
Remote control of the AiboTM camera from
WebotsTM

Raphaël Haberer-Proust

February 20, 2006

Semester project, winter 2005-2006
School of Computer & Communication Sciences

Swiss Federal Institute of Technology Lausanne (EPFL)
Supervisor: Olivier Michel, Cyberbotics Ltd.

Responsible Professor: Auke Jan Ijspeert, BIRG EPFL

Abstract
This is the report of a semester project done with the Biologically Inspired
Robotics Group (BIRG) at the Swiss Federal Institute of Technology Lau-
sanne (EPFL) during the winter semester 2005/2006. The goal of this project
was to extend existing software in order to be able to access the images of
the Aibo robot's camera.

Contents

Acknowledgment 6
About trademarks 7
1 Introduction 8

1.1 Aibo . 8
1.2 Webots . 9
1.3 RCServer . 10
1.4 Project objectives . 11

2 System Overview 12
2.1 Aibo . 12

2.1.1 OPEN-R . 12
2.1.2 Aibo's camera . 17

2.2 Webots . 18
2.3 Protocol . 18

3 Implementation 19
3.1 Image taking functions . 19
3.2 Inclusions . 20

3.2.1 stub.cfg . 20
3.2.2 connect.cfg . 20

3.3 Image taking and sending . 20
3.3.1 The Notify() function 20
3.3.2 State variable . 21
3.3.3 Image size . 22
3.3.4 Sending of the image 22
3.3.5 Image compression . 23
3.3.6 JPEG compression quality 24

3.4 Extension of the existing protocol 24
3.4.1 Image header . 25

4 Conclusion 26
4.1 Possible extensions . 26

2

List of Figures

1.1 Aibo ERS-7 robot . 8
1.2 Webots with the aibo_ers7.wbt world 9
1.3 Webots' Aibo ERS-7 remote control, control tab 10
2.1 Inter-object communication 15
3.1 FSM representing the possible states of the camera 21
3.2 Example of an image taken by Aibo 23

3

List of Tables

3.1 Time needed for image taking and sending 23
3.2 Extension of the protocol for camera support 24
3.3 Format of an answer on an image taking command 25

4

Listings

Example of a stub con�guration �le 15
BasicGetCommand . 18
Entry in the stub con�guration �le 20
Entry in the connection con�guration �le 20
Implementation of the camera's state variable 21

5

Acknowledgment

First of all, I would like to thank Olivier Michel for always have been avail-
able, his transmission of technical skills and for showing me the way to go.
Then, I would also like to thank Ricardo A. Téllez for his encouragement
and his immediate readiness to share his knowledge of OPEN-R. Special
thanks go to Alessandro Crespi and Fabrice Haberer-Proust for their help
in programming. Last but not least, I would like to express my gratitude
to Professor Auke Jan Ijspeert for letting me work for the Biologically In-
spired Robotics Group (BIRG) and for providing me an introduction to all
the interesting projects and kind people there.

6

About trademarks

• AiboTM is a registered trademark of SONY Corporation.
• �Memory Stick�TM is a trademark of SONY Corporation.
• WebotsTM is a registered trademark of Cyberbotics Ltd.
• MatlabTM is a registered trademark of The MathWorks, Inc.
• Mac OS XTM is registered trademark of Apple Computer, Inc. in the
United States and/or other countries.

• UNIXTM is a registered trademark of The Open Group in the United
States and/or other countries.

• LinuxTM is a registered trademark of Linus Torvalds.
• WindowsTM is registered trademark of Microsoft Corporation in the
United States and/or other countries.

• MIPSTM is a registered trademark of MIPS Technologies, Inc. in the
United States and/or other countries.

• Other system names, product names, service names and �rm names
contained in this document are generally trademarks or registered
trademarks of respective makers.

7

Chapter 1

Introduction

1.1 Aibo

Aibo is an interactive quadruped dog-shaped robot produced by Sony. De-
spite the fact that it was principally designed as an entertainement system,
it is widely used in research �elds because of its great features. Indeed, it
is provided with 18 individually controllable joints, distance sensors, touch
sensors, LEDs and even a colour camera. The most interesting point is that
it is programmable and able to communicate over a standard wireless LAN
card [14]. Thanks to its 64bit MIPS processor running at a clock speed of
576MHz, Aibo has enough computational power to allow the programmer
for example, to make it move or walk while it is executing some other pro-
grammes, like voice recognition or evolutional algorithms.

Figure 1.1: Aibo ERS-7 robot
For software development, Sony provides the OPEN-R SDK and a very com-

8

plete documentation [8] including sample programmes [10].

1.2 Webots

Webots is a three-dimensional mobile robot simulation produced by Cyber-
botics Ltd. and co-developed by the Swiss Federal Institute of Technology
Lausanne (EPFL) [1] [2]. It is available for Linux i386, Mac OS X and
Windows. It allows the user to:

• model and simulate any type of mobile robot (wheeled, legged, winged)
in a complete world with possibly light, obstacles and water using
OpenGL and the Open Dynamics Engine library (ODE) for realistic
physics simulation

• program the robots in C, C++ and Java or from third party software
(like for example Matlab) through TCP/IP

• transfer a shipped or a self-programmed controller to a real mobile
robot

Figure 1.2: Webots with the aibo_ers7.wbt world

The Webots software is shipped with a simulation of the Aibo robot models
ERS-210 and ERS-7 (worlds aibo_ers210.wbt and aibo_ers7.wbt).

9

Furthermore, the simulation model includes a tool that allows one to re-
motely control the Aibo, both the simulated model and the real Aibo either
separately or simultaneously. This tool is simply called remote control. When
using it with a real Aibo, the communication is achieved through its wireless
LAN interface. When using it with the simulated version, the commands are
directly sent through software.
The remote control is accessible by double-clicking on the Aibo model in
the main Webots window showing the 3D world. Its main window then
pops up containing the buttons and �elds for con�guring and setting up the
communication with the real Aibo. For the control of the simulated model,
this tab has no use. Under the tab �Control� one can �nd slide controllers
that let one control all the 18 servo motors of Aibo. Each servo of both the
simulated and the real Aibo can be controlled either individually or several
simultaneously.

Figure 1.3: Webots' Aibo ERS-7 remote control, control tab

1.3 RCServer

In order to achieve the communication between Webots and the real Aibo,
special software must be running on Aibo. This software was programmed
in OPEN-R and is called RCServer. Once Webots is running on the client
computer, Aibo is up and running the RCServer and both �see� each other

10

on the network, a connection can be established in order to remotly control
the real Aibo robot.

1.4 Project objectives

The goal of this project was to integrate camera support into Webots' remote
control for Aibo. This means that the user should be able to either take a
picture of what Aibo's camera sees when the user presses the �take a picture�
button in the remote control window, or to view in real time a video stream
that Aibo's camera captures.

11

Chapter 2

System Overview

This section describes the elements of the system that are important to know
before trying to understand how the camera support was implemented. It
does not treat how to set up the programming environment, or how to run
a program on Aibo. These information can be found under [11] and [16].
Details about the implementation itself are discussed in the next chapter,
chapter 3.

2.1 Aibo

For the development and the tests, the lab's Aibo ERS-7 (Figure 1.1) was
available. However, the RCServer code was designed to work on other Aibo
models like the ERS-210. The functionality of the camera support should
also work with few or even no modi�cations on other Aibo models, but this
was not tested since no other models were available.

2.1.1 OPEN-R

�OPEN-R� is the interface promoted by Sony for the entertainment robot
systems to expand their capabilities. The �OPEN-R SDK� discloses the
speci�cations of the interface between the `system layer' and the `applica-
tion layer'.
Features of OPEN-R:

• Modularized software and inter-object communication
OPEN-R software is object-oriented and modular. Software modules
are called �objects� (speci�cally, �OPEN-R objects�).
Processing is performed by multiple objects with various functionalities
running concurrently and communicating via inter-object communica-
tion.
Connections between objects are de�ned in an external description �le

12

(called stub.cfg, see the paragraph about it later). When the sys-
tem software boots, the description �le is loaded and used to allocate
and con�gure the communication paths for inter-object communica-
tion. Connection ports in objects are identi�ed by the service name,
which enables objects to be highly modular and easily replaceable as
software components.

• Layered structure of the software and services provided by the system
layer
The OPEN-R system layer provides a set of services (input of sound
data, output of sound data, input of image data, output of control
data to joints, and input of data from various sensors) as the interface
to the application layer. This interface is also implemented by inter-
object communication.
OPEN-R services enable application objects to use the robot's under-
lying functionalities, without requiring detailed knowledge of the robot
hardware.
The system layer also provides the interface to the TCP/IP protocol
stack, which enables programmers to create networking applications
utilizing the wireless LAN. The IPStack is an OPEN-R system layer
object. Objects can use the network services o�ered by the IPv4 pro-
tocol stack by communicating with the protocol stack through normal
message passing, i.e. by sending special messages to and receiving spe-
cial messages from the IPStack.

Object
OPEN-R application software consists of several OPEN-R objects. These
are not objects in the object-oriented sense of the word. The concept of
an object is similar to one of a process in the UNIX or Windows operating
systems with regard to the following points of view. Characteristics speci�c
to objects:

• An object corresponds to one executable �le.
An object is a concept that only exists at run-time. Each object has a
counterpart in the form of an executable �le, created at compile-time.
Source code is compiled and linked to create this executable �le. Then,
the �le is put on an Aibo Programming Memory Stick. When Aibo
boots, the system software loads the �le from the Memory Stick and
executes it as an object. An executable �le usually has a �lename with
a .bin extension.

• Each object runs concurrently with other objects.
Each object has its own thread of execution and runs concurrently with
other objects in the system.

13

• Objects exchange information using message passing.
An object can send messages to other objects. When an object receives
a message, the method corresponding to the message is invoked, with
the data in the message as its argument.
An important feature of objects is that they are single-threaded. This
means that an object can process only one message at a time. If an
object receives a message while it is processing another message, the
second message is put into the message queue and processed later. The
typical life cycle of an object:
1. Loaded by the system
2. Waits for a message
3. When a message arrives, executes the corresponding method. Pos-

sibly sends some messages to other objects.
4. When the method �nishes execution, goes to step 2.

Note that this is an in�nite-loop: an object cannot terminate itself. It
persists until the system is deactivated.

• An object has multiple entry points.
Unlike an ordinary programming environment in which a program has
a single entry point main(), OPEN-R allows an object to have multiple
entry points. Each entry point corresponds to a method. Some entry
points are common to all objects and have purposes that are deter-
mined by the system, e.g. initialization and termination. Other entry
points are speci�c to a certain object.

Inter-object communication
The use of inter-object communication enables each object to be created
separately and later be connected to other objects. When two objects com-
municate, the side that sends data is called the �subject� and the side that
receives data is called the �observer�. The subject sends a `NotifyEvent'
to the observer. NotifyEvent includes the data that the subject wants to
send to the observer. The observer sends a �ReadyEvent� to the subject.
The purpose of ReadyEvent is to inform the subject whether the observer is
ready to receive data or not (see Figure 2.1). If the observer is not ready to
receive data, the subject should not send any data to the observer, otherwise
messages might be ignored[15].
In the OPEN-R SDK terminology, subjects and observers are called services.

The virtual objects OVirtualRobotComm and OVirtualAudioComm
The OPEN-R SDK provides two special objects (virtual objects) that provide
an interface to Aibo's hardware:

14

Subject

Object A Object B

Observer

Ready

Data

gate

Figure 2.1: Inter-object communication

OVirtualRobotComm interfaces with the dog's joints, sensors, LEDs and cam-
era.

OVirtualRobotAudioComm interfaces with the robot audio devices
The use of those objects in the programmes is the same as the use of pro-
grammer de�ned objects. The gates in those objects are already de�ned to
send messages to and receive messages from them [16].

Description of the �le stub.cfg
The connection between the entry points (where the message is received)
and the actual member functions of the core class is described with speci�ed
form in a �le called stub.cfg (stub con�guration �le). It is also in that �le
that the services that send and receive data to/from other objects must be
described [15].
Every object has its own stub.cfg �le. The information from this �le will
be used by the compiler when building the binaries. The �le must be placed
in the same directory as the C++ object program.
The stub con�guration �le begins by a line describing the name of the object.
The next two lines declare how many subjects and observers the object has.
Then, each service is described on a line. A service has a unique name in
order to distinguish that service from other services in the system. One can
connect the subject's service to the observer's service of another object by
describing both service names in the �le connect.cfg (see next paragraph).
Here is an example of an stub.cfg �le:
ObjectName : SampleObject
NumOfOSubject : 1
NumOfOObserver : 2

15

Service : "SampleObject.Func1.char.S", null , Ready ()
Service : "SampleObject.Func2.int.O", Connect (), Notify ()
Service : "SampleObject.Func3.Data.O", null , Control ()
Extra : UpdatePowerStatus ()

Lines starting by Service are the ones that describe the information of the
gates. For example, in the line
Service : "SampleObject.Func1.char.S", null, Ready()
SampleClass is the name of the current object, Func1 is the name of the gate
the message will go through, char is the type of message been interchanged,
and S means it is a subject (i.e. an outgoing gate); O would have meant it
is an observer. The last two �elds are the name of two functions: the �rst
one is called when a connection result is received (in almost every cases this
function is not usefull so it is set to null) and the second one is called when
an AssertReady or a message is received [16] [6].

Description of the connect.cfg �le
Now, in order to interconnect the objects, each subject must be assigned to
one observer and each observer to a subject. The con�g �le doing this is the
connect.cfg �le which has to be in the OPEN-R/MW/CONF/ directory of the
Aibo programming Memory Stick. When Aibo boots up, the system loads
the objects and interconnects them according to the information in that �le.
There is only one connect.cfg �le per program.
Each line of connect.cfg begins by the name a subject, for example:
NameOfObject.NameOfSubject.MessageType.S
and ends by the corresponding observer, like:
NameOfObject.NameOfObserver.MessageType.O.
Of course, the type of messages exchanged by the subject and the observer
must be the same at each side. For bi-directional connections, the con�gu-
ration �le must contain two lines, one for each direction of the connection.
The de�nition of each part of the line follows the same speci�cation as for
the stub.cfg �le described before [6] [15] [16].

The Notify() function
The Notify(const ONotifyEvent& event) is a special function that is cal-
led when a message arrives in the gate of the object where it is in. It is the
only way to retrieve the message that was sent to the object. So, it is the
entry point that one must use in order to get the data from a sensor or from

16

an input device like the camera. The message in question is passed in the
function's argument each time that such a message is ready. Its content can
be retrieved by casting the variable in which it was copied in (in our case it
is the variable event):
DataType* dt = (DataType*)event.Data(0);

The member functions receiving a message have to be described in stub.cfg,
but it is not necessary to describe the member functions sending a message
in stub.cfg. At the end of the Notify() function, an AssertReady must be
sent to the subject that sent the message with:
observer[event.ObsIndex()]->AssertReady();

[6] [15]

Aibo's time measurement
Time in Aibo's hardware is divided in discrete timesteps called frames. A
frame is the smallest possible unit of time and represents 8 milliseconds [16].
So, there are 125 time steps in one second.

2.1.2 Aibo's camera

Accessing the camera
Sensors and joints are called primitives in Sony's o�cial documentation. In
Aibo's design, each primitive can be referred to by using a primitive locator
supplied in the Sony's model information document [14]. The primitive loca-
tor provides the �address� of the primitive and the OPENR::OpenPrimitive
static function convert this adress to an ID. In OPEN-R SDK the type
OprimitiveID holds ID information. This design was chosen by Sony's de-
velopers in order to make objects portable between di�erent Aibo models
since the same sensor can have a di�erent index within two di�erent models
[6].

Format type of the data sent by the camera
OFbkImageVectorData is the data structure that holds image data. It is the
type of the data sent from the camera, i.e. the type of the messages sent
from the outgoing gate named FbkImageSensor of OVirtualRobotComm [13].
Actually, a OFbkImageVectorData message contains the same picture in dif-
ferent resolutions but all in colour that are stored in di�erent layers accessible
by their indices. The index of the layer can be one of the following prede-
�ned constants: ofbkimageLAYER_H (high resolution), ofbkimageLAYER_M
(medium resolution), ofbkimageLAYER_L (low resolution).

17

colour images are in the YCrCb format, which means they are coded using 3
bands: Y luminance, Cr (red component - Y) and Cb (blue component - Y)
[6].
The OPEN-R SDK provides a C++ class that handles image data called
OFbkImage.

2.2 Webots

Even if the typical client for which the communication with the RCServer
was designed is the remote control provided by the Aibo ERS-7 model in
Webots, any other client can be used. The communication just uses port
54321 over TCP/IP. So that the RCServer understands the sent commands,
they must respect the rules of the de�ned protocol as mentioned in section
3.4.
Only one connection is possible at one time. This does not include the
wireless console which can always be used to see what Aibo prints out (the
wireless console is accessible by connecting via telnet to the port 59000).
Actually, at the end of the development, a new version of Webots was not
available. Hence, a small TCP/IP client was used for testing the new func-
tionalities.

2.3 Protocol

For their interaction, the RCServer software runing on Aibo and the remote
control in Webots on the client computer use a protocol explained in Lukas
Hohls semester project report [4]. The messages used for sending commands
to the RCServer are of a type called BasicGetCommand declared in the �le
command_structure.h. A BasicGetCommand is a simple structure containing
two �elds, a single character representing the command and another single
character that can be used for example to identify a joint.
struct BasicGetCommand {

char command;
unsigned char identifier;

};

Actually, when a BasicGetCommand is sent to the RCServer, it arrives there
as just two consecutive characters. So, in a simpler client, it is enough to
just send two characters.

18

Chapter 3

Implementation

3.1 Image taking functions

The program code for the picture taking functionalities to the RCServer was
inspired by the W3AIBO example of the samples provided by Sony [10].
The �les write_jpeg.c, write_jpeg.h and jpeg_mem_dest.c were taken
from this sample and directly included in the RCServer's source code di-
rectory and dependency list without applying any changes to them. The
program write_jpeg.c contains two functions; �rst, write_jpeg_mem that
as its name suggests, writes a JPEG picture to the random access mem-
ory (RAM) and returns the �le size and secondly, write_jpeg_file that
writes a JPEG picture to a �le. Actually, for this project, only the function
for writing the picture to the RAM was used since no function for writing
a picture to a �le on the Memory Stick was implemented. But the function
write_jpeg_file was not removed on purpose since the RCServer could
easily be extended in order to have such functionalities as proposed in sec-
tion 4.1.
In order to be able to use these functionalities, three functions that were
adapted from the JPEGEncoder.c program of the W3AIBO example were
included in the RCServer: GetJPEG, ConvertYCbCr and SaveJPEG. Here is a
description of what these functions do:
GetJPEG puts a JPEG �le into the RAM. For this purposes, it uses the

function ConvertYCbCr.
ConvertYCbCr combines the separated bands to a raw image and converts it

to the JPEG �le format. The pointer that was passed to the function
as argument will then point to the beginning of the newly created �le.

SaveJPEG can be used as a replacement for GetJPEG. This function saves
a JPEG �le to a �le on the Memory Stick. It also uses the function
ConvertYCbCr for this purpose.

19

3.2 Inclusions

In order to be able to compress the images to the JPEG �le format, the
jpeglib had to be included. Actually, an archive including the whole library
was added to the program's directory. This is the same archive as the one
provided on the OPEN-R homepage in the download section [9]. As its
content must be compiled into the RCServer, the jpeglib had to be added
to the dependency list of its Make�le, as well as the write_jpeg and the
jpeg_mem functions described in section 3.1.

3.2.1 stub.cfg

In order to be able to get messages from the camera, a supplementary in-
coming gate had to be added in the RCServer's stub con�guration �le:
Service :

"RCServer.Image.OFbkImageVectorData.O" , null , Notify ()

This means that we de�ne an incoming gate (i.e. the RCServer object is
an observer because of the.O) called Image that accepts messages of the
type OFbkImageVectorData (the data type sent by the camera). Further-
more, the Notify() function is called each time this gate becomes a message
(see section 2.1.1 for details about the stub.cfg �le and for an explana-
tion about the Notify() function and section 2.1.2 for details about the
OFbkImageVectorData �le format).

3.2.2 connect.cfg

An entry had to be added to the connect.cfg �le in order to get data from
the camera:
OVirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S
RCServer.Image.OFbkImageVectorData.O

That means that messages of the type OFbkImageVectorData (the data type
sent by the camera) are sent from the virtual object OVirtualRobotComm
that is the hardware interface for the sensors, including the camera, through
its FbkImageSensor gate to the RCServer object through its Image gate.

3.3 Image taking and sending

3.3.1 The Notify() function

Actually, the part of the RCServer where the most important part of code
for image taking lies in the Notify() function. As explained in section 2.1.1,
this function is called each time a message from the subject to which the ob-
ject is connected to, is ready. This message is passed to the object through

20

the parameter of the Notify() function.
For the camera, a picture is ready all 4 frames, i.e. every 32ms. It is in this
function that all the work for the camera support is done: an image is taken,
converted to JPEG and then saved into the RAM. If that part is successfull,
the header of the �le is composed (see section 3.4.1), the image is copied to
the shared memory bu�er (see section 3.3.4) and �nally the header and the
image itself are sent at once to the connected client.
Since this function is called each time an image is ready, it is not possible to
execute all the code for image taking every time because images are certainly
not needed all the time and this would use the robot's resources unneces-
sarily. That's why all the code of the Notify() function is embedded in
a conditional test checking the state of the camera. The camera's state is
represented by a state variable explained in section 3.3.2

3.3.2 State variable

The state variable was implemented in the RCServer's header �le as a simple
enumeration structure called ImageObserverState. This was done in order
to allow only speci�c values:
// states in which the camera exists

enum ImageObserverState {
IOS_IDLE , // do nothing

IOS_PICTURE , // take a picture

IOS_CONTINUOUS , // send stream

IOS_STOPSEND // stop sending stream

};

The di�erent possible states in which the camera can be are explained in
the comments. Figure 3.1 contains an illustration of the �nite state machine
representing the states and transitions from one state to the other.

IOS_PICTURE IOS_STOPSEND

IOS_CONTINUOUS

WF

WIOS_IDLE

Figure 3.1: FSM representing the possible states of the camera

21

The dashed lines mean that in this state, the Notify() function will be
executed only once and that the transition will be done unconditionally after
that. Here is an explanation of the transitions:

• RCServer puts the imageObserverState variable to IOS_IDLE at start-
up (initial state)

• when the RCServer receives the command F, it will make the camera go
into a picture taking state, i.e. it will execute the code in the Notify()
function once and then immediately go back to the idle state after that

• when a W command is received, RCServer executes Notify() i.e. the
image-taking command as often as possible until it gets the same com-
mand again. Then, it will go into a transitional state and thereafter
immediately return to the idle state.

The IOS_STOPSEND is a transitional state into which the camera goes just
after receiving the command to stop sending a continuous video stream. This
state is useful in order to be able to execute some special code after having
sent the last picture of the stream, like e.g. closing the connection.

3.3.3 Image size

With the ERS-7 model of Aibo, the resolution of an image taken by the
camera with the highest possible resolution (ofbkimageLAYER_H, see sec-
tion 2.1.2) is 208 × 160. This is the resolution chosen for the implementa-
tion. It was decided not to support image sending in a smaller resolution
since even if it is called high resolution, it is still small and should never slow
down the communication because of its size. A bu�er called JPEG_BUFSIZE
of a size of 64 kilobytes is allocated in order to hold the compressed picture.
This size of 64kb was simply chosen because a JPEG picture in that resolu-
tion should never exceed that size, even in its best quality.
The �le size of a raw picture in the highest resolution is constant with 98
kilobytes. To be exact, it has a size of 99894 bytes. This value comes from
the computation width × height × depth + header. So, here it is

208× 160× 3 + 54 = 99894

Once compressed with the standard quality of 85%, the �le size lies between
3 and 6 kilobytes, depending on the content of the picture.

3.3.4 Sending of the image

In order to send data over the network, a shared bu�er must be created
in Aibo's memory. The data that will be sent has to be copied into that
bu�er and then will be copied to the protocol stack [12]. A shared bu�er

22

Figure 3.2: Example of an image taken by Aibo

was already present in the initial implementation of the RCServer. It was
only made bigger in order that an image will always �t into it. So, it was
declared to have the size of JPEG_BUFSIZE.

3.3.5 Image compression

It was decided to compress the image from raw to the JPEG format on the
Aibo, i.e. on the server side. It would also have been possible to make that
compression on the client side. This decision was made since the �le size of a
JPEG image, compressed with the standard quality, is several times smaller
than uncompressed. Since the compression on Aibo is very fast, the transfer
will be much faster, which is very appreciated, especially when sending a
continuous video stream.
Tests were made to know how long the compression and the sending takes.
This information is retrievable by printing out the actual frame number (see
section 2.1.1) each time the Notify() function is called. The results are
listed in Table 3.1

in frames in milliseconds
only compression 4-8 32-64
compression and sending 8-25 64-200 (and more)
Table 3.1: Time needed for image taking and sending

It clearly appears that compression is very fast, sometimes even instanta-
neous (remember that the camera has a new image ready all 4 frames, see
section 3.3.1) whereas sending can take a very long time.

23

3.3.6 JPEG compression quality

The JPEG �le format provides several compression levels. A higher compres-
sion rate will produce a �le of a smaller size but with more information losses.
Conversely, a lower compression rate will produce a bigger �le with less infor-
mation loss. The di�erent possible compression rates are called quality and
vary from 0% to 100%, where the default is 85%. A quality of 0% shows the
most artefacts and a quality of 100% represents the highest reachable qual-
ity of a JPEG �le and does not mean that the image is not compressed at all.
The compression rate which the RCServer uses for the image it sends can
be de�ned by the client using the identi�er �eld of the BasicGetCommand it
sends. Even if the type of that �eld is unsigned char, it is just interpreted
as a number between 0 and 100. If it is over 100, it will be interpreted as
100 anyhow.

3.4 Extension of the existing protocol

In order to have some commands for controlling the camera, it was neces-
sary to extend the existing protocol with new commands. By convention,
a command that is sent to the RCServer is a capital letter. Actually, only
two new commands were necessary; one for taking a single picture and one
for beginning to send a continuous video stream. The command for telling
RCServer to stop sending the stream is the same as the one used for begin-
ning to send it. It is just sent once again. Two characters from the alphabet
that were not already used were de�ned for that task. These commands are
listed in Table 3.2.

BasicGetCommand
char uchar Description

command identi�er
F quality return a single JPEG �le
W quality return JPEG �les continuously

Table 3.2: Extension of the protocol for camera support

The answer of RCServer to each of these commands is the taken image pre-
ceded by a header whose purpose is explained in section 3.4.1.
In case the command for taking a single picture was sent, RCServer's an-
swer will be only one image preceded by its header. In case the command
for taking a video stream was sent, several pictures will be returned, each
preceded by its corresponding header. The video stream is simply composed

24

of consecutively sent pictures. The frequency of images sent is the best that
is technically possible. In application, a frequency of about 15 pictures per
second is achievable. This can vary a lot as it mainly depends on Aibo's avail-
able resources and on the quality of the network communication. If Aibo is
running objects that require a lot of computational power or if the network
is saturated, the number of pictures sent per time unit will decrease. If this
happens, the video stream will be more jerky than under ideal conditions
and the stream can even be frozen temporarily.

3.4.1 Image header

As said before, when the RCServer sends an image, it does not just send the
image, it �rst sends a header containing the letter f and then the size of the
image �le in bytes coded in big-endian order and only after this header the
image itself is sent as shown in Table 3.3. This header is necessery for the
client runing on the computer to know how many bytes to receive.

f �le size coded on 4 bytes image data . . .
Table 3.3: Format of an answer on an image taking command

Header and image are sent together at once from the RCServer. On the
client side, the �ve bytes that contain the header must �rst be received in
order to compute the �le size of the picture before the picture itself can be
received. Eventually, a check can be performed on the �rst byte in order to
know if the header really does begin with the character F. If it does not, the
operation can be aborted. If it does, the integer must be recomposed and
converted to little-endian again.
One thing that is important to notice is that although RCServer usually
sends the same character as the command character but as a small letter,
for the sending of a video stream, it will still be the letter f that will �rst be
sent since a video stream is nothing more than many single pictures shown
continuously one after the other.

25

Chapter 4

Conclusion

4.1 Possible extensions

Communication over TCP/IP is synchronous, so it might not always be
very fast. Since for a video stream it does not matter if all packets are
not correctly received, it might be interesting to send it using UDP instead
of TCP/IP. The UDP protocol is connectionless, i.e. packets are just sent
without verifying if their are correctly and completly received. This allows
a faster communication but does not guarantee in which order the packets
are received. For the video stream, this means that theoretically it would
be possible for an image that was taken after another one to be displayed
before. In order to prevent this, we could number the pictures incrementaly
and put this number in an extended version of the header. Then, on the
client side, only pictures having a bigger frame number than the last picture
that was shown would be displayed. Pictures with a small frame number
would be ignored. Doing that, the video stream could eventually skip some
pictures, but it could never happen that an older image would be displayed
before a newer one.
It could also be interesting to give the user the possibility of saving a taken
picture to a �le on the Memory Stick. Actually, this was done at some point
of the development but later removed given that the primary goal was to have
the quickest possible image transfer, and also because writing to the Memory
Stick is very slow in comparision to RAM access. Anyhow, the functions are
still present in the RCServer's source code but are unused. Hence, having
image saving functionalities could be easily achieved. The help functions for
doing this are already included as explained in section 3.
A last thing that could be implemented for an optimal camera support could
be to o�er the user the possibility to control the camera settings. The
OPENR::ControlPrimitive() can be used to change the gain, colour bal-

26

ance and shutter speed of the camera [6].
As the icing on the cake, one could imagine providing the with the possibility
of seeing if the robot has detected a given colour since Aibo has a colour
detection algorithm built in. This algorithm works very fast because it is
encoded in hardware.

27

Bibliography

[1] Cyberbotics Ltd. Webots Reference Manual.
[2] Cyberbotics Ltd. Webots User Guide.
[3] Lukas Hohl. Aibo simulation in webots and controller transfer to aibo

robot, June 2004.
[4] Lukas Hohl. Wireless remote control and monitoring of an aibo robot,

February 2004.
[5] Sergei Poskriakov. Sony Aibo ERS-series robots support in Webots,

2004.
[6] François Serra and Jean-Christophe Baillie. Aibo programming using

OPEN-R SDK tutorial, 2003.
[7] Sony Corporation. O�cial Sony OPEN-R internet page. http://openr.

aibo.com.
[8] Sony Corporation. OPEN-R SDK documentation English. File

OPEN_R_SDK-docE-XXX.tar.gz.
[9] Sony Corporation. Source of the JPEG library, �le

jpegsrc.v6b.tar.gz.
[10] Sony Corporation. OPEN-R sample programs, 2004.
[11] Sony Corporation. OPEN-R SDK Installation Guide, 2004.
[12] Sony Corporation. OPEN-R SDK Internet Protocol Version4, 2004.
[13] Sony Corporation. OPEN-R SDK Level2 Reference Guide, 2004.
[14] Sony Corporation. OPEN-R SDK Model Information for ERS-7, 2004.
[15] Sony Corporation. OPEN-R SDK Programmer'sGuide, 2004.
[16] Ricardo A. Téllez. Introduction to the aibo programming environment,

2005.

28

http://openr.aibo.com
http://openr.aibo.com

	Acknowledgment
	About trademarks
	Introduction
	Aibo
	Webots
	RCServer
	Project objectives

	System Overview
	Aibo
	OPEN-R
	Aibo's camera

	Webots
	Protocol

	Implementation
	Image taking functions
	Inclusions
	stub.cfg
	connect.cfg

	Image taking and sending
	The Notify() function
	State variable
	Image size
	Sending of the image
	Image compression
	JPEG compression quality

	Extension of the existing protocol
	Image header

	Conclusion
	Possible extensions

