2 and the
knee joints, its value was also modified by the feedback and, as expected,
the feet actually stayed roughly parallel to the ground. The amplitude of
the ankle2 oscillator is also modified since this joint is coupled to the rest of
the system. Figure 7.10 show a typical example of the compensation done
by the feedback pathways in order to prevent the robot from falling.
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Figure 7.9: Signals produced by the oscillators with (red) and without (blue)
feedback. The feedback pathways slightly modified the amplitude of the
signals. A small phase difference is also produced by the feedback.
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Figure 7.10: Measured values of the hip2 and knee servos (left and right
legs) after the modification of frequency (-20%). The frequency is increased
between step 1 and 2. The bottom plot corresponds to the value of tilt angle
of the robot in the sagital plane. The red curves represent the trajectories
with feedback (Khip = −0.4 and Kknee = −1.3) and the blue ones corre-
spond to model with both gains khip and kknee set to 0. The vertical line
corresponds to the fall of the robot.

Figure 7.10 showed us that, as soon as we modified the frequency, the
robot started to lean forward, significantly increasing the mean value of the
tilt angle. The consequence on locomotion was that the feet started to hit
the ground earlier, causing bigger perturbations on the measured trajectories
of the hip1 servos (steps 3 and 4) and the fall of the robot. With feedback,
we observed that, as the robot’s tilt angle increased (beginning of step 4),
the length of step 4 decreased and thus prevented the foot from hitting the
ground too abruptly. After that (step 5) the robot tilted backward and the
step length increased. After 3 or 4 more steps the robot’s tilt was stabilized
and it continued walking normally. Also notice that the hip2 servo is much
more involved in the stabilization process than the knee servo. The impact
of the feedback applied on the knee servo is less obvious, but by removing it,
the robot always fell. Servos that were indirectly influenced by the feedback
(ankle1 and ankle2) also produced modified trajectories, but the impact on
stabilization did not seem to be really obvious. On these plots we can also
see that the feedback produced a small phase shift, which became constant
after 6 or 7 steps.
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As explained above, there was a gap between the desired positions of the
servo and the measured ones. As the actuators do not manage to reach the
desired amplitude, one could wonder if the small amplitude modifications
created by adding feedback would produce a modification on the measured
signals. Figure 7.11 shows small variations of the measured trajectories’
amplitude, which means that there is an impact of the feedback pathways
on the real positions of the servos. By consequence, the behavior of the robot
with feedback as described above remains valid even if there is a deviation
between desired and measured trajectories.

Figure 7.11: Deviation between the signals sent to the knee servo and the real
trajectory measured during simulation. We observed that small amplitude
variations, produced by the feedback pathway, on the desired trajectory also
modified the amplitude of the measured signal. This result was also observed
on the other joints involved in feedback pathways.

7.2.2 Resistance against perturbations

To test our system’s robustness, external perturbations were applied on the
robot. As the feedback pathway introduced was designed to control the bal-
ance in the sagital plane, external forces were generated in the direction of
locomotion on the body joint of the robot during a few milliseconds. Un-
fortunately, we did not manage to apply forces greater than 1-2 Newtons
without making the robot fall, which is clearly insufficient to consider that
the robot is robust against perturbations. The main problem when we ap-
plied greater forces was that the impulsion done on the robot produced a
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too fast tilt of the robot in the direction of walking and the robot was unable
to react quickly enough to the sudden modification of the body’s tilt. By
consequence, we concluded that the gains of the feedback pathways were too
low for that kind of perturbation and a different model should be used to
deal with both perturbations and speed adaptation.
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Chapter 8

Conclusion

8.1 The project

The study of bipedal locomotion is quite a new field that is only a few ten
years old. However, researches done on this subject show the huge amount
of different possibilities there are to try to imitate the incredibly complex
human gait.
Inspired from biological considerations, we tried, in this work, to explore
and analyze a few models using oscillator based CPGs as controllers for a
simulated biped robot. Artificial evolution was also used to optimize the
parameters of the oscillators, in order to generate an efficient locomotion.
In the first part of this project, several models of oscillators were artificially
evolved. We firstly used Hopf oscillators with different types of coupling
between them and achieved a walk of about 30 steps with a velocity of ap-
proximately 0.25 m/s. As this solution was found with the simplest coupling
model we tested, this first experiment also showed that it was difficult to
make the genetic algorithm converge in a reasonable time with more complex
models. Most of the time, extra parameters added for more sophisticated
coupling models led to a important enlargement of the search space that our
algorithm did not manage to explore efficiently. The same problem occurred
when we used a relaxation oscillator. In this case, the range of possible pa-
rameters was also too large to see any interesting solution emerging from
artificial evolution.
We also studied Matsuoka oscillators, which are based on the mutual inhi-
bition of two coupled neurons and are often used for bio-inspired neuronal
models. This model gave by far the best results and the genetic algorithm
converged easily. The best solution found allowed the robot to walk indefi-
nitely at a speed of approximately 0.28 m/s and with a rather realistic gait.
This last model was then improved by adding feedback pathways in order
to be able to increase the speed of the locomotion by changing the global
frequency of the system. This was done by using the tilt angle of the body
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in the sagital plane to modify the trajectories of the hip2 and knee servos.
This feedback pathway proved to be quite efficient since we managed to in-
crease the velocity of the robot of about 25% (0.37 m/s) by increasing the
frequency by 30%. The main impact of the feedback on locomotion was
that it modified the trajectories of the hip1 servos, preventing the robot
from falling forward when the frequency is increased.
We also tried to apply external perturbations on the robot in the direction of
walking. Unfortunately, the robot was only able to remain stable after very
small perturbations (1-2 Newtons). In addition, this model did not allow us
to modify the speed of the robot online by changing frequencies comprised
in a continuous range.
In this work, we have demonstrated that a rather simple feedback pathway
model clearly improved the locomotion when the frequency is increased. Fi-
nally, this project has opened the way to many possible upgrades of the
model since we only explored a small part of the possibilities offered by
bio-inspired artificial locomotion.

8.2 Further work

This work explored different model of oscillators and couplings giving vari-
ous results. A lot of other oscillators could obviously be used, particularly
oscillators able to generate more complex signals closer to human locomo-
tion could be of interest. The Matsuoka oscillator gave good results and
should be studied more deeply.
In this study only one kind of feedback pathways was used. It would be use-
ful to implement more complex models like a feedback pathway that controls
the lateral stability of the robot or a feedback using the touch sensors of the
robot’s feet. One could also try to deal with more complex perturbations
such as lateral wind, slopes or irregular ground. A more difficult but ob-
viously important development would be to be able to control the robot’s
direction during simulation. The solutions found in this work should also
be tested on the real Hoap2 robot.
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