SEMESTER PROJECT

Study of new Roombots modules

BrorLocicaLLy INSPIRED RoBoTICcS GROUP

Simon Blanchoud
Supervisor : Prof. Auke Jan Ijspeert
Assistant : Dr. Masoud Asadpour

February 18, 2007

Contents

1 Introduction

1.1 The Roombots Project
1.2 Goals Of The Project
1.3 Tools. o
1.4 State Of The Art o

2 The Modules

2.1 Cubel e
2.2 Cube2
23 Cubed
24 Cubed
25 Cubed

3 The Controllers

3.1 Decentralized Controllers
3.2 Centralized Controllers
3.2.1 The Sequence Protocol

4 Results
4.1 Modules’ Fitness

CONTENTS

4.2 Cube2 Macro-movements

Conclusion

Appendix

Organization Of The Files

6.2 Modules’ Configurations

Smallest Moving Group

6.2.2 Structure Organization

6.2.3 Loading Module

ii

22

26

27

List of Figures

1.1 AM-TRANIIImodule 3
1.2 ACONROmodule 3
1.3 A PolyBot G3module 4
2.1 Numbering of the faces for all modules 6
2.2 The Cubel’s schematic 7
2.3 The Cubel in simulation 7
2.4 The Cube2’s schematic. 8
2.5 The Cube2 in simulation 9
2.6 The Cubed’s schematic. 9
2.7 The Cubed in simulation 10
2.8 The Cubed’s schematic. 11
2.9 The Cubed in simulation 11
2.10 The Cubed’s schematic. 12
2.11 The Cubeb in simulation 13
2.12 The Cubeb moving over the structure 13
3.1 The Supervisor - modules interactions 17
4.1 The macro-movement M1 23

iii

LIST OF FIGURES iv

4.2

4.3

4.4

4.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

The macro-movement M2 24
The macro-movement M3 24
The macro-movement M4 24
The macro-movement M5 24
The organization of my files 28
The Cubel’s smallest group 29
The Cube2’s smallest group 29
The Cubed’s smallest group 30
The Cubel’s structure organization 31
The Cube2’s structure organization 31
The Cubed’s structure organization 31
The loading modules 32
The loading sequence when movingup 33

6.10 The loading sequence when moving down 34

List of Tables

4.1 The fitnessresults

4.2 Ranking of the modules

4.3 The macro-movements in pseudo-code

Chapter 1

Introduction

1.1 The Roombots Project

The Roombots project is a very vast project: its goal is to create self-
reconfigurable furniture using modular robotic. The main idea of the mod-
ular robotic is to have many modules that cooperate together in order to
create a complex global behavior, or a structure in our case. This project is a
collaboration between Microsoft Research Cambridge! and the Biologically
Inspired Robotics Group? (BIRG).

1.2 Goals Of The Project

This semester project was part of the Roombots project. The main goal
of this project was to develop a new module that could be used for recon-
figuration in the Roombots project. This project focused on the suitable
capabilities of the modules and not on their hardware implementation; it
was developped entirely in simulation.

In order to find the most suitable module for our task, I had to :

1. Create the simulated model of each module
2. Write the program to control each module

3. Determine the desired behaviors and the way to test them

"http:/ /research.microsoft.com/cambridge/
http://birg.epfl.ch/

http://research.microsoft.com/cambridge/
http://birg.epfl.ch/

CHAPTER 1. INTRODUCTION 2

4. Rank the modules according to these tests

Finally, I analyzed more deeply the movements of the more promising
module.

1.3 Tools

This project was developped using the following tools :

Webots 3 A powerfull simulation software which includes a modelling tool,
ODE* and various devices that allowed me to model the modules

C language All the codes I wrote for this project used this language

Pen and paper Used to study possible movements and combinations of
movements of the modules. I used this when it was faster than mod-
eling it in Webots

Paper cube Made using the origami technique °, I used them when the
“Pen and paper” tool was not enough

KTEX S Used to write this report

Gimp, Xfig, Inkspace 7 Used to create the pictures and the graphs of
this report

1.4 State Of The Art

In the field of modular robotic, the latest developments on self-reconfigurable
robots are represented by the following modules :

M-TRAN III ® In this project, carried out by the Distributed System
Design Research Group from the National Institute of Advanced In-
dustrial Science and Technology (AIST) of Japan, the modules use
permanent magnets as connection mechanism. They have two axes of
rotation and six connection surfaces (see figure 1.1)

3http://www.cyberbotics.com/

“The Open Source physics engine used by Webots, http://www.ode.org/
Shttp://www.mathematische-basteleien.de/oricube.htm
Shttp://www.latex-project.org/

"http://www.gimp.org/, http://www.xfig.org/, http://inkscape.org/
Shttp://unit.aist.go.jp/is/dsysd/mtran/English/

http://www.cyberbotics.com/
http://www.ode.org/
http://www.mathematische-basteleien.de/oricube.htm
http://www.latex-project.org/
http://www.gimp.org/
http://www.xfig.org/
http://inkscape.org/
http://unit.aist.go.jp/is/dsysd/mtran/English/

CHAPTER 1. INTRODUCTION 3

CONRO Y In this project, carried out by the Polymorphic Robotics Lab-
oratory from the University of Southern California, the modules use
a passive connector, which has pins, and an active connector that
contains the connection/disconnection mechanism. They have one ro-
tation axis for each connector and the active connector can attach to
three faces on the passive connector (see figure 1.2)

PolyBot G3 ' In this project, carried out by the Palo Alto Research Cen-
ter (PARC) in California, the modules use grooved pins and holes as
connection mechanism. Each module has two connecting faces and
one axis of rotation (see figure 1.3)

None of these modules have been used to explore the possibilities of adap-
tative furniture.

-
-
- s
-
-~
-~
-
-
-
-
-

Figure 1.2: A CONRO module

http://www.isi.edu/robots/conro/
Yhttp://www2.parc.com/spl/projects/modrobots/polybot /g3.html

http://www.isi.edu/robots/conro/
http://www2.parc.com/spl/projects/modrobots/polybot/g3.html

CHAPTER 1. INTRODUCTION

Figure 1.3: A PolyBot G3 module

Chapter 2

The Modules

In my study of new modules I started with five different models; all of them,
except Cube4, were proposed by Mr. Asadpour. They all have cubic shapes
considering that cubes facilitates the self-reconfiguration process :

e The regular structure of the cube allows the modules to create a dense
and compact structure

e As the distance between two modules of the structure is the size of the
travelling module, it allows them to stay aligned and to connect easily

e Having all the modules with the same shape allows them to get mixed.
This has not been studied in my project

Remarks :

1. The faces of all the modules have been numbered according to the
convention explained by figure 2.1

2. In all the schematics representing the modules, the red parts represent
the moving parts of the model and the red arrows represent their
corresponding axis of rotation (or translation in the case of Cube4)

3. In the simulation the modules use Hermaphrodite Connectors ! in

order to attach to each other

! A generic genderless connecting device, named after the corresponding device in We-
bots

CHAPTER 2. THE MODULES

<

Figure 2.1: Numbering of the faces for all modules

CHAPTER 2. THE MODULES

2.1 Cubel

,,,,,,,,,,,,,,,,,,,,,,,,,

...........

e

Figure 2.2: The Cubel’s schematic

Figure 2.3: The Cubel in simulation
Its principal characteristics are :
e One degree of freedom

e Two rotating faces, which are in fact only one rotational servo

e The servo has no angular limitations

CHAPTER 2. THE MODULES 8

e One Connector per face

This module is the simplest one you can think of but this simplicity is
what is interesting about it. By having such a simple robot we can pro-
duce very cheap real ones. This would allow us to compensate the possible
drawbacks by the number of modules.

2.2 Cube2
A

I
I
I
: 5
: hd o
| v ~y
I .
| ‘e
I e
I

RN |

ou Cen

AL = X

. I LY,
SN IS
o 1 : 1 N '
] : x L] : 1

e L LU

Figure 2.4: The Cube2’s schematic

Its principal characteristics are :

e Three degrees of freedom

e Six rotating faces, which are in fact only three rotational servos

e The servos can rotate between -180 and +180 degrees

e Four Connectors per face

This module is the most complex one and, as it has four times more
Connectors, probably one of the most expensive to produce too. But by
having its axes of rotation on the edges of the cube (see figure 2.4) this

allows it to perform movements that cannot be done by any other module.
It is also the only module which can move on all its faces.

CHAPTER 2. THE MODULES

Figure 2.5: The Cube2 in simulation

2.3 Cube3

-

A
AVE

Figure 2.6: The Cube3’s schematic
Its principal characteristics are :
e Three degrees of freedom

e Three rotating faces, which are three rotational servos

e The servos have no angular limitations

CHAPTER 2. THE MODULES 10

Figure 2.7: The Cube3 in simulation

e One Connector per face

This module is an extention of Cubel, the main idea was to see if by
increasing the number of degrees of freedom we would also increase the
capabilities of the module.

2.4 Cube4d

Its principal characteristics are :

e Three degrees of freedom
e Three moving faces, which are three linear servos
e The servos can move up to one time the size of the cube

e One Connector per face

The purpose of this module was to explore the capabilities of a module
that uses linear servos instead of rotational ones. I made some tests with it
but it became quickly clear that it was not adapted to self-reconfiguration :
The main problem was that the structure, which is made of modules, is
unable to help the modules that are moving on it. When moving without
the structure, we need two modules for each direction in which we want to
be able to move; so if we want to be able to do everything with a group
of modules, this group must be quite big. Moreover, the group of modules

CHAPTER 2. THE MODULES 11

-
|

J

Figure 2.8: The Cubed4’s schematic

Z

Figure 2.9: The Cube4 in simulation

CHAPTER 2. THE MODULES 12

should be able to move over the structure in order to reach a suitable po-
sition. But as soon as the moving group will drop one of its modules in its
place, it will also lose one of its moving direction.

This module is not included in the results of this study as I dropped it
before I made all the tests.

2.5 Cubebd

Figure 2.10: The Cubeb’s schematic

Its principal characteristics are :

e Two degrees of freedom

e The two cubes can rotate around each other using two rotational servos
e The servos have no angular limitations

e Four Connectors on the side faces and two on the other ones

The idea of this module is that it would be able to move on its own even
without the help of the structure. I did not used it in my tests because you

CHAPTER 2. THE MODULES 13

Figure 2.11: The Cubeb in simulation

need to leave some space between the two cubes of the module for them to
be able to rotate. The problem is that, because of this small space, the total
length of the module is not anymore a multiple of the size of a cube. This
leads to great connection problems when moving on the structure (see figure
2.12).

Figure 2.12: The Cubeb moving over the structure

You can reduce this distance by rounding the angles of the cube. The
problem is that if you want to reduce it to zero the cube will become a
cylinder. Moreover if you want both cubes to be able to move freely you
will need to transform these cylinders into spheres. It is a lot more difficult
to create a resistant structure using spheres than using cubes.

This module is not included in the results of this study as I dropped it
without having done any test with it.

Chapter 3

The Controllers

There are many ways to control a reconfiguration process. Of course the
ideal method would be to let the modules deduce on their own what they
need to do, but this is very difficult to achieve. Actually searching how the
modules could find the reconfiguration sequence, and everything related to
this, is the biggest part of the Roombots project and it is being explored
by Mr. Asadpour. In order to simplify the work for the moment, we de-
cided to develop a simple language for defining the movement sequences. I
implemented two different techniques to control the modules.

Remarks :

1. In addition to these controllers I also wrote a small plugin for Webots
that filters ODE collisions to speed up the simulations as much as
possible

2. As these controllers have been developped to suit the needs I encoun-
tered during the tests I made on the modules, only the three models
that I have fully explored (Cubel, Cube2 and Cub3) have them im-
plemented

3.1 Decentralized Controllers

This controller is the closest one to the ideal solution. The basic idea is
that every module have the same controller. The controller is a finite state
machine that, depending on the identification number (ID) of the module,
starts in the appropriated state.

14

CHAPTER 3. THE CONTROLLERS 15

if (state == DETACHING) {
detach(5, ONLY);
rotate(2, -90);
next_state = ROTATING_LOCK;
} else if (state == ROTATING_LOCK) {
if (in_place(2) == 1) {
attach(3, ONLY);
detach(5, WITHOUT);
rotate(2, 90);
next_state = ROTATING;
}
} else if (state == ROTATING) {
if (in_place(2) == 1) {
attach(3, WITHOUT);
attach(5, WITH);
next_state = IDLE;
}
}

This code, which is for Cube2 modules, makes the module number 1 move
using its lock number 2. The initial state is DETACHING.

The interaction with the modules is made using the following interface :

e int presence(int face_id): Returns 1 if there is another face close
enough to get connected to the face specified by the argument

e void attach(int face_id): Atttaches the face specified by the ar-
gument

e void detach(int face_id): Detaches the face specified by the argu-
ment

e void rotate(int servo_id, float angle): Rotates the servo spec-
ified by the first argument by the angle, in degrees, specified by the
second argument

e int in_place(int servo_id): Returns 1 if the servo specified by
the argument has reached its objective position

e void send_ack(int face_id): Sends an acknowledgment bit on the
face specified by the argument

e int receive_ack(int face_id): Returns 1 if an acknowledgment
bit has been received on the face specified by the argument

CHAPTER 3. THE CONTROLLERS 16

Remarks :

1. For Cube2, there is a second argument for the functions presence,
attach and detach which is of type Behaviors. It can have the
values WITH, WITHOUT and ONLY and it defines if the action needs to
be performed on the Connectors of the face WITH the one of the servo,
WITHOUT it or ONLY for this Connector

2. In order to implement a sequence using this type of controller, you
have to define the corresponding finite-state machine. Working on
the directed graph that represents the finite-state machine can be eas-
ier. The code of the modules contains already everything needed to
translate the machine, or the graph, into the code that will make the
modules perform the sequence

3.2 Centralized Controllers

In these contollers, a Supervisor! has been added. It directly tells every
module what to do when the module has to do it (see figure 3.1). Every
module have the same controller but it only listens to the commands of the
Supervisor. This gives more comprehensive sequences as they are totally
linear.

detach(1, 5, ONLY);
rotate(1, 2, -90);
has_rotated(1);
attach(1l, 3, ONLY);
detach(1, 5, WITHOUT);
rotate(1l, 2, 90);
has_rotated(1);
attach(1l, 3, WITHOUT);
attach(1, 5, WITH);

This code, which is for Cube2 modules, makes the module number 1 move
using its lock number 2.

The controllers of the modules are not the interesting part because you
never really use them: you always use the functions of the Supervisor in order
to control the modules. It interacts with the modules using the following
interface :

'In Webots this is a program that controls a world and its robots and that has extended
capabilities, compared to standard robots

CHAPTER 3. THE CONTROLLERS 17

Supervisor [*

Y

A
command| |feedback command| |feedback command| |feedback
Y Y Y

module 1 module 2 module N

Figure 3.1: The Supervisor - modules interactions

e void attach(int module_id, int face_id, int behavior): Tells
the module, whose ID is specified by the first argument, to attach its
face specified by the second argument

e void detach(int module_id, int face_id, int behavior): Tells
the module, whose ID is specified by the first argument, to detach its
face specified by the second argument

e void rotate(int module_id, int servo_id, int angle): Tells the
module, whose ID is specified by the first argument, to rotate its servo
specified by the second argument by the angle, in degrees, specified by
the third argument

e void is_attached(int module_id): Returns only when the module,
whose ID is specified by the argument, has acknowledged its attach-
ment

e void is_detached(int module_id): Returns only when the module,
whose ID is specified by the argument, has acknowledged its detach-
ment

e void has_rotated(int module_id): Returns only when the module,
whose 1D is specified by the argument, has acknowledged its rotation

Remarks :

1. The third argument of the functions attach and detach is used only
for Cube2 and is the one equivalent to the Behaviors argument in the
decentralized controller :

e 0: WITH
e 1 : WITHOUT
e 2 : ONLY

CHAPTER 3. THE CONTROLLERS 18

3.2.1 The Sequence Protocol

In order to ease the use of the Supervisor and to create reconfiguration
sequences more easily, the Supervisor is equipped with a file parser. These
files must be placed in the Supervisor’s directory, must be plain text and
must be written using the small protocol I have created for this. To make
the Supervisor read a file, you simply have to write the full name of the file
in the controllerArgs field which is in the Supervisor node in Webots.
You can make it read various files, one after the other, by placing their
names in the right order in the field and seperate them with white spaces.

The protocol of the files is very simple :

1. A line starting with the “#” character is a comment line

2. All the other lines, which contain more than one character, must be
commands

The following commands have been implemented :

A module_id face_id [behavior]: Attaches the face face_id of module_id
D module_id face_id [behavior]: Detaches the face face_id of module_id

R module_id servo_id value: Rotates the servo servo_id of module_id
by value (an integer, in degrees)

N [angle]: Places a new module on the initial position with a rotation
of angle, in degrees, on the Y axis

0 text: Outputs on the log text (no need for “”)
a module_id: Waits until module_id has attached
d module_id: Waits until module_id has detached

r module_id: Waits until module_id has rotated

Remarks :

. The N command represents a new module reaching the reconfiguration
site. The angle argument is needed in order to allow the module to
start in any position

. The argument behavior is used only for Cube2

CHAPTER 3. THE CONTROLLERS 19

3. The arguments enclosed in square brackets are optional arguments: in
case they are not specified, the default value 0 is used

4. The specification of the protocol, along with an example of use, can
be found in the file sequence_protocol.txt which is located in the
controller’s directory of the Supervisor

Chapter 4

Results

Using everything I developped for this project, I was able to analyze the
fitness of the modules and find macro-movements for the most promising
one. I analyzed only Cubel, Cube2 and Cube3 as the two remaining ones
had some drawbacks explained in 2.4 and 2.5.

4.1 Modules’ Fitness

In order to analyze the fitness of the modules, I had to choose a metric that
would allow me to compare them. After some discussions agreed on the
following measurement :

cost = servos - actions (4.1)

where servos is the number of used servos, we do not count them more
than once if they are used more, and where actions is the total number of
rotations done by servos in the sequence. The lower the cost is, the better
the result is.

Even if it looks simple, this metric gives a good representation of what
we are searching in a good module :
e Neither the organisation nor the number of servos on a module matter:

the important characteristic is that the module uses few of them

¢ Rotating for a small angle or for a big angle does not change anything,
we want to rotate as few times as possible

20

CHAPTER 4. RESULTS 21

Module Passive Structure Active Structure

T1 ‘ T2 ‘ T3 ‘ T4 ‘ T5 H Total cost || T1 ‘ T2 ‘ T3 ‘ T4 ‘ T5 H Total cost
Cubel 2 1 1 X | X 4 10 1 1 16 12 40
Cube2 4 |8 [8 | 0O 2 166 20 | 2 2 0 | 155 39.5
Cube3 2 1 1 | X | 4 48 10 | 1 1 116 | 12 40

Table 4.1: The fitness results

Rank Passive Structure Active Structure
1. Cubel Cube2
2. Cube3 Cubel
3. Cube2 Cube3

Table 4.2: Ranking of the modules

As what we wanted to test was the fitness of a module for self-reconfiguration,
I decided to test each module on all the movements it would need for recon-
figuration. I found five basic movements which are labelled as follows :

T1 The module should move straight forward
T2 The module should turn 90° left

T3 The module should turn 90 ° right

T4 The module should turn 90° up

T5 The module should turn 90° down

I also tested two kinds of environments that reflect the possible ones the
modules could encounter :

Passive Structure The modules are moving on a modified ground which
does not have any servo but have some Connectors , so they have to
move totally by themselves

Active Structure The modules are moving on a structure made out of
other modules that help them as much as possible

The main idea of these tests was to find the smallest group of mod-
ules, or the structure organization, that allows them to perform all these
tests. These configurations, and the structure organization, are represented
in subsections 6.2.1 and 6.2.2 respectively, in the appendix.

CHAPTER 4. RESULTS 22

In the table 4.1 the results of each module for every test are listed. An
“X” symbol in a cell means that the module was unable to perform this
movement. Using these results we can rank them, as shown in table 4.2.

Remarks :

1. It is important to notice that even if Cubel and Cube3 have better re-
sults in Passive Structures, they did not succeed in all the movements.
It is interesting to notice that, even if this looks like a drawback, this
reduces the number of possible paths when reconfigurating which could
be interesting

2. On the Passive Structure, Cubel is marked as unable to perform T5
because it would have needed too many modules in order to achieve it
and this would not have been realizable using real modules

3. In order to achieve T4, Cubel and Cube3 need the help of a specific
part of the structure I called “loading module”; its configuration can
be found in subsection 6.2.3 of the appendix

4. On the active Structure, Cubel and Cube3 have exactly the same
fitness. I placed Cubel over Cube3 because its module is simpler than
the one of Cube3

4.2 Cube2 Macro-movements

For reconfiguration, the main goal is to place every module at the useful
position on the structure. In order to achieve that, the modules need to move
over the structure itself. As this structure is made out of other modules, it
is what I called in my tests an Active Structure. For me, Cube2 is the most
promising module as it has the best results on Active Structures. Moreover,
it is the only one that is able to perform all the movements on Passive ones
too.

In order to find macro-movements, we tried to create a piece of furniture
with this type of modules. Using the sequence of movements needed by the
modules to get in place, I was able to isolate totally five macro-movements :
M1 Move on our own to a side module (Fig. 4.1)

M2 Move on our own from a face to another one (Fig. 4.2)

M3 Move another module from a side module onto ourselves (Fig. 4.3)

CHAPTER 4. RESULTS 23

M4 Move another module from ourself onto a side module (Fig. 4.4)

M5 Move another module from a face to another one (Fig. 4.5)

The pseudo-codes corresponding to these movements are available in
table 4.3. Note that in these figures :

e The dashed cube is the moving module

e The green cube is the module that is using its lock

The red L-shape is the used lock

The red arrow is the movement of the lock

e The black arrow is the movement of the module

Remarks about the macro-movements :

1. The sign of the rotation can change depending on the orientation of
the module

2. Ensure all are connected means that we need to reconnect all the
Connectors which have be disconnected during the macro-movement

3. The commands given here in pseudo-code are macro-commands that
could need to be replaced by more than one “real” command

A i

Figure 4.1: The macro-movement M1

CHAPTER 4. RESULTS

[. [.
Figure 4.2: The macro-movement M2
F--..-'. F--..-'. F--..-'.
Figure 4.3: The macro-movement M3
f....-.. f....-.. f....-..

£

—

Figure 4.4: The macro-movement M4

peEEEEE T peEEEEE T
. ' . '
L] L]
| | " | | :
|] n |]
[] - []
EEEEE -
L]
|]
]
L]
| |
]
EEEEEEn

Figure 4.5: The macro-movement M5

24

CHAPTER 4. RESULTS

25

Attach the lock

Rotate —90°
Wait

Detach the module

Attach the module
Ensure all are connected

M1 M2

Free the lock Free the lock
Rotate 90° Rotate 180°
Wait Wait

Attach the lock

Rotate —180°
Wait

Detach the module

Attach the module
Ensure all are connected

M3 M4 M5

Free the lock Free the lock Free the lock

Rotate 90° Attach the lock Rotate 180°

Wait Wait Wait

Attach the lock Detach the module Attach the lock

Wait Rotate 90 ° Wait

Detach the module Wait Detach the module

Rotate —90° Attach the module Rotate —180°

Wait Detach the lock Wait

Attach the module Rotate —90° Attach the module

Ensure all are connected | Wait Ensure all are connected
Ensure all are connected

Table 4.3: The macro-movements in pseudo-code

Chapter 5

Conclusion

The main goal of this project was to develop a new module that could be used
for reconfiguration in the Roombots project. As I was starting from scratch,
I created the simulated models of the possible modules, I implemented the
necessary controllers and I elaborated the tests used to measure the module’s
fitness for self-reconfiguration.

During this project and using the tests I made, I was able to first remove
the unsuitable modules and then rank the useful ones. It gave me a clear
idea about what the advantages and the drawbacks of each module were.
It allowed me to select the more promising model and to try a centralized
controller on it. Cube2 looks very promising even if it might be technically
more difficult to build.

I had also the surprise to notice that in the case of Cube3, adding more
degrees of freedom does not increase the capabilities of the module with
respect to the ones of Cubel.

I hope the work I did will be useful and will ease the use of these modules
in the Roombots project. I am confident in the fact that finding macro-
movements like I did for Cube2 is useful in order to find the reconfiguration
sequences. I also think that the tools I have created will allow everyone to
find the macro-movements for the remaining modules and new ones too.

26

Chapter 6

Appendix

6.1 Organization Of The Files

All the work I have done during this semester project can be found on the
attached CD. It is also on the web page of the BIRG’s group in the projects
branch. This file are organized as on figure 6.1.

e The folder movements_active_structure contains all the files used for
the tests T1 to T5 on an Active Structure, except the ones for Cube3
as its movements are exactly the same as the ones of Cubel. T1 for
Cube3 is included as an example

e The folder movements_passive_structure contains all the files used
for the tests T1 to T5 on a Passive Structure, except the files corre-
sponding to the tests a module did not achieve

e The folder removed_models contains the Webots files for the models
of Cube4 and Cubeb

e The folder roombots_centralized contains the Webots files and the
centralized controllers for the models Cubel, Cube2 and Cube3, along
with the controller for the Supervisor and the sequence_protocol.txt

file

e The folder roombots_decentralized contains the Webots files and
the decentralized controllers for the models Cubel, Cube2 and Cube3

e The folder roombots_stool_example contains the Webots files and
the centralized controllers used to create a basic stool using Cube2

27

CHAPTER 6. APPENDIX 28

modules. These are the files I used to find the macro-movements of
the Cube2 module

report_blanchoud

report_blanchoud.pdf

fitness_tests

E --------- movements_active_structure

R movements_passive_structure

roombots_models

removed_models

roombots_centralized

N roombots_decentralized

R roombots_stool_example

Figure 6.1: The organization of my files

CHAPTER 6. APPENDIX 29

6.2 Modules’ Configurations

In all the figures of this section, I follow the Webots color convention for the
axes orientation :

X : Red
Y : Green
Z : Blue

6.2.1 Smallest Moving Group

oS>
annveas

Figure 6.2: The Cubel’s smallest group

/

y

Figure 6.3: The Cube2’s smallest group

CHAPTER 6. APPENDIX

Figure 6.4: The Cube3’s smallest group

30

CHAPTER 6. APPENDIX

6.2.2 Structure Organization

S S S

Figure 6.5: The Cubel’s structure organization

NIm N\

17 s a7

Figure 6.6: The Cube2’s structure organization

()

Figure 6.7: The Cube3’s structure organization

31

CHAPTER 6. APPENDIX 32

6.2.3 Loading Module

P
/

P

Figure 6.8: On the left, the loading module when moving up; on the right,
the loading module when moving down

The loading modules must be attached to the structure either on face 0
on of face 5 of the “base” module. The “base” module is the back one for
the up-loading module, and is the lower one for the down-loading module.

CHAPTER 6. APPENDIX 33

Figure 6.9: The loading sequence when moving up

CHAPTER 6. APPENDIX 34

Figure 6.10: The loading sequence when moving down

	Introduction
	The Roombots Project
	Goals Of The Project
	Tools
	State Of The Art

	The Modules
	Cube1
	Cube2
	Cube3
	Cube4
	Cube5

	The Controllers
	Decentralized Controllers
	Centralized Controllers
	The Sequence Protocol

	Results
	Modules' Fitness
	Cube2 Macro-movements

	Conclusion
	Appendix
	Organization Of The Files
	Modules' Configurations
	Smallest Moving Group
	Structure Organization
	Loading Module

