
Control of Locomotion in Modular
Robotics

Master Thesis

23 February 2007

Author : Jérôme Maye

Professor : Auke Ijspeert

Supervisor : Alexander Sproewitz

Abstract

This master project focuses on the control of locomotion in modular robotics. We are partic-
ularly interested in applying the Central Pattern Generator (CPG) approach to the modular
robot YaMoR. The concept of CPG has been introduced in the eighties to explain the mecha-
nism of locomotion in vertebrates. A CPG allows to control multiple antagonist muscles and
to modulate the generated pattern with simple high-level stimuli.

In YaMoR, the CPG is modelized as as system of oscillators, whose outputs control the
servo motors of the modules. These oscillators contain many free control parameters that have
to be tuned for creating a satisfying pattern on the whole mounted robot. As the number of
parameters increases, it becomes advantageous to use learning algorithms.

It was shown previously that an algorithm, called Powell’s method, gives outstanding results
in simulations. Powell’s method is a fast and simple heuristic, generally used on mathematical
functions, for finding the minimum of a multi-dimensional function.

This project mainly aims at validating the results of the simulations on the real robot plat-
form YaMoR. To prove the efficieny of Powell’s method, a comparison with another algorithm
is also proposed.

Acknowledgments

First and foremost, I am deeply indebted to my supervisor, Alexander Sproewitz. Without
him, the new version of YaMoR would never have been ready in time. Furthermore, he was
always available for helping on hardware troubles. Finally, he did a fantastic work on Matlab
for displaying the results and nice snapshots of the robot.

Special thanks go to Alessandro Crespi for his kindness and availability. He was of great
support in win32 programming.

I also owe a great debt to Rico Moeckel, the developer of the Scatternet protocol. Without
his preliminary work, the development of the CPG in YaMoR would have been much more
complicated.

A great thanks goes to Professor Auke Jan Ijspeert, the director of the BIRG. He was also
always available for answering to questions and allowed me to work on the YaMoR project.

Finally, I have to thank Addamo Maddalena, for the design of the new version of YaMoR.

Table of contents

1 Introduction 1
1.1 Project Goals . 3

1.2 Outline of the Report . 4

2 Theoretical Background 5
2.1 CPG Model . 5

2.1.1 Mathematical Equations . 6

2.1.2 Convergence . 6

2.1.3 Properties . 7

2.2 Optimization Algorithms . 8

2.2.1 Powell’s Method . 8

2.2.2 Particle Swarm Optimization . 12

3 Experimental Setup 15
3.1 YaMoR Project . 15

3.2 Wireless Network . 18

3.3 Tracking Algorithm . 20

3.4 CPG Implementation into the Microcontroller . 23

3.4.1 Timer . 23

3.4.2 UART . 24

3.4.3 Structure of the Main Control Loop . 24

3.5 Implementation of the Optimization and Control Algorithms 26

3.5.1 Control of the Modules . 26

3.5.2 Fitness Function . 26

3.5.3 Implementation of Brent’s Method . 27

3.5.4 Implementation of Powell’s Method . 28

3.5.5 Noise on the Fitness Measurement . 28

3.5.6 Miscellaneous . 30

3.6 Implementation of the Simulation . 31

3.7 Robot Configurations . 31

3.7.1 Snake . 32

3.7.2 Tripod . 33

3.7.3 Quadruped . 34

4 Experimental Results 35

5 Discussion 43
5.1 Snake Robot . 43
5.2 Tripod Robot . 44
5.3 Quadruped Robot . 45

6 Conclusion and Future Work 47

Bibliography 49

Chapter 1
Introduction

Self-reconfigurable modular robotics has become an attractive field of research these recent
years. In this revolutionary approach, a robot (Figure 1.1) is constructed out of multiple
homogeneous building blocks. These modules are connected together at specific docking points
in order to create a satisfying shape. The elements typically contain some processing power,
sensing facilities, and actuation mechanism for performing the desired task. Furthermore, the
robot should be able to dynamically change its mechanical structure, i.e. the way the modules
are joint, in response to some sensory inputs.

Figure 1.1: Example of a self-reconfigurable modular robot: M-TRAN II (Kurokawa et al., 2003).

In a traditional robot, habitually designed as a specialized and centralized system dedicated
to a particular task, the slightest failure most likely leads to a breakdown. In modular robotics,
a broken element can be rapidly exchanged at a small cost without disturbing the overall
behavior of the system. This process tends to be so simple that some advanced robots are

2 Introduction

even able to repair themselves or replicate themselves (Figure 1.2). Moreover, the design and
manufacture of a single custom robot requires hours of engineering work, while a modular robot
is assembled from reusable mass-produced building blocks.

Figure 1.2: Example of a self-replicating robot: Molecube (Zykov et al., 2005).

Although the state of the art do not fulfill all the necessary requirements, an open-ended
world of applications is predicted to result from the modular robotics concepts and promises.
In space exploration, for instance, modular robotics is of particular interest. Self-repairing and
self-replicating machines, able to dynamically change their morphology, would dramatically
lower the cost of planet discovery and colonization. Modular robots could also be spread
into a devastated environement for search and rescue activities. Amphibious modular robots
could participate in deap see exploration and mining. More recently, domestic application is
envisioned. Thanks to their low prices, consumers could stock a quantity of those building
blocks in a container in their garage. On demand, the modules would assemble into the most
appropriate shape for a task like cutting the grass, servicing a car, or cleaning a room. Lastly,
the original concept of intelligent furnitures has been introduced (Arredondo, 2006). In this
project (Figure 1.3), the modules serve as building material for a chair, a table, or a stool.
According to the needs of the user, these furnitures could change their shape dynamically and
autonomously move to some cover in case of rain for instance.

Figure 1.3: Example of intelligent furnitures: Roombots (Bloch, 2006).

1.1. Project Goals 3

Among the challenges to be overcome in modular robotics is the control of locomotion. In
effect, the majority of the applications suppose the robot is capable of moving efficiently to a
certain goal. This necessitates the accurate coordination of multiple degrees of freedom in order
to produce an adequate pattern of locomotion, which in turn depends on the environment and
on the structure of the robot. Various approaches have been proposed to solve this complex
problem ((Kamimura et al., 2004) and (Yim, 1994) for instance). In our project, we focus on
the Central Pattern Generator (CPG) biological paradigm. A CPG is a network of neurons (or
even a single neuron) which is able to exhibit coordinated rhythmic activity in the absence of
any sensory input and is thought to be an essential component of vertebrate locomotion. The
transfer of the CPG concept to modular robotic locomotion is detailed in Chapter 2.

In a complex robot, an architecture for the control of locomotion involves a large number of
free parameters. An a priori analytical approach for finding the optimal values of those variables
is generally inappropriate. For this reason, the parameters are learnt with some algorithms,
either online, i.e. on the robot itself, or offline, i.e. on a simulator. In our work, we apply two
different online learning algorithms, described in Chapter 2, for letting the robot discover the
optimal parameters for its control architecture.

1.1 Project Goals

Since 2004, the Biologically Inspired Robotic Group (BIRG) of the Ecole Polytechnique
Federale de Lausanne (EPFL) has started a modular robotic project called YaMoR, standing
for Yet another Modular Robot. The robot (see Figure 1.4) is constructed out of uniform low-
cost modules, equipped with processing power and a servo motor, and able to communicate
between each other through a Bluetooth network. More information about the YaMoR project
is proposed in Chapter 3.

Figure 1.4: Example of a YaMoR structure

In (Marbach and Ijspeert, 2006), Marbach et al. show appealing results about online learn-
ing of locomotion in a simulated modular robot, using Powell’s method (explained in Chapter
2), a fast heuristic for function minimization. In this paper, the parameters of a CPG based
control architecture are quickly optimized (approximately 20 minutes) for generating an effi-
cient gait.

4 Introduction

The main goal of this master project is to validate the results of Marbach on the newly
built YaMoR platform. As can be read in Chapter 3, this firstly requires a way of measuring
the displacement of the robot on the floor, the design of a whole firmware for the modules, and
of a control application running on a remote PC for the management of the optimization. It
then involves long hours of testing and debugging of a distributed system, where the origin of
a failure is often arduous to trace. Finally, systematic experiments on various robot shapes are
crucial for ensuring the soundess of the results.

This project also aims at providing a clearer understanding of Powell’s method and of its
efficiency. A comparison, in terms of speed and quality of results, with another optimization
algorithm (Particle Swarm Optimization) is proposed as well. Lastly, a simulation environment
(under WebotsTM) that exactly mimics our system is provided, along with the results of some
experiments.

1.2 Outline of the Report

The rest of the report is organized as follows:

Chapter 2 gives the necessary theoretical background for understanding the basis of our
method, namely the CPG control architecture for locomotion, and the two optimization algo-
rithms Powell’s method and Particle Swarm Optimization.

Chapter 3 describes all the elements involved in the experiments. This includes the YaMoR
robot specification, the way the modules communicates via Bluetooth, the fitness evaluation
mechanism, the way the CPG is implemented in the modules, the PC control software, and the
simulation environment.

Chapter 4 quantitatively details the results of the online learning experiments on three dif-
ferent robot shapes, namely a snake, a triped, and a quadruped robot.

Chapter 5 provides an interpretation of the experimental results and a comparison between
the two optimization algorithms.

Chapter 6 concludes this report and gives some future directions of research. Some hints for
the hardware, as well as the software, improvement are finally proposed.

Chapter 2
Theoretical Background

This chapter contains the necessary preliminary knowledge for building the experimental
setup. The Central Pattern Generator (CPG) control architecture, which lies at the basis
of the YaMoR locomotion, is firstly introduced. The Powell’s optimization method, used in
(Marbach and Ijspeert, 2006), is then clearly detailed. Finally, for comparison purpose, another
optimization algorithm is explained, namely Particle Swarm Optimization. As can be read in
Chapter 3, the CPG is implemented in a distributed manner in YaMoR. The optimization
algorithms, running on a remote PC, have to fix the free parameters of the CPG such that an
efficient forward locomotion is generated.

2.1 CPG Model

In the sixties, experiments on a decerebrated cat (Shik et al., 1966) have shown that the
locomotion mechanism in vertebrates is entirely located in the spinal cord and that high-level
stimulus from the brain only modulate the kind of gait observed (walk, trot, rest, etc.). In
(Delcomyn, 1980), this mechanism is referred to as a CPG, a network of neurons able to gen-
erate coordinated rhythmic patterns, even in absence of any sensory input. The output of the
CPG directly or indirectly controls the activity of the antagonist muscles used for locomotion.

As in vertebrates, modular robots generally contain multiple actuated points that have to
be synchronized for generating locomotion. It is thus tempting to reproduce the CPG behavior,
i.e. a robust distributed system, in modular robotics. Professor Ijspeert1, active in the CPG
modelization for several years (Ijspeert and Kodjabachian, 1999), has tailored an interesting
model for YaMoR. It will be thoroughly explained in the rest of the section.

1auke.ijspeert@epfl.ch

6 Theoretical Background

2.1.1 Mathematical Equations

Professor Ijspeert models the CPG as systems of coupled nonlinear oscillators. An oscillator
i is implemented as follows:

φ̇i = ωi +
∑

j

(ωijrjsin(φj − φi − ϕij) (2.1a)

r̈i = ar(
ar

4
(Ri − ri)− ṙi) (2.1b)

ẍi = ax(
ax

4
(Xi − xi)− ẋi) (2.1c)

θi = xi + ricos(φi) (2.1d)

where θi is the oscillating set-point (in radians); φi, ri and xi are state variables correspond-
ing to the phase, the amplitude, and the offset (in radians); ωi, Ri, Xi are control parameters
for the desired frequency, amplitude, and offset (in radians); ωij and ϕij are coupling weights
and phase biases which determines the relation between oscillator i and j; rj and φj are received
from neighbor j; ar and ax are constant positive gains (ar = ax = 4[rad/s]) that control the
speed of convergence of ri and xi.

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time [s]

se
t−

po
in

t [
ra

d]

r
x

2π
ω

Figure 2.1: Example of an oscillator output

2.1.2 Convergence

The above equations ensure that the output of the oscillator θi exhibits limit cycle behav-
ior, i.e. produces a stable periodic output. Equation 2.1a reflects the time evolution of the
oscillators. In this work, the same frequency ωi = ω is shared by all the oscillators. The
coupling between oscillators i and j is such that the phases sum up to zero (ϕij = −ϕji) (see
Figure 2.2). Furthermore, in the case of a closed loop of oscillators, all the phase biases in
the loop sum up to a multiple of 2π (see Figure 2.2). Taking this into account, Equation 2.1a
ensures that the phases converge to a regime in which they grow linearly at the common rate ω.

Equations 2.1b and 2.1c are second order linear equations which have respectively Ri and
Xi as stable fixed points. Whenever Ri and Xi are changed, the state variables ri and xi will
asymptotically and monotonically converge to Ri and Xi. This means that we can smoothly
modulate the amplitude and the offset of the oscillators.

2.1. CPG Model 7

∼4 ∼3

∼1 ∼2

ϕ12

ϕ23

ϕ34

ϕ41

ϕ21

ϕ32

ϕ43

ϕ14

Figure 2.2: Example of a valid CPG architecture. ϕ12 = −ϕ21, ϕ23 = −ϕ32, ϕ34 = ϕ43, ϕ41 = −ϕ14,
ϕ12 + ϕ23 + ϕ34 + ϕ41 = 2πn and n ∈ N

Given the above settings, two oscillators i and j coupled together with non-zero weights ωij

asymptotically converge to limit cycles θ∞i (t) and θ∞j (t) defined by the following closed form
solutions:

θ∞i (t) = Xi +Ricos(ωt+ ϕij + φ0) (2.2a)

θ∞j (t) = Xj +Rjcos(ωt+ ϕji + φ0) (2.2b)

where φ0 depends on the initial conditions of the system. Due to the common frequency and
the consistency of phase lags in a loop, the coupling weights only affect the speed of convergence
to the limit cycle (higher weights mean faster convergence).

From 2.2a and 2.2b, we can derive that the system stabilizes into phase-locked oscillations
for the oscillators connected together. The oscillations are then modulated by the control
parameters, namely ω for setting the common frequency, φij for setting the phase lags between
two connected oscillators i and j, Ri for setting the amplitude of oscillator i, Xi for setting the
offset of oscillator i, and ωij for setting the coupling weight between two connected oscillators.
The oscillators quickly returns to a limit cycle after any perturbation, as we will see in an
example in Chapter 3, where we show the actual implementation.

2.1.3 Properties

The above CPG model is interesting for designing locomotion controllers and doing online
optimization for several reasons. First of all, the system has a limit cycle behavior, i.e. it
returns rapidly to a steady-state after any change of the state variables. Secondly, the limit
cycle of the system has a closed form solution2, which is cos-based and has explicit control
parameters (ω, Ri, and Xi). We can thus easily influence the oscillators with desired relevant
features such as the frequency, the amplitude, and the offset. Lastly, the control parameters can
be abruptly and/or continuously changed without damaging the motors, because they induce
only smooth modulations of the set-point. Since optimization algorithms have to explore the
whole parameter space, this is a critical property in the case of online learning.

2It solves a given problem in terms of functions and mathematical operations from a given generally accepted
set.

8 Theoretical Background

2.2 Optimization Algorithms

Given a function f(~x), the task of an optimization method is to find the vector ~x such that
f achieves a minimum or maximum value. Since minimizing a function f is the dual problem
of maximizing the function −f , the rest of the chapter will focus on minimization.

An optimum of a function f can be global (valid in the whole domain of f) or local (valid
in some finite neighborhood of f). Some algorithms are more prone to fall into local optima,
while others systematically reach the global optimum, owing to more exploration. A tradeoff
between accurate optimum and computation time is often an issue.

To our great disappointment, a perfect optimization algorithm does not exist for a partic-
ular application. A variety of choices, that enhance certain desired characteristics, are rather
encountered. In the case of online learning on a real robot platform, the speed of convergence
to a fairly good solution, without too many evaluations of the fitness function, is an essential
criterion. Furthermore, the algorithm should be able to optimize the function without gradient
information, since the cost of its computation is not affordable. In the rest of the section, two
optimization algorithms, that meet the above criteria, are presented in detail.

2.2.1 Powell’s Method

Powell’s method is a fast heuristic for finding the minimum of a multivariable function f(~x),
such that ~x = [x1x2...xN]T and N is the dimension. One iteration of Powell consists of N
one-dimensional line minimizations, with respect to a direction set updated according to the
shape of the function. Since Powell’s method is not able to find several minima, we assume
that f has one global optimum and the case of local optima will be explored in Chapter 4.

One-Dimensional Minimization

One-dimensional minimization is performed with Brent’s method (Algorithm 1). Given an
initially bracketed minimum, this heuristic uses a combination of golden section search and
parabolic interpolation for reaching the minimum of the function. The initial bracketing pro-
cess is described in Chapter 3.

The golden section search iteratively manipulates a bracketing triplet of points (a, x, b),
such that a < x < b (or b < x < a), f(x) < f(a) and f(x) < f(b). The point u that is a
fraction γ = 0.381973 into the larger of the two intervals (starting from x) is first evaluated.
For instance, imagine x ≥ b−a

2
and thus u is chosen in [a, x]. If f(u) > f(x), then the next

bracketing triplet will be (a = u, x, b); otherwise if f(u) < f(x), a new minimum has been
found and the bracketing triplet is updated as (a, x = u, b = x). This process continues until
the distance between a and b is conveniently small. At each iteration, the size of the interval
is reduced by a factor ψ = 0.61803 (ψ = 1− γ), it is thus said to converge linearly. If εn is the
size of the interval at iteration n, then εn+1 = ψ ∗ εn. As a picture is worth a thousand words,
Figure 2.3 shows an example of the golden section search.

3The interval always respects the famous golden ratio that has been widely used in architecture and art. It
can be mathematically proved (Press et al., 1988) that this is the optimal way of reducing the interval.

2.2. Optimization Algorithms 9

−2.5 −2 −1.5 −1 −0.5 0 0.5
0

2

4

6

8

10

12

14

x

y

a0 b0

a1
a3 b2b4a5 x1

b1
x0

a2
x2

x3
b3

x4

a4

x5

b5

Figure 2.3: Example of golden section search. f(x) = y = 4x2 + 6x + 3 is the function under
minimization. An analytical method finds the exact minimum at x = −0.75 (root of f ′(x)). The
golden section search is started with the interval [a0 = −2.00, x0 = −1.23, b0 = 0.00], which respects
the preconditions. The interval are then iteratively updated as [a1 = −1.23, x1 = −0.76, b1 = 0.0],
[a2 = −1.23, x2 = −0.76, b2 = −0.47], [a3 = −0.94, x3 = −0.76, b3 = −0.47], [a4 = −0.94, x4 = −0.76,
b4 = −0.65], [a5 = −0.83, x5 = −0.76, b5 = −0.65]. After 5 iterations, the interval has a size of 0.18
and the minimum is −0.76. Note that the final size of 0.18 is equal to the original size of 2.00 times
ψ5.

The golden section search never fails to reach the minimum. However, in some cases, when
the function is nicely parabolic, a faster method for getting to it could be used. The idea is
to remember the two previous values of the minimum x, let say v and w. A parabolic fit is
then drawn through the three points x, v, w. In the next step, the minimum of this parabola
is reached, let say u, and the function is evaluated at this point. The new bracketing triplet
becomes (a, x = u, b) if f(u) < f(x), otherwise u replaces one of the limit a or b. The process
continues until the interval is tolerably small. The parabolic interpolation method converges
superlinearly. If εn is the size of the interval at iteration n, then εn+1 = constant ∗ (εn)m with
m > 1. Figure 2.4 shows an example of the parabolic interpolation.

−2.5 −2 −1.5 −1 −0.5 0 0.5
0

2

4

6

8

10

12

14

x

y

a0 b0x0 x1

Figure 2.4: Example of parabolic interpolation. The function to minimize is still f(x) = y =
4x2 + 6x+ 3. In one step, the minimum x1 = −0.75 is reached. This result corresponds to the exact
one, but was expected since f is exactly a quadratic parabola.

10 Theoretical Background

Algorithm 1 Brent’s Method (simplified)

Require: a, x, b such that (a < x < b or b < x < a) and (f(x) < f(a) and f(x) < f(b))
1: variables renaming s.t. bracketing interval is (a, x, b) and a < x < b
2: w ⇐ x, v ⇐ x
3: repeat

4: u⇐ x− 1
2

(x−v)2(f(x)−f(w))−(x−w)2(f(x)−f(v))
(x−v)(f(x)−f(w))−(x−w)(f(x)−f(v))

{formula for the minimum of the parabola fitting x, v, w, using f ′(x) = 0 and solving a
linear system of equations}

5: if u /∈ [a, b] or step do not enough reduce the interval then
6: u⇐ x− γ ∗ (a− x)

{golden section, case where [a, x] is the larger of the two sub-intervals}
7: end if
8: if f(u) < f(x) then
9: w ⇐ v, v ⇐ x, b⇐ x, x⇐ u {case u ∈ [a, x]}

10: else
11: a⇐ x {case u ∈ [a, x]}
12: end if
13: until b− a ≤ ε {discussed later}

Multi-Dimensional Minimization

Starting from an initial guess of the minimum ~x0, the next approximation ~x1 can be estimated by
iteratively projecting f on one dimension and minimizing the resulting single variable function
with Brent’s method. This method generates the sequence of points ~x0 = ~p0, ~p1, ~p2, ...,
~pN = ~x1, where ~pi is the minimum of f along the direction given by the ith standard base
vector. This method is appealing, but can be highly inefficient in some cases (see Figure 2.5).
Powell improves it dramatically (Algorithm 2).

Figure 2.5: Example of a function where naive method is inefficient, because of too small steps.

The point ~x1 can be viewed as the minimum of f along the direction ~pN −~p0. As it seems to
be a good direction, it could be included in our direction set for the next iteration under some
conditions. A point is extrapolated further in this direction to see if the function continues
to decrease. The best choice for avoiding that the direction set becomes linearly dependent
(and thus {~x}∞k=0 do not converge to the minimum) is that the direction ~pN − ~p0 replaces the
direction N and this latter the direction along which f had its largest decrease. It is replaced

2.2. Optimization Algorithms 11

only if it was a major part of the total decrease in f . The stopping criteria of Powell’s method
will be discussed in Chapter 3. A complete example of Powell’s method is detailed in Figure
2.6.

Figure 2.6: Example of Powell’s method. The function to minimize is f(x, y) = z =
√
x2 + y2 +

(x − y)2. The algorithm is started from the first guess of the minimum, the point X0 = [2 5]T . f is
minimized with Brent along the standard unit vector ~e1 = [1 0]T from X0 = P0 up to P1 = [4.66 5]T .
Along ~e2 = [0 1]T , the point P2 = [4.66 4.32]T is reached, which is the new minimum X1. The point
extrapolated in the direction P2 − P0 does not reduce f , so the direction set is kept. The points
P3 = [3.98 4.32]T and P4 = [3.98 3.64]T = X2 are found in the next iteration. Since the extrapolated
point is lower, f is minimized along X2 − X1 to the point P5 = [0.16 0.16]T = X3. For the next
iteration, the direction set is updated to [0 1]T and X2 −X1.

Algorithm 2 Powell’s Method

Require: i = 0, ~u = [~u1~u2...~uN] = [~e1~e2~eN] with ~ei standard base vector of dimension i, ~x0 an
initial guess

Ensure: {~x}∞k=0 converges to the minimum of f
1: repeat
2: ~p0 ⇐ ~xi

3: for k = 1 to N do
4: find the value of γk that minimizes f(~pk−1 + γk~uk) using Brent’s method
5: end for
6: r equals the maximum decrease of f along one direction, ~ur equals this direction
7: i⇐ i+ 1
8: if f(2~pN − ~p0) < f(~p0) and

2(f(~p0)− 2f(~pN) + f(2~pN − ~p0))(f(~p0)− f(~pN)− r)2 < r(f(~p0)− f(2~pN − ~p0))
2 then

9: ~ur ⇐ ~uN , ~uN ⇐ ~pN − ~p0 {discard direction with biggest decrease}
10: find the value of γ that minimizes f(~p0 + γ~ur) using Brent’s method
11: ~xi ⇐ ~p0 + γ~ur

12: else
13: ~xi ⇐ ~pN

14: end if
15: until f(~xi−1)− f(~xi) ≤ ε {discussed later}
16: return ~xi

12 Theoretical Background

2.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is a rather revolution-
ary stochastic optimization technique, inspired by the movement of flocking birds and their
interactions with their neighbors. If one of the birds detects a good spot for food, the rest of
the swarm is able to approach this point quickly, even the individuals at the opposite side of
it. Furthermore, in order to favor the exploration of the entire search space, each bird has a
certain degree of randomness in its movement.

Algorithm

PSO (Algorithm 3) models the set of potential problem solutions as a swarm of particles moving
in a virtual search space. A swarm of particles is deployed in a virtual search space with random
initial positions xi,j and velocities vi,j, where i represents the index of the particle and j the
dimension in the search space. Each particle flies through the virtual space, attracted by
positions that yielded the best performances. The position at which a particle achieved its best
performance is recorded as x∗i,j. Each particle keeps also track of the performance of the best
individual in its neighborhood, recorded as x∗

i′ ,j
. The neighborhood of a particle can be global,

i.e. it keeps track of the entire swarm. In this case, exploitation is favored and the algorithm
is more likely to fall into a local optimum. On the other hand, a particle can have a local
neighborhood, i.e. it keeps track of a subset of the swarm. In this case, the convergence is
slower, exploration is favored and it is thus less likely to fall into a local optimum. Therefore,
there is a tradeoff between speed of convergence and avoiding to fall into local optima. In our
experiments, the local neighborhood of a particle i is composed of the elements i− 1 and i+ 1,
modulo the size of the swarm. At each iteration, the algorithm updates the variables as follows:

vi,j = w ∗ (vi,j + pw ∗ rand() ∗ (x∗i,j − xi,j) + nw ∗ rand() ∗ (x∗
i′ ,j

− xi,j)) (2.3a)

xi,j = xi,j + vi,j (2.3b)

where w is an inertia coefficient, pw and nw are the weights of attraction to the previous
local best performance of the particle and of its neighborhood respectively, and rand() is a
uniformly-distributed random number in [0,1]. The value of the parameters will be discussed
in Chapter 4. The stopping criteria is based on the number of iterations. An example of PSO
is depicted on Figure 2.7.

2.2. Optimization Algorithms 13

Figure 2.7: Example of Particle Swarm Optimization. The function to minimize is f(x, y) = z =√
x2 + y2 + (x − y)2. 20 particles (red stars) are spreaded randomly in a limited range of the space.

After 15 iterations of PSO, although most of the particles (blue crosses) are situated near the minimum,
there are still some distant individuals that explore the space. The dash-dot black line shows a part
of the path of a particle.

Algorithm 3 Particle Swarm Optimization

Require: N = number of dimensions, M = number of particles, T = number of iterations
1: for i = 1 to M do
2: for j = 1 to N do
3: init xi,j, vi,j randomly
4: end for
5: end for
6: t⇐ 0
7: repeat
8: for i = 1 to M do
9: compute fitness of particle i

10: end for
11: for i = 1 to M do
12: update lbesti {lbesti is the local best performance of i}
13: update nbbesti {nbbesti is the neighborhood best performance of i}
14: end for
15: for i = 1 to M do
16: for j = 1 to N do
17: update vi,j {Equation 2.3a}
18: update xi,j {Equation 2.3b}
19: end for
20: end for
21: t⇐ t+ 1
22: until t = T
23: return max(lbest)

14 Theoretical Background

Chapter 3
Experimental Setup

In this chapter, the major part of our work for this master project is utterly presented.
This encompasses the development of a Light Emitting Diode (LED) tracking algorithm, a
central control program for the management of the robot and of the optimization algorithms,
and a firmware, that implements the Central Pattern Generator (CPG) model, for the micro-
controllers of the modules. The modular robot hardware and the Bluetoothr communication
protocol are introduced as a preliminary to our work.

3.1 YaMoR Project

YaMoR, standing for Yet another Modular Robot, is a modular robotics project initiated
and developed at the Biologically Inspired Robotics Group (BIRG) of the Ecole Polytechnique
Fédérale de Lausanne (EPFL). YaMoR consists of several homogeneous modules that can be
connected together. A first promising version (Figure 3.1, left) is built during the summer
semester 2004 and a Java software (Bluemove) allows to experiment different kind of locomo-
tion controllers on several robot shapes (Moeckel et al., 2006).

During the winter semester 2005, based on the previoulsy acquired knowledge, a new version
is designed by a master student. The first working module (Figure 3.1, right) is mounted in
the summer 2006, thanks to the endeavours of Alexander Sproewitz1, who seriously improved
the system. In this version, one module weights 0.25 kg and has a length of 94 mm (lever
included), with a cross section of 45x50 mm. Each module has a U-shaped lever, with one
degree of freedom, that can be moved in a range of 180◦ approximately. The lever is driven by

1PhD student at the BIRG, alexander.sproewitz@epfl.ch

16 Experimental Setup

a powerful RC2-servo, with a maximum rotation speed of 60◦/0.16 s and a maximum torque
of 73 Nm, sufficient for a module to lift three others. In order to place a lot of electronic
components into a small module, Printed Circuits Boards (PCB) serve as outer casing on one
side, and as electronic support on the other side. Modules can be statically attached together
at specific points. The connection mechanism, based on a screw and a pin, allows fixations
with angle at every 15 degree. A YaMoR module (see Figure 3.2 for components) is powered
by an onboard Li-Ion battery and contains 7 different boards:

1. a Bluetooth board

2. a board with an ARM microcontroller

3. a board with a Field Programmable Gate Array (FPGA)

4. a sensor board

5. a power board

6. a battery support board for the plus

7. a battery support board for the minus

Figure 3.1: First version of YaMoR (left), new version (right)

The Bluetooth board belongs to the external structure of the module and contains a Zeevo
chip ZV4002 (Zeevo, 2004) for the wireless communication. The original software delivered
with the ZV4002 microcontroller allows the establishment of a point-to-point link between two
Bluetooth compliant devices and implements the Serial Port Profile (SPP). This latter acts as
a serial line cable replacement (see (Bray and Sturman, 2000) for details), i.e. an input serial
stream into the ZV4002 is directly sent via Bluetooth and a Bluetooth packet received from
the ZV4002 is forwarded through its output serial port. Nonetheless, the ZV4002 firmware
lacks the ability to operate into a network of devices, as the one required by the CPG model of
Chapter 2. For this reason, Rico Moeckel3 has developed a network protocol (Section 3.2) on
top of the original firmware.

2Typically employed in radio-controlled application.
3Ex-internship student at the BIRG and now PhD student in Zurich, moeckel@ini.phys.ethz.ch

3.1. YaMoR Project 17

The microcontroller board is an helper board that can be plugged into the module for ex-
tending its processing power. It contains a Philips LPC2138 chip (Philips, 2005), based on an
ARM7TDMITM(Segars et al., 1995) processor architecture. The key features of the LPC2138
are small power consumption, small size, 32 kB of on-chip SRAM, 512 kB of on-chip Flash, 16
10-bit Analogic-to-digital converter channel, one 10-bit Digital-to-analogic converter channel,
and a wide choice of peripherals (2 UART, 2 SPI, 2 I2C, ...).

The FPGA board, pluggable as the microcontroller board, contains a SpartanTM-3 FPGA
from Xilinxr (Xilinx, 1999). Although this board is not used in this project, its power could
be exploited properly in the future. For instance, the microcontroller board could be totally
removed and the system then be directly implemented in hardware, in case a lot of computation
power is needed. A combination of softcore processor4 running C code and hardware imple-
mentation for critical functions could as well be used. There is also the possibility to use both
the ARM board and the FPGA board in parallel. In this case, the communication between the
boards would rely on UART and the system lose its attractivity. A final matter is the power
consumption, it is worth keeping in mind that an FPGA consumes more than a microcontroller.

The sensor board lies at the bottom of the outer structure of the module. It contains a
PICr16F876A (Microchip, 2003) from Microchip that processes informations from an infra-red
sensor (distance sensor) and a 3D accelerometer. This board is not used in this project, but
could in the future serves for the fitness computation and/or for the dynamic attachment of
the modules.

ARMboard Sensor board FPGA board

Lever

Batt+ board Batt- board

BT board

Battery
Servo

Fixations

Power board

ARM board Sensor board FPGA board

Lever

Batt+ board Batt- board

BT board

Battery
Servo

Fixations

Power board

Figure 3.2: Components of a YaMoR module.

4MicroBlazeTMsoft core processor for instance (Xilinx, 2004).

18 Experimental Setup

3.2 Wireless Network

The locomotion control architecture that is used for doing online optimization is based on
the CPG model presented in Chapter 2. Each module runs an oscillator that controls the
position of the lever. The CPG model assumes each oscillator, i.e. each module, repeatedly
sends/receives the amplitude and the phase to/from the neighbors it is coupled. Moreover, it
is desirable that a remote PC is linked to the modules. Therefore, a communication network is
required for building the CPG architecture.

In modular robotics, especially when dynamic self-reconfiguration is the final aim, the avail-
ability of a wireless network, either based on radio or light, is crucial. In YaMoR, Bluetooth
(Bray and Sturman, 2000) has been chosen as the wireless communication protocol. This radio
technology offers low power consumption (compared to Wireless Local Area Network 802.11
from IEEE for instance (Crow et al., 1997)). Thanks to an ingenious Frequency Hopping pro-
tocol, Bluetooth devices can operate in noisy environments (mixed with other radio protocol
sharing the same frequency5). Since Bluetooth is a standard, every certified devices can com-
municate together without problems. Finally, the cost of Bluetooth devices has been largely
reduced by mass production.

Since Bluetooth was originally designed as a cable replacement system, there are some
limitations in the way the devices are to be connected. In its simplest version, the protocol
allows a single master (a Bluetooth dongle on a PC for instance) to be connected with up to
7 slaves (keyboard, mouse, ...). This is called a Piconet (Figure 3.3, left) in the Bluetooth
jargon. In this configuration, the slaves are not supposed to communicate together and thus
are not aware of each other. All the traffic from slave to slave passes through the master node.
An enhanced version of the protocol allows to build a Scatternet (Figure 3.3, right). In the
Scatternet, a device can play the role of the master in a Piconet and of the slave in another
Piconet. Nonetheless, the unpaired devices are not able to communicate directly and do not
know about each other.

1

2

3

4

56

7 8

1

2

3

4

56

7 8

9

10

11

12

Figure 3.3: Example of Bluetooth Piconet (left), and of Scatternet (right). In the Scatternet, device
4 is a slave in one Piconet, and a master in a second Piconet.

To overcome the difficulty of managing such Bluetooth networks, Rico Moeckel devised a
new Scatternet protocol, called SNP, above Bluetooth. SNP makes Bluetooth communica-
tion easier, since any device that wants to send data to another device in the network simply
launches a packet containing its address in the correct field. SNP is then responsible to bring

5Bluetooth uses the license-free ISM band at 2.5 GHz.

3.2. Wireless Network 19

the packet to the appropriate receiver, taking the shortest path, regardless of the Bluetooth
connection structure. Moreover, SNP is a dynamic pathfinder, i.e. it can adapt when the
network structure changes. Finally, as broadcast is also supported, a central host can remotely
control all the connected devices.

The SNP protocol has been implemented in the ZV4002 of the Bluetooth board on top of
the original firmware. As the SPP is still active, data to send to another device is inputted
in the serial port of the chip and data received is also ouputted from this port. Thanks to a
filtering part added in the firmware, the data stream is now analyzed with respect to the SNP
communication protocol. If a packet is not destinated to the device, it is forwarded in the
network. Otherwise, it is ouputted on the serial port. The routing is based on a constantly
updated friend table in each device.

The SNP protocol has been first used in this master project and some unexpected limitations
have been observed:

• For the initial connections of the devices, a serie of connection packets have to be sent in
the network. A minimum delay between these packets has to be respected. Although this
delay was empirically fixed at 7 seconds to be conservative, there is a way of lowering it
(see Section 3.5).

• It seems that only a chain-like structure (see Figure 3.4) of Bluetooth connections remains
stable, otherwise too much traffic comes into the same node simultaneously and causes
the ZV4002 reset. This burden may be removed by either introducing an unified time in
the network, or use a ask/respond protocol.

• When a serie of data packets have to be sent to different devices from the same point, a
minimum delay between packets has also to be respected. It was empirically fixed at 1
second.

• Using broadcast address to send to all the devices in the network is not always reliable.
This is probably due to the fact that broadcast is implemented as consecutive sending
of data packets to each device in the friend table and the above mentioned delay is not
respected.

1 2 3 4 5 6 7

Figure 3.4: Example of a stable Bluetooth connection structure.

20 Experimental Setup

3.3 Tracking Algorithm

An optimization algorithm needs a way to estimate how the robot is performing with a
given set of parameters. This fitness is computed as a function of the distance moved by a
LED attached to one of the module during a given time window. The LED is tracked by a
camera connected to a PC which send its position via TCP to the optimization algorithm. The
complete setup of the experiment is shown in Figure 3.5.

Ya
M
oR
H
os
t

Po
w
el
l

LED tracking

Video camera

YaMoR robot

YaMoR transceiver

Robot control Optimization

802.3

RS-232

Figure 3.5: Experimental setup

The tracking is done as in Algorithm 4. There is a first filtering of the color image, so
as to get a black and white image. The red pixels of the original image that go over a given
threshold (200 in our case) are represented as white pixels in the filtered image (white pix-
els have the value 1 and black pixels the value 0). The idea is then to move a rectangu-
lar window of size WINDOW HEIGHT ∗WINDOW WIDTH (WINDOW HEIGHT =
WINDOW WIDTH = 3) from the top left pixel to the bottom right one and to count the
number of white pixels inside it. The rectangle that has the biggest concentration of white
pixels is taken as the position of the LED.

The tracking algorithm is quite robust and efficient. It can provide the position of the LED
each 39 ms in average. In order to minimize the tracking errors, the experiments are performed
in an environment that tends to reduce light reflections. As there is a non negligible distorsion
on the camera, a correcting function is implemented on the receiving side of the LED position,
to dedicate the processor only to the LED tracking and thus have a higher frequency in the
measurements.

The function that corrects the distorsion of the lens was provided as a Matlabr file by
Alessandro Crespi6. Given a pixel of the corrected image, it computes which pixel from the
original image should be placed at this position. The function xycorr is as follows:

6PhD student at the BIRG, alessandro.crespi@epfl.ch

3.3. Tracking Algorithm 21

stat ic int xycorr (int∗ x src , int∗ y src , int x dest , int y dest ,
double∗ params)

{
double rd , rs , f , s c a l e ;
int i t e r ;

rd = sq r t ((x de s t ∗ x des t) + (y de s t ∗ y des t)) / params [4] ;
r s = rd ;
f = (r s ∗ params [0]) + (r s ∗ r s ∗ params [1]) +

(r s ∗ r s ∗ r s ∗ params [2]) + (r s ∗ r s ∗ r s ∗ r s ∗ params [3]) ;
i t e r = 0 ;

while ((f abs (f − rd) > 1e−6) && (i t e r < 100))
{

i t e r ++;
r s −= (f − rd) / (((4 ∗ params [3] ∗ r s + 3 ∗ params [2]) ∗ r s

+ 2 ∗ params [1]) ∗ r s + params [0]) ;
f = (r s ∗ params [0]) + (r s ∗ r s ∗ params [1]) +

(r s ∗ r s ∗ r s ∗ params [2]) + (r s ∗ r s ∗ r s ∗ r s ∗ params [3]) ;
}

s c a l e = r s / rd ;

∗ x s r c = (int) (x de s t ∗ s c a l e) ;
∗ y s r c = (int) (y de s t ∗ s c a l e) ;

return 0 ;
}

An application (CamAppCorr) has been written for tuning the parameters of the function.
The parameters empirically found are params={1-0.070, 0, 0.070, 0, IMAGE WIDTH / 2}.
In the final implementation, the function xycorr works from the original pixels to the destina-
tion pixels, the parameters becomes then params={1 + 0.070, 0, -0.070, 0, IMAGE WIDTH

/ 2}. Figure 3.6 shows the correction filter applied to the image. Figure 3.7 shows an example
of correction on a real image.

Figure 3.6: Correction filter (blue) applied to the original image (red)

22 Experimental Setup

Figure 3.7: Example of image correction

Algorithm 4 Tracking algorithm

1: loop
2: Grab a color image of 640x480 pixels from the camera
3: Create a B/W image with the brightest red pixels in white
4: max pixel⇐ 0, max x⇐ 0, max y ⇐ 0
5: for i = 1 to IMAGE HEIGHT −WINDOW HEIGHT do
6: for j = 1 to IMAGE WIDTH −WINDOW WIDTH do
7: pixel counter ⇐ 0
8: for k = 1 to WINDOW HEIGHT do
9: for l = 1 to WINDOW WIDTH do

10: pixel counter ⇐ pixel counter + image[i ∗ IMAGE HEIGHT + j + k ∗
WINDOW HEIGHT + l]

11: end for
12: end for
13: if pixel counter > max pixel then
14: max⇐ pixel counter, max x⇐ j, max y ⇐ i
15: end if
16: end for
17: end for
18: Send max x and max y via TCP
19: end loop

3.4. CPG Implementation into the Microcontroller 23

3.4 CPG Implementation into the Microcontroller

The CPG model presented in Chapter 2 is implemented in a distributed fashion in YaMoR.
Each module runs its own oscillator, whose set-point controls the position of the servo-motor.
The modules also communicate together for the synchronization of the CPG. Furthermore, the
remote PC, that runs the optimization algorithm, is able to fully control the functionalities of
each module. All these features are coded in C language and compiled to ARM object code
using WinARM (Thomas, 2004) environment, with the option -O3 for the optimizations. The
object code is then transferred serially into each LPC2138 microcontroller.

The firmware was developed upon a framework provided in the example folder of WinARM
(lpc2138 uart0 irq). It encapsulates the low-level register programming and thus speeds up
the software development. In the rest of the section, the relevant features of the firmware are
presented.

3.4.1 Timer

In embedded applications, a time basis is often required to have an accurate control of the
system. This need is even more accentuated when a regular oscillator output has to be gener-
ated. For this reason, TIMER0 is used to generate interrupts each millisecond. The interrupt
handler is as follows:

void a t t r i b u t e ((naked)) tc0 cmp (void) ;

void tc0 cmp (void)
{

ISR ENTRY() ;

t imeva l++; // increment the t imer at each i n t e r r u p t
T0IR = TxIR MR0 FLAG; // Clear i n t e r r u p t f l a g by wr i t i n g 1 to Bit 0
VICVectAddr = 0 ; // Acknowledge In t e r rup t

ISR EXIT () ;
}

timeval (on 64 bits) contains then the number of milliseconds elapsed since system startup.
It is important to note here the way the interrupt handler is declared. The keyword naked is
used to inform GCC7 that tco cmp does not need prologue/epilogue8 sequences, which are
manually introduced by the macros ISR ENTRY and ISR EXIT. This method ensures the com-
patibility of the code with the Thumb mode9, which is however not currently used in the
firmware.

7Gnu Compiler Collection.
8A function prologue prepares the stack and registers used by the function. The epilogue reverses these

operations.
9The Thumb mode (specific to ARM) is a way of coding the assembler instructions on 16 bits, instead of

32 bits. Although the instructions have less functionality, the code density is improved. It seems that GCC
generates incorrect prologue/epilogue sequences in Thumb mode.

24 Experimental Setup

3.4.2 UART

The microcontroller communication with the outside world passes through the UART1 inter-
face, whose RXD1 and TXD1 pins are connected to the corresponding serial pins on the ZV4002
chip of the Bluetooth board. Therefore, the microcontroller is able to send/receive SNP packets
to/from other modules in the Bluetooth network.

The framework lpc2138 uart0 irq provides an interrupt driven UART management, both
for the sending and the receiving. Nonetheless, the system used to become unstable non
deterministically, especially in the sending part. For this reason, the sending is finally done
without interrupts. The UART speed is set to the maximum 115200 baud.

UART Sending

For sending data through the UART (without interrupt system), a busy loop simply waits
that the transmit register (U1THR) is empty (scrutation on U1LSR), before filling it with a new
byte. In this case, care has to be taken that the timings are coherent, i.e. the time window is
respected.

UART Receiving

The UART has a 16 bytes receive FIFO, programmed to generate an interrupt when it contains
14 bytes. When the interrupt is generated, an handler transfers the content of the FIFO into
a software queue of 512 bytes, which is then read by the main code. In order not to miss
incoming data, it is compulsory to use interrupts for the UART receiving. To avoid buffer
overflow, timings must also be correctly ensured in this case.

3.4.3 Structure of the Main Control Loop

Instead of using an Operating System, the approach of a main control loop has been chosen.
Thanks to the timeval variable, the loop is divided into two tasks CPG thread and rec thread,
lasting exactly 5 milliseconds each. A strict control is achieved to avoid that a task overrun its
time window (error message sent in this case).

CPG thread

This task firstly updates the state variables of the oscillator using Euler integration10 with a
timestep of 10 milliseconds (CPG thread repeats every 10 ms) and generates a new set-point.
Θ (see Chapter 2), which increases linearly, is lowered by the biggest multiple of π below 1000
when it reaches this value.

The set-point is then saturated with respect to a user-specified limit (via a command from
the PC), corresponding to angles that the servo-motor should not reach. The final angle is
converted into a duty of a Pulse-Width Modulator (PWM2), which controls the position of the
servo. PWM2 has a cycle duration of 5 milliseconds.

The rest of the task is dedicated to the sending of data through the UART. In order to
avoid an overrun of the time window (5 ms) and to lower the pressure on the Bluetooth board,
data is sent using a round-robin cycle of 240 milliseconds, organized as in Figure 3.8.

10The most basic kind of numeric integration, based on f(t+ ∆t) = f(t) + (∆t ∗ f ′(t)).

3.4. CPG Implementation into the Microcontroller 25

M N1 N2 N35 slots 5 slots 5 slots 5 slots

Figure 3.8: Organization of the time slots for sending through UART. A time slot starts every 10
millisecond, but only the first half can be used, the other is for the second task. In the slot M, the
position of the set-point is sent to the master node (remote PC). In the slots N1, N2, and N2, r and Θ
are sent to neigbor 1, 2, and 3 respectively

In addition to the sending cycle of Figure 3.8, short error messages (5 bytes) can be sent to
the host if either one of the following occurs: a coupling lost, an UART error, or a time window
overrun. Moreover, an alive packet (5 bytes) can be requested by the host to discover if the
device responds.

In the worst case scenario, a maximum of 21 (coupling) + 5 (alive packet) + 3∗5 (errors) =
41 bytes are then sent in a window of 5 milliseconds. Using the UART at 115200 baud allows to
send approximately 57 bytes during 5 milliseconds. Therefore, an overrun should not appear.

rec thread

In this second task, the incoming bytes from the UART are processed during 5 milliseconds.
The standard SNP data packet format is enhanced with an additional field that specifies one
out of six different types of messages:

1. A message for entering the addresses of the neighbors (up to 3, for building the CPG
structure).

2. A message for setting the 9 control parameters of the oscillator.

3. A message for setting the limits of the servo-motor (in radian).

4. A control message for defining the state of the motor, UART, oscillator, for allowing the
module to send its set-point to the master, and for allowing the module to send error
messages to the master.

5. A coupling message from one of the three possible neighbors (r and Θ received).

6. An alive message for allowing the master to know if the device responds.

The exchange of state variables between modules takes place every 250 milliseconds, which
is larger than the 10 milliseconds of the integration step. Although r and Θ are kept constant
during the inter-communication time, Auke Ijspeert discovered that the oscillations are not
much perturbed, as long as the communication step is below 30 times the integration step (i.e.
below 300 milliseconds). Nevertheless, when a module do not receive the state variables from
a neighbor for more than 380 milliseconds (communication delays in the network or device
failure), the corresponding coupling parameters are set to 0, for limiting the degradation of the
oscillator output.

26 Experimental Setup

3.5 Implementation of the Optimization and Control Algo-
rithms

In this section, the main software (YaMoRHost) running on a remote PC is detailed. It
serves as a control of the modules and runs the optimization algorithms. The application
is composed of several threads running in parallel, namely a textual user interface, a thread
listening on TCP (for receiving the position of the LED), a thread listening on the serial line
(for receiving feedback from the modules), a thread for the optimization algorithms, and a
thread for displaying a feedback window. YaMoRHost communicates with the other modules
via the UART of a spare Bluetooth board, connected to the serial port of the PC. All the
settings concerning the modules are made via files. The different commands and configuration
file structures are exposed in the directory of the application.

3.5.1 Control of the Modules

The first compulsory step for controlling the modules is to establish a Bluetooth Scatternet
structure. YaMoRHost reads this structure from a connection file and sends the appropriate
commands through the serial line of the PC to the Bluetooth transceiver. This latter is then
responsible to build the Bluetooth network and will be known as the master node of the other
modules. All the commands destinated to the YaMoR will be launched from this node and
it will also receive the feedback messages. As discussed in Section 3.2, a delay between two
connection commands is necessary, in order to let the Bluetooth pairing process operate. In
the current version of YaMoRHost, the connection delay is set to the lowest working value, i.e. 7
seconds. The connection procedure could be improved if the alive message feature of the micro-
controller was used. Indeed, the host application could wait on a reply from the microcontroller
before processing the next connection command. The most stable connection structure that
was experimented is a chain (see Section 3.2). In the other configurations, the Bluetooth chip
used to reset itself because of overflow.

The other commands for controlling the modules correspond to what was presented in Sec-
tion 3.4. When a serie of commands have to be sent from the master node to different devices,
a delay of 1 second is inserted. Morevover, as the broadcast feature of the Scatternet protocol
seems to be unreliable, the commands are sent iteratively.

In the Scatternet protocol, the Bluetooth devices send state and error messages by de-
fault. This functionality is suppressed after the initial connection, in order not to overload the
Bluetooth network.

3.5.2 Fitness Function

An optimization algorithm repeatedly evaluates the performance of the robot for a given set
of CPG parameters. YaMoRHost first sends the parameters to all the modules (1 second per
module). A convergence time of 7 seconds is then waited. In the following step, the position
of the LED (periodically received via TCP from the application presented in Section 3.3) is
recorded. After 8 seconds, the new position of the LED is again recorded and the average speed
between the two measurements is computed as the covered distance over the elapsed time. The
result is a value in pixel per seconds (1 pixel = 0.0041 m approximately).

3.5. Implementation of the Optimization and Control Algorithms 27

As the optimization algorithms presented in Chapter 2 are made for function minimization,
the final value returned to the optimizer is normalized between 0 and 1, and a higher speed
means a lower value. Therefore, the fitness function is defined as follows:

f(~x) =
1

avg speed+ 1
(3.1)

The optimization algorithms may sometimes come up with values that are out of the allowed
range ([0, 1]). In this case, the value 1.01 is returned.

3.5.3 Implementation of Brent’s Method

Brent’s method has been implemented following the guidelines proposed in the Numerical
Recipes (NR) book (Press et al., 1988). The method assumes an initial bracketing of the min-
imum of the function is available. The risk of falling into a local optimum of the function can
be reduced by defining our own initial bracketing procedure.

All the parameters are normalized between 0 and 1. The lower boundary of the interval is
set to −0.1 and the upper boundary to 1.1, so as to include the limits in the search. The initial
minimum is then randomly fixed in the interval. Therefore, at each iteration, the whole search
space is available.

The stopping criterion of Brent’s method is that the bracketing triplet is relatively small.
The inequation given in NR is as follows:

∣∣∣∣x− a+ b

2

∣∣∣∣ ≤ 2.0 ∗ tol ∗ |x| − b− a

2
(3.2)

This means that a typical ending for the algorithm is to have an interval that is 4.0∗ tol∗ |x|
wide with x the minimum in the middle of the interval [a, b].

A difference of 0.02 between a and b is sufficient, because we work in [0, 1] and this is a
percentage of another range. For instance, if the original range is [0, 2π], an increase of 0.02
corresponds to an increase of 0.12 approximately. If the final x = 0.5, tol should be 0.01. On
the other hand, if x = 0.1, then tol should be 0.05. We feel that the stopping criterion is
somehow not very good (dependence on x is annoying). However, as many experiments were
done with it, it was kept for practical reasons.

For the experiments, a tolerance of 0.05 is finally chosen. This means that the maximum
number of iterations to converge can be estimated. For instance, if the minimum is x = 0.5,
the final size of the interval will be 0.1, and the algorithm is started with an interval of size
1.2. If the golden section is always chosen (worst case), 6 iterations are needed. On the other
hand, if x = 0.1, 9 iterations are needed.

For the future, a more adapted criterion would be as follows:

b− a ≤ tol (3.3)

This criterion would be independent of the absolute values of a, b, or x and thus be probably
more interesting.

28 Experimental Setup

3.5.4 Implementation of Powell’s Method

Powell’s method has also be written with the NR model. The stopping criterion of the
algorithm is as follows:

2.0 ∗ (f(~xi)− f(~xi+1)) ≤ tol ∗ (|f(~xi)|+ |f(~xi+1)|) (3.4)

where f(~xi) is the minimum of the function at iteration i.

Since the fitness measurement is noisy (see below), it could happen that f(~xi+1) > f(~xi).
Therefore, the criterion is slightly modified to:

2.0 ∗ |f(~xi)− f(~xi+1)| ≤ tol ∗ (|f(~xi+1)|+ |f(~xi)|) (3.5)

As for Brent’s method, the criterion is surprising, because it is dependent on the value of
the function return. The values of our fitness function are in the range [0, 1]. Imagine that
0.9 is found at one iteration and 0.8 at the next iteration, and the algorithm is requested to
stop. Given the above equation, tol should be set to 0.12 or more. If we are in the case of one
iteration leading to 0.2 and the next to 0.1, tol should now be set to 0.66 or more.

In this master project, the tolerance has been set empirically to 0.02, as it seems to be the
most adapted value for our setup. A more interesting criterion would go as follows:

|f(~xi)− f(~xi+1)| ≤ tol (3.6)

3.5.5 Noise on the Fitness Measurement

As can be seen on Figure 3.9, there is an inherent noise on the fitness evaluation. Indeed,
instead of moving linearly at a constant speed, the robot has an alternance of rest and rapid
accelerations. Depending when the position of the LED is recorded, the distance moved can
thus be different.

3.5. Implementation of the Optimization and Control Algorithms 29

7 7.5 8 8.5 9 9.5 10 10.5 11
0

5

10

15

20

25

30

fitness [pixel/s]

nb
 o

f r
un

s

Figure 3.9: Repeated fitness evaluations for the same set of parameters. The continuous vertical red
line is the mean, while the two dashed lines represent the standard deviation.

This noise has naturally an influence on the optimization algorithms. It can lead the al-
gorithm in a wrong direction (local minimum), but can also extract it from a wrong trend.
An heuristic, on top of Powell’s method, is thus developed, such that the best gait that was
discovered during the experiment is finally chosen.

Some tests on the mathematical function of Chapter 2 have been performed to show the
influence of noise on Powell’s method. A gaussian noise with a standard deviation ranging from
0 to 1 has been applied to the function. As can be seen on Figure 3.10, even with the highest
noise factor, all the minima are located in the lowest region of the function. When a function
with a local and a global optima is used, Figure 3.11 shows that a certain noise factor helps
more points to go into the global optimum.

Figure 3.10: Example of noisy minimization. The function to minimize is f(x, y) = z =
√
x2 + y2 +

(x− y)2. A gaussian noise with a standard deviation of 1 is applied to the function. The red crosses
represent 100 starting points and the blue stars the final minima, which are all located in a good
region.

30 Experimental Setup

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
15

20

25

30

35

40

45

50

55

standard deviation

nu
m

be
r

of
 r

un
s

in
 g

lo
ba

l m
in

im
um

 r
eg

io
n

Figure 3.11: Example of noisy minimization on a function with 2 minima. The function to minimize
is f(x, y) = z =

√
x2 + y2 + (x− y)2 − x ∗ exp(−(x− 5)2 − (y− 5)2). 100 runs per standard deviation

value are performed. A standard deviation in the range [0.1, 0.2] seems to bring more points in the
correct final region.

3.5.6 Miscellaneous

Besides Powell’s method and Particle Swarm Optimization, YaMoRHost can perform system-
atic search on a given set of parameters and do simple fitness evaluations. Furthermore, a useful
graphical window can be displayed to follow the displacement of the LED on the left side, and
the evolution of the fitness evaluations on the right side (Figure 3.12).

Figure 3.12: YaMoRHost feedback window.

YaMoRHost has been developed under Microsoft Visual C++ 6.0 with the Win32 Appli-
cation Programming Interface (API). When taking the Visual project as a basis for future
development, care should be taken that the compiler is using the multithreaded C runtime
library. Furthermore, the precompiled header option should be avoided. For unknown reasons,
Visual C++ sometimes automatically changes these settings when transferring the project onto
another machine.

3.6. Implementation of the Simulation 31

3.6 Implementation of the Simulation

It is sometime worth to have a simulation environment at hand for doing preliminary exper-
iments or systematic tests. Therefore, the previously described experimental setup has been
implemented in the Webots 5.1.11 robot simulator (Figure 3.13), using a framework from Yvan
Bourquin11 (yamor.wbt).

Figure 3.13: YaMoR in the Webots simulator.

Each simulated module runs nearly the same code as the microcontroller, except for the
communication, which is done with the broadcast emitter/receiver system (Cyberbotics, 2007)
from Webots. A supervisor node launches YaMoRHost, which is enhanced with the emitter/re-
ceiver system and another fitness measurement method. Instead of following the position of
a LED, the position of a module in the middle of the robot is tracked (it can be easily extracted).

Although intensive work has not yet been accomplished in Webots, it could bring a lot of
advantages in the future. For instance, when a new robot structure is designed, simulations
could be run to test if the real experiments are worth. An optimization algorithm could also
be first run in simulation and a slight adaptation could be done on the real robot. Finally,
continuous learning, even in presence of a damaged module, should be facilitated.

3.7 Robot Configurations

Systematic experiments were carried out on three different robot shapes: a snake, a tripod,
and a quadruped. The robot is placed into a square of 2m by 2m with a rubber floor. A camera,
fixed on the ceiling, covers the entire arena and tracks the position of a LED attached to one
of the module (see Section 3.3). The optimization algorithms, running on another PC, use the
position of the LED for estimating the velocity of the robot and for updating the parameters
under optimization. These latter are then sent to the modules. In case the robot goes out of
the field of vision of the camera, it is manually placed in the center of the arena. In this section,
the CPG architecture and the mechanical structure of each robot is presented.

11Researcher at the BIRG.

32 Experimental Setup

3.7.1 Snake

The snake robot is made of five actuated modules and a passive one in the front, as can be
seen on Figure 3.14. The CPG network is a chain of 5 oscillators that follows the mechanical
structure of the robot. Each module is coupled with the neighbors it is mechanically attached
to (bidirectional couplings). As this robot shape presents several symmetries, the number of
parameters to optimize is dramatically reduced. For the proof of concept of our method, only
2 parameters are optimized, namely the shared amplitude R = Ri and phase lag ϕ = ϕij. R is
restricted in the range [0, π

5
] and ϕ in [0, π]. All the offsets Xi are set to 0, ωi to 3π

5
, and the

coupling weights ωij to 1.

P

1

2

3

4

5

6

ϕ ϕ ϕ ϕ ϕ

-ϕ -ϕ -ϕ -ϕ -ϕ

Figure 3.14: Mechanical structure of the snake robot (left), CPG architecture (right). The red P
represents the passive module.

3.7. Robot Configurations 33

3.7.2 Tripod

The tripod robot consists of six active modules and a passive one in the front, as shown on
Figure 3.15. Each limb has 2 oscillators coupled together. The inner one is also coupled with
its 2 neighbors, following the mechanical structure. The symmetries are also widely exploited
in this robot, since only 6 parameters are optimized:

• A shared amplitude R1 by all the outer modules (1, 4, 6), restricted in the range [0, π
2
].

• A shared offset X by all the outer modules, restricted in the range [0, π
2
].

• A shared amplitude R2 by all the inner modules (2, 3, 5), restricted in the range [0, π
4
]

(to avoid collisions).

• A shared phase lag ϕAB between the 2 modules of each limb, restricted in the range [0,
2π].

• A phase lag ϕ1 between the inner modules 2 and 3, restricted in the range [0, 2π].

• A phase lag ϕ2 between the inner modules 3 and 5, restricted in the range [0, 2π].

The phase lag ϕ3 between the inner modules 5 and 2 is deduced from ϕ1 and ϕ2, such that
ϕ1 + ϕ2 + ϕ3 is a multiple of 2π. The offsets Xi of the inner modules 1 and 2 are set to π

3
. All

the frequencies ωi are set to 3π
5

and all the coupling weights ωij to 1.

1

2

3

5

6

4

P

ϕAB

ϕ1

-ϕAB

ϕ2

-ϕAB

ϕAB

-ϕAB

ϕAB

-ϕ1

-ϕ2

-ϕ3

ϕ3

Figure 3.15: Mechanical structure of the tripod robot (left), CPG architecture (right). The red P
represents the passive module.

34 Experimental Setup

3.7.3 Quadruped

The quadruped robot has eight active modules and a passive one in the middle, as depicted
on Figure 3.16. The CPG architecture is similar to the one of the tripod, with one additional
limb. This means that a supplementary phase lag ϕ3 parameter is optimized (thus 7 dimen-
sions), again restricted in the range [0, 2π]. All the offsets of the inner modules are now set to
0. The frequencies and coupling weights are as in the tripod. The phase lag ϕ4 between 7 and
2 is such that ϕ1 + ϕ2 + ϕ3 + ϕ4 is a muliple of 2π.

1

2

P

3

4

5

6

7

8

ϕAB

-ϕAB

-ϕAB

ϕAB

-ϕAB

ϕAB

-ϕAB

ϕAB

ϕ1 -ϕ1

ϕ2

-ϕ2

ϕ3 -ϕ3

ϕ4

-ϕ4

Figure 3.16: Mechanical structure of the quadruped robot (left), CPG architecture (right). The red
P represents the passive module.

Chapter 4
Experimental Results

About half of the time dedicated to this master project has been spent on robot experiments.
This compulsory step for validating the setup of Chapter 3 has required long hours of debugging
to be able to present the results of this chapter.

0.314 0.942 1.57 2.198 2.826

0.06

0.126

0.192

0.258

0.324

0.39

0.456

0.522

0.588

Phase lag φ [rad]

A
m

pl
itu

de
 R

 [r
ad

]

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Figure 4.1: Systematic search on the snake robot. 81 fitness measurements have been carried out
(9 equally spaced per parameter). The color bar on the right represents the speed of the robot in
m/s. Some of the Powell experiments of Figure 4.2 are superposed above the area (colored lines). The
highest velocity (about 0.02 [m/s]) appears when the amplitude R = 0.588 [rad] and the phase lag
φ = 0.942 [rad].

36 Experimental Results

5 10 15 20 25 30 35

0

0.5

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

5 10 15 20 25 30 35

0

0.5

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

5 10 15 20 25 30 35
−1

0

1

2

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

5 10 15 20 25 30 35
−1

0

1

2

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

2 4 6 8 10 12 14 16 18 20 22
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14 16 18 20 22
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]
5 10 15 20 25 30

0.5

1

1.5

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

5 10 15 20 25 30

0.5

1

1.5

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

5 10 15 20 25 30

0.5

1

1.5

2

2.5

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

5 10 15 20 25 30

0.5

1

1.5

2

2.5

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14 16 18

0

0.5

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]
2 4 6 8 10 12 14 16 18

0

0.5

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

2 4 6 8 10 12 14 16 18

0

1

2

3

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

2 4 6 8 10 12 14 16 18

0

1

2

3

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

2 4 6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

5 10 15 20 25 30

0

0.5

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

5 10 15 20 25 30

0

0.5

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

5 10 15 20 25 30
−1

0

1

2

3

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

5 10 15 20 25 30
−1

0

1

2

3

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14 16 18 20 22

0.2

0.4

0.6

0.8

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

2 4 6 8 10 12 14 16 18 20 22

0.2

0.4

0.6

0.8

1

op
t.

pa
ra

m
. n

or
m

 [r
ad

]

2 4 6 8 10 12 14 16 18 20 22

0.5

1

1.5

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

2 4 6 8 10 12 14 16 18 20 22

0.5

1

1.5

op
tim

iz
at

io
n

pa
ra

m
et

er
 [r

ad
]

2 4 6 8 10 12 14 16 18 20 22
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14 16 18 20 22
0

0.005

0.01

0.015

0.02

time [min]

ve
lo

ci
ty

 [m
/s

]

Figure 4.2: Powell’s method on the snake robot. 6 different experiments are depicted here. The
green line represents the amplitude R and the red line (with the squares) the phase lag φ. The
parameters are first shown in their normalized form, between 0 and 1, and then in their real form.
Below the parameters, the velocity of the robot in m/s is printed. The blue line represents all the
fitness evaluations, while the red dashed line only the results of the line minimizations. The repeated
two line minimizations, followed by the point extrapolation, are clearly visible.

37

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

no
rm

al
iz

ed
 fi

tn
es

s

best
average

0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration
no

rm
al

iz
ed

 fi
tn

es
s

best
average

Figure 4.3: Particle Swarm Optimization on the snake robot. 2 experiments have been carried out.
The blue line (circles) is the evolution of the best individual and the red line (diamonds) of the average
of the population, made of 10 particles randomly spreaded in the search space. The weights pw and
nw are set to 2.0. The best individual on the left ends up with a velocity of 0.022 m/s, an amplitude
R = 0.59, and a phase lag ϕ = 0.84 (radians). The best individual on the right ends up with a velocity
of 0.021 m/s, an amplitude R = 0.59, and a phase lag ϕ = 0.63.

Figure 4.4: Snapshot of the evolved gait for the snake robot.

38 Experimental Results

0 10 20 30 40 50 60
−2

0

2

4

6

8

op
t.

pa
ra

m
et

er
 [r

ad
]

0 10 20 30 40 50 60
−2

0

2

4

6

8

op
t.

pa
ra

m
et

er
 [r

ad
]

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

10

op
t.

pa
ra

m
et

er
 [r

ad
]

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

10

op
t.

pa
ra

m
et

er
 [r

ad
]

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 10 20 30 40 50 60 70
−2

0

2

4

6

8

10

12

op
t.

pa
ra

m
et

er
 [r

ad
]

0 10 20 30 40 50 60 70
−2

0

2

4

6

8

10

12

op
t.

pa
ra

m
et

er
 [r

ad
]

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

op
t.

pa
ra

m
et

er
 [r

ad
]

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

op
t.

pa
ra

m
et

er
 [r

ad
]

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

time [min]

ve
lo

ci
ty

 [m
/s

]

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

time [min]

ve
lo

ci
ty

 [m
/s

]

Figure 4.5: Powell’s method on the tripod robot. The 4 most representative experiments are shown
here. The parameters are presented with their real value in radians. The green line is R2, the red line
(diamonds) is R1, the black line (crosses) is X, the purple line (stars) is ϕAB, the cyan line (triangles)
is ϕ1, and the blue line (circles) is ϕ2. The velocity graph below has the same meaning as in Figure
4.2.

39

0 0.39 0.79 1.18 1.57

0

0.79

1.57

2.36

3.14

3.93

4.71

5.5

6.28

offset X
B
 [rad]

ph
as

e
la

g
 φ

23
 [r

ad
]

0

1

2

3

4

5

6

Figure 4.6: Systematic search on the tripod robot. The parameters X and ϕ2 are explored on a 9x9
search space. The other parameters are fixed to some good values. The paths superposed above the
area represents two Powell minimizations. The velocity is in pixel/s, where 1 pixel is about 0.0041m.
The highest velocity is about 0.02 m/s, when X = 0.39 [rad] and ϕ2 = 5.5 [rad].

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

no
rm

al
iz

ed
 fi

tn
es

s

best
average

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

no
rm

al
iz

ed
 fi

tn
es

s

best
average

Figure 4.7: Particle Swarm Optimization on the tripod robot. 2 experiments have been carried out.
The blue line (circles) is the evolution of the best individual and the red line (diamonds) of the average
of the population, made of 10 particles randomly spreaded in the search space. The weights pw and
nw are set to 2.0. The best individual on the left ends up with a velocity of 0.049 m/s, R1 = 0.99,
R2 = 0.62, X = 0.39, ϕ1 = 4.9, ϕ2 = 4.74, ϕAB = 2.55 (radians). The best individual on the right
ends up with a velocity of 0.06 m/s, R1 = 1.05, R2 = 0.7, X = 0.64, ϕ1 = 2.46, ϕ2 = 0.13, ϕAB = 5.82.

Figure 4.8: Snapshot of the evolved gait for the tripod robot.

40 Experimental Results

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

10

op
t.

pa
ra

m
et

er
 [r

ad
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

10

op
t.

pa
ra

m
et

er
 [r

ad
]

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

time [min]

ve
lo

ci
ty

 [m
/s

]

Figure 4.9: Powell’s method on the quadruped robot. The meaning of the colored lines in the upper
graph is the same as in Figure 4.5, added with a yellow line for ϕ3. The velocity graph has the same
meaning as before.

Chapter 5
Discussion

In this chapter, the results from Chapter 4 are commmented and discussed. Each robot shape
is analyzed separately and the validity of our approach in general is questioned.

5.1 Snake Robot

The snake robot is a perfect example for proving the suitability of our Powell’s method im-
plementation. Indeed, all the experiments ended in the same minimum region, that was proven
to be minimum by the systematic search (Figure 4.1). The noise (see Chapter 3) implies that
the final parameters values are slightly different. This appears especially on the phase lag ϕ.

Since the fitness function has only one global optimum and 2 parameters are optimized,
Powell performs nicely in these experiments. After 10 minutes (one iteration of Powell), it has
nearly found the final minimum. At each new line minimization, it can be seen that most of
the range is covered and not only a small interval around the previous minimal value.

The two experiments of PSO have found approximately the same values as Powell, i.e. a ve-
locity of 0.02 m/s, an amplitude R = 0.59 and a phase lag ϕ in [0.6, 0.9]. Nevertheless, in term
of speed of convergence, Powell outperforms PSO on this problem, as can be seen on Figure 5.1.

42 Discussion

0 10 20 30 40 50 60
0

1

2

3

4

5

6

evaluation

fit
ne

ss
 [p

ix
el

/s
]

PSO
Powell

Figure 5.1: Comparison between Powell and PSO in term of speed of convergence in the snake robot.
After 25 robot evaluations, Powell has already found the final minimum, while PSO is much slower.

5.2 Tripod Robot

With the tripod robot, encouraging results have also resulted from the Powell’s method. The
fastest gaits appears generally after 25 minutes. Instead of going forward, the robot has a
tendency to move into a circle. This is probably due to the its structure.

As suggested by Figure 4.6, there seems to be several optima for the fitness function. This
may explain why the final parameters are sometimes far from each other. In Figure 4.6, the
two Powell experiments ended in the same correct minimum region.

PSO also found comparable results in term of velocity, i.e. around 0.06 m/s. On one
experiment, it even jumped to 0.09 m/s, but this is probably the noise. Powell is again faster
on this problem, as shown in Figure 5.2.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

evaluation

fit
ne

ss
 [p

ix
el

/s
]

PSO
Powell

Figure 5.2: Comparison between Powell and PSO in term of speed of convergence in the tripod
robot. After 60 evaluations, Powell has nearly the final minimum, while PSO is again below.

5.3. Quadruped Robot 43

5.3 Quadruped Robot

The quadruped robot could be fully tested only at the end of the project. Therefore, only
one significant experiment is shown (Figure 4.9). In this latter, Powell seems to work nicely.
Indeed, although 7 parameters are optimized, a good gait is discovered after 20 minutes.

In this example, the effect of noise is clearly visible. After the good gait with a velocity of
0.05 m/s has been found, there is a whole suboptimal period before reaching a higher value.
This is due to a changing of one of the phase lag into a region near a local minimum. For this
reason, it seems important to select the best minimum seen so far when the algorithm is stopped.

In the quadruped robot, as in the tripod, the motion is most of the time circular. This
could be probably avoided by changing the CPG structure.

44 Discussion

Chapter 6
Conclusion and Future Work

This master project has shown the suitability of the Powell’s method for doing online learning
of locomotion on modular robots based on a Central Pattern Generator (CPG) architecture. A
distributed CPG has first been implemented in the modular robot YaMoR. A complete control
system for performing the optimization has then been built. Powell’s method has been suc-
cessfully tested on three different robot structures. It has then been compared with Particule
Swarm Optimization (PSO), a stochastic algorithm. In all the experiments, Powell’s method
could reach a good gait faster than PSO. Finally, a simulation environment, that mimics our
experimental setup, has been prepared and tested.

The efficiency of Powell’s method remains to be proven in higher dimensional spaces. Some
preliminary experiments have been done in simulations with the snake robot and open param-
eters (no symmetries). Nevertheless, no satisfactory gait emerged.

The online learning could be achieved in two steps. A quick global algorithm, such as PSO,
could be used to determine the region containing a satisfying minimum. Powell’s method could
then be launched from a starting point in this region. We believe this would speed up the
convergence time and avoid to fall into local minimum.

Life-long learning has not yet been experimented on YaMoR. This should be done quite eas-
ily on the basis of our work. Powell’s method could be started whenever the velocity of the robot
would fall below a certain limit. For instance, we could imagine that the quadruped robot would
lose one of its outer modules and that the robot could adapt a new gait rapidly to this situation.

46 Conclusion and Future Work

The modular robot could store the learned CPG parameters for a given structure in mem-
ory. Whenever the robot shapes would change, it could start Powell’s method from this stored
solution.

Finally, the control software YaMoRHost, that supervises the experiments, should be en-
hanced with a complete Graphical User Interface (GUI) in the future. At the current time, it
is still arduous to work with it, because of its cryptic configuration files.

Bibliography

Arredondo, R. (2006). Design and simulation of locomotion of self-organising modular robots
for adaptive furniture. Master’s thesis, EPFL.

Bloch, G. (2006). Quand la table devient chaise. Le Temps, page 26.

Bray, J. and Sturman, C. (2000). Bluetooth: Connect Without Cables. Prentice Hall PTR.

Crow, B., Widjaja, I., Kim, L., and Sakai, P. (1997). Ieee 802.11 wireless local area networks.
Communications Magazine, IEEE, 35, 116–126.

Cyberbotics (2007). Webots Reference Manual.

Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210, 492 – 498.

Ijspeert, A. and Kodjabachian, J. (1999). Evolution and development of a central pattern
generator for the swimming of a lamprey. Artificial Life, 5, 247–269.

Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., and Murata, S. (2004).
Distributed adaptive locomotion by a modular robotic system, m-tran ii from local adaptation
to global coodinated motion using cpg controllers. In International Conference on Intelligent
Robots and Systems.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Neural Networks.

Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., and Murata, S. (2003).
M-tran ii: metamorphosis from a four-legged walker to a caterpillar. In Intelligent Robots
and Systems, 2003. (IROS 2003)., volume 3, pages 2454–2459.

Marbach, D. and Ijspeert, A. (2006). Online optimization of modular robot locomotion. In
Conference on Mechatronics and Automation.

Microchip (2003). PIC16F87XA Data Sheet.

Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., and Ijspeert, A. (2006). Exploring
adaptive locomotion with yamor, a novel autonomous modular robot with bluetooth interface.
Industrial Robot, 33, 285–290.

Philips (2005). LPC213X User Manual.

Press, W., Teukolski, S., Vetterling, W., and Flannery, B. (1988). Numerical Recipes in C.
Cambridge University Press.

48 BIBLIOGRAPHY

Segars, S., Clarke, K., and Goudge, L. (1995). Embedded control problems, thumb, and the
arm7tdmi. IEEE Micro, 15, 22–30.

Shik, M., Severin, F., and Orlovskii, G. (1966). Control of walking and running by means of
electrical stimulation of the mid-brain. Biofizyka, 11, 659–666.

Thomas, M. (2004). Winarm environment. http://www.siwawi.arubi.uni-kl.de/.

Xilinx (1999). Spartan-3 FPGA Familiy: Complete Data Sheet.

Xilinx (2004). MicroBlaze Processor Reference Guide.

Yim (1994). Locomotion with a Unit Modular Reconfigurable Robot. Ph.D. thesis, Stanford
University Mechanical Engineering Dept.

Zeevo (2004). ZV4002 Data Sheet.

Zykov, V., Mytilinaios, E., Adams, B., and Lipson, H. (2005). Self-reproducing machines.
Nature.

	Introduction
	Project Goals
	Outline of the Report

	Theoretical Background
	CPG Model
	Mathematical Equations
	Convergence
	Properties

	Optimization Algorithms
	Powell's Method
	Particle Swarm Optimization

	Experimental Setup
	YaMoR Project
	Wireless Network
	Tracking Algorithm
	CPG Implementation into the Microcontroller
	Timer
	UART
	Structure of the Main Control Loop

	Implementation of the Optimization and Control Algorithms
	Control of the Modules
	Fitness Function
	Implementation of Brent's Method
	Implementation of Powell's Method
	Noise on the Fitness Measurement
	Miscellaneous

	Implementation of the Simulation
	Robot Configurations
	Snake
	Tripod
	Quadruped

	Experimental Results
	Discussion
	Snake Robot
	Tripod Robot
	Quadruped Robot

	Conclusion and Future Work
	Bibliography

