
Semester Project : Synchronization of movements

of a real humanoid robot with music

Patrick Amstutz1

February 17, 2007

1Department of Communication and Computer Science, Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland

1

Contents

1 Introduction 4
1.1 Goals of the project . 4

2 Humanoid Robot 5
2.1 Actual implementation and global CPG architecture 5
2.2 Mathematical representation of Dynamical Systems 6
2.3 Study of Dynamical Systems with Matlab 8

2.3.1 Phase shift during discrete movement, online modulation
of gi parameter . 9

2.4 Phase shift during amplitude changes, online modulation of µi

parameter . 11

3 Tempo detection algorithm 13
3.1 Scheirer Method . 13

3.1.1 Step 1: Filterbank . 13
3.1.2 Step 2: Smoothing . 14
3.1.3 Step 3: Diff-Rect . 14
3.1.4 Step 4: Comb Filter . 14
3.1.5 Matlab implementation 15
3.1.6 Further work . 15

3.2 Aubio C Library . 15
3.2.1 Beat tracking algorithm 15
3.2.2 Onset Detection . 16
3.2.3 High Frequency Content (HFC) 17
3.2.4 Complex Domain Onset Detection 17
3.2.5 Tempo Analysis . 17

3.3 Beat tracking implementation . 17

4 Webots Implementation 18
4.1 Original implementation of hoap-2 performing a drumming task . 19
4.2 Implementation of Webots collision detection 20

4.2.1 The physic plugin . 20
4.2.2 ODE interface library functions 21
4.2.3 Integration of tempo detection 23
4.2.4 Message . 23
4.2.5 The Supervisor . 25
4.2.6 Video generation . 25

5 Music generation with Matlab 26
5.1 Data from Webots simulation . 26
5.2 Matlab Script . 26

2

6 Merging Video and Music 26
6.1 VirtualDub . 26

6.1.1 VirtualDub Scripting . 27
6.1.2 Script Generator . 27

7 Conclusion 28

8 Acknowledgment 28

A Processing Schema 29

B Dynamic Hebbian learning in adaptive frequency oscillators 30
B.1 Mathematical Aspects . 30
B.2 Time needed for synchronization with coupled oscillator’s frequency 30
B.3 Applying the Dynamic Hebbian learning in adaptive frequency

oscillators to the dynamical system of the CPG 31

C Collision detection issue 35

D Screenshots 36

3

1 Introduction

The Biologically Inspired Group (BIRG) at the Swiss Institute of Technology
Lausanne is working on the computational aspects of movement control, senso-
rimotor coordination, and learning in animals and in robots. One of the actual
research topics is humanoid robotics. The present project is linked with the
research leaded by Sarah Degallier concerning the online generation of trajec-
tories in humanoid robots [2]. The actual demonstration model takes the form
of a drumming robot. The control is done exclusively on the top half of the
robot’s body; both arms actually. The system presented, which uses a Hoap-
2 humanoid robot, allows the superposition, and switch between, discrete and
rhythmic movements. This example is particularly well suited to demonstrate
these two aspects of movement and will be seen in more details in section 2.

Music is based on rhythms and thus represents a natural substrate for ex-
periencing rhythmic movements, with high pedagogic quality. The drumming
task has the particularity to offer simple discrete and rhythmic movements while
being realizable from a mechanical point of view.

The online generation of trajectories in humanoid robots remains a difficult
problem. While excellent progress has been made on designing efficient con-
trollers for trajectory following in humanoid robotics, the problem of generating
the trajectories themselves is still a complex, unsatisfactory solved problem.
One of the main difficulties is that the trajectory generation problem is highly
task-dependent and often requires extensive knowledge of the task to be solved.

The approach uses nonlinear dynamical systems, i.e. systems of differential
equations, for generating trajectories online and in real time. Dynamical systems
can be designed to have interesting attractor properties which makes them well-
suited for trajectory generation. These properties particularly include: intrinsic
robustness against small perturbations, possibility to change parameters on the
fly (i.e. to do online modulation) and possibility to synchronize with external
signals.

1.1 Goals of the project

The goals of the project are the following:

• Study the actual trajectories generation system

• Find an approach for adding sound capabilities for Webots simulations’
videos

• Implement collision detection for visual feedback of drumming task

• Synchronize the robot drumming task with music: investigate possible
solutions for extracting tempo information from music.

Different nonlinear dynamical systems are firstly described and tested against
parameters change. The possibility of synchronization with external signal is
then explored.

4

The modeling of the simulation is performed in the professional mobile robot
simulator Webots [4]. The drumming robot is represented by a model of Hoap-2
humanoid robot. Webots do not offer the native capability to include sound in
the simulation movies. The first objective of the project is to find a way to add
sound effect in correlation with the events from the movies. In our case, the
goal is to add the audio track of the drumming task. To perform this, collision
detection is first added to the simulation using ODE plugin [4]. The collisions
represent the contact between the drums and the sticks, thus the piece of music.
Sound file is then generated using a Matlab script. The collision detection is
also used in modifying instrument’s texture for debugging and visual feedback
purposes.

Approaches for extracting tempo information from music is then investi-
gated. The main point of this part is to design an approach that allows the
robot to synchronize with the tempo of some external music source. Tempo
extraction is known to be hard problem and as I had no background on the
domain, this appeared as the most challenging part of the project. Firstly, two
different algorithms are found and evaluated, and then one of them is imple-
mented in the Webots simulation. The tempo extracted influences the robot’s
rhythmic speed.

The last part of the project is to find solutions to automate the “from simu-
lation to final video with music” process, in other words, reduce and simplify as
much as possible the needed steps to produce the final video with sound, from
the soundless video with textual information about the simulation’s collision.

2 Humanoid Robot

In this section, the actual implementation of the robot performing drumming
task is reviewed. First the global system is described followed by detailed de-
scription of the dynamical systems used. The dynamical systems are then tested
with Matlab simulation concerning the modulation of parameters and phase
shift. Finally, different solutions are proposed and validated against this issue.

2.1 Actual implementation and global CPG architecture

The mechanism of control of a generic CPG is illustrated on figure 1. The system
is built on the hypothesis that complex movements can be generated through
the superposition and sequencing of simpler motor primitives implemented as
dynamical systems. In particular, this system is made of sets of motor primitives
which implement dynamical goal directed and also rhythmic movements.

The system is implemented on Webots simulation as well as on real Hoap-2
robot. It is a 25 DOFs humanoid robot made by Fujitsu. The system uses 8 of
the 25 DOFs of the robot, that is 4 DOFs in each arm : 3 in the shoulder and
1 in the elbow. Figure 2(a) shows a schematic view of the controlled DOFs of
the Hoap-2 robot. The others DOFs remain fixed to an appropriately chosen
value during the task. For each controlled DOF, a generic CPG presented in

5

Figure 1: A generic CPG. Modes of move-
ment are switched on and off by parameters m
and g. Discrete movement is incorporated to
the final trajectory as an offset to the rhythmic
movement. Trajectory is modulated by partic-
ular choices of m and g.

Figure 2: (a) Schematic view of the controlled
DOFs of the Hoap-2 left arm. The correspond-
ing axes of rotation are also represented, (b) Pic-
ture of the real humanoid Hoap-2 robot sitting
in front of 3 instruments : a central drum, a
small drum and a cymbal.

section 2.2 is used. The CPGs network constitutes the controller generating
the trajectories which are used as input for the PID controllers of each joint.
The overall system architecture is depicted in figure 3. A arbitrary score matrix
M is transformed onto a time-varying parameter vector, α̃, that controls the
parameters of the CPGs network that generate drumming trajectories in real
time. More precisely, for each DOF i and for each beat, this vector specifies
the goal gi and the amplitude of the movement, controlled by µi. Desired
trajectories ~x of each DOF are obtained by integrating the CPGs dynamical
systems. These trajectories are used as input for the PID controllers of each
joint and result in the actual trajectories ~̃x.

Hopf oscillators of the CPGs are bilaterally coupled, those couplings being
illustrated by right-left arrows on figure 3. One CPG’s rhythmic component is
also coupled with an external clock using the same type of coupling. This clock
is an Hopf oscillator of parameters µclock and ωclock.

2.2 Mathematical representation of Dynamical Systems

Different representations of the mathematical equations have been studied. The
first one is the original form presented by Degallier and al. The equations are
under Cartesian form and the discrete part is included through hierarchic way.
The CPG for a given DOF i is divided in two subsystems, one generating the
discrete part of the movement and the other generating the rhythmic part.

• The discrete part is given by the two signals Y and V. The equations are
the following:

ẏi = vi (1)

v̇i =
−b2

4
(yi − gi)− b vi (2)

Eqs 1 and 2 describe a discrete motion whose solution yi converges asymp-
totically and monotically to a goal gi with speed of convergence controlled

6

Figure 3: (a) Schematic view of the controlled DOFs of the Hoap-2 left arm. The corresponding
axes of rotation are also represented, (b) Picture of the real humanoid Hoap-2 robot sitting in front
of 3 instruments : a central drum, a small drum and a cymbal.

by b. It generates the discrete movement toward gi. As shown in figure
4, each time gi is changed, the system will be attracted by the new goal
gi and modify the resulting position yi, generating a discrete movement
toward gi.

Figure 4: Progression of discrete part of the
signal. Trajectory is modulated by particular
choices of g.

Figure 5: Progression of rhythmic part of the
signal. Trajectory is modulated by particular
choices of µ.

• The rhythmic part is described by a Hopf oscillator, i.e. by the following
system:

ẋi = a
(
µi − r2

i

)
(xi − yi)− ωizi (3)

żi = a
(
µi − r2

i

)
zi + ωi (xi − yi) (4)

7

where ri =
√

(xi − yi)
2 + z2

i .

Eqs 3 and 4 describe a Hopf oscillator where µi controls the amplitude of
the oscillations, ωi is the oscillator intrinsic frequency and a controls the
speed of convergence to the limit cycle. The output xi of the system has
an offset given by yi which is the state variable of the discrete system.

Rhythmic motion can be switched on or off by simply setting µi to a
positive or a negative value respectively. Moreover, the amplitude of the
movement is specified by µi and its frequency by ωi. Different modifica-
tions of the parameters are shown in figure 6. Parameters used by the
simulations in this section are the following: a = 100, b = 20, ω = 2π.

Figure 6: Progression of output signal (hierarchical / Cartesian coordinates) subject to discrete
and rhythmic movements. Trajectory is modulated by particular choices of g, µi and ωi.

2.3 Study of Dynamical Systems with Matlab

A particularity of dynamical systems is that, instead of encoding a trajectory
explicitly, they encode a whole state space and its time evolution. This means
that the system must be integrated over time to generate the trajectory (i.e.
the trajectory can not be instantaneously extracted out of the system), and
that it encodes more than just the trajectory, since it also encodes how the
trajectory evolves after a transient perturbation. Thus in order to analyze
the effect of discrete movement with the preceding dynamical system we need
to run integration experiments using Matlab. The numerical integration used
for calculating the trajectories is the “Euler Integration”. Euler integration
is simply derived from equations for the derivatives of the position x(t) and

8

velocity v(t) of an object:

v(t) =
dx(t)

dt
= f(x(t))

x(t + ∆t) = x(t) + f(x(t)) ·∆t

with f(x(t)) being the derivative of x at time t and ∆t the integration step.
As the trajectory resulting from the numerical integration depends directly on
the initial conditions, many have been tested during simulations.

2.3.1 Phase shift during discrete movement, online modulation of gi

parameter

One possible issue with the actual dynamical system is the possible phase shift
to the rhythmic part of the CPG when adding a discrete movement to the
trajectory. Indeed, each time gi is changed, the offset of the system is modified
and make it tend to the new goal gi.

As we can see on figure 7, the phase of the output signal changes during the
discrete movement, this implies a phase shift when the system reaches the new
goal gi. To emphasize this behavior, a Hopf oscillator having the same properties
as the initial system is plotted at both discrete start level and discrete goal level.

Figure 7: Progression of output signal (hierarchical / Cartesian coordinates) subject to discrete
movements. Trajectory is modulated by particular choices of g. We clearly see the final phase shift
between initial and final signal. Hopf oscillator signal as reference.

To avoid such problem, an additive way to combine rhythmic and discrete
part of the system is studied. The discrete part does not change, but the rhyth-
mic part gets rid of the direct influence of discrete part. This new approach

9

can be seen as a way to “preserve” the rhythmic part from the influence of the
discrete one during the numerical integration while adding the discrete offset af-
terward. We can hypothesize that such a system, which is given by the following
equations, will be able to deal with phase shift.

ẋi = a
(
µi − r2

i

)
xi − ωizi (5)

żi = a
(
µi − r2

i

)
zi + ωixi (6)

The combination of both rhythmic and discrete parts is done externally to
the equations by simply summing the two signals X and Y :

output signal = X + Y

This new system, called “additive system”, is numerically integrated and the
resulting trajectories are shown in figure 8. By analyzing the data, we clearly
see that the system presents no phase shift anymore due to discrete movement.
This result is in agreement with the preceding assumptions.

Figure 8: Output signal.(additive / Cartesian coordinates) subject to discrete movement with
Hopf oscillator. Trajectory is modulated by particular choices of g.

The next step is nothing more than a mathematical coordinate system con-
version. The equations of the rhythmic part are converted into polar coordinates
using the well known trigonometric relations x = r cos θ and z = r sin θ:

ṙi = a
(
µi − r2

i

)
ri (7)

φ̇i = ω (8)

10

Experiments show that the transition to polar coordinates does not change
the properties of the system.

The following conclusion can be stated from the preceding numerical simula-
tions. The phase shift induced to the movement by the discrete part is success-
fully corrected by using the additive approach. The computation of rhythmic
part without intrinsic influence of the goal’s offset allows the phase not to be
wrongly influenced. The experiments have not shown any influence from the
parameter b, representing the speed of convergence to goal gi.

The “additive” system is used in the Webots implementation.

2.4 Phase shift during amplitude changes, online modula-
tion of µi parameter

As we have seen, µi controls the amplitude of the oscillations. The oscillator
contains a bifurcation from a fixed point (when µi < 0) to a structurally stable,
harmonic limit cycle with radius R =

√
µi for µi > 0. Rhythmic motion can be

switched on or off by simply setting µi to a positive or a negative value respec-
tively. Simulation have been used to evaluate the influence of such changes on
the phase, and deduce possible phase shift when performing online modulation
on µi.

Firstly different values µi > 0 have been tested. As we only use strictly
positive µi parameters, the oscillator always presents a limit cycle behavior. By
modulating µi, we can evaluate the effect of the amplitude’s changes on the
phase.

As we can see in figures 9 and 10 the modulation of the µi parameter among
positive ones does not affect the phase of the oscillator.

Secondly, the parameter µi is changed from positive values (µi > 0, limit
cycle) to negative ones (µi < 0, fixed point). Except for µi, the parameters do
not change from the preceding simulation.

The results are represented in figures 11 and 12. Contrary to the preceding
simulation with only strictly positive µi values, the exploration of positive and
negative values together has as a consequence to induce a phase shift. The
experiments have not shown any influence from the parameter a, representing
the speed of convergence.

The experiments, done with Cartesian and Polar coordinates version of ad-
ditive system, show the same properties; the change of the µi parameter from
positive to negatives ones has for consequence to produce phase shift. The hi-
erarchic system shows both phase shifts after discrete movement and amplitude
changes.

In conclusion to phase shift experiments, we can say that this effect is
unavoidable when the rhythmic part is deactivated (µi < 0) and reactivated
(µi > 0) at random time during the simulation. When rhythmic movement is
deactivated, the movement is a pure discrete one.

The system would need an extern stimulus to allow the actual system to fit
and recover, even when pure discrete movements appear, the phase of the initial
rhythmic signal.

11

Figure 9: Output signal.(additive / polar co-
ordinates) subject to amplitude changes. Tra-
jectory is modulated by particular choices of
µi > 0.

Figure 10: Difference between
output signal (additive / polar
coordinates) and Hopf oscillator.
Trajectory is modulated by partic-
ular choices of µi > 0.

Figure 11: Output signal.(additive / polar
coordinates) subject to amplitude changes. Tra-
jectory is modulated by particular choices of µi.

Figure 12: Difference between
output signal (additive / polar
coordinates) and Hopf oscillator.
Trajectory is modulated by partic-
ular choices of µi.

12

The extern stimulus is already present in the actual implementation. As we
can see in figure 3 it is represented by the external clock. It is coupled with the
rhythmic component of one CPG.

3 Tempo detection algorithm

Tempo detection and beat tracking consist respectively to measure the tempo
and estimate beat’s locations in musical signals. Online beat tracking refers
to situations where the tempo at a given instant is estimated with access to a
limited portion of the future at this time. In offline beat tracking, the whole
track is available for processing, which makes the task somewhat easier.

A beat is a pulse on the beat level, the metric level at which pulses are heard
as the basic unit. Thus a beat is the basic time unit of a piece; the onset of the
corresponding time unit, a point in time, the very moment when the metronome
ticks.

Much music is characterised by a sequence of stressed and unstressed beats
(often called “strong” and “weak”) organized into a meter and partially indi-
cated by a time signature, the speed of which is determined by a tempo.

The tempo is characterized by the average speed of beats among the music.
As I had no background in signal and music processing, most of the work

was to search on the Internet to find theory, examples and library traducing the
goal we chose. Two main different approaches arose and were studied deeper.
Two can seem little, but firstly the problem of tempo detection is very hard and
complicated problem, lot of publications were subject to poor results. Secondly,
these two approaches have implementation or library available, which result in
a gain of time and especially in a more robust implementation for the code is
written by specialist and has already been long used and tested.

3.1 Scheirer Method

In [3], Eric D. Scheirer proposes a method for bmp (beat per minute) detection,
also called tempo detection. Four students from Rice University managed to
implement the Scheirer algorithm in Matlab. The method acts in 4 steps2, figure
13:

3.1.1 Step 1: Filterbank

The signal is divided up into six separate signals, each consisting of the frequency
content of the original signal from a certain range. This has the general effect
of separating notes from different instrument groups and allowing them to be
analyzed separately. Tempo-analyzing the original signal could be error-prone
due to conflicting downbeats of different instruments.

2The description of the different steps is inspired by
http://www.owlnet.rice.edu/ẽlec301/Projects01/beat sync/beatalgo.html. More details
can be found at this address.

13

3.1.2 Step 2: Smoothing

Since we are only looking for the tempo of our signal, we need to reduce it to
a form where we can see sudden changes in sound. This is done by reducing
the signal down to its envelope, which can be thought of as the overall trend in
sound amplitude, not the frequencies it carries.

3.1.3 Step 3: Diff-Rect

Now that we have the signals in an enveloped form, we can simply differentiate
them to accentuate when the sound amplitude changes. The largest changes
should correspond to beats since the beat is just a periodic emphasis of sound.

3.1.4 Step 4: Comb Filter

This is the most computationally intensive step. We need to convolve the differ-
entiated frequency-banded signals with various comb filters to determine which
yields the highest energy. A comb filter is basically a series of impulses that
occur periodically, at the tempo you specify. Convolving a comb filter with a
total of three impulses with our signal should give an output that has a higher
energy when the tempo of the comb filter is close to a multiple of that of the
song.

Figure 13: The Scheirer’s algorithm’s schema.

14

3.1.5 Matlab implementation

As described, an implementation can already be found on the Internet site. I
tried the program with different music instances. Most of the results were good,
but as the implementation was only available on Matlab, the quantity of work
was important and no library were available for some complex specific func-
tion. Regarding the previous reasons, I then tried the second tempo detection
approach.

3.1.6 Further work

The first idea about tempo detection was to use the ability of Dynamic Hebbian
Learning to reduce a signal to its envelope [5]. This method would have been
used for the second step, “smoothing”. Some simulations have been made on
this approach (appendix B), but we saw quickly that the time needed to develop
such an application was too important for this project. This could be very
interesting future research.

3.2 Aubio C Library

The Aubio Library [3] provides automatic labeling features to other audio soft-
wares. Functions can be used offline in sound editors and software samplers.
The following functions are implemented in the library:

• various onset detection functions and real time peak-picking

• various pitch detection functions

• beat tracking algorithm

• transient and steady state separation

Aubio depends on the following C libraries : libsndfile, libsamplerate and
FFTW. Three linux library providing respectively sound file handling, sample
rate conversion in audio and discrete Fourier transform (DFT) implementation.

3.2.1 Beat tracking algorithm3

The beat tracking algorithm used in Aubio is based on [1]. As depicted in figure
14, the procedure involves two stages. The first one is the onset detection and
the second one the tempo analysis. In Aubio library, only the first stage which
consists in onset analysis is implemented. This allows beat tracking from a given
sound file.

3This section is inspired by [1].

15

Figure 14: The Algorithm Operation Overview. (HFC stands for high frequency content and
ACF for autocorrelation function). Schema reproduced from [1].

3.2.2 Onset Detection

The aim of the onset analysis stage is not to explicitly detect the locations of
note onsets, rather to generate a midlevel representation of the input which em-
phasizes the onset. To reflect this need Davies et al. choose the onset detection
function - a continuous signal with peaks at onset positions, as the input to the
tempo analysis stage. An example detection function is shown in Figure 15. In
their system they use two detection functions - an HFC and a complex domain
approach which are multiplied together to create a single input for the tempo
analysis stage (as shown in the left hand plot of figure 14). The combination of
these two detection functions has been shown to give improved performance for
onset detection than when used individually.

Figure 15: Detection function (upper plot) and corresponding ACF (lower plot).

16

3.2.3 High Frequency Content (HFC)

Davies et al. use an approach to energy based onset detection, using a linear
weighting corresponding to bin frequency k of the Short Time Fourier Transform
(STFT) frame Xk[n] of audio input x[n] to emphasize the high frequency energy
within the signal, giving the detection function output dfh[n] given by:

dfh[n] =
N∑

k=0

k|Xk[n]| (9)

This technique is particularly appropriate for emphasizing percussive type
onsets, most notably cymbals, where the transient region of the instrument hit
is mainly composed of energy at high frequencies.

3.2.4 Complex Domain Onset Detection

While the HFC approach is suited for signals with strong percussive content, it
performs poorly when applied music with non-percussive onsets, such as those
created by a bowed violin. Davies et al therefore incorporate a second detection
function that is able to contend with a wider variety of signal types.

The complex detection function dfc[n] shown in equation (10) is a combined
energy and phase based approach to onset detection. It portrays the complex
spectral difference between the current frame Xk[n] of a STFT and a predicted
target frame, Xk[n]. Detection function peaks are the result either of energy
change or deviations in phase acceleration. These deviations occur in transients
as well as during pitch changes (often called tonal onsets, where no perceptual
energy change is observed) enabling the approach to detect onsets in a wider
range of signals.

dfc[n] =
1
N

N∑
k=0

‖X̃k[n]−Xk[n]‖2 (10)

3.2.5 Tempo Analysis

The tempo analysis process is shown in the right of figure 14. Beat period is
estimated from the autocorrelation function (ACF) of the detection function.

The tempo analysis stage comes with beat alignment and prediction steps,
for improving beat detection. As described by Davies et al, the results are very
good and fit the use of a beat detection algorithm for tempo detection.

One thing is, when using offline processing, we use the whole track in order
to find the tempo. This results, when tempo inside the music is not constant,
to averaging it and result in poor approximations.

3.3 Beat tracking implementation

The Aubio library by Paul Brossier is thus used for implementation. This library
offers robust implementation of the Beattracking algorithm. It uses the libsndfile

17

library in order to open and extract audio content from wav files.
The Mirex Conference4 is annual conference which goal is to offer to re-

searcher who work in the domain the possibility to test and compare their
approach. They submit practice data along with exact beats list. We used this
list with the results of the Aubio implementation to test the efficiency of the
method. The results is depicted in figure 16. The method used to compare is
the following. For each beat from the solution, we test the beat given by Aubio.
If no beat is found, we get 100% error. Otherwise the error is computed by:
|timesolutionbeat−timefoundbeat|

timesolutionbeat
· 100. The results validate the one obtain in [3].

Figure 16: Comparison between given beat list and solution provided by Aubio beattracking

algorithm. The average is in orange, 16th column.

The beat tracking algorithm is used for tempo detection. A new library
named “Tempo” is implemented. The signature of the main function of this
new library is “float tempo(char* filename)”. The function simply receives the
name of the audio file to process and return the tempo in beat per minute
(bpm).

4 Webots Implementation

Webots is a mobile robotics simulation software that allows fast modeling, pro-
gramming and 3-dimensional (3D) simulation with physics. More information,
API and reference manual can be found on its website5.

The simulation is composed of the two main following parts:

• the Webots world: it is the description of the 3D scene. It is described us-
ing VRML (Virtual Reality Modeling Language), which is a standard file
format for representing 3D interactive vector graphics. A tree representa-
tion of the VRML file can be seen in the “scene tree”, directly accessible
from the Webots interface (figure 17).

• the controllers: coded in C/C++. They control the different entities
present in the world.

4http://www.music-ir.org/mirex2006/index.php/Main Page
5http://www.cyberbotics.com/

18

• the physic shared library. It allows to specify personalized behavior to the
physic engine (the physic engine ODE is presented in the section 4.2).

Figure 17: Image of the Webots scene tree. The Transform node displayed is the one used for
texture modification on the instruments.

4.1 Original implementation of hoap-2 performing a drum-
ming task

Original implementation (figure 18) on the Webots software was made by Sarah
Degallier. The system is composed of the following files:

• drum.c, main controller of hoap-2 robot

• drummer.cpp, C++ drummer class. It inherits DynamicalSystem class
from LANDS library.

Two libraries are needed for numerical computation:

• LANDS6 is a lightweight object oriented framework for the efficient inte-
gration of Nonlinear Dynamical Systems written in C++.

• The GNU Scientific Library (GSL)7 is a numerical library for C and C++
programmers.

As the robot performs the drumming task, we need to detect the time at
which the sticks hit the instruments in order to generate the music correspond-
ing to the simulation and modify the texture of the instrument for debugging
purposes.

Each time a detection is caught, the time and velocity of the contact is
written in a file.

6http://birg.epfl.ch/page56667.html
7http://www.gnu.org/software/gsl/

19

Figure 18: Original Webots world by Sarah Degallier.

4.2 Implementation of Webots collision detection

In order to handle detection, and to offer the possibility to the user to customize
the collision reaction and properties, Webots uses the open-source physics engine
Open Dynamics Engine (ODE). References and information about this library
can be found on its website (http://www.ode.org). For the detection of collision
between two entities, Webots uses the bounding object node. This object is
represented in the world as a simple volume, often a cube or a cylinder, and is
used to simplify the interaction with other entities. If the bounding object of two
different entities intersects, Webots calls ODE physics to handle the collision.
By default, without specifying a personalized physic plugin, Webots manages
the collisions on its own by using ODE to perform realistic collision.

4.2.1 The physic plugin

In our case, we must write a specific physic file in order to accomplish the
tasks needed when collision arise. In case of collision, we want to keep different
information; the time the collision occurred, the instrument hit in the collision
and the arm involved. The time is given in second, and corresponds to the time
spent in simulation. The instrument is given by number from 1 to 3 specifying
the instrument (figure 18):

1. the small drum,

2. the central drum,

3. the cymbal.

20

The physic plugin file is an interface between ODE and Webots. Adding a
custom physics is achieved by creating a custom shared library which is loaded
by Webots at run-time and which contains function calls to the ODE physics
library.

The WorldInfo node of the simulated world has a field called physics which
defines the name of the shared library to be used for the custom physics simu-
lation in the world. This refers to a shared library stored in a subdirectory of
the Webots project plugins/physics directory. For our project it is:

WorldInfo {physics : “hand of god′′}

4.2.2 ODE interface library functions

The shared library8 offered six functions that will be called directly by Webots
during the simulation of the world. For our purpose, we use three of them:

• void Webots physics init(dWorldID w, dSpaceID s, dJointGroupID j);

This function is called upon initialization of the world. It provides the
shared library with ODE variables used by the simulation, such as a
pointer to the world (dWorldID), a pointer to the geometry space (dSpaceID)
and a pointer to the contact joint group used by the simulation (dJoint-
GroupID). Moreover, this function is a good place to call the dWebots-
GetGeomFromDEF function to get pointers to the objects on which we
want to control the physics.

We use the following links to Webots objects:

– left hand geom = dWebotsGetGeomFromDEF(“left hand 1 0”);

– right hand geom = dWebotsGetGeomFromDEF(“right hand 1 0”);

– cymbal geom = dWebotsGetGeomFromDEF(“Cymbal”);

– small drum geom = dWebotsGetGeomFromDEF(“Small Drum”);

– central drum geom = dWebotsGetGeomFromDEF(“Central Drum”);

– white ground geom = dWebotsGetGeomFromDEF(“WHITE GROUND”);

The first two geoms relate to the bounding objects of the left and right
hand sticks. The three following are the instruments and the last one the
ground.

These links to bounding objects will be used in Webots physics collide to
test if the objects we are interested in are concerned by the collision.

• void Webots physics step();

This function is called before every physics simulation step (call to the
ODE dWorldStep() function). It has no parameter. It can be used to add
force and/or torques to solids. It can also be used to test the position

8http://www.cyberbotics.com/cdrom/common/doc/Webots/guide/chapter6.html

21

and orientation of solids (and possibly apply different forces according the
position and orientation). This is the function where we analyse the results
coming from the following one. It is used to send messages to Supervisor
concerning detected changes in collision states.

• int Webots physics collide(dGeomID g1, dGeomID g2);

This function is called whenever a collision occurs between two objects.
It may be called several times for a single simulation step with different
parameters corresponding to different objects. We test whether the two
colliding objects passed as arguments correspond to the objects we want
to control (instruments and sticks). As we just want to recover some
information, we let Webots handle the collision with default parameters
by returning 0.

The algorithm is quite simple. The procedure for left and right arm is
the same, with only variables’ name changing. Left arm will be explained
here. The order of call of the functions is depicted on figure 19.

Figure 19: Order of function’s call in the physic plugin.

We have two global variables; left state and left collide. left state rep-
resents the state of the left arm at time ti−1, left collide represents its
state at time ti. They take for value the number of the instrument the
arm is in contact with, or 0 if there is no contact involving the left arm.
Both are first initialized to 0 in the init function. Then, in each call to
the collide function, we check whether the left arm is in collision with an
instrument. If that’s the case, the left collide variable is set to the num-
ber corresponding to the instrument involved. When the step function is
called, we check the left collide variable. Four cases may happen:

1. left state = 0 & left collide = 0. No collision in progress and no
new collision this step: no modification and no message sent to the
supervisor.

2. left state = 0 & left collide 6= 0. No collision in progress but we
encounter a new collision this step: left state ⇐ left collide (instru-
ment number) and we send a message to the supervisor.

22

3. left state 6= 0 & left collide = 0. Collision in progress but end of the
collision this step: left state ⇐ collide(0), and we send a message
to the supervisor.

4. left state 6= 0 & left collide 6= 0. Collision in progress and continu-
ing this step: : no modification and no message sent to the supervisor.

For the cases 3 and 4, we have a state change; new collision for 2, end
of existing collision for 3. We inform the supervisor of that change by
sending it a message via the radio emitter/receiver embedded in Webots.
The message structure and usage is detailed in section 4.2.4.

4.2.3 Integration of tempo detection

As depicted in section 3.2, Tempo detection is performed by using the beat
tracking capacities of the Aubio library. The integration in the drum controller
is thus very quick and easy. One can simply use the tempo function to compute
offline tempo measurement.

In order to be able to influence on the frequency of the oscillators, which is
controlled by the ω parameter, one instance variable called “omega” has been
added to the drummer class together with the usual getter/setter function to
access and modify it.

Modification to robot’s CPG intrinsic frequency according to a given music’s
tempo can thus be implied by the two following steps:

• First, call the tempo function with the name of sound file as argument.

• Secondly, call the setOmega function with the tempo value divided by 60.
This traduces the conversion from bpm to Hz.

After each computation of the tempo and modification of the frequency,
the new value is sent to the supervisor for on screen information display. The
message structure and usage is detailed in section 4.2.4.

4.2.4 Message

The use of messages is mandatory due to the three following reasons:

• when collecting informations about collision, we need to know the actual
simulation time. This information is returned by the robot get time()
which cannot be called from the physic plugin,

• the modification of the texture as a visual feedback for collision uses the
supervisor field set function, which as its name says, is only available to
the supervisor,

• the display of tempo information on the screen uses the supervisor set label()
function, which is only available to the supervisor.

23

The first type of message is the one produced by collision detection in the
physic plugin. The representation uses an array of float. The message is sent us-
ing the emmiter/receiver radio embedded in Webots. The sending of a message
may have two causes :

• A new collision occurs in the present step.

• A collision finishes in the present step.

The message is sent by the physic plugin and is received by the supervisor,
figure 20. The structure of the message can be seen on figure 21.

Figure 20: Structure of a message. The different possible values are present on the picture.

Figure 21: Structure of a message. The different possible values are present on the picture.

24

The second type of message is the tempo one. The tempo message is pro-
duced by the drum controller after the use of tempo function and setOmega
function. This is used to send the new tempo value to the supervisor.

The structure is quite simple. The message is only composed of two numer-
ical values. The first one specifies the number of the file sound used, and the
second one the value of the corresponding tempo.

4.2.5 The Supervisor

The supervisor controller is a particular case of a robot controller. A supervisor
is a program which controls a world and its robots. For convenience it is rep-
resented as a robot without any wheels, driven by a controller with extended
capabilities which supervises the whole world.

When the supervisor receives a message from the physic plugin, according
to the message information, the texture on the top of the instrument is changed
and information for the music generation is stored in a file.

The procedure for the left part of the message (left arm) is explained below;
the right part is parsed the same way.

The first number [0] tells the supervisor the behavior it must handle. If
it faces to a new collision (1), it changes the “no hit texture”, figure 22, of
the instrument involved (given by the second number [1]) by the “hit texture”,
figure 23. The supervisor then adds a new line to the file “left.txt” with the
time the collision occurred, the instrument involved and the velocity (not used).

Figure 22: Representation of an instrument
in Webots world. The present figure represents
an instrument without collision.

Figure 23: Representation of an instrument
in Webots world. The present figure represents
an instrument with collision.

When the supervisor receives a message from the drum controller, it uses
the supervisor set label function to display the new tempo’s value.

4.2.6 Video generation

The video generation is done directly with the embedded “Make movie” option
in Webots. The output file extension is “mpeg”. As Webots do not support
sound generation, this video comes without any music information.

25

5 Music generation with Matlab

Matlab has the capacity to deal with wav sound files. The main function in-
volved in this process are wavread and wavwrite. More information about these
functions can be found online9.

5.1 Data from Webots simulation

From the simulation, we get two text files. The “right.txt” and “left.txt” files
contain for right, respectively left stick the succession of instruments hit, the
corresponding time and the velocity.

5.2 Matlab Script

The music generation is done through a self-made Matlab program. The signa-
ture of the program is the following:

• function[] = generation2(Left, Right, Sound1, Sound2, Sound3)

The function generation2 takes five arguments. The first two are the matrix
produced by the Supervisor (written during the simulation in the “left.txt” and
“right.txt” files), containing the information about the simulation’s music. The
following three are the songs used to represent, respectively, the cymbal, the
central drum and the small drum. The function first creates an empty stereo
song, a vector with all zeros at the good frequency. It then copies the sounds
into the created song according to the matrix (time and instrument). Two music
canals (stereo) are used to translate the spacial position of the instruments.

The resulting sound takes the form of wav sound file.

6 Merging Video and Music

As we now have both video part and sound part from the simulation, we need
to find a way to merge these two files. Many free programs offer this feature.
VirtualDub on Windows is chosen for the following processing. However, the
ideas and technics used here can easily be ported on most of the other free
program.

6.1 VirtualDub

VirtualDub is an open source video capture and linear processing tool for Mi-
crosoft Windows. It is written by Avery Lee, and is licensed under the GPL. It
is hosted on SourceForge10. It has the advantage to be free, powerful and offer
the possibility to control the processing steps with command line. This feature
allows to write script and thus automate the merging procedure.

9http://www.mathworks.com
10http://virtualdub.sourceforge.net/

26

As two codec, one for video compression and the other for audio compression
are used, both are needed to be able to use the script. The video codec is “Xvid
Codec”11, and the audio codec is “Lame ACM Mp3 Codec”12.

Installing “Xvid Codec” is straightforward. To install “Lame ACM Mp3
Codec” you need to “right click” on “LameACM.inf” and select “Install”.

6.1.1 VirtualDub Scripting

The commands’ list is available online13. One point to help using such com-
mands, is that we can apply the different compressions, filters and modifications
through the graphical interface of VirtualDub, and then save the list of corre-
sponding commands with the “File→Save Processing Settings...”.

6.1.2 Script Generator

The script generator is written in C and offers the completely automated cre-
ation of VirtualDub scripts. It works the following way. Firstly, you have to
move in the same directory as the program all your movies and sound files.
To each sound file corresponds one movie file. Except the extension, both files
must have the same name. Example, “testSimulation.mpeg” and “testSimula-
tion.wav” is correct. The program searches all “.wav” files in present in the
current folder. It then for each pair of files add the needed command line to the
script file called “merging.vcf”.

The processing steps traduced by the VirtualDub commands are the follow-
ing:

• Open the video file (absolute path).

• Open the audio file (absolute path).

• Set video compression to Xvid.

• Set audio compression to Mp3.

• Merge video and audio and export to new video file.

In our example, the output file would be named “testSimulation.avi”. To
use the generated script from command line, the script must be copied to the
VirtualDub directory. Then “vdub.exe” must be used with the “/s merging.vcf”
option.

Another way is to add the VirtualDub directory to the windows “PATH
environment”, and then use a batch file to launch “vdub.exe” from the current
folder with “vdub.exe /s merging.vcf”.

11http://www.koepi.org/xvid.shtml
12http://www.free-codecs.com/LAME ACM codec download.htm
13http://www.virtualdub.org/docs/vdscript.txt

27

7 Conclusion

As we can see in the different video available, the objectives of the project
are fully reached. The visual feedback in simulation is implemented using the
physic plugin. The music generation and merging with the video has also been
implemented with success. The tempo processing part of the project is currently
offline one. It works fine with constant tempo music. Further implementation
should use the capabilities of Aubio for online Beattracking by using the JACK
Audio Connection Kit.

Due to the limited knowledge in signal processing, a big part was to find ref-
erences and literature about tempo detection and music processing. Some bugs
were found in the Webots world model and in the controller implementation,
they are now corrected.

This project allowed me to discover the signal processing and tempo detec-
tion, which is very interesting.

8 Acknowledgment

I thank especially Sarah Degallier for her help. I want to thank the following
persons too: Yvan Bourquin for his help with Webots, and Auke Ijspeert for
allowing me to perform this project in the BIRG laboratory.

References

[1] Matthew E. P. Davies and Mark D. Plumbley. Causal tempo tracking of au-
dio. In In Proceedings of the International Symposium on Music Information
Retrieval (ISMIR), 2004.

[2] S. Degallier, C. P. Santos, L. Righetti, and A. Ijspeert. Movement gener-
ation using dynamical systems: a humanoid robot performing a drumming
task. In IEEE-RAS International Conference on Humanoid Robots (HU-
MANOIDS06), 2006.

[3] Paul Brossier Matthew E. P. Davies and Mark D. Plumbley. Beat tracking
towards automatic musical accompaniment. In In Proceedings of the Audio
Engeeniring Society 118th Convention, Barcelona, Spain, 2005.

[4] Olivier Michel. Cyberbotics ltd - webotstm: Professional mobile robot sim-
ulation. International Journal of Advanced Robotic Systems, 1:39–42, 2004.

[5] L. Righetti, J. Buchli, and A.J. Ijspeert. From dynamic hebbian learning
for oscillators to adaptive central pattern generators. In Proceedings of 3rd
International Symposium on Adaptive Motion in Animals and Machines –
AMAM 2005. Verlag ISLE, Ilmenau, 2005. Full paper on CD.

28

A Processing Schema

29

B Dynamic Hebbian learning in adaptive fre-
quency oscillators

As depicted in [5], it is possible to implement oscillators which are able to adapt
their frequencies to synchronize with external input. In our case, it will be
useful in order to force the oscillator to keep the same rhythm after discrete and
rhythmic changes and thus avoid phase shift.

B.1 Mathematical Aspects

Righetti et al. add plasticity to the system, in the sense that the system can
change its own parameters in order to learn the frequencies of the periodic
input signals. The oscillator can adapt its frequency to any periodic input. The
process is completely dynamic, in other words, no offline process is needed. As
polar and Cartesian coordinates yield the same results, polar coordinates will
be used for these studies.

Given F, the periodic signal with which the oscillator is coupled, the coupled
Hopf oscillator is governed by the following differential equations:

ṙi =
(
µi − r2

i

)
ri + εF cos φ (11)

φ̇i = ω − ε

ri
F sinφ (12)

ω̇i = −εF sinφ. (13)

Without perturbation, when ε = 0, the system is oscillating at ω rad s−1.
This oscillator is coupled with a periodic force F. When the force is zero, the
system has an asymptotically stable harmonic limit cycle, with radius

√
µi and

frequency ω. Equation 13 is the learning rule for the ω parameter in eq. 12.
ω will converge to such value that one frequency component of the oscillator
and one of the input F match. The adaptation of ω happens on a slower time
scale than the evolution of the rest of the system. This adaptation time scale is
influenced by the choice of ε.

B.2 Time needed for synchronization with coupled oscil-
lator’s frequency

Figure 24 shows the time needed for synchronization for different frequency
distance (difference between the original frequency and the goal frequency). We
can see that the time does not increase linearly but exponentially.

30

Figure 24: Time needed for Oscillator using Hebbian Learning rule for synchronization with
external force.

B.3 Applying the Dynamic Hebbian learning in adaptive
frequency oscillators to the dynamical system of the
CPG

The Dynamic Hebbian learning has been applied to the dynamical system ca-
pable of both discrete and rhythmic signal (section: 2.2. It is coupled with a
Hopf oscillator with parameter µi (amplitude) equal to 1 and gi (offset) to 1.
The results is shown in figure 29.

The main point is that the new added oscillator’s capacity make perfectly
their job. The stability of the system achieves good results. The error, despite
the important changes in term of amplitude and discrete movements, returns to
the initial value at the end of the experiment, when the parameters are set back
to initial values (same parameters as Hopf oscillator). The small phase shift,
present at the beginning as well as at the end is due to the Dynamic Hebbian
system itself. Figures 25, 26, 27, 28, 29, 30.

31

Figure 25: Progression of output signal (Additive / Cartesian coordinates / Dynamic Hebbian
learning) subject to discrete and rhythmic movements with Hopf oscillator. Trajectory is modulated
by particular choices of µi and g.

Figure 26: Progression of output signal (Additive / Cartesian coordinates / Dynamic Hebbian
learning) subject to discrete and rhythmic movements. Trajectory is modulated by particular choices
of µi and g.

32

Figure 27: Difference between output signal.(Additive / Cartesian coordinates / Dynamic Heb-
bian learning) and Hopf oscillator.

Figure 28: of output signal (Additive / Cartesian coordinates / Dynamic Hebbian learning)
subject to discrete and rhythmic movements with Hopf oscillator. Trajectory is modulated by
particular choices of µi and g.

33

Figure 29: of output signal (Additive / Cartesian coordinates / Dynamic Hebbian learning)
subject to discrete and rhythmic movements. Trajectory is modulated by particular choices of µi

and g.

Figure 30: Difference between output signal.(Additive / Cartesian coordinates / Dynamic Heb-
bian learning) and Hopf oscillator.

34

C Collision detection issue

I had got some problem with collision detection. Indeed, the physic plugin de-
tected collision when no sticks were hitting the instruments at all. The problem
was not so easy to find and came from the model of the hoap-2 robot. The
bounding objects corresponding to the stick is misplaced in the original model,
figure 31. The bug is corrected in third version of the world.

Figure 31: Original bounding object for left and right stick. We can see the exceeding size which
causes detection errors.

35

D Screenshots

36

37

38

39

