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Abstract 
 
 

In the context of research on animal locomotion, a salamander robot and its locomotion 
controller are currently under development at the Biologically Inspired Robotics Group (BIRG) 
at the EPFL.  
This document presents a Java applet for this controller, developed as a semester project in 
the purpose of making the functioning of the controller and the effects of some parameter 
visible and accessible for other researchers and scientists. This report is divided into seven 
parts.  There is first an introduction to the aims of the project, followed by some background 
information about the controller itself and its situation in a more general research context. 
The third part details the design of the Java applet, carried from the C implementation of the 
controller and the fourth part presents the graphical user interface and the behaviours and 
results observable from it. The fifth and sixth parts explain the problems encountered 
during this project and detail some ideas for further work. Finally, the report is concluded 
with some personal assessment about the goals achieved and feelings about the whole 
project. 
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I – Introduction 
 
 
Within the framework of their study of animal locomotion, and more precisely of the 
transition from swimming to walking during vertebrate evolution, the team from the 
Biologically Inspired Robotics Group (BIRG) at EPFL developed a salamander robot capable of 
performing both walking and swimming gaits and smooth transition between the two.  
The locomotion controller for this robot is a combination of a body central pattern generator 
(CPG) similar to a lamprey CPG for swimming and a limb CPG coupled to it to generate a 
walking gait. The salamander CPG is modelled as a chain of coupled nonlinear oscillators 
written in C code.  
The aim of this project was to give a better visibility and accessibility to this research work 
by developing a Java applet for the controller. Researchers and scientists would this way be 
able to access the model from anywhere in the world through the internet and visualize the 
effects of different parameters on the behaviour of the oscillators through the user interface 
providing analysis graphs.  
The first step was thus to carry the C code of the controller into Java code and check that it 
performed well. After that the graphical user interface had to be designed and developed 
and the different functionalities of the controller could be tested. 
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II – Background 
 

II – 1 The real salamander 
 
The transition from aquatic to terrestrial habitats has been one of the most important 
changes during vertebrate evolution. As an amphibian capable of both swimming and 
walking, the salamander is believed to be one of the modern animals closest to the first 
vertebrates that made this transition.  
When it is underwater, the salamander uses a swimming gait similar to that of the lamprey, 
with the limbs folded backwards; it is based on a travelling wave of neural activity 
propagated from the head to the tail, which piece-wise constant wavelength corresponds to 
the length of the body. When it is on the ground, the salamander switches to a stepping gait 
with the phase relation of a trot; diagonally opposed limbs are in phase and laterally 
opposed limbs are out of phase. The trotting gait is based on S-shaped standing waves with 
nodes at the girdles; the stride length is optimized by coordinating the limbs with the 
bending of the body (see Fig. 1) [1, 2].   
 

 

Figure 1 - Patterns of EMG activity during swimming and 
trotting [3]. During swimming we observe a travelling wave 
of muscle activity; the travelling wave has a piece-wise 
constant phase lag with small changes of wavelength at the 
girdles. 
During walking the muscles in the trunk are synchronized, 
i.e. without phase lag. 

 
Locomotion of the salamander is controlled by a network of neurons forming a central 
pattern generator (CPG). The neurons generate rhythmic output signals without receiving 
rhythmic inputs. The central nervous system of the salamander is very similar to that of the 
lamprey, a primitive fish which locomotor circuit has been extensively studied [2]. The main 
hypothesis is that the salamander’s locomotor circuit is composed of a CPG controlling the 
body movements located all along the salamander’s spinal cord, extended with limb CPGs 
located across from the limbs on the spinal cord.  
Efficient neural network models of the salamander’s locomotion circuit have been developed 
based on this hypothesis [4]. 
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II – 2  The locomotion controller 
 
This section is strongly based on the description of the model as presented in [5]; thus I will allow 
myself not to mention every time I quote. 
 

II – 2.1 Nonlinear oscillator model 
 
The locomotion controller for the salamander robot is modelled as a system of coupled 
nonlinear oscillators.  Coupled oscillatory systems present the advantage that many of their 
properties only depend on the coupling between oscillators and not on their implementation. 
This allows to concentrate on the coupling itself rather than on the detailed neuronal 
mechanisms of rhythm generation. 
Each oscillatory centre identified in the salamander’s spinal cord is modelled by an 
amplitude-controlled phase oscillator. Such a model represents an ideal compromise 
between biological relevance and limited computing requirements such as being 
programmable on a microcontroller. 
The nonlinear oscillator composing the building block of the model is implemented as 
follows: 
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Where θi and ri are the state variables of the oscillator, representing the phase and the 
amplitude respectively, vi and Ri determine the intrinsic frequency and amplitude and αij and 
βij are coupling weights determining how oscillator j  influences oscillator i. For each 
oscillator, a signal xi is extracted representing the amplitude of the burst produced by the 
centre. 
 
In the salamander, the amplitude and frequency of oscillation increase with the level of tonic 
drive applied to the oscillators. When an increasing drive is applied to the CPG, three phases 
are distinguished: before the input drive reaches a first threshold no oscillation happens, 
between this threshold and a second one, oscillation frequency and amplitude increase with 
the drive and above the second threshold there’s a saturation phase where the oscillations 
stop. 
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To model this effect, a piece-wise linear saturation function is introduced, that modulates 
the intrinsic frequency and amplitude vi and Ri according to the driving signal di:  
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Limb and body oscillators are provided with different saturation functions, with the limb 
oscillators systematically oscillating at lower frequencies than body oscillators for the same 
level of drive and saturating at a lower threshold (see Fig. 2). 

 
 
 

 
 
 

Figure 2 – Saturation functions for body and limb oscillators.  
(Top) Intrinsic frequency. (Bottom) Intrinsic amplitude. 
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II – 2.2 Central pattern generator (CPG) 

 
Central pattern generators are circuits that can generate 
rhythmic activity without rhythmic input. The complete CPG 
is composed of multiple oscillators coupled together with 
unilateral global coupling with limb intercoupling (see Fig. 
3).  
The body CPG is composed of a double chain of oscillators 
all along the 40 segments of the spinal cord, with closest 
neighbour coupling and the limb CPG is composed of four 
oscillators, one for each limb. The coupling from limb 
oscillators to body oscillators is unidirectional; left trunk 
oscillators receive inputs from the left forelimb, left tail 
oscillators receive inputs from the left hind limb and this is 
replicated on the right side.  
 Figure 3 –Organisation of the CPG. 

  
The coupling weights of the interconnections between two oscillators determine their phase 
difference (along with the difference of their intrinsic frequencies). They are defined as 
follows: 
 

)cos( ijijij w φα =  and )sin( ijijij w φβ =  

 
Where φij is the phase difference towards which the oscillators i and j will converge and wij is 
the strength of the coupling.  
The isolated body CPG produces travelling waves from head to tail with a wavelength of one 
body length; left and right oscillators oscillating in anti phase. The isolated limb CPG 
implements a trotting gait with left and right oscillators oscillating in anti phase and 
diagonally opposed oscillators in phase.  
While swimming, the salamander keeps its limbs backwards along its body. In order to 
achieve this behaviour with the controller, the oscillators of the limbs need to be modified to 
converge to a specific phase, corresponding to a specific angle of the robot’s legs. The 
differential equation for the phase of the limb oscillators thus becomes the following: 
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Where  is the rest angle of the limb and bi is a gain that is set to zero when the drive is 

below the saturation threshold d2 of the limb oscillators (when the salamander is walking), 
and set to 20 when it is above (when the salamander is swimming) . 

iθ&
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II – 3 The salamander robot 
 
The research on animal locomotion, and more specifically on lamprey-like locomotion, at the 
biologically inspired robotics group (BIRG) at EPFL leaded the researchers to build bio-
inspired amphibious snake-like robots capable of crawling and swimming. Robots such as 
Amphibot I were very precious tools to investigate hypotheses about how central nervous 
systems implement locomotion abilities in animals [6, 7]. 
Current research focuses on the development of an amphibious salamander robot, capable 
of walking and swimming and performing a smooth transition between the two gaits. The 
robot is made of 9 segments (see Fig. 4). The head and six body segments are similar to the 
elements developed for Amphibot II [8]; they have a servo motor that enables horizontal 
motion with the previous segment. The two remaining segments are for the legs; each of 
them has two servo motors that enable independent rotation of 360° for the two legs. 
 

 

Figure 4 – The real 
salamander robot. 

  
The robot is still in its development stage and there is not much documentation available 
yet, thus I will not give any more details about it. However, a lot of research has already been 
done based on 2 and 3D mechanical simulations of the salamander robot. In particular, 
Ijspeert, Crespi and Cabelguen determined in [1] which CPG configuration was most likely to 
control salamander locomotion and investigated the mechanisms of entrainment between 
the CPG, the body and the environment. It is based on these simulation studies that they 
started designing the salamander robot to test whether the CPG models could be adapted to 
control a real robot.  
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III – Design: From C to Java 
 

III – 1 C code 
 
As I already mentioned, the first step of my project was to carry the C code of the controller 
to Java, in order to be able to develop it into an applet.  
The C code is composed of three files: cpg.c, cpg.h and pic_cpg.c. The first and second ones 
implement all the functions needed to run the salamander CPG and the third one runs the 
CPG and saves its activity in different log files. The log files are then used to plot analysis 
graphs with Matlab® (see Figures 2 and 5). 
 

 
 

Figure 5 – Some of the analysis graphs plotted with Matlab® from the log files generated by the C program.  
(Top left) Activity of the CPG during walking. Only the oscillators on the left side of the salamander are represented. 
(Top right) Phase of the body and limb oscillators. (Bottom left) Evolution of the phase, phase lag of the oscillators, 

frequency of oscillations, amplitude and drive. (Bottom right) Phase lag of the oscillators in the body CPG. 
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III – 2 Java code 
 
I structured the Java code in eight classes: GraphicalUserInterfaceApplet.java, Cpg.java, 
OscilStructure.java, Oscillators.java, Square.java, Graphs.java, DrawGraph.java and Axes.java. 
The following sections present a description and the UML diagram for each class; I omitted 
some of the attributes and operations (such as getters and setters) in the diagrams in order 
to preserve the readability of this document. To see the details of the implementation, 
please refer to the code and its documentation, available on the website (only from the EPFL 
network). 
 

III – 2.1 GraphicalUserInterfaceApplet 
 

This class initialises the graphical user interface (GUI) of 
the applet; the panels, labels, buttons and sliders are 
created and drawn.  

GraphicalUserInterfaceApplet 
- thread : Thread 
- cpg : Cpg 
- driveSlider : JSlider 
- asymmetrySlider : JSlider 
- firstOscilSlider : JSlider 
- graphScaleSlider : JSlider 
- oscillators : Oscillators 
- graphs : Graphs 
- xBodyGraph : DrawGraph  
- xLimbGraph : DrawGraph  
- freqGraph : DrawGraph  

It overrides the javax.swing and java.awt stateChanged() 
and actionPerformed() methods respectively for the 
sliders and the three buttons (play, stop and reset). In 
this class, the thread of the applet is created, initialised 
and run, and its run() method is implemented. The 
main() method of the pic_cpg.c program is implemented 
here as computeOutputs(); the drive signal is assigned 
to the oscillators and the saturation function and Euler 
integration are executed. 

- driveGraph : DrawGraph 
+ init() 
+ run() 

At this point, it is also possible to create the log files in 
the same way as in the C code. 

- computeOutputs() 

Figure 6 – GraphicalUserInterfaceApplet 
class diagram.  

III – 2.2 Cpg 
 
This class was directly carried from the cpg.c file. It 
implements the functions needed to run the salamander 
CPG, called in the run() and computeOutputs() method 
from the GraphicalUserInterfaceApplet class.  

Cpg 
- numOscils : int 
- numOscilsBody : int 
- numOscilsLimb : int 
- oscil : OscilStructure[] 

It also contains log making methods that allow the 
creation of the log files in the same way as in the C 
code. These methods need to be uncommented if the 
user wants to create logs.  

- gui : GraphicalUserInterfaceApplet 
+ oscilDeriv() 
+ initCpg() 
+ saturationFunction() 
+ cpgCoupling() 
// + initLogs() 
// + makeLogs(float t) 

 
 

// + closeLogs() 

Figure 7 – Cpg class diagram. 
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III – 2.3 OscilStructure 

 
This class implements the structure representing the 
oscillators composing the CPG and contains their 
parameters and variables. 

OscilStructure 
- gui : GraphicalUserInterfaceApplet 
- deriv_dphi : float 
- output_x : float 
  

 Figure 8 – OscilStructure class diagram. 

III – 2.4 Oscillators 
 
This class designs the panel that contains the graphical 
representation of the body and limb oscillators; it 
creates, initialises and displays the rectangles 
representing the input drive and the output values of the 
oscillators. 

Oscillators 
- applet : GraphicalUserInterfaceApplet 
+ displaySquares() 
+ initSquares() 

Figure 9 – Oscillators class diagram. 

 
III – 2.5 Square 

 
This class extend the java.awt.Canvas class and designs 
the graphical representation of the input drive and the 
body and limb oscillators’ output values. The update() 
methods call the inherited repaint() method from 
java.awt.Component, that calls the paint() method from 
the class to compute and refresh the display of the 
oscillators. 

Square 
- color : Color 
- gui : GraphicalUserInterfaceApplet 
- drive : int 
- turn : float 
- firstOscil : int 
+ paint(Graphics g) 
+ update() 
+ update(int h) 

 
Figure 10 – Square class diagram.

III – 2.6 Graphs 
 
This class designs the panel that contains the analysis 
graphs and the axes; it creates, initialises and displays 
them. 

Graphs 
- applet : GraphicalUserInterfaceApplet 

+ displayGraphs() 
+ initGraphs() 

 
 Figure 11 – Graphs class diagram. 

III – 2.7 DrawGraph 
 
This class extend the java.awt.Canvas class and designs 
the actual graph drawings. The update() method calls 
the inherited repaint() method from 
java.awt.Component, that calls the paint() method from 
the class to compute and refresh the display of the 
graphs. 

DrawGraph 
- gui : GraphicalUserInterfaceApplet 
- width : int 
- height : int 
- type : int 

+ paint(Graphics g) 
+ update(int graph) 

Figure 12 – DrawGraph class diagram.
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III – 2.8 Axes 

 
This class extend the java.awt.Canvas class and 
implements the axes of the graphs. The update() 
method calls the inherited repaint() method from 
java.awt.Component, that calls the paint() method from 
the class to compute and refresh the display of the axes, 
depending on the scale desired. 

Axes 
- gui : GraphicalUserInterfaceApplet 
- scale : float 
- width : int 
- height : int 

+ paint(Graphics g) 
+ update(float scale) 

Figure 13 – Axes class diagram.
 
The Java code comprises some commented instructions and methods in the 
GraphicalUserInterfaceApplet and Cpg classes respectively. They allow the creation of log 
files in order to plot analysis graphs with Matlab® in the same way as with the C program; 
these graphs were useful to check that the Java program gave the desired outputs (the same 
as the C code – see Fig. 14). 
 

 
 

Figure 14 – Some of the analysis graphs plotted with Matlab® from the log files generated by the Java program.  
(Top left) Activity of the CPG during walking. Only the oscillators on the left side of the salamander are represented. 
(Top right) Phase of the body and limb oscillators. (Bottom left) Evolution of the phase, phase lag of the oscillators, 

frequency of oscillations, amplitude and drive. (Bottom right) Phase lag of the oscillators in the body CPG. 
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IV – Results: The Graphical User Interface 
 
 
The GUI is divided into three main panels (see Fig. 15). The first panel is labelled settings 
and comprises three sliders to allow the user to set some parameters, and three buttons to 
play/restart, stop or reset the applet. The second panel is labelled oscillators and represents 
the activity of the body and limb oscillators of the salamander’s CPG. The third and last 
panel is labelled Graphs and it contains the graph of the CPG activity.  
 
 

 
 

 
 

Figure 15 – Graphical User Interface. (Top) View at the start. (Bottom) In activity.  
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IV – 1 Settings panel 
 

IV – 1.1 Sliders 
 

The settings panel comprises three sliders to change the input drive applied to the body and 
limb oscillators of the salamander.  
 
Drive slider: Speed and gait regulation 

 
The first slider changes the value of the average drive for all oscillators; it regulates the 
speed of the oscillations and is responsible for the change of gait. Below a value of 1, the 
oscillators are all inactive; their output value is constant with negligible amplitude [5] (see 
Fig. 16).  
 

 
 

Figure 16 – GUI with all oscillators inactive. 

 
 

Between 1 and 2.9, the oscillators from the limbs and the body are all active. Limb oscillators 
oscillate with the phase relation of a trot (with diagonally opposed limbs in phase and 
laterally opposed limbs out of phase – see Fig. 17) and the coupling from the limb to the 
body oscillators forces the body CPG to oscillate with an S-shaped standing wave. The body 
oscillators oscillate in anti phase between the rostral and caudal parts of the body and 
between the left and right side (see Fig. 18). In the salamander, the body-limb coordination 
is such that limbs are maximally turned forward when corresponding contralateral body 
segments are maximally contracted (see Fig. 19).  
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Increasing the drive leads to an increase of the frequency and amplitude of all oscillations 
and therefore to an increase of the walking speed, until the limb oscillators saturate and the 
transition to swimming occurs (see Fig. 20). 
 
 

 
 

Figure 17 – Quadruped locomotion : trot.  

 
 

 
 

Figure 18 – GUI displaying a trotting gait. 

 
 

 

Figure 19 – Mechanical simulation of the 
salamander. Limbs in contact with the 
ground are drawn in white [4]. 
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Figure 20 – Transition between walking and swimming. 

 
When the drive is between 3 and 4.9, the limb oscillators are saturated (zero frequency and 
negligible amplitude) and thus they don’t influence the body CPG any more; the body 
oscillators release travelling waves from head to tail with a wavelength equal to the length of 
the body (see Fig. 21). The travelling wave of body undulation allows the salamander to 
propel itself forward in water (see Fig. 22). 
Increasing the drive leads to an increase of the frequency and amplitude of oscillations and 
therefore to an increase of the swimming speed, but the wavelength remains unchanged.   
 

 
 

Figure 21 – GUI displaying a swimming gait. 



   
 

    15

 
 

 

Figure 22 – Mechanical simulation 
of the salamander [4]. 
 

 
 

With a drive value above 4.9, all oscillators saturate and no oscillation is observed (see Fig. 
23).  

 

 
 

Figure 23 – GUI with all oscillators saturated. 



   
 

    16

 
Asymmetry slider: Turning 
 
The second slider changes the value of the drive applied to the body oscillators; increasing it 
on one side and decreasing it on the other side. Applying asymmetrical drives between left 
and right sides of the body CPG induces turning during both walking and swimming (see Fig. 
24 and 25). Changing the drive to an oscillator amounts to modifying its intrinsic frequency 
and its oscillation amplitude. When the difference in the left and right drive is not too large, 
the whole pool of oscillators keeps oscillating at a common frequency (i.e. the oscillators 
remain synchronized), and only an effect on the amplitudes can be observed; the side 
receiving higher drive will oscillate at higher amplitudes [5].  
 

   
 

Figure 24 – Turning while walking. 
 

 
 

Figure 25 – Turning while swimming.  
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First oscillators drive slider: Changing the phase lags for swimming 
 
The last slider in this panel allows changing the input drive of the head oscillators. When all 
body oscillators receive the same input, they produce a travelling wave with a wavelength 
corresponding to the length of the body. However, it is possible to modify this wavelength 
by applying a different strength of input to the first oscillators on the left and right side of 
the body, at the extremity of the chain. The resulting change of intrinsic frequency affects 
the phase lags along the whole chain (see Fig. 26). A higher drive leads to higher phase lags 
and lower wavelength, and a lower drive leads to lower phase lags [5]. If the drive difference 
is too large, the intrinsic frequencies of the head oscillators compared to the others in the 
chain become too large, the oscillators fail to synchronise properly and oscillations become 
irregular.  
These effects are best viewed on the running applet; therefore I will not include any 
screenshots for it. 
 
 

 
 

Figure 26 – Modification of the phase lag during swimming when the head input 
drive is modified. 
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IV – 1.2 Buttons 
 

In addition to the sliders, the settings panel features three buttons to control the applet. 
When the applet is first initialised, the middle button displays the text Play; when it is 
pressed, a new thread for running the program is created and started. This leads to the CPG 
being created, initialised and started; the oscillators are set with the input drive value 
(computed from the three sliders), their outputs are computed and the display is updated. 
While the applet is running, the left and middle buttons become inactive. 
The right button is always active. It displays the text Stop and when it is pressed it stops the 
applet without refreshing the display (the current state of the oscillators remains visible) and 
the left and middle buttons become active again, displaying the texts Reset and Restart 
respectively. 
When the applet is stopped, the middle button displays the text Restart. Pressing it starts a 
new thread with the current value of the parameters (the slider values). 
The left button, when pressed, resets the parameters to the initial ones, and resets the 
display of the oscillators and the graphs. The applet looks like when it was first started, the 
middle button displays the text Play again. 
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IV – 2 Oscillators panel 
 
The middle panel comprises graphical representations of the input drive for the head, the 
body and the limb oscillators (the green rectangles), and of the oscillatory activity of the 
body and limb oscillators (the yellow rectangles).  
 

IV – 2.1 Green rectangles 
 
The green rectangles are set on two rows, two on the first row and four on the second. The 
rectangles on the first row represent the input drive applied to the head oscillators (the first 
two on the left and right side of the body, at the extremity of the chain). The rectangles on 
the extremities (left and right) of the second row represent the drive applied to the limb CPG; 
the two rectangles in the middle of the second row represent the drive applied to the body 
CPG (see Fig. 26). The size of all the rectangles varies depending on the values of the sliders 
from the settings panel (see Fig. 16, 18, 21, 23, 24 and 25).  
 

 

Right head Left head 

Left limbs 
 

Right limbs 

 
 

Left body Right body 
 

 
Figure 25 – Signification of the green rectangles. 
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IV – 2.2 Yellow rectangles 
 

The yellow rectangles are disposed such as to represent the body and limbs of the 
salamander; the two middle columns represent the body oscillators, from head (top) to tail 
(bottom) and the rectangles on the outside (on the left and right side of the body) represent 
the four limbs (see Fig. 26). Their size represents the output signal of the oscillators 
(output_x in the Java code).  
 
 
 

    

Head oscillators 

Body oscillators 

Limb oscillators 

 
 

Figure 26 – Representation of the body and limb oscillators.
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IV – 3 Graphs panel 
 
The panel on the right of the applet displays the graphs useful to analyse the behaviour of 
the oscillators. It also features a timer to keep track of the simulation time and a scale slider 
that allows changing the scale of the graphs. 
 

IV – 3.1 Timer 
 

The timer displays the simulation time of the applet; it mainly depends on the occupancy of 
the Java virtual machine (JVM) that is required for the computations of the CPG and the 
display of the applet. Because the time is computed in relation to the JVM, it depends on its 
activity and does not pass with a constant speed.  
 

IV – 3.2 Scale slider 
 

The slider at the top of the graphs panel allows changing the scale of the graphs to see more 
or less details. It ranges between 2 and 10 seconds, with 2 seconds steps.  
 

IV – 3.3 Graphs 
 
The graphs panel comprises four graphs. The first graph, labelled xBody, plots the output 
signal of the oscillators; here the difference between the right and left oscillators is 
represented. 
The second graph, labelled xLimb, plots the output of the four limb oscillators. The black 
curves represent the fore limbs and the red ones the hind limbs; they are drawn with a shift 
for a better visual effect.  
The third graph, labelled Drive, plots the value of the input drive. The grey lines represent 
the threshold values 1, 3 and 5 for the oscillators’ activity, the saturation of the limb 
oscillators (transition between walk and swim) and the saturation of the body oscillators, 
respectively. The average value of the drive (taken from the drive slider) is drawn in black; 
when the value of the asymmetry changes (with the asymmetry slider), the blue line 
represents the input drive for the right side of the body and the red line for the left side. 
When the drive value of the first oscillator changes (with the first oscillator drive slider), it is 
represented by a green line. 
The last graph represents the frequency of oscillations. It is computed from the time 
derivative of the phase (deriv_dphi in the Java code) of the oscillators.  
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V – Problems Encountered  
 

V – 1 Another developer 
 
The first difficulty I encountered during this project was to understand a code developed by 
someone else. Indeed, it took me a while to realise for example that the indexes of the 
tables started at 1 (more natural for us humans) in the C program, and to make all the 
necessary changes to deal with it and let my table naturally start at the index 0 in Java. 
It is never easy to understand the reasons underlying this or that choice of structure or 
implementation, and then decide whether it should be kept this way or changed.  
 

V – 2 C and Java 
 
C and Java are fundamentally different programming languages. Firstly C is not object 
oriented; it doesn’t feature basic concepts such as inheritance and encapsulation that are 
extensively used in a language like Java. The other main difference is that Java uses dynamic 
allocation of the memory at execution time instead of static allocation at compilation time 
for C. Part of the program therefore had to be redesigned, while respecting the author’s 
initial ideas and broad lines.  
 

V – 3 Java itself 
 
Not being very familiar with Java at the start of this project, I had to come to grips with it and 
start from scratch. Keeping the general concepts implemented in the C program while 
respecting the requirements of Java has not proved too hard but some fundamental 
decisions had to be made. The most important change in the design of the program was to 
set all the variables as private and generate getters and setters to handle them; this way, 
their use is under better control and more secure. Another noteworthy change I made was to 
avoid the use of static variables as often as I could when it was not necessary.  
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VI - Further Work 
 
 
The applet could always be improved in many ways; I will point out here four improvements 
that I think would be worth implementing.  
At the moment, all the calculations and displays are executed in one thread. I tried 
separating the computation of the oscillators’ outputs and their display in two different 
threads but didn’t manage to and as time was going by I had to concentrate on more 
matters. Multi-threading would probably lead to an easier implementation of real time 
running, described in the next section. 
As I mentioned before, the timer on the right panel of the applet displays the simulation 
time, which is different to the real time and in addition does not pass in a constant manner. 
Making the applet run in real time would be much more sensible and user-friendly. I also 
tried to implement this feature but again didn’t manage to, even after trying different 
methods.  My failure was mostly owing to not being able to deal with the unpredictable 
display refreshment performed by the JVM. 
The display of the graphs could be improved by performing double-buffering. Hopefully I 
will soon be able to put an upgraded version of the applet available on the website, which 
will implement this. 
The icing on the cake for this applet would be to display a schematic salamander body 
shape, showing the position of the salamander body parts in relation to the activity of the 
oscillators. It could for example be located in the empty space on the settings panel and in 
this way not load down the GUI. 
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VII – Conclusion  
 
 
Looking back on the aims of the project, we see that the main goals have been achieved. The 
developed graphical user interface successfully displays the behaviour of the salamander 
CPG and the effects of some parameters on the oscillators can be observed. The design is 
rather simple and intuitive and the visual outputs are easy to interpret. 
The time investment necessary for me to get to grips with Java detracted the next planned 
step of the project, namely the study of the model. I would have been very interested in 
studying the model of the controller and its similarities and differences with the real animal, 
and the few papers I read about some ongoing research already made my mouth water. Yet 
time sometimes goes faster than one thinks (especially when sitting in front on a computer!) 
and I am quite happy with the outcome of the project that allowed me to learn a lot about 
Java.  
Bio-inspired systems are a field that I would be interested in studying further, both from a 
modelling and biological point of view and I hope to be able to keep the orientation of my 
studies and later work directed towards this goal. 
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