

Java Applet

for the Locomotion Controller
of the Salamander Robot

Semester Project – Winter 2005-2006

Sarah Marthe

Professor Auke J. Ijspeert

Supervisor: Alessandro Crespi

February 2006

Abstract

In the context of research on animal locomotion, a salamander robot and its locomotion
controller are currently under development at the Biologically Inspired Robotics Group (BIRG)
at the EPFL.
This document presents a Java applet for this controller, developed as a semester project in
the purpose of making the functioning of the controller and the effects of some parameter
visible and accessible for other researchers and scientists. This report is divided into seven
parts. There is first an introduction to the aims of the project, followed by some background
information about the controller itself and its situation in a more general research context.
The third part details the design of the Java applet, carried from the C implementation of the
controller and the fourth part presents the graphical user interface and the behaviours and
results observable from it. The fifth and sixth parts explain the problems encountered
during this project and detail some ideas for further work. Finally, the report is concluded
with some personal assessment about the goals achieved and feelings about the whole
project.

Table of Contents

I – Introduction 1
II – Background 2

II – 1 The real salamander 2
II – 2 The locomotion controller 3

II – 2.1 Nonlinear oscillator model 3
II – 2.2 Central pattern generator (CPG) 5

II – 3 The salamander robot 6
III – Design: From C to Java 7
 III – 1 C code 7
 III – 2 Java code 8
 III – 2.1 GraphicalUserInterfaceApplet 8
 III – 2.2 Cpg 8
 III – 2.3 OscilStructure 9
 III – 2.4 Oscillators 9
 III – 2.5 Square 9
 III – 2.6 Graphs 9
 III – 2.7 DrawGraph 9
 III – 2.8 Axes 10
IV – Results: The Graphical User Interface 11
 IV – 1 Settings panel 12
 IV – 1.1 Sliders 12
 Drive slider: Speed and gait regulation 12
 Asymmetry slider: Turning 16
 First oscillators drive slider: Changing the phase lags 17
 IV – 1.2 Buttons 18
 IV – 2 Oscillators panel 19
 IV – 2.1 Green rectangles 19
 IV – 2.2 Yellow rectangles 20
 IV – 3 Graphs panel 21
 IV – 3.1 Timer 21
 IV – 3.2 Scale slider 21
 IV – 3.3 Graphs 21
V – Problems Encountered 22
 V – 1 Another developer 22
 V – 2 C and Java 22
 V – 3 Java itself 22
VI - Further Work 23
VII – Conclusion 24

 1

I – Introduction

Within the framework of their study of animal locomotion, and more precisely of the
transition from swimming to walking during vertebrate evolution, the team from the
Biologically Inspired Robotics Group (BIRG) at EPFL developed a salamander robot capable of
performing both walking and swimming gaits and smooth transition between the two.
The locomotion controller for this robot is a combination of a body central pattern generator
(CPG) similar to a lamprey CPG for swimming and a limb CPG coupled to it to generate a
walking gait. The salamander CPG is modelled as a chain of coupled nonlinear oscillators
written in C code.
The aim of this project was to give a better visibility and accessibility to this research work
by developing a Java applet for the controller. Researchers and scientists would this way be
able to access the model from anywhere in the world through the internet and visualize the
effects of different parameters on the behaviour of the oscillators through the user interface
providing analysis graphs.
The first step was thus to carry the C code of the controller into Java code and check that it
performed well. After that the graphical user interface had to be designed and developed
and the different functionalities of the controller could be tested.

 2

II – Background

II – 1 The real salamander

The transition from aquatic to terrestrial habitats has been one of the most important
changes during vertebrate evolution. As an amphibian capable of both swimming and
walking, the salamander is believed to be one of the modern animals closest to the first
vertebrates that made this transition.
When it is underwater, the salamander uses a swimming gait similar to that of the lamprey,
with the limbs folded backwards; it is based on a travelling wave of neural activity
propagated from the head to the tail, which piece-wise constant wavelength corresponds to
the length of the body. When it is on the ground, the salamander switches to a stepping gait
with the phase relation of a trot; diagonally opposed limbs are in phase and laterally
opposed limbs are out of phase. The trotting gait is based on S-shaped standing waves with
nodes at the girdles; the stride length is optimized by coordinating the limbs with the
bending of the body (see Fig. 1) [1, 2].

Figure 1 - Patterns of EMG activity during swimming and
trotting [3]. During swimming we observe a travelling wave
of muscle activity; the travelling wave has a piece-wise
constant phase lag with small changes of wavelength at the
girdles.
During walking the muscles in the trunk are synchronized,
i.e. without phase lag.

Locomotion of the salamander is controlled by a network of neurons forming a central
pattern generator (CPG). The neurons generate rhythmic output signals without receiving
rhythmic inputs. The central nervous system of the salamander is very similar to that of the
lamprey, a primitive fish which locomotor circuit has been extensively studied [2]. The main
hypothesis is that the salamander’s locomotor circuit is composed of a CPG controlling the
body movements located all along the salamander’s spinal cord, extended with limb CPGs
located across from the limbs on the spinal cord.
Efficient neural network models of the salamander’s locomotion circuit have been developed
based on this hypothesis [4].

 3

II – 2 The locomotion controller

This section is strongly based on the description of the model as presented in [5]; thus I will allow
myself not to mention every time I quote.

II – 2.1 Nonlinear oscillator model

The locomotion controller for the salamander robot is modelled as a system of coupled
nonlinear oscillators. Coupled oscillatory systems present the advantage that many of their
properties only depend on the coupling between oscillators and not on their implementation.
This allows to concentrate on the coupling itself rather than on the detailed neuronal
mechanisms of rhythm generation.
Each oscillatory centre identified in the salamander’s spinal cord is modelled by an
amplitude-controlled phase oscillator. Such a model represents an ideal compromise
between biological relevance and limited computing requirements such as being
programmable on a microcontroller.
The nonlinear oscillator composing the building block of the model is implemented as
follows:

()

))cos(1(
)(

)cos()sin(2

iii

iiiii

j
ijijijijjii

rx
rrRar

rv

θ

θθβθθαπθ

+=
−=

−+−+= ∑
&

&

Where θi and ri are the state variables of the oscillator, representing the phase and the
amplitude respectively, vi and Ri determine the intrinsic frequency and amplitude and αij and
βij are coupling weights determining how oscillator j influences oscillator i. For each
oscillator, a signal xi is extracted representing the amplitude of the burst produced by the
centre.

In the salamander, the amplitude and frequency of oscillation increase with the level of tonic
drive applied to the oscillators. When an increasing drive is applied to the CPG, three phases
are distinguished: before the input drive reaches a first threshold no oscillation happens,
between this threshold and a second one, oscillation frequency and amplitude increase with
the drive and above the second threshold there’s a saturation phase where the oscillations
stop.

 4

To model this effect, a piece-wise linear saturation function is introduced, that modulates
the intrinsic frequency and amplitude vi and Ri according to the driving signal di:

⎩
⎨
⎧ ≤≤+

==

⎩
⎨
⎧ ≤≤+

==

otherwiseR
dddifcdc

dgR

otherwisev
dddifcdc

dgv

sat

RR
R

sat

vv
v

210,1,

210,1,

)(

)(

Limb and body oscillators are provided with different saturation functions, with the limb
oscillators systematically oscillating at lower frequencies than body oscillators for the same
level of drive and saturating at a lower threshold (see Fig. 2).

Figure 2 – Saturation functions for body and limb oscillators.
(Top) Intrinsic frequency. (Bottom) Intrinsic amplitude.

 5

II – 2.2 Central pattern generator (CPG)

Central pattern generators are circuits that can generate
rhythmic activity without rhythmic input. The complete CPG
is composed of multiple oscillators coupled together with
unilateral global coupling with limb intercoupling (see Fig.
3).
The body CPG is composed of a double chain of oscillators
all along the 40 segments of the spinal cord, with closest
neighbour coupling and the limb CPG is composed of four
oscillators, one for each limb. The coupling from limb
oscillators to body oscillators is unidirectional; left trunk
oscillators receive inputs from the left forelimb, left tail
oscillators receive inputs from the left hind limb and this is
replicated on the right side.
 Figure 3 –Organisation of the CPG.

The coupling weights of the interconnections between two oscillators determine their phase
difference (along with the difference of their intrinsic frequencies). They are defined as
follows:

)cos(ijijij w φα = and)sin(ijijij w φβ =

Where φij is the phase difference towards which the oscillators i and j will converge and wij is
the strength of the coupling.
The isolated body CPG produces travelling waves from head to tail with a wavelength of one
body length; left and right oscillators oscillating in anti phase. The isolated limb CPG
implements a trotting gait with left and right oscillators oscillating in anti phase and
diagonally opposed oscillators in phase.
While swimming, the salamander keeps its limbs backwards along its body. In order to
achieve this behaviour with the controller, the oscillators of the limbs need to be modified to
converge to a specific phase, corresponding to a specific angle of the robot’s legs. The
differential equation for the phase of the limb oscillators thus becomes the following:

()∑ −+−+−+=
j

iiiij
c
ijij

s
ijjii brv)sin()cos()sin(2 θθθθβθθβπθ&

Where is the rest angle of the limb and bi is a gain that is set to zero when the drive is

below the saturation threshold d2 of the limb oscillators (when the salamander is walking),
and set to 20 when it is above (when the salamander is swimming) .

iθ&

 6

II – 3 The salamander robot

The research on animal locomotion, and more specifically on lamprey-like locomotion, at the
biologically inspired robotics group (BIRG) at EPFL leaded the researchers to build bio-
inspired amphibious snake-like robots capable of crawling and swimming. Robots such as
Amphibot I were very precious tools to investigate hypotheses about how central nervous
systems implement locomotion abilities in animals [6, 7].
Current research focuses on the development of an amphibious salamander robot, capable
of walking and swimming and performing a smooth transition between the two gaits. The
robot is made of 9 segments (see Fig. 4). The head and six body segments are similar to the
elements developed for Amphibot II [8]; they have a servo motor that enables horizontal
motion with the previous segment. The two remaining segments are for the legs; each of
them has two servo motors that enable independent rotation of 360° for the two legs.

Figure 4 – The real
salamander robot.

The robot is still in its development stage and there is not much documentation available
yet, thus I will not give any more details about it. However, a lot of research has already been
done based on 2 and 3D mechanical simulations of the salamander robot. In particular,
Ijspeert, Crespi and Cabelguen determined in [1] which CPG configuration was most likely to
control salamander locomotion and investigated the mechanisms of entrainment between
the CPG, the body and the environment. It is based on these simulation studies that they
started designing the salamander robot to test whether the CPG models could be adapted to
control a real robot.

 7

III – Design: From C to Java

III – 1 C code

As I already mentioned, the first step of my project was to carry the C code of the controller
to Java, in order to be able to develop it into an applet.
The C code is composed of three files: cpg.c, cpg.h and pic_cpg.c. The first and second ones
implement all the functions needed to run the salamander CPG and the third one runs the
CPG and saves its activity in different log files. The log files are then used to plot analysis
graphs with Matlab® (see Figures 2 and 5).

Figure 5 – Some of the analysis graphs plotted with Matlab® from the log files generated by the C program.
(Top left) Activity of the CPG during walking. Only the oscillators on the left side of the salamander are represented.
(Top right) Phase of the body and limb oscillators. (Bottom left) Evolution of the phase, phase lag of the oscillators,

frequency of oscillations, amplitude and drive. (Bottom right) Phase lag of the oscillators in the body CPG.

 8

III – 2 Java code

I structured the Java code in eight classes: GraphicalUserInterfaceApplet.java, Cpg.java,
OscilStructure.java, Oscillators.java, Square.java, Graphs.java, DrawGraph.java and Axes.java.
The following sections present a description and the UML diagram for each class; I omitted
some of the attributes and operations (such as getters and setters) in the diagrams in order
to preserve the readability of this document. To see the details of the implementation,
please refer to the code and its documentation, available on the website (only from the EPFL
network).

III – 2.1 GraphicalUserInterfaceApplet

This class initialises the graphical user interface (GUI) of
the applet; the panels, labels, buttons and sliders are
created and drawn.

GraphicalUserInterfaceApplet
- thread : Thread
- cpg : Cpg
- driveSlider : JSlider
- asymmetrySlider : JSlider
- firstOscilSlider : JSlider
- graphScaleSlider : JSlider
- oscillators : Oscillators
- graphs : Graphs
- xBodyGraph : DrawGraph
- xLimbGraph : DrawGraph
- freqGraph : DrawGraph

It overrides the javax.swing and java.awt stateChanged()
and actionPerformed() methods respectively for the
sliders and the three buttons (play, stop and reset). In
this class, the thread of the applet is created, initialised
and run, and its run() method is implemented. The
main() method of the pic_cpg.c program is implemented
here as computeOutputs(); the drive signal is assigned
to the oscillators and the saturation function and Euler
integration are executed.

- driveGraph : DrawGraph
+ init()
+ run()

At this point, it is also possible to create the log files in
the same way as in the C code.

- computeOutputs()

Figure 6 – GraphicalUserInterfaceApplet
class diagram.

III – 2.2 Cpg

This class was directly carried from the cpg.c file. It
implements the functions needed to run the salamander
CPG, called in the run() and computeOutputs() method
from the GraphicalUserInterfaceApplet class.

Cpg
- numOscils : int
- numOscilsBody : int
- numOscilsLimb : int
- oscil : OscilStructure[]

It also contains log making methods that allow the
creation of the log files in the same way as in the C
code. These methods need to be uncommented if the
user wants to create logs.

- gui : GraphicalUserInterfaceApplet
+ oscilDeriv()
+ initCpg()
+ saturationFunction()
+ cpgCoupling()
// + initLogs()
// + makeLogs(float t)

// + closeLogs()

Figure 7 – Cpg class diagram.

 9

III – 2.3 OscilStructure

This class implements the structure representing the
oscillators composing the CPG and contains their
parameters and variables.

OscilStructure
- gui : GraphicalUserInterfaceApplet
- deriv_dphi : float
- output_x : float

 Figure 8 – OscilStructure class diagram.

III – 2.4 Oscillators

This class designs the panel that contains the graphical
representation of the body and limb oscillators; it
creates, initialises and displays the rectangles
representing the input drive and the output values of the
oscillators.

Oscillators
- applet : GraphicalUserInterfaceApplet
+ displaySquares()
+ initSquares()

Figure 9 – Oscillators class diagram.

III – 2.5 Square

This class extend the java.awt.Canvas class and designs
the graphical representation of the input drive and the
body and limb oscillators’ output values. The update()
methods call the inherited repaint() method from
java.awt.Component, that calls the paint() method from
the class to compute and refresh the display of the
oscillators.

Square
- color : Color
- gui : GraphicalUserInterfaceApplet
- drive : int
- turn : float
- firstOscil : int
+ paint(Graphics g)
+ update()
+ update(int h)

Figure 10 – Square class diagram.

III – 2.6 Graphs

This class designs the panel that contains the analysis
graphs and the axes; it creates, initialises and displays
them.

Graphs
- applet : GraphicalUserInterfaceApplet

+ displayGraphs()
+ initGraphs()

 Figure 11 – Graphs class diagram.

III – 2.7 DrawGraph

This class extend the java.awt.Canvas class and designs
the actual graph drawings. The update() method calls
the inherited repaint() method from
java.awt.Component, that calls the paint() method from
the class to compute and refresh the display of the
graphs.

DrawGraph
- gui : GraphicalUserInterfaceApplet
- width : int
- height : int
- type : int

+ paint(Graphics g)
+ update(int graph)

Figure 12 – DrawGraph class diagram.

 10

III – 2.8 Axes

This class extend the java.awt.Canvas class and
implements the axes of the graphs. The update()
method calls the inherited repaint() method from
java.awt.Component, that calls the paint() method from
the class to compute and refresh the display of the axes,
depending on the scale desired.

Axes
- gui : GraphicalUserInterfaceApplet
- scale : float
- width : int
- height : int

+ paint(Graphics g)
+ update(float scale)

Figure 13 – Axes class diagram.

The Java code comprises some commented instructions and methods in the
GraphicalUserInterfaceApplet and Cpg classes respectively. They allow the creation of log
files in order to plot analysis graphs with Matlab® in the same way as with the C program;
these graphs were useful to check that the Java program gave the desired outputs (the same
as the C code – see Fig. 14).

Figure 14 – Some of the analysis graphs plotted with Matlab® from the log files generated by the Java program.
(Top left) Activity of the CPG during walking. Only the oscillators on the left side of the salamander are represented.
(Top right) Phase of the body and limb oscillators. (Bottom left) Evolution of the phase, phase lag of the oscillators,

frequency of oscillations, amplitude and drive. (Bottom right) Phase lag of the oscillators in the body CPG.

 11

IV – Results: The Graphical User Interface

The GUI is divided into three main panels (see Fig. 15). The first panel is labelled settings
and comprises three sliders to allow the user to set some parameters, and three buttons to
play/restart, stop or reset the applet. The second panel is labelled oscillators and represents
the activity of the body and limb oscillators of the salamander’s CPG. The third and last
panel is labelled Graphs and it contains the graph of the CPG activity.

Figure 15 – Graphical User Interface. (Top) View at the start. (Bottom) In activity.

 12

IV – 1 Settings panel

IV – 1.1 Sliders

The settings panel comprises three sliders to change the input drive applied to the body and
limb oscillators of the salamander.

Drive slider: Speed and gait regulation

The first slider changes the value of the average drive for all oscillators; it regulates the
speed of the oscillations and is responsible for the change of gait. Below a value of 1, the
oscillators are all inactive; their output value is constant with negligible amplitude [5] (see
Fig. 16).

Figure 16 – GUI with all oscillators inactive.

Between 1 and 2.9, the oscillators from the limbs and the body are all active. Limb oscillators
oscillate with the phase relation of a trot (with diagonally opposed limbs in phase and
laterally opposed limbs out of phase – see Fig. 17) and the coupling from the limb to the
body oscillators forces the body CPG to oscillate with an S-shaped standing wave. The body
oscillators oscillate in anti phase between the rostral and caudal parts of the body and
between the left and right side (see Fig. 18). In the salamander, the body-limb coordination
is such that limbs are maximally turned forward when corresponding contralateral body
segments are maximally contracted (see Fig. 19).

 13

Increasing the drive leads to an increase of the frequency and amplitude of all oscillations
and therefore to an increase of the walking speed, until the limb oscillators saturate and the
transition to swimming occurs (see Fig. 20).

Figure 17 – Quadruped locomotion : trot.

Figure 18 – GUI displaying a trotting gait.

Figure 19 – Mechanical simulation of the
salamander. Limbs in contact with the
ground are drawn in white [4].

 14

Figure 20 – Transition between walking and swimming.

When the drive is between 3 and 4.9, the limb oscillators are saturated (zero frequency and
negligible amplitude) and thus they don’t influence the body CPG any more; the body
oscillators release travelling waves from head to tail with a wavelength equal to the length of
the body (see Fig. 21). The travelling wave of body undulation allows the salamander to
propel itself forward in water (see Fig. 22).
Increasing the drive leads to an increase of the frequency and amplitude of oscillations and
therefore to an increase of the swimming speed, but the wavelength remains unchanged.

Figure 21 – GUI displaying a swimming gait.

 15

Figure 22 – Mechanical simulation
of the salamander [4].

With a drive value above 4.9, all oscillators saturate and no oscillation is observed (see Fig.
23).

Figure 23 – GUI with all oscillators saturated.

 16

Asymmetry slider: Turning

The second slider changes the value of the drive applied to the body oscillators; increasing it
on one side and decreasing it on the other side. Applying asymmetrical drives between left
and right sides of the body CPG induces turning during both walking and swimming (see Fig.
24 and 25). Changing the drive to an oscillator amounts to modifying its intrinsic frequency
and its oscillation amplitude. When the difference in the left and right drive is not too large,
the whole pool of oscillators keeps oscillating at a common frequency (i.e. the oscillators
remain synchronized), and only an effect on the amplitudes can be observed; the side
receiving higher drive will oscillate at higher amplitudes [5].

Figure 24 – Turning while walking.

Figure 25 – Turning while swimming.

 17

First oscillators drive slider: Changing the phase lags for swimming

The last slider in this panel allows changing the input drive of the head oscillators. When all
body oscillators receive the same input, they produce a travelling wave with a wavelength
corresponding to the length of the body. However, it is possible to modify this wavelength
by applying a different strength of input to the first oscillators on the left and right side of
the body, at the extremity of the chain. The resulting change of intrinsic frequency affects
the phase lags along the whole chain (see Fig. 26). A higher drive leads to higher phase lags
and lower wavelength, and a lower drive leads to lower phase lags [5]. If the drive difference
is too large, the intrinsic frequencies of the head oscillators compared to the others in the
chain become too large, the oscillators fail to synchronise properly and oscillations become
irregular.
These effects are best viewed on the running applet; therefore I will not include any
screenshots for it.

Figure 26 – Modification of the phase lag during swimming when the head input
drive is modified.

 18

IV – 1.2 Buttons

In addition to the sliders, the settings panel features three buttons to control the applet.
When the applet is first initialised, the middle button displays the text Play; when it is
pressed, a new thread for running the program is created and started. This leads to the CPG
being created, initialised and started; the oscillators are set with the input drive value
(computed from the three sliders), their outputs are computed and the display is updated.
While the applet is running, the left and middle buttons become inactive.
The right button is always active. It displays the text Stop and when it is pressed it stops the
applet without refreshing the display (the current state of the oscillators remains visible) and
the left and middle buttons become active again, displaying the texts Reset and Restart
respectively.
When the applet is stopped, the middle button displays the text Restart. Pressing it starts a
new thread with the current value of the parameters (the slider values).
The left button, when pressed, resets the parameters to the initial ones, and resets the
display of the oscillators and the graphs. The applet looks like when it was first started, the
middle button displays the text Play again.

 19

IV – 2 Oscillators panel

The middle panel comprises graphical representations of the input drive for the head, the
body and the limb oscillators (the green rectangles), and of the oscillatory activity of the
body and limb oscillators (the yellow rectangles).

IV – 2.1 Green rectangles

The green rectangles are set on two rows, two on the first row and four on the second. The
rectangles on the first row represent the input drive applied to the head oscillators (the first
two on the left and right side of the body, at the extremity of the chain). The rectangles on
the extremities (left and right) of the second row represent the drive applied to the limb CPG;
the two rectangles in the middle of the second row represent the drive applied to the body
CPG (see Fig. 26). The size of all the rectangles varies depending on the values of the sliders
from the settings panel (see Fig. 16, 18, 21, 23, 24 and 25).

Right head Left head

Left limbs

Right limbs

Left body Right body

Figure 25 – Signification of the green rectangles.

 20

IV – 2.2 Yellow rectangles

The yellow rectangles are disposed such as to represent the body and limbs of the
salamander; the two middle columns represent the body oscillators, from head (top) to tail
(bottom) and the rectangles on the outside (on the left and right side of the body) represent
the four limbs (see Fig. 26). Their size represents the output signal of the oscillators
(output_x in the Java code).

Head oscillators

Body oscillators

Limb oscillators

Figure 26 – Representation of the body and limb oscillators.

 21

IV – 3 Graphs panel

The panel on the right of the applet displays the graphs useful to analyse the behaviour of
the oscillators. It also features a timer to keep track of the simulation time and a scale slider
that allows changing the scale of the graphs.

IV – 3.1 Timer

The timer displays the simulation time of the applet; it mainly depends on the occupancy of
the Java virtual machine (JVM) that is required for the computations of the CPG and the
display of the applet. Because the time is computed in relation to the JVM, it depends on its
activity and does not pass with a constant speed.

IV – 3.2 Scale slider

The slider at the top of the graphs panel allows changing the scale of the graphs to see more
or less details. It ranges between 2 and 10 seconds, with 2 seconds steps.

IV – 3.3 Graphs

The graphs panel comprises four graphs. The first graph, labelled xBody, plots the output
signal of the oscillators; here the difference between the right and left oscillators is
represented.
The second graph, labelled xLimb, plots the output of the four limb oscillators. The black
curves represent the fore limbs and the red ones the hind limbs; they are drawn with a shift
for a better visual effect.
The third graph, labelled Drive, plots the value of the input drive. The grey lines represent
the threshold values 1, 3 and 5 for the oscillators’ activity, the saturation of the limb
oscillators (transition between walk and swim) and the saturation of the body oscillators,
respectively. The average value of the drive (taken from the drive slider) is drawn in black;
when the value of the asymmetry changes (with the asymmetry slider), the blue line
represents the input drive for the right side of the body and the red line for the left side.
When the drive value of the first oscillator changes (with the first oscillator drive slider), it is
represented by a green line.
The last graph represents the frequency of oscillations. It is computed from the time
derivative of the phase (deriv_dphi in the Java code) of the oscillators.

 22

V – Problems Encountered

V – 1 Another developer

The first difficulty I encountered during this project was to understand a code developed by
someone else. Indeed, it took me a while to realise for example that the indexes of the
tables started at 1 (more natural for us humans) in the C program, and to make all the
necessary changes to deal with it and let my table naturally start at the index 0 in Java.
It is never easy to understand the reasons underlying this or that choice of structure or
implementation, and then decide whether it should be kept this way or changed.

V – 2 C and Java

C and Java are fundamentally different programming languages. Firstly C is not object
oriented; it doesn’t feature basic concepts such as inheritance and encapsulation that are
extensively used in a language like Java. The other main difference is that Java uses dynamic
allocation of the memory at execution time instead of static allocation at compilation time
for C. Part of the program therefore had to be redesigned, while respecting the author’s
initial ideas and broad lines.

V – 3 Java itself

Not being very familiar with Java at the start of this project, I had to come to grips with it and
start from scratch. Keeping the general concepts implemented in the C program while
respecting the requirements of Java has not proved too hard but some fundamental
decisions had to be made. The most important change in the design of the program was to
set all the variables as private and generate getters and setters to handle them; this way,
their use is under better control and more secure. Another noteworthy change I made was to
avoid the use of static variables as often as I could when it was not necessary.

 23

VI - Further Work

The applet could always be improved in many ways; I will point out here four improvements
that I think would be worth implementing.
At the moment, all the calculations and displays are executed in one thread. I tried
separating the computation of the oscillators’ outputs and their display in two different
threads but didn’t manage to and as time was going by I had to concentrate on more
matters. Multi-threading would probably lead to an easier implementation of real time
running, described in the next section.
As I mentioned before, the timer on the right panel of the applet displays the simulation
time, which is different to the real time and in addition does not pass in a constant manner.
Making the applet run in real time would be much more sensible and user-friendly. I also
tried to implement this feature but again didn’t manage to, even after trying different
methods. My failure was mostly owing to not being able to deal with the unpredictable
display refreshment performed by the JVM.
The display of the graphs could be improved by performing double-buffering. Hopefully I
will soon be able to put an upgraded version of the applet available on the website, which
will implement this.
The icing on the cake for this applet would be to display a schematic salamander body
shape, showing the position of the salamander body parts in relation to the activity of the
oscillators. It could for example be located in the empty space on the settings panel and in
this way not load down the GUI.

 24

VII – Conclusion

Looking back on the aims of the project, we see that the main goals have been achieved. The
developed graphical user interface successfully displays the behaviour of the salamander
CPG and the effects of some parameters on the oscillators can be observed. The design is
rather simple and intuitive and the visual outputs are easy to interpret.
The time investment necessary for me to get to grips with Java detracted the next planned
step of the project, namely the study of the model. I would have been very interested in
studying the model of the controller and its similarities and differences with the real animal,
and the few papers I read about some ongoing research already made my mouth water. Yet
time sometimes goes faster than one thinks (especially when sitting in front on a computer!)
and I am quite happy with the outcome of the project that allowed me to learn a lot about
Java.
Bio-inspired systems are a field that I would be interested in studying further, both from a
modelling and biological point of view and I hope to be able to keep the orientation of my
studies and later work directed towards this goal.

Acknowledgements

I would like to thank Professor Auke J. Ijspeert for his time and his regular feedback on this
project. I would also like to acknowledge his assistant and supervisor for this project,
Alessandro Crespi for his constant support and valuable help with Java.
Thumbs up too to the whole BIRG team for their daily enthusiasm and evident pleasure in
their work and will to share it!

References

[1] IJSPEERT A.J., CRESPI A. & CABELGUEN J-M., Simulation and Robotics Studies of Salamander

Locomotion: Applying Neurobiological Principles to the Control of Locomotion in Robots,
Neuroinformatics, 3 (3), 171-196, 2005.

[2] IJSPEERT A.J. & CABELGUEN J-M., Gait transition from swimming to walking: investigation of

salamander locomotion control using nonlinear oscillators, Proceedings of Adaptive
Motion in Animals and Machines, 2003.

[3] DEVOLVE I., TIAZA B. & CABELGUEN J-M., Epaxial and Limb Muscle Activity During Swimming and

Terrestrial Stepping in the Adult Newt, Pleurodeles waltl, Journal of Neurophysiology, 78,
638-650, 1997.

[4] IJSPEERT A.J., A connectionist central pattern generator for the aquatic and terrestrial gaits

of a simulated salamander, Biological Cybernetics, 84 (5), 331-348, 2001.

[5] IJSPEERT A.J., CRESPI A. & CABELGUEN J-M., Supplementary material to “Gait transition from

swimming to walking in a salamander robot using central pattern generators”.

[6] CRESPI A., BADERTSCHER A., GUIGNARD A. & IJSPEERT A.J., Amphibot I: an amphibious snake-like

robot, Robotics and Autonomous Systems, vol. 50 (4), 163-175, 2004.

[7] CRESPI A., BADERTSCHER A., GUIGNARD A. & IJSPEERT A.J., An amphibious robot capable of snake and

lamprey-like locomotion, Proceedings of the 35th international symposium on robotics,
2004.

[8] BIRG webpage, Amphibot: http://birg.epfl.ch/page53468.html

http://birg.epfl.ch/page53468.html

