
Adding Vision to a
Salamander/Snake-Robot

Benoit RAT, Master Student
SSC - IC - EPFL

benoit.rat@epfl.ch

Supervisor
Dr, Francois Fleuret, Visiting Research Associate

CVLAB - IC - EPFL
francois.fleuret@epfl.ch

Collaborators
Alessandro Crespi, PhD Student

Prof, Auke Jan Ijspeert, Assistant Professor
BIRG - IC - EPFL

alessandro.crespi@epfl.ch,auke.ijspeert@epfl.ch

February 16, 2007

Contents

1 Introduction 4

2 Project Definition 5
2.1 Goals . 5
2.2 Hardware . 5
2.3 Software . 6

3 Salamander-Robot Locomotion 7
3.1 Capture . 7
3.2 The robot CPG . 9

4 Color Tracking 12
4.1 Color Space . 12
4.2 Adaptation on Illuminant . 13
4.3 Color density modelling . 17

4.3.1 Gaussian density function . 17
4.3.2 Speed up . 18

4.4 Finding the mask . 20
4.4.1 Morphological operations . 20
4.4.2 Mean position of the mask . 20
4.4.3 Blob algorithm . 21
4.4.4 Finding the best square . 22

4.5 Integral Image . 22
4.6 Tracking Color Online . 24

5 Matching Patch Tracking 26
5.1 Histograms matching . 26

5.1.1 Classical histograms building . 26
5.1.2 Histograms with votes in two bins 27
5.1.3 The layered Integral Bin Image (LIBI) 27

5.2 Matching patch algorithm . 29
5.2.1 Selecting patch . 29
5.2.2 Find patch to match . 30
5.2.3 Increase speed . 32

5.3 R.A.N.S.A.C . 35
5.4 Experiment Results . 38

5.4.1 Matching patch algorithm results 38

2

Contents Contents

5.4.2 R.A.N.S.A.C results . 41

6 Project Status 44
6.1 Conclusion . 44

6.1.1 Color tracking . 44
6.1.2 Matching patch algorithm . 44

6.2 Future Improvements . 44
6.2.1 Hardware improvements . 44
6.2.2 Color tracking . 45
6.2.3 Matching patch tracking . 45

3

1 Introduction

Over the last decades, in the fields of the robotics, algorithms and mechanics inspired
by the real-world have started to be used. In order to obtain realistic gaits for different
robots, research has been focused on how to handle multiple degrees of freedom, various
type of redundancies in movement and smooth transitions between gaits. It has been
demonstrated that bio-inspired robots only need to generate specific rhythms to produce
a gait. However feedback and higher control center should also be implemented in order
to strongly modulated these rhythms and optimize the gait.

The Biologically Inspired Robotics Group, BIRG at EPFL is currently designing two
bio-inspired robots: The salamander robot and the amphibious robot. They can provide
complex gaits under different stimuli. Simulating a good response to a stimulus is not
an easy task due to the absence of feedback. In order to handle this lack of informa-
tion, artificial vision can be implemented on these robots. Vision is very interesting in
bio-inspired robotics since it can easily generate a multitude of distinct stimuli (avoid-
ing obstacle, exploration, following objects,...). Moreover, when the robot changes its
motion, it receives feedback, in the sense the sense that its field of vision in modified.

This project focus on primary level of artificial vision such as color segmentation. A
robust algorithm for color based tracking supporting changes of illumination is imple-
mented. By using this algorithm the robots are able to follow a pink ball in real-time
generating specific stimuli. A more complex artificial vision process has also been de-
veloped during the resarch phase. This second algorithm finds the geometrical trans-
formation between two consecutive frames and thus deduces the relative position of our
robot.

4

2 Project Definition

As the project is named Adding Vision to Salamander/Snake Robots it is referenced in
the further chapters with the acronym AV2SR.

2.1 Goals

Initially, the goals of the AV2SR project were to design algorithms for stimulus tracking
and obstacle avoidance for the robot moving in cluttered environments. The algorithms
needed to be tested on the real robot in engineered environments of increasing complex-
ity.

As it is a wide subject we focus on these principal features:

• Capture videos and study the robot gaits.

• Color tracking: The salamander should be able to follow a color ball and change
its trajectory to keep the ball in it vision field.

• Matching Patch algorithm: Detect the transformation between two frames in order
to estimate its relative position.

2.2 Hardware

Adding vision on a robot is not an easy task. The vision algorithms should be able to
work in real time and modify the gaits on the fly. For this purpose we used specific
hardware:

• The salamander/snake-robot: We used during the whole development phase two
robots developed by the BIRG (Ijspeert et al. 2005). The salamander robot which
is able to walk and swim. And a amphibious robot (aka snake robot) which is able
to crawl. The Section 3.2 describes in more detail how these robots work.

• Sony Photos Camera: A simple photo camera was used in video mode at the
beginning of the project. It was a temporary solution in order to start working
with offline videos. (Section 3.1)

• Radio-Camera: Later, a radio camera1 is installed on the head of the salamander
robot. It has CMOS color sensors with a minimum luminous intensity of 3 Lux.

1Color radio camera - Nr. 75 11 76, Conrad, www.conrad.com

5

Software Project Definition

Its resolution is 628 × 582 (PAL) and it transmits data by radio in a range of
frequencies between 2.4-2.4845 Ghz. It was a simple solution to solve the problem
of an embedded camera on the salamander-robot. (c.f. Section 3.1)

• The frame grabber:
The GrabBeeX+deluxe2 is a simple frame grabber that permits to convert a
signal receive on a RCA composite and transmits it by USB 2.0 on a computer. It
works with different video formats, included PAL (25fps), and can capture image
in a resolution of 640× 480 pixels.
As the GrabBeeX do not have drivers that work properly on a Unix OS, our
application should be run on a Windows/Mac platform.

2.3 Software

The development of AV2SR was done in three steps:

Firstly, Matlab3 was used during the initial research phase. As Matlab is an easy
script language, it is a convenient solution for rapid prototyping algorithms, and test
them easily on a video. However its main disavantage, as all script languages, it is really
slow in computation time.

To solve the time dependency problem. A library called c4m4 was added to Matlab
code. This library can be resumed as an interface between Matlab and C language
using MexFile. Using C language permits to increase speed on the bottle neck parts of
our algorithm while the flexibility of a script language is still used in other parts. As it is
a proprietary library, the source code can not be join to this project. This is something
that we are not expecting from an educative semester project.

Finally, the code was written in C++, to decrease the computation time and avoid
the proprietary problem. OpenCV5 library was mainly used to manipulate images and
the STL to make a portable code.
The C++ code was first written in a Unix environment using Vim6 editor. However,
during the implementation of the online part of the color tracker, we have constated
that the GrabBeeX+ frame grabber was not supported on Unix environment. Thus
this algorithm was ported in Visual Studio C++ 6.0 and slightly modified to make
it compatible with Windows.

2GrabBeeX+deluxe, Greada, www.greada.com
3Matlab R2006b, Mathwork, www.mathworks.com/products/
4C4M (C for Matlab) library, STMicroelectronics, www.st.com/
5OpenCV (Open Source Computer Vision), Intel, www.intel.com/technology/computing/opencv/
6Graphical Vim Editor (VI IMproved) 7.x, www.vim.org

6

3 Salamander-Robot Locomotion

3.1 Capture

We have initially started using a digital photo camera for making the first videos. They
were not perfect due to the slow autofocus of the camera who lead to a motion blur on
40% of the frames. It was, at least, a starting point to study salamander movement and
implement first algorithms.

The second session of videos capture was with the radio-camera (Section 2.2). It has a
lot of advantage to use it with a robot: The camera is really light so it can be placed on
the head of the robot without consequence. As both radio-camera and salamander/snake
robot use wireless channel for communication with a computer, we can implement algo-
rithms in real time that capture the vision field, process them and send back a response
to the robot.

However the radio-camera generates a lot of problems that we need to take into ac-
count :

1. As it used radio frequencies it has a lot of problem to transmit a perfect frame
to the receptor. It is worse when the robot is in movement near something with
metal. In the worst case, a bad transmission can last 10 frames (about 0.5s).

2. This also implies, that a frame can be wrongly transmitted. This is worse than
random noise because our algorithm can detect something that does not exist or
that is not at the right place. The Figure 3.1 shows pink blots which can be
considered as the pink ball. This demonstrates the need to implement algorithms
which can reject false positive objects/frames or simply avoid that a false positive
could bad influence our algorithm.

Figure 3.1: Bad frame with pink blots, it can be detect as the pink ball (False Positive)
if we use an algorithm with only a color scheme

7

Capture Salamander-Robot Locomotion

3. The receptor always receives an external signal periodically even if the camera is
near it. We have presumed that this type of interference comes from the wire-
less network used in our faculty and should correspond to the SSSID Broadcast.
(Figure 3.2)

Figure 3.2: Periodical interference due to the wireless network

4. The problems due to radio transmission are not the only one. The camera itself
generates bad inputs. A blurring effect can be observed during motion (Figure 3.3).
The autofocus is not in cause this time because the camera does not have this
option, it always focus on infinity . This may come from the CMOS captors which
need a long exposure time to render correctly the environment.

(a) blurry frame (b) correct focus

Figure 3.3: Difference of focus between 2 frames due to motion

5. Quick changes of illumination between two frames can also be observed (Fig-
ure 3.4). This is an important thing to consider during our implementation of
the color tracker and the matching by histograms patches. We should try to esti-
mate the global illumination of the image and change parameters of our algorithms
considering it.

8

The robot CPG Salamander-Robot Locomotion

(a) natural or cold color (b) warmer color

Figure 3.4: Difference of color between 2 frames due to a quick change of illumination

3.2 The robot CPG

The salamander and snake robot were studied due to their ability to deal with difficult
environments (Ijspeert 2001), in which other types of robots often fail. They also have
a neuronal system easier to model than mammals (Roth & Al., 1993, 1997).

We first started studying the salamander robot due to its interesting particularity of
using two gaits of locomotion: swimming and walking. Both are completely different,
but the salamander surprisingly manages to switch from one to the other as soon as it
passes from one environment to the other (water to ground and ground to water). Since
the radio-camera is not waterproof, it was impossible to test our algorithm when the
salamander was swimming. Therefore, the snake robot (Crespi & Ijspeert 2006) was
used in its crawling gaits, because it is similar to the swimming gait of the salamander.

To implement on these robots gaits inspirated from the real world, namely by trying
to imitate the behavior of a real reptile, we use an on-board central pattern generator
(CPG) :

A CPG is a system of coupled nonlinear oscillators that controls the locomotion (Fig-
ure 3.5). Remarkably those systems are able to convert a one dimensional signal such as
a firing rate into a locomotion with corresponding speed/frequency. In other words, they
can generate complex control patterns from simple tonic inputs. In the actual version
of the robot, we are able to send these tonic inputs on the fly by using transmission
between a computer and the robot over a wireless channel.

From an hardware point of view, the salamander robot consists of nine body segments
of equal length:

• The first segment (the head of the salamander) is equipped with the radio-camera
describe in Section 2.2.

• The second and sixth have each a leg on both sides. The legs are controlled by
the CPG and are constructed to rotate continuously on a frequency related to the

9

The robot CPG Salamander-Robot Locomotion

Figure 3.5: Structure of the CPG: A system of non-linear coupled oscillators that gen-
erates patterns (rhythms).

whole body. When the salamander is swimming the CPG do not send informations
to the leg motors, they are maintained parallel to the body.

• Further motors are used to bend the robot, they can admit angles of up to 65◦

(during swimming) and are installed in between the segments two to five and six
to nine.

The snake robot is similar to the salamander without the leg motors. Consequently it
has more “bending” motors to control its gaits.

The CPG generates two types of signals during the different gaits:

1. The travelling waves: Corresponds to the signals generated by the snake-robot
while crawling and the both robots while they are swimming. The Figure 3.6
illustrates the different signals generated by the oscillators in the CPG. We can
clearly see that there is the same shifted phase between each signals. This Figure
also show how the robots handle the brutal changes of parameters by making
smooth transitions.

2. The standing waves: Corresponds to the signals generated by the salamander robot
while walking. The legs are synchronized with the frequency of the body such that
a foot touches the ground when on a bump and leaves it after the stride when it is
in a dip (See figure 3.7). In order to obtain such a gait in the robot the first three
bending motors are controlled with a time dependent sine and the last three with

10

The robot CPG Salamander-Robot Locomotion

Figure 3.6: Travelling waves generate by the CPG. At t = 5s, The amplitude and fre-
quency is reduced. At t = 15s, same signals than [0, 5] with half amplitude.
At t = 15s the difference of phase is inverted

Figure 3.7: S-shape of the salamander and corresponding position of the legs

the same signal shifted by π. This leads to the desired oscillating S-shape. Then
the legs are connected to the oscillators to generate their synchronized rotations.
The standing wave also provides smooth transition while a parameter is modified.

The robots store in internal registers all the parameters to produce a desired gait.
These internal registers correspond to the tonic inputs see previously. In our application
we focus on two of them:

• The turn that changes the center of oscillation in order to make the robot goes on
the left or right.

• The drive which interpolates different amplitudes and frequencies knowing the best
couples. The drive is then scaled between 0 and 5 which correspond to the different
“speeds” that the robot can have during its locomotion.

11

4 Color Tracking

Color tracking has been mainly used as initial pre-processing for faces detection and
tracking (Anisetti et al. 2006). To resolve the problem of skin color segmentation several
approaches has been developed. Comparative studies has been done by Vezhnevets V.
(2005), Terrillon et al. (2000) and Storring (2000).

This part of the AV2SR project is focusing on the implementation of a simple and
quick algorithm to make our salamander/snake-robot able to follow a pink ball. Since
the AIBO1 robot is delivered with a pink ball and a pink bone that it is able to follow,
we have used the same ball in order to develop this algorithm for our robot.

4.1 Color Space

A color model is an abstract mathematical model describing the way colors can be rep-
resented as tuples of numbers, typically as three or four values or color components. The
color space is the function which maps these values to a referenced system according to
its color gamut. The gamut correspond to the subset of color that an output device
can display. As the gamut of papers, LCD monitors, TV is not the same, they can not
show/render exactly the same color to the human eyes. Therefore different color spaces
need to be used depending on the type of applications. The most common color space
is RGB, and mainly use to store color values in digital data.

However, RGB is a very correlated color space. This means that it is difficult to make
a color brighter without changing at least the values of two dimensions. Moreover RGB
has its color values represented in three dimensions and this can make the computation
cost heavier due to the fact that each channel has to be processed.

Several color coding spaces were compared in (Vezhnevets V. 2005, Storring 2000) to
find the one with the best skin color segmentation. As these publications are skin color
specific we try to focus on other papers to select the color space corresponding to our
application.

The most important set of color coding spaces is the set of chrominance spaces devel-
oped using knowledge about human color perception (Terrillon et al. 2000): The human
visual system forms an achromatic channel and two chromatic color-difference channels

1AIBO Robot, Sony, www.sony.net/Products/aibo/

12

Adaptation on Illuminant Color Tracking

in the retina. It has considerably less spatial acuity for color information than for bright-
ness. Therefore a color image can be coded into a wide-band component representative
of brightness, and two narrow-band color components, where each color component has
less resolution than brightness.

This propriety was used for video coding, and Y CrCb, a typical chrominance color
space, is commonly used by European television studios and for image compression.
Color is represented by luma (which is luminance, computed from nonlinear RGB), con-
structed as a weighted sum of the RGB values, and two color difference values Cr and
Cb that are formed by subtracting luma from RGB red and blue components.

Y = 0.299R + 0.587G + 0.114B (4.1)
Cr = R− Y (4.2)
Cb = B − Y (4.3)

The transformation simplicity and explicit separation of luminance and chrominance
components makes this colorspace attractive for our segmentation problem. Moreover
as explained above, Y CrCb is mainly use in video applications, which means that the
camera used on the salamander could have Y CrCb as native color space encoding. In our
case, the radio-camera does not permit this option, therefore each frames are converted
from RGB into Y CrCb.

For a simplification of notation Y CrCb will be denoted YCC.

4.2 Adaptation on Illuminant

Once YCC has been selected as the color space of our application, the illumination of
the scene need to be studied in order to make the algorithm working independly from
the source light. The channel Y also called luma or luminance do not represent the
same quantification than the illuminant. The luminance corresponds to a quantitative
photometric measure of the density of the luminous intensity in a given direction whereas
the illuminant corresponds to the total luminous flux incident on a surface.

In this part, we focus on the term illumination which can be referred informally to the
color temperature. The color temperature of a light source is determined by comparing
its hue with a theoretical, heated black-body radiator. The Kelvin temperature at which
the heated black-body radiator matches the hue of the light source is that source’s color
temperature. In other words, taking a picture with a day-light illumination will not
render the same as taking the same picture neither with an indoor incandescent light
nor a fluorescent light. From Figure 4.1 we can see that an object under incandescent
light (color temperature of 3800K) will seem more reddish (red is more reflect) than the
same one under a daylight illuminant.

13

Adaptation on Illuminant Color Tracking

Figure 4.1: Black-body radiation curves for different color temperatures

Figure 4.2: Reference white point for different color temperature in CrCb space

Human vision deals with these changes of illumination to make objects appear the
same color under different color temperatures. A banana always appears yellow, whether
viewed at night or during the day. This feature of the visual system is called chromatic
adaptation, or color constancy. Different techniques have been introduce to simulate
this effect (Finlayson et al. 1995). The white balancing is one of the most famous, and
it consists to balance all the colors depending a reference white. The Figure 4.2 shows
the white references in the CrCb space under different illuminations.

To make skin recognition independent from illumination, Hsu et al. (2002) introduce
a technique that estimates “reference white” to normalize the color appearance. They
regard pixels with top 5 percent of the luma (nonlinear gamma-corrected luminance)
values as the reference white if the number of these reference-white pixels is larger
than 100. Finally they introduce a non-linear transformation on YCC images to obtain
a luma-independent chromatic colors space, and thus process their skin segmentation
easier. Phung et al. (2002) decided to take into account the luma channel Y to process
their skin detection algorithm approximating the luminance by 3 levels: low, medium,
high.

As a bad pre-white balancing is include in the native mode of our radio-camera and
impossible to remove, the algorithm used by Hsu et al. (2002) is difficult to implement.

14

Adaptation on Illuminant Color Tracking

So, we have decided to use an approach similar to Phung et al. (2002) by approximating
the luminance in 3 levels.

We compute the distribution in Cr and Cb channels of our pink ball, and the total
luminance of our image under 3 different illuminations. The computation of the distri-
bution was done by setting a handmade mask on the ball for different frames under each
type of illumination. The Figure 4.3 shows the different type of illuminations and their
corresponding masks.

• Low: Artificial illumination of the laboratory light with the robot and the pink
ball under a table.

• Medium: Artificial illumination of the laboratory light with the robot directly
under the source light.

• High: Day-light illumination with the robot and the ball near a window.

Finally we obtain 3 slightly different distributions depending on the luma value. The
distribution under medium illumination is shown in next Section with Figure 4.5.

(a) low illuminant (b) medium illuminant (c) high illuminant

(d) The corresponding handmade masks

Figure 4.3: Images and their corresponding handmade masks under 3 different illumi-
nants

An handmade mask has been draw for 5 different frames under the 3 types of illumi-
nations, then all parameters have been computed for each illumination. The results of
this experience are displayed in two tables. Table 4.1 show all the parameters to model
the Gaussian density of the pink ball and Table 4.2 shows the parameters of the relative
luma (Y channel) under the 3 different illuminations.

15

Adaptation on Illuminant Color Tracking

Compute with the pink ball mask
illumination type µCr µCb σCr σCb ρ (CrCb) µY σY

low 161.57 120.73 4.67 1.86 -0.28 87.04 12.97
medium 174.06 124.37 13.60 5.63 -0.47 164.12 20.11
high 178.75 125.93 14.92 7.49 -0.52 182.06 21.13

Table 4.1: Parameters to model the Gaussian density of the pink ball under different
illuminations

illumination type µY σY

low 94.16 29.59
medium 130.02 43.19
high 152.25 47.78

Table 4.2: Mean and standard deviation of the Y channel under different illuminations

with µ: the mean, σ: the standard deviation, ρ: the coefficient of covariance between
CrCb.

Selecting the different parameters to model the pink ball distribution is done in func-
tion of the luma: The mean and variance of the whole Y channel (luma channel) are
computed and then compared to their references under different types of illumination.
A simple Gaussian function is used to determine which type of illumination generates
the highest score.

Figure 4.4 illustrates the Table 4.1. It also demonstrates that it is easier to make
color tracking when the illuminant is low due to the fact that standard deviation is very
small. A high illuminant is the worst case due to the fact that the surface of the plastic
pink ball is relatively specular and can behave like a mirror.

Figure 4.4: Representation of the Gaussian density parameters by an ellipse for each
illuminant (Red ⇔ Low, Green ⇔ Medium, Blue ⇔ High)

16

Color density modelling Color Tracking

4.3 Color density modelling

Before processing this algorithm we first blur our image in the Cr and Cb channel to
remove undesired noise. (A mean blurring with a kernel of 3 × 3 pixels is applied to
remove high frequency on color.)

Once we have converted our images in a 2D color space, we need to compare them
with the different models obtained in Table 4.1. Probalistic density functions can be
used to resolve this issue.

4.3.1 Gaussian density function

As the ball has a uniform color we can model it by a mono-modal distribution. Therefore
the use of a single Gaussian density function is legitimate. Moreover Gaussians are fast
to compute.

A multidimensional Gaussian in <p can be express as follows:

f(~x, (~µ, Σ)) =
1√

(2π)pdet(Σ)
exp

(
−1

2(~x− ~µ)tΣ−1(~x− ~µ))
(4.4)

with the covariance Matrix : Σi,j = COV (Xi, Xj).

In the CrCb space we have (Bidimensionals space):

Σ =

∣∣∣∣∣ σ2
cr ρσcrσcb

ρσcrσcb σ2
cb

∣∣∣∣∣ (4.5)

As explained in Section 4.2, the different parameters of the Gaussian distribution
are taken from Table 4.1 according to the luma values of the whole image. For more
clearness, in all figures presented further we used parameters coming from a medium
illumination.

In a perfect color space we should have both chromacities completely independent,
which is not our case. So we compute our model with and without the coefficient of
covariance ρ. In figure 4.5 we can see that taking into account the covariance we have
the Gaussian distribution rotated. This mean that when the color change on the red
chromacity, it also modifies a little bit the blue chromacity. We can also see in this
example that we have much more variation in the Cr channel due to the fact that we
set-up our detector on a pink ball.

For the further explanation we expand the expression in the exponential to obtain:

((~x− ~µ)tΣ−1(~x− ~µ)) =
1

det(Σ)
((∆crσcb)2 + (∆cbσcr)2 − 2ρσcrσcb∆cr∆cb) (4.6)

17

Color density modelling Color Tracking

with: ∆Cr = (XCr − µCr) and ∆cb = (Xcb − µcb)

The Gaussian function returns a number between 0 and 1. It will be mapped on a
”byte” image (values ∈ [0, 255]).

4.3.2 Speed up

To accelerate our algorithm we want to discard the computation of the exponential when
the probability of a pixel to be in our selected zone is really small (to have the smallest
pixel with value 1 we need to have ε = 1

255):

exp(−1
2
(~x− ~µ)tΣ−1(~x− ~µ)) ≤ ε (4.7)

(∆crσcb)2 + (∆cbσcr)2 − 2ρσcrσcb∆cr∆cb ≥ −2det(Σ)log(ε) (4.8)

The box that have all the values upper than ε inside is defined by boundary(∆Cr) and
boundary(∆cb) which correspond respectively to half of its width and height. To find
this box we remove the terms of covariance ρ = 0. Intuitively, the covariance do not
enter in this calculation due to the fact that only the two variances limit the gaussian
density in spreading. This give us an expression that can be evaluated quickly in order
to avoid computing the exponential and the square powers:

|∆cr| > boundary(∆cr) =
√
−2σ2

crlog(ε) or, (4.9)

|∆cb| > boundary(∆cb) =
√
−2σ2

cblog(ε) (4.10)

The representation of these two boundaries is done in Figure 4.5 by a blue box.

At the end of this algorithm, we obtain a probability map image (values ∈ [0, 255])
that represent the response of the gaussian density function. The probability map of
Figure 4.6(a) is displayed in Figure 4.6(b).

18

Color density modelling Color Tracking

(a) without covariance (ρ = 0) (b) with covariance

Figure 4.5: 2D Gaussian distribution and its box for the the pink ball’s color under
medium illumination.

(a) Original frame (b) Probability Map

Figure 4.6: Applying the gaussian density function with parameters computed under
medium illumination

In Section 4.2 an offline illuminant adaptation algorithm has been presented. We have
also tested a different process that try to adapt the gaussian parameters online:

We use a distribution of the pink ball color with a large variance to process the 2D
gaussian density function. Then we obtain a probability map on a bigger zone than the
ball. From this temporary map we select a new mean for Cr, and Cb (taking in account
that they can not be far from the default values). With these new means we run another
time the algorithm with a smaller variance in order to select only the pink ball this time.
This algorithm works well if the illumation makes smooth changes which is not the case
when the robot moves. It’s why we prefer to use only the offline illuminant adaptation.

19

Finding the mask Color Tracking

4.4 Finding the mask

4.4.1 Morphological operations

The probability map is then thresholded to create a mask. A threshold of 50 is applied
which means that all pixels inferior to this limit are equal to 0 and the others to 255. To
accelerate the computation, the formula to test the Gaussian box (Equation 4.9) could
be used with ε = 50

255 , but we have preferred to keep the probability map in its original
version for future processing (as online illuminant adaptation).

Once we obtain a mask of the pink ball, we use morphological operations in order to
find a shape more similar to the pink ball. We process 2 times an erode operation in
order to remove the noise. Then we process 4 times a dillate operation to try to fill
the holes. These operations refer also to an opening operation with a kernel size for
both operators equal to 3× 3 pixels.

The Figure 4.7 represents each step of these operations and corresponds to the frame
in Figure 4.6(a).

(a) Threshold operation (b) Eroded operation (c) Dilate operation

Figure 4.7: Simple operations applied to remove noise

This new mask that seems to correspond to the pink ball, have an area and a position
that we need to communicate to our robot. In order to find these parameters we have
developed different algorithms:

4.4.2 Mean position of the mask

We first compute the mean and variance of the position of all pixels equal to one in
our mask. This simple and fast algorithm work well if we don’t have a lot of noises in
the mask or if the pink ball is the only pink element in all the images. For example in
Figure 4.8 there is two small pink objects on the left of the image and our ball on the
right. This algorithm find the mean position in the center of the image and the variance
on x coordinate extremely high.

20

Finding the mask Color Tracking

Figure 4.8: Square is given by center = (µx, µy) and [width, height] = 4 ∗ [σx, σy]

4.4.3 Blob algorithm

A blob algorithm has been tested to solve this problem. It sets the same label to all
pixels that are contiguous. Once this process is done we look for the biggest component
connex (the most used label), and then compute the mean and variance of all pixels
position in this blob.

However this algorithm has two drawbacks: Firstly, its cost in computation for finding
the blob. Secondly the fact that is not readily adaptable when the pink ball color mask
is separated. For example when the camera receiver transmits interferences, noisy-lines
can be observed on our videos. Figure 4.9 illustrates how these kind of lines typically
cut the mask in two parts and the problems generated for further processing.

(a) Original Mask (b) Blob labeling (c) Selected Blob

Figure 4.9: Problems in blob selection when interferences divide the mask

21

Integral Image Color Tracking

4.4.4 Finding the best square

Another fast algorithm has been applied to beat this problem using the fact that we
are looking for a circle shape. We have define a simple rule where the score of a square
corresponds to:

score(x, y, d) =
∑

‖x′ − x‖ ≤ d
‖y′ − y‖ ≤ d

mask(x′, y′)− κd2 (4.11)

This equation mean that we are looking if a square have the highest mask area (num-
ber of white pixel) knowing that in the corners there is no ball (black pixels). The κ
represents the black pixel in the corners and it permits to neither take the biggest square
where we have all white pixels (κ = 0), nor a small one full of white to not introduce
error (κ = 1).

In a formal way, κ derives from the circle and square areas. We have computed the
formula bellow knowing that our mask never has a perfect circle shape.

κ = 1− πr2

d2
= 1− πr2

4r2
= 1− π

4
' 0.2 (4.12)

with d = 2r = square size, r = radius

Now that this rule is defined we need to compute this operation on all possible squares
in the image in order to find the highest score. Doing this operation in real time using
a brutal method is impossible.

We first reduce the number of squares size, starting with d = 30 and then incrementing
it by a factor of 1.2 (dnext = 1.2× d). Taking the first square with a size d = 30 avoids
computing a lot of operations and also removes frames with only small spots coming
from noises.

Although we have reduced the set of squares to test, computing at each different scales
and positions the sum of all pixels in the patch is still to slow. To deal with this issue
we use integral images.

4.5 Integral Image

Integral image was first used in computer graphic for texture mapping (Crow 1984) and
then in image processing (Simard et al. 1999). A famous face detection algorithm (Viola
& Jones 2001) illustrates their efficiency.

The integral image at location x, y contains the sum of the pixels above and to the
left of x, y inclusive:

22

Integral Image Color Tracking

iim(x, y) =
y∑

y′=0

x∑
x′=0

im(x′, y′), (4.13)

where iim(x, y) is the integral image and im(x, y) is the original image (see Figure 4.10).

Figure 4.10: The value of the integral image at point x, y is the sum of all the pixels
above and to the left.

We can use the following relation of recurrence to compute more efficiently the integral
image:

s(x, y) = s(x, y − 1) + im(x, y) (4.14)
iim(x, y) = iim(x− 1, y) + s(x, y) (4.15)

(where s(x, y) is the cumulative row sum, s(x,-1)=0, and iim(-1,y) =0).
The integral image can be computed in one pass over the original image.

Now using the integral image we can compute the sum of pixels over any rectangle
with only four array references (see Figure 4.11).

23

Tracking Color Online Color Tracking

Figure 4.11: The sum of the pixels within rectangle D can be computed with four array
references. The value of the integral image at location 1 is the sum of the
pixels in rectangle A. The value at location 2 is A+B at location 3 is A+C,
and at location 4 is A + B + C + D. The sum within D can be computed
as 4 + 1− (2 + 3) = A + B + C + D + A− (A + C + A + B) = D

Once the integral image of the mask is computed, we apply the 4 array references
scheme (Figure 4.11) and the formula 4.11 on different square position and size in order
to find the best square. Figure 4.12 shows how the last algorithm can handle the problem
of small pink object in a frame which is not the case of simple mean and var of position
in Figure 4.8.

Figure 4.12: Square found using integral image and Formula 4.11.

4.6 Tracking Color Online

In this last part we implement our algorithm to make it work online with the robot.
A class in C++ was developed to provide communications between our program and
the server connected to the robot by wireless. In this report, we will not extend on the
implementation of this class. More informations can be find in the C++ code.

24

Tracking Color Online Color Tracking

The output of the color tracking algorithm return only two parameters: the position
and the size of the square. Consequently, we play with only with two registers which
respectively correspond to the turn and the drive of the robot (c.f. Section 3.2).

To make the motion of the robot realistic, a simple heuristic has been used. We
compute the mean of the square size and its position respected to the center over
1
5s = 0.20 × 25fps = 5 frames and 2s = 2s × 25fps = 50 frames. We have repre-
sented this model using two different queue sizes for the two input parameters. The first
one represent quick changes while the second represent changes more stable.

Then we use these two new outputs in order to make the robot:

• Accelerating to reach the ball when it is far away.

• Moving slowly or stopping when the ball is near.

• Looking for the ball making more rotation when no pink ball is founded.

These two outputs drastically change in some cases but the CPG in our robots inte-
grates these parameters smoothly (See Figure 3.6 in Section 3.2). Besides, all these kind
of robot attitudes under different stimulus has been encoded ad-hoc for the snake robot.

They should be improved in the future using more intelligent algorithm like the ones
developed in machine learning. We could also used the variance and the derivate of
the square size and position over different number of frames in order to collect more
information and make the robot responds in a more realistic way.

25

5 Matching Patch Tracking

The second part of AV2SR project is focused on how to estimate the relative position
of the robot. This position can be deduced by knowing the sequence of the transfor-
mations between each consecutive frames. Ideally this algorithm could also rectify the
video stream for a tele-operator.

This algorithm can find a geometrical transformation by matching small patches from
a frame to the next one. A patch represent a small part (20 × 20 pixels) of a frame on
which image processing has been done. The matching is done looking at their grey-level
histogram. As grey-level channel, we decide to use the first channel of the YCC image
compute in Section 4.1 which represent the luminance of an image. Then we try to find
the “best” transformation between these two frames using RANSAC.

5.1 Histograms matching

5.1.1 Classical histograms building

The first part of this algorithm is about building an histogram for each patch. We start
selecting K patches at random in our images. Then we divide the grey level set in N bins.
In our case we use N = 16, because it’s a multiple of the cardinality of the grey-level set
(256 levels).
Now that we have divide our set in 16 bins of width 256

16 = 16, for each bin we count the
number of pixels in the patch belonging to this bin.
In another words, we compute iteratively :

• for bin#1 number of pixels in patch between [0,16[

• for bin#2 number of pixels in patch between [16,32[

• ...

This is the classical way of computing histograms, however this method can generate
some problems when a pixel is at the border of a bin:
For example, in frame(i) a patch has all its pixels equal to 32, consequently it will vote
400 (20x20) times in bin#3. On next frame, the image did not move but the light has
change a little bit. The same patch has now half of its pixels equal to 32, and the other
half equal to 31. It will vote 200 times in bin#3 and 200 times in bin#2.

26

Histograms matching Matching Patch Tracking

Therefore the matching patch algorithm will have difficulties to detect that it’s the
same patch with few changes due to illumination.

5.1.2 Histograms with votes in two bins

To avoid this kind of “border error” we can use an algorithm that makes a value vote
in two bins of the histogram. To implement this, we use a linear rule and the fact that
the sum of the vote of a pixel in two bins should be normalized (in our case 1):
If a pixel’s value is exactly at the middle of bin we vote 1 in this bin and 0 in the others,
then if this value is at a border between two bin we vote 0.5 in both. Then, this rule is
linearly followed in the other cases (See Figure 5.1).

We look the two nearest bin centers (Cn, Cn+1) for a pixel p in the patch :
if valp ∈ [Cn, Cn+1] :
we compute binn = binn + ∆−(valp−Cn)

∆ and binn+1 = binn+1 + ∆−(Cn+1−valp)
∆

with ∆ = width of each bins, Cn=center of bin#n.

5.1.3 The layered Integral Bin Image (LIBI)

In order to find the corresponding matching of each patch we need to structure the frame
for making the search faster.

First, we create a 3D matrix H, which number of layers is equal to the number of
bins. Then each pixel of the original frame set a value at position x, y in each layer with
the vote’s result for the corresponding bin.
In our case we have a matrix (640x480x16). Then we apply the 2 bins votes histogram
building method for each pixels in the images.

For pixel p(x,y) with valp ∈ [Cn, Cn+1] we write in our 3D matrix:

H(x, y, n) = 255
∆− (valp − Cn)

∆
and, (5.1)

H(x, y, n + 1) = 255
∆− (Cn+1 − valp)

∆
(5.2)

H(x, y, j) = 0 (∀j 6= n, n + 1) (5.3)

(In our example we have multiply by 255 our results because we have our 3D matrix
with an unsigned char type.)

The figure 5.1 illustrate this construction with two points:

• with p1 = (x1, y1) ∈ [C1 = 8, C2 = 24] the layered bin images (H) have:

27

Histograms matching Matching Patch Tracking

– H(x1, y1, 1) = 255 ∗ 16−(15−8)
16 ≈ 255 ∗ 0.56

– H(x1, y1, 2) = 255 ∗ 16−(24−15)
16 ≈ 255 ∗ 0.44

– H(x1, y1, 3) = ... = H(x1, y1, 16) = 0

• with p2 = (x2, y2) ∈ [C2, C3] the result on each layers is :

– H(x2, y2, 1) = 0

– H(x2, y2, 2) = 255 ∗ 16−(39−24)
16 ≈ 255 ∗ 0.06

– H(x2, y2, 3) = 255 ∗ 0.94

– H(x2, y2, 4) = ... = H(x2, y2, 16) = 0

Figure 5.1: top: A schema of the histogram building for p1 & p2. right: Value of two
pixel (p1 & p2) in a frame. left: The layered bin images with the result of
pixel p1 & p2 show on bin#1.

Now that we have our layered bin images (H) we want to browse them really fast
and for each patch find the ones which are the most similar. In order to realize such
operation with a low computation cost, we use integral image as describe in Section 4.5.

Thus, we compute for each layer of our layered bin image (N = 16 layers corresponding
each one to a bin) an integral images. Therefore it will be easier to obtain the histogram
of a patch using only 4 references per bin to have the sum of all the pixels in the patch.
In the following part we call this new 3D matrix the LIBI (Layered Integral Bin Image)
because each layer correspond to the integral image of the results of a bin.

In a recurrent scheme, the LIBI of frame(i+1) can be used to compute the K randomly

28

Matching patch algorithm Matching Patch Tracking

selected patches when we want to find their corresponding patches on frame(i+2). This
shows that the LIBI is also used to build the histogram of each K randomly selected
patches.

5.2 Matching patch algorithm

At this step of the algorithm we have a set of K patches belonging to the frame(i), and
a LIBI (Layered Integral Bin Image) corresponding to frame(i+1). The purpose of this
algorithm is to find in the frame(i+1) correspondences to the K patches of frame(i).

5.2.1 Selecting patch

The K patches selected randomly may have histograms that are really similar and in
consequence difficult to identify. A solution to avoid this kind of problem and find a
subset that contains only interesting/unique patches need to be implemented.

To solve this problem we first thought about using the entropy of an histograms. The
principle of the entropy is used due to the fact that an histogram which have a lot of
informations should be more interesting than one without divercity. To compute the
entropy of an histogram we use the following formula derived from Shannon entropy
(Balian 2003) :

entropy =
N∑

n=1

binn × log2(binn) (5.4)

Then the process that select the best patch do the following:

• First, select K random patches (with K = 400) and compute their corresponding
histograms.

• Then compute the entropy of each patches.

• Finally select the K ′ = 50 that have the smallest entropy.

Unfortunately, the hardwood (parquet floor) contains a lot of informations due to the
fact that its texture is particular. Therefore the selection of patches using the entropy
was not helpfull in our case because all patches were selected on the hardwood on which
the salamander moves. As this part represent one third of a frame, a patch can find a
lot of corresponding matching patches which is not interesting for the matching patch
algorithm.

Further improvement should be done to select better patches. The use of an algorithm
that compare the Euclidian distance between histograms and select the ones which have
the highest distance between themself should be implemented.

29

Matching patch algorithm Matching Patch Tracking

5.2.2 Find patch to match

Once we have compute the LIBI (Layered Integral Bin Image) and selected K patches
with their corresponding histograms, the research of matching patches can start. For
each patch Pk in the selected list P (∀k ∈ [1,K]) we call algorithm 1, which browse each
position x,y of the LIBI, and for each layer n ∈ [1, N] compute the difference between
the corresponding bin of the Pk’s histogram and the function SumPatch(x, y, LIBIn).

SumPatch(x, y, LIBIn) is a function which return the sum of all pixels in a patch
starting at x, y on the layer n of LIBI (LIBIn). It’s similar to the 4 array references
describe in figure 4.11 taking A = (x, y) and calculating B,C,D with the size of a patch
(20× 20) on an layer LIBIn.

During the algorithm a special structure called BMPSk (Best Matching Patch Struc-
ture) is used. It permits to find M different matching patches for a corresponding patch
Pk. BMPS is composed as followed:

• BMPS.error : a vector of length M , error = (error1, ..., errorM)

• BMPS.coord : a vector of length M , coord = (coord1, ...coordM)

(In this project setting M = 3 is enough)

The algorithm 2 (PushInMinBMPSList) permit us to conserve the BMPS ordered
and to operate easy insertion of new elements. The BPMS have its minimum error
at position m = M , so the best matching patch for the patch Pk have the coordinate
BMPSk.coordM .

30

Matching patch algorithm Matching Patch Tracking

Algorithm 1 Matching patch algorithm (for one patch)
Input: k index of the patch selected.

Pk a patch of the selected list P .
LIBI a 3D Matrix (width×height×N)

Output: BMPSk that have found the best matching with Pk

1: width← the first dimension of LIBI
2: height← the second dimension of LIBI
3: N ← the third dimension of LIBI //the number of layers\bins

4: for y = 0 to height do
5: for x = 0 to width do
6: error ← 0
7: for n = 0 to N do
8: error ← error + (Pk[n]− SumPatch(x, y, LIBIn))2

9: end for
10: BMPSk ← PushInMinBMPSList(BMPSk, coord(x, y), error)
11: end for
12: end for
13: return BMPSk

Algorithm 2 PushInMinBMPSList
Input: coord(x, y): coordinate of a pixel.

error: the error of the matching between Pk and LIBI at (x, y)
BMPSk: a structure describe in §5.2.2

Output: A BMPSk with error ordered (descending)

1: if error > BMPSk.error1 then
2: return BMPSk

3: end if

4: BMPSk.error1 ← error
5: BMPSk.coord1 ← coord(x, y)
6: m← 1
7: while BMPSk.errorm < BMPSk.errorm+1 and m ≤M do
8: swap(BMPSk.errorm, BMPSk.errorm+1)
9: swap(BMPSk.coordm, BMPSk.coordm+1)

10: m← m + 1
11: end while
12: return BMPSk

31

Matching patch algorithm Matching Patch Tracking

5.2.3 Increase speed

The first implementation of the algorithm was really slow (about 7s/frames), and so
impossible to implement it on the salamander robot that need algorithm that can work
in real time. We use some ”tricks” to make it faster.

1. We change the line 7 of the algorithm 1 and break the loop if the actual error
was bigger than the biggest error in BPMSk.error1. This simply avoid to con-
tinue looping on the next layers when the error with the first ones is already too
high. With a low cost operation we reduce seriously the computation time (about
5.4s/frames).

2. Then we decide to compare the mean and the variance of a patch Pk and the one
starting at position x, y in frame(i+1). This operation is done at line 5 before
making the test on the N layers of the histograms.

To compute the mean of a patch we use an integral image on the original frame (which
is called IIm). We first compute the sum of all pixel in a patch by calling the SumPatch
algorithm, And then we divide by the number of elements in the patch:

SumPatch(x, y, IIm)⇔
∑

(x,y)∈Pk

pixel(x,y), and so (5.5)

E[Pk] =
1

20× 20
SumPatch(x, y, IIm) (5.6)

For the variance we also use integral image, but this time we compute a square integral
image (also called ISqIm) by computing the integral image on the original frame where
each pixel is multiplied by itself. We easily obtain the second moment of the patch, and
with a small operation with the mean we can have the variance:

SumPatch(x, y, ISqIm)⇔
∑

(x,y)∈Pk

[pixel(x,y)]
2, and so (5.7)

E[P 2
k] =

1
20× 20

SumPatch(x, y, ISqIm) (5.8)

Then we have,
V ar[Pk] = E[P 2

k]− (E[Pk])2 (5.9)

The problem with this method is that we need to know how to thresholds the mean
and the standard deviation in order to discard bad candidate to the matching histograms
part. To fix these thresholds we build an experience set where:

• We have process the algorithm on 201 frames. (We use a pair frame(i) and
frame(i+1) with i ∈ [0, 199]).

• We take K different Pk with k ∈ [1,K = 50]

32

Matching patch algorithm Matching Patch Tracking

• We use the BPMS with M = 3 (3 Best Matching Patch). Thus we will get
M ×K (150) BMP per frame(i+1).

• And, we create 100 random “matching” patches on frame(i+1) for a corresponding
patch Pk (We have 100×K(5000) random patches per frame(i+1)).

For each pair of frames (frame(i) & frame(i+1)), we compute the difference of mean
and variance between all Pk and their 3 corresponding BMP s , then we do the same
with their 100 corresponding RMP s.

1. We first look at the difference of the mean. The result of this experience is show
on figure 5.2. We needed to plot this figure with a log scale due to the fact that
more than 80% of the BMP have a difference/error less than 1 with the mean
of their corresponding Pk. For errors smaller than 30 we have almost all BMP s
(99.83%) and only one third of the RMP s (32.42%). This threshold make a good
separation between the two set without rejecting a lots of BMP s
With this threshold we reduce our computation by a factor of 3 (about 1.2s/frame),
due to the fact that the cost of computing the IIm and make a pre-checking is less
than browsing all the N layers of the LIBI.

2. Then we do the same operation for the second moment, and we observe that we
can’t use the difference of second moment as a simple threshold because it doesn’t
give us more information than the difference of mean.
If we look at figure 5.3 we see that if we threshold the mean difference (E[MPk]−
E[Pk]) with a maximum of 30. Adding a threshold on the second moment (E[MP 2

k]−
E[P 2

k]) set at 12000 doesn’t reduce our set of RPMs. (BMP s=99.83% and RMP s
are only reduce from 32.42%→ 32.35%).

3. We try the same operation using the variance, but it doesn’t give us more infor-
mations than the second moment. Looking at figure 5.4, we set our threshold for
the maximum difference of variance at 110 and we obtain with our training set a
separation of 32.27% of RMP s and 99.83% of the BMP s.

33

Matching patch algorithm Matching Patch Tracking

Figure 5.2: Log of the percentage of best/random matching patch that have a difference
of mean with their corresponding Pk equal to x ∈ [0, 1, ..., 255]

Figure 5.3: The distribution of the difference of mean (x axis) and second moment (y
axis) between Best (Blue) or Random (Red) Matching Patch (MP) and their
corresponding Pk

Figure 5.4: The distribution of the difference of mean (x axis) and variance (y axis)
between Best (Blue) or Random (Red) Matching Patch (MP) and their
corresponding Pk

34

R.A.N.S.A.C Matching Patch Tracking

In conclusion we don’t use any threshold on the standard deviation or variance due
to the fact that we loose more time computing the ISqIm and checking the threshold
than entering in the loop on all the layers. (line 7)

The fact is that this algorithm is still to slow, and that the checking of the mean is
really good but not sufficient. Further improvement should be implemented to solve the
problem of time dependency.

• The problem is maybe due to violations of caches during the browsing on these n
layer, because we have our LIBI matrix which is of dimensions (width×height×N)
and instead of browsing it starting by the bin layer, then the position y and finally
the position x, we browse the bin layers on the last step (line 7 of algorithm 1)
and this cause violation of cache. We should used instead of a layered image,
an interleaved integral images where N consecutive values represent the integral
histograms of all pixels before this one. The matching patch algorithm would be
faster but maybe the time to construct this new interleaved integral bin images
will made this algorithm difficult to use for real time purpose.

• Another thing is that we use integral image and 4 array references functions to make
the computation faster, but as the size of the patch is fixed we should construct
another type of “integral” image where we can get with one array reference the
sum of pixels in the patch. We still have to test if we loose more time constructing
this type of structure than we save browsing it.

5.3 R.A.N.S.A.C

The Random Sample Consensus (RANSAC) paradigm is an extremely powerful se-
lection method invented by (Fischler & Bolles 1981). RANSAC is used to improve
matching techniques that occur in many pattern matching applications of computer vi-
sion and computational geometry. One of the key difficulties of matching two point sets,
is to detect those which match from those that do not. The matching points are called
the inliers, and the remaining points are called outliers.

This standard definition (Nielson 2005) of RANSAC is slightly modified in our ver-
sion. This adaptation comes from the fact that we have a priori knowledge of the
correspondence between Pk, and 3 BMPk in our set.

In our version we use pairs of points to find a similitude. Using only two points make
RANSAC converging faster, and as the robot moves smoothly between two frames we do
not need to find neither an homography nor an affine transformation. Referring to figure
5.5, the coordinates of a pair of patches are denoted by Pk.coord = f1, Pk′ .coord = f2

and their corresponding BMP s by BMP(k,m).coord = g1, BMP(k′,m′).coord = g2.
In order to compute the similitude we need to compute the transformation matrix T
given these two matching pairs f1 ↔ g1 and f2 ↔ g2.

35

R.A.N.S.A.C Matching Patch Tracking

• The first operation is a translation computing the midpoints of line segments [g1, g2]
and [f1, f2]: τ = g1−g2

2 , τ ′ = f1−f2

2 .

• Then a scaling factor is applied κ = ‖g1g2‖
‖f1f2‖ ,

• and finally the rotation θ is calculated by using a simple arctan illustrated in figure
5.5 (θ = atan2(g2.y − g1.y, g2.x− g1.x)− atan2(f2.y − f1.y, f2.x− f1.x)).

Finally, the transformation matrix T is obtained by the following transformation
pipeline (with associated matrix concatenation):

T =

∣∣∣∣∣ I τ
0t 1

∣∣∣∣∣
∣∣∣∣∣∣∣

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

κ 0 0
0 κ 0
0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣ I τ ′

0t 1

∣∣∣∣∣ (5.10)

Figure 5.5: Similitude transformation is defined by a pair of matching features.

Once, the computation of the similitude is well defined we can start to use our version
of RANSAC inspired from (Kazhdan 2005). In Algorithm 3, we have adapted RANSAC
in the way that we need to compute only 9 different transformations for one pair of
randomly selected Pk, Pk′ (line 3). Moreover the computation of the transformation’s
error is done in a special way:

• Firstly, the distance error generated by the transformed point T (Pj), is not con-
sidered if it is outside the frame(i+1) (Line 10). In other words we do not expect
to find a matching point that can not exist in the frame(i+1).

Checking this condition, RANSAC may take a transformation that put all the
points outside except the two used for computing the transformation, it’s why we
check at line 17 that we have compute this error with at least 20% of patches in
the set P .

• At line 11, we have a special function that compute the distance between the
transformed patch Pj and the nearest matching patch BMP . It return a linear
normalized distance before a threshold and the maximum normalized error after.
This function represented by the figure 5.6 avoid that one pair of points separated
by a distance bigger than the threshold can be considered as better matching than
another pair that also has a distance bigger than the threshold. In other words

36

R.A.N.S.A.C Matching Patch Tracking

when the distance between two points is bigger than the threshold we consider
them as ”no-matched” points.

Figure 5.6: Error of matching between Pj and a BMP giving the Euclidian distance of
the two points (Threshold=45px).

37

Experiment Results Matching Patch Tracking

Algorithm 3 RANSAC (similitude)
Input: maxround The maximum number of rounds that RANSAC can do

P : a list of src patches from frame(i)

BMP : A list of best matching patches from frame(i+1)

Output: T ′ a similitude transformation

1: round← 0
2: while round < maxround do
3: pick a random k and k′ with k, k ∈ [1,K ′ = 50]
4: for all m,m′ ∈ [1,M = 3] do

5: T ← GetSimilitude([Pk, Pk′], [BMPk,m, BMPk′,m′])
6: error ← 0
7: nofpts← 0
8: for all j ∈ [1,K ′] such that j 6= k 6= k′ do
9: T (Pj)← ApplySimilitude(Pj , T)

10: if T (Pj) ∈ ImageSize then
11: dist← smallest distance between T (Pj) and a BMP
12: error ← error + dist
13: nofpts← nofpts + 1
14: end if
15: end for
16: error ← error

nofpts
17: if error < minerror & nofpts > 20% then
18: T ′ ← T
19: minerror ← error
20: end if
21: end for
22: end while
23: return T ′

5.4 Experiment Results

This part shows how the matching patch algorithm work on video’s frames with totally
random selected patches. These experiments has been divided in two set:

5.4.1 Matching patch algorithm results

First, Figures 5.7(a) & 5.7(b) show the error of the matching patch algorithm for a
Pk, k ∈ [0, 24]. The error is normalized between [0, 1] (black pixel ' 0 and white pixel
' 1).

38

Experiment Results Matching Patch Tracking

478
(a) k correspond to patch 13 in
Figure 5.8(a)

478
(b) k correspond to patch 16 in
Figure 5.8(b)

Figure 5.7: Normalized error of matching for Pk.

Then Figures 5.8(a) and 5.8(b) show 25 patches Pk selected from frame(i) and their
corresponding 3 BMPk compute on frame(i+1). The same pair of frames is used on the
two figures, only the random distribution of the patches Pk have changed.

Figure 5.7(a) represents the matching histogram error for the patch 13 in the left part
of figure 5.8(a). As patch number 13 is composed by a piece of the hardwood floor, a
blurry black spot representing the minimum error, has been draw on Figure 5.7(a). The
black spot is situated at the same place as the hardwood floor is (in Figure 5.8(a)(right))
excepting where the light is strongly reflected by the floor. Therefore this indicates that
the algorithm has properly worked and wants to match the patches on a zone similar
in grey-level distribution. Furthermore the result of the Best Matching Patches (BMP)
selection is shown in the right part of Figures 5.8(a). For each Pk drawn in the left part,
3 BMP are placed in the right part. The one which has the smallest error is drawn in
red, the two others best are drawn in blue. As the patch 13 is not really specific (the
hardwood floor correspond to one third of frame(i+1)), the area of the black spot in
Figure 5.7(a) is big and in consequence the 3 selected BMP do not really correspond to
the patch P13.

Similarly, Figure 5.7(b) is associated to patch 16 selected from the left part of Fig-
ure 5.8(a). The minimum error (black spot) represent a smaller area than the one in
Figure 5.7(a) due to the fact that patch 16 is more characteristic. Accordingly the 3
selected BMP are better situated by the matching patch algorithm.

The two Figures 5.7(a) & 5.7(b) have a bottom and right black border due to the fact
that one pixel correspond to the top-left corner of a patch P(x,y), and as a patch can
not be at postion x ∈ [framewidth − patchwidth, framewidth[and y =∈ [frameheight −
patchheight, frameheight[a black pixel is set as a default value value.

39

Experiment Results Matching Patch Tracking

(a) A random distribution of the Pk (corresponding to Figure 5.7(a))

(b) Another random distribution of the Pk (corresponding to Figure 5.7(b))

Figure 5.8: left: frame(i) (n = 8) and the 25 randoms Pk. right: frame(i+1) and the
3 corresponding BMPk. (the 1st best matching patch is in red and the 2nd

and 3th are in blue)

40

Experiment Results Matching Patch Tracking

5.4.2 R.A.N.S.A.C results

Figures 5.9(a) & 5.9(b) illustrate the processing of Ransac. To ease the comprehension,
the previous notations of Section 5.3 are used : T the similitude transformation, Pj a
selected patch, T (Pj) the transformation’s result of Pj .

All the K patches used to compute Ransac are drawn in the left part of Figures 5.9(a)
& 5.9(b). The two patches selected randomly by Ransac (Algorithm 3, line 3) are drawn
in blue.

The transformation T is then used in order to place all T (Pj) in the right part of
Figures 5.9(a) & 5.9(b). The two pairs used to find the transformation T are also drawn
(the original pair of patches is drawn in blue while their corresponding BMP are in
green).

The color of the patches in the right part of Figures 5.9(a) & 5.9(b) is selected de-
pending on the distance between the T (Pj) and the nearest BMP s. The computation of
this distance is explained in Section 5.3 with Figure 5.6. A red color means that a T (Pj)
has matched with a BMP , whereas a yellow color means that the distance between the
T (Pj) and the nearest BMP is short. When there is no possible matching we draw
T (Pj) in black.

41

Experiment Results Matching Patch Tracking

(a) Frames 18 and 19

(b) Frames 52 and 53

Figure 5.9: left: frame(i) all the patches Pj . right: frame(i+1) with the corresponding
transformation of patches T (Pj).

Finally, the result of all the algorithm is illustrated with Figures 5.10(a) & 5.10(b).
This two images represent the inverse transformation (T−1) apply on frame(i+1). If it
has worked properly this transformed image should be similar to frame(i).

42

Experiment Results Matching Patch Tracking

(a) Correspond to Figure 5.9(a) (b) Correspond to Figure 5.9(b)

Figure 5.10: Inverse transformation of frame(i+1) illustrated in Figures 5.9(a) & 5.9(b),
the result looks like the corresponding frame(i).

In conclusion, Figure 5.10(b) demonstrate the strength of Ransac and its ability to
deal with a lot of bad matching pairs. With only 44% of good matching patches (in
red), and 14% of nearly matched patches: T−1(frame(i+1)) looks like frame(i).

43

6 Project Status

6.1 Conclusion

In the AVS2R project we have developed two main algorithms:

6.1.1 Color tracking

The fast color based tracking allow our robots to follow a pink ball It is a robust algo-
rithm that can handle different illuminations. It also leads to a better understanding
of the integration and feedback for the different stimulus (position and distance of the
pink ball). Moreover, it proves that if the color tracking generates bad inputs in some
frames, the CPG of the robot handles them, and the movement of the robot still looks
realistic.

6.1.2 Matching patch algorithm

Trying to find the sequence of the different transformations in order to estimate the
relative position of the robot is difficult task. The use of histogram patches for matching
is not common, in this way we can say that our second algorithm has been developed
in a research purpose. It can not be applied online due to its heavy computation cost
(it can only process about 1.4fps). However, interesting thing has been demonstrated
during its development:

It illustrates the strength of RANSAC even with a great number of bad matching
pairs. It also shows how histograms can be used for detection.

6.2 Future Improvements

In addition to the current capabilities mentioned above, the following future improve-
ments could be done at each levels of the AVS2R projects

6.2.1 Hardware improvements

The robot should benefit a more bio-inspired vision and gaits more in relation with its
artificial vision:

• Two embedded cameras should be added in order to obtain stereovision (Sec-
tion 2.2).

44

Future Improvements Project Status

• The robot should have a travelling wave with increasing amplitude from the head to
the tail in order to avoid big movements of the head and loose our goal. Similarly,
we could also let the head looking for the pink ball and then transmits its relative
angle to the rest of the body. (Section 3.2).

• Fish-eye lenses could also be use to obtain a larger vision field.

6.2.2 Color tracking

• Improvements should be done to obtain a better chromacity adaptation under
various illumant (Section 4.2) . We should merge offline and online adaptation in
order to obtain color constancy. The ball should always appear pink to the robots
due to the fact that it has a previous knowledge of the ball color and it should also
conform to the illumination of the actual environment.

• The color tracking algorithm should deal in a better way with the presence of
several pink objects (Section 4.4). This can be done by knowing the previous
position of the pink ball that it was following, and stay focused only on this object.

• The input stimulus send on the fly should be used with more heuristics in order
to generate a more realistic gaits (Section 4.6). Keeping in memory the last
positions of the ball, we should create better rules with machine learning algorithm
to generate a correct feedback. This feedback could make the robot behave in
several ways following its different goals (accelerating to reach the ball, stopping
when it is near,...).

6.2.3 Matching patch tracking

• Improvement can be done in selecting the patches, increasing the dispersity of
patches for instance. Image processing like colors, edges, etc should also be used
to find the best key patches (Section 5.2.1).

• A faster computation can also be achieved using interleaved bins image instead of
layered bins image. A specific integral image can also be generated (Section 5.2.3).

• A sequence of transformations should be memorized to estimate the relative motion
of the robot. This estimation should consider the fact that bad transformation can
be introduced in some frames. Then it should detect them using the fact that the
gaits of our robot is generated by some redundancies.

Finally, we have to consider that different algorithms could also perform the same
tasks. Using bio-inspired algorithm such as stereo-vision and coarse coding (e.g. Eurich
et al. 1997, Ijspeert & Arbib 2000), or saccadic search with log-polor vision field and
gabor filters (e.g. Lim et al. 1996, Rao et al. 1997, Smeraldi et al. 2000), could be the
best way of implementing artificial vision keeping the philosophy of a bio-inspired robot.

45

Bibliography

Anisetti, M., Bellandi, V., Damiani, E., Beverina, F., Arnone, L. & Rat, B. (2006), A3fd:
Accurate 3d face detection, in ‘Proceeding of IEEE International Conference on
Signal-Image Technology and Internet Based Systems IEEE SITIS’06,Hammamet,
Tunisia’.

Balian, R. (2003), Entropy, protean concep, in ‘Poincare Seminar 2’, pp. 119–145.

Crespi, A. & Ijspeert, A. (2006), AmphiBot II: An amphibious snake robot that crawls
and swims using a central pattern generator, in ‘Proceedings of the 9th International
Conference on Climbing and Walking Robots (CLAWAR 2006)’, pp. 19–27.

Crow (1984), Summed-area tables for texture mapping, in ‘SIGGRAPH’, Vol. 18 of 3,
pp. 207–212.

Eurich, C. W., Schwegler, H. & Woesler, R. (1997), ‘Coarse coding: applications to the
visual system of salamanders,’, Biological Cybernetics 77, 41–47.

Finlayson, G., Funt, B. & Barnard, K. (1995), ‘Color constancy under varying illumina-
tion’, iccv 00, 720.

Fischler, M. A. & Bolles, R. C. (1981), ‘Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography’, Commun.
ACM 24(6), 381–395.

Hsu, R.-L., Senior, A., , Mottaleb, M. A. & Jain, A. K. (2002), ‘Face detection in color
images’, IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 696–706.

Ijspeert, A. (2001), ‘A connectionist central pattern generator for the aquatic and ter-
restrial gaits of a simulated salamander’, Biological Cybernetics 84(5), 331–348.

Ijspeert, A. & Arbib, M. (2000), Visual tracking in simulated salamander locomotion, in
J. Meyer, A. Berthoz, D. Floreano, H. Roitblat & S. Wilson, eds, ‘Proceedings of the
Sixth International Conference of The Society for Adaptive Behavior (SAB2000)’,
MIT Press, pp. 88–97.

Ijspeert, A., Buchli, J., Crespi, A., Righetti, L. & Bourquin, Y. (2005), ‘Institute pre-
sentation: Biologically inspired robotics group at EPFL’, International Journal of
Advanced Robotics Systems 2(2), 175–199.

Kazhdan, M. (2005), ‘Shape matching for model alignment’, ICCV 2005 Short Course.
Johns Hopkins University.

46

Bibliography Bibliography

Lim, F.-L., Venkatesh, S. & West, G. A. (1996), Human saccadic eye movements and
tracking by active foveation in log polar space, in B. E. Rogowitz & J. P. Allebach,
eds, ‘Proc. SPIE Vol. 2657, p. 338-349, Human Vision and Electronic Imaging,
Bernice E. Rogowitz; Jan P. Allebach; Eds.’, pp. 338–349.

Nielson, F. (2005), Visual Computing: Geometry, Graphics, And Vision, Charles River
Media/Thomson Delmar Learning, chapter 7, pp. 400–405. RANSAC Algorithm.

Phung, S., Bouzerdoum, A. & Chai, D. (2002), A novel skin color model in ycbcr color
space and its application to human face detection, in ‘ICIP02’, pp. I: 289–292.

Rao, R. P. N., Zelinsky, G. J., Hayhoe, M. M. & Ballard, D. H. (1997), Eye movements
in visual cognition., Technical Report NRL97.1, National Resource Laboratory for
the Study of Brain and Behavior, Department of Computer Science, University of
Rochester.

Simard, P., Bottou, L., Haffner, P. & Cun, Y. L. (1999), Boxlets: a fast convolution algo-
rithm for signal processing and neural networks, in ‘Advances in Neural Information
Processing Systems’, Vol. 11, pp. 571–577.

Smeraldi, F., Carmona, O. & Bigun, J. (2000), ‘Saccadic search with gabor features
applied to eye detection and real-time head tracking’, Image and Vision Computing.

Storring, M. (2000), Computer Vision and Human Skin Colour, PhD thesis, Fac-
ulty of Engineering and Science, Aalborg University, E-mail: mst@cvmt.dk URL:
http://www.cvmt.dk/mst.

Terrillon, J.-C., Fukamachi, H., Akamatsu, S. & Shirazi, M. N. (2000), Comparative
performance of different skin chrominance models and chrominance spaces for the
automatic detection of human faces in color images, in ‘FG ’00: Proceedings of the
Fourth IEEE International Conference on Automatic Face and Gesture Recognition
2000’, IEEE Computer Society, Washington, DC, USA, p. 54.

Vezhnevets V., A. A. (2005), A survey on pixel-based skin color detection techniques,
Technical report, Moscow, Russia, Graphics and Media Laboratory. GML Com-
puter Vision Group, 2005.

Viola, P. & Jones, M. (2001), ‘Robust real-time face detection’, Int J Comput Vision
57(2), 137–154.

47

