Control of Locomotion in Modular Robotics
Master Project

Jérôme Maye

Biologically Inspired Robotics Group
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne

March 8, 2007
1. Motivation
 - Challenges of Locomotion in Modular Robotics
 - Preliminary Work

2. Our Contribution/Results
 - Implementation of the Experimental Setup
 - Experiments
Outline

1 Motivation
 - Challenges of Locomotion in Modular Robotics
 - Preliminary Work

2 Our Contribution/Results
 - Implementation of the Experimental Setup
 - Experiments
A modular robot is constructed out of multiple homogeneous building blocks with:

- at least one actuated degree of freedom
- a (dynamic) connection mechanism
- computational power
- optional sensing abilities
- communication abilities
- electrical power
Modular Robotics Promises and Applications

Compared to "classical" robots:

- robustness
- adaptiveness
- self-repair
- economy
Modular Robotics Promises and Applications

Compared to "classical" robots:
- robustness
- adaptiveness
- self-repair
- economy

Space Missions
Modular Robotics Promises and Applications

Compared to "classical" robots:
- robustness
- adaptiveness
- self-repair
- economy

Urban Search and Rescue
Modular Robotics Promises and Applications

Compared to "classical" robots:

- robustness
- adaptiveness
- self-repair
- economy

Adaptive Furniture
Modular Robotics Locomotion

- Locomotion is one of the key requirements
- Coordination of multiple actuated joints
 - Bio-inspired Central Pattern Generator (CPG) approach is appealing
 - A CPG is a network of neurons able to generate coordinated rhythmic activity
Modular Robotics Locomotion

- Locomotion is one of the key requirements
- Coordination of multiple actuated joints
- Bio-inspired Central Pattern Generator (CPG) approach is appealing
- A CPG is a network of neurons able to generate coordinated rhythmic activity
Outline

1 Motivation
 - Challenges of Locomotion in Modular Robotics
 - Preliminary Work

2 Our Contribution/Results
 - Implementation of the Experimental Setup
 - Experiments
YaMoR Robot

Module

Jérôme Maye

Control of Locomotion in Modular Robotics
YaMoR Robot Module

Control of Locomotion in Modular Robotics
YaMoR Robot

Module

Components

ARM board Sensor board FPGA board

Lever

Batt+ board Batt- board

BT board

Power board

Fixations Battery Servo

Jérôme Maye

Control of Locomotion in Modular Robotics
YaMoR Robot

Module

Robot Example

Jérôme Maye

Control of Locomotion in Modular Robotics
CPG Design

\[
\dot{\phi}_i = \omega_i + \sum_j (\omega_{ij} r_j \sin(\phi_j - \phi_i - \varphi_{ij}))
\]

\[
\ddot{r}_i = a_r \left(\frac{a_r}{4} (R_i - r_i) - \dot{r}_i \right)
\]

\[
\ddot{x}_i = a_x \left(\frac{a_x}{4} (X_i - x_i) - \dot{x}_i \right)
\]

\[
\theta_i = x_i + r_i \cos(\phi_i)
\]
CPG Design

\[
\dot{\phi}_i = \omega_i + \sum_j (\omega_{ij} r_j \sin(\phi_j - \phi_i - \varphi_{ij})) \\
\ddot{r}_i = a_r \left(\frac{a_r}{4} (R_i - r_i) - \dot{r}_i \right) \\
\ddot{x}_i = a_x \left(\frac{a_x}{4} (X_i - x_i) - \dot{x}_i \right) \\
\theta_i = x_i + r_i \cos(\phi_i)
\]
Learning Algorithm - Powell’s Method

- Simple heuristic that has shown interesting results in simulation
- Repeated one-dimensional minimizations along a constantly updated direction set
- One-dimensional minimization with Brent’s method
- Powell’s method changes the direction set depending on the function

Golden Section

Parabolic Interpolation
Learning Algorithm - Powell’s Method

- Simple heuristic that has shown interesting results in simulation
- Repeated one-dimensional minimizations along a constantly updated direction set
- One-dimensional minimization with Brent’s method
- Powell’s method changes the direction set depending on the function

Graph showing multiple points labeled as $X_0 = P_2$, P_1, P_3, $X_1 = P_2$, $X_2 = P_4$, and $X_3 = P_5$.
Learning Algorithm - Particle Swarm Optimization

- Stochastic optimization method inspired by the movement of flocking birds
- A set of particles spreaded in a virtual space fly towards the optimum of the function
- New position of a particle depends on its best performance and the best performance of its neighborhood
YaMoR Communication Protocol

- Original software delivered with the Bluetooth chip lacks the features needed to implement the CPG model
- Scatternet protocol built on top of it allows easy intermodule communication
- After initial network configuration, packets are simply launched in the network
- Transparent communication
YaMoR Communication Protocol

- Original software delivered with the Bluetooth chip lacks the features needed to implement the CPG model
- Scatternet protocol built on top of it allows easy intermodule communication
- After initial network configuration, packets are simply launched in the network
- Transparent communication
Outline

1. Motivation
 - Challenges of Locomotion in Modular Robotics
 - Preliminary Work

2. Our Contribution/Results
 - Implementation of the Experimental Setup
 - Experiments
Experimental Setup Overview

- YaMoRHost
- Powell
- LED tracking
- Video camera
- YaMoR robot
- YaMoR transceiver
- Robot control
- Optimization
- 802.3
- RS-232

Control of Locomotion in Modular Robotics

Jérôme Maye
LED Tracking

- Application running on a dedicated PC
- Provides the position of the LED to a remote PC each 39 ms on average
- Highest quantity of white pixels in a moving window
- Correction function applied on the remote PC

Original Image

Corrected Image
Optimization Algorithms

- Implemented on a remote PC
- Function to minimize is given as:

\[
 f(\vec{x}) = \frac{1}{\text{avg_speed} + 1}
\]

- \(\vec{x}\) contains values for the parameters under optimization
- \text{avg_speed} is computed as the displacement of the LED during 8 seconds, over the time between the two measurements
- All the parameters are limited in the range \([0, 1]\)
Robot Control

- Remote PC connected to a spare Bluetooth device via serial port
- Commands are sent to the modules, using the Scatternet protocol
- Scatternet protocol limitations:
 - Initial network structure

 1 2 3 4 5 6 7

 - Broadcast and inter-message time
An oscillator runs in each module
- Its output controls the position of the servo via a PWM
- An oscillator can be coupled with up to 3 neighbors
- A module periodically receives/sends state variables from/to the neighbors it is coupled
Simulation Environment

- All the experimental setup has been reproduced in Webots
- Nearly the same code is used
- Possibility to have simulated and real experiments in parallel
- Ideal substrate for testing new robots or doing systematic experiments
Outline

1 Motivation
 - Challenges of Locomotion in Modular Robotics
 - Preliminary Work

2 Our Contribution/Results
 - Implementation of the Experimental Setup
 - Experiments
For the same set of parameters, different fitness evaluations

- Non linearity in the movement of the robot
- Irregularity of the ground
Several possible local optima for a single parameter when the others are fixed

Wide exploration required to find the best one

Even if a local optimum is found for a parameter, the others often adapt to generate a new efficient gait
Snake Robot - Configuration
Snake Robot - Powell’s Method

Motivation
Our Contribution/Results
Summary
Implementation of the Experimental Setup
Experiments

Jérôme Maye
Control of Locomotion in Modular Robotics
Snake Robot - Particle Swarm Optimization

Motivation

Our Contribution/Results

Summary

Implementation of the Experimental Setup

Experiments

Jérôme Maye

Control of Locomotion in Modular Robotics
Snake Robot - Movie
Motivation

Our Contribution/Results

Summary

Implementation of the Experimental Setup

Experiments

Tripod Robot - Configuration

\[
\begin{align*}
\phi_1 - \phi_{AB} - \phi_2 - \phi_{AB} \\
\phi_{AB} - \phi_{AB} - \phi_3 - \phi_{AB}
\end{align*}
\]
Tripod Robot - Powell’s Method

Motivation

Our Contribution/Results

Summary

Implementation of the Experimental Setup

Experiments

Jérôme Maye

Control of Locomotion in Modular Robotics
Tripod Robot - Particle Swarm Optimization

Motivation

Our Contribution/Results

Summary

Implementation of the Experimental Setup

Experiments

Control of Locomotion in Modular Robotics
Tripod Robot - Movie
Quadruped Robot - Configuration

![Image of quadruped robot configuration]

Diagram showing the configuration of the quadruped robot with labeled parts and angles. The diagram includes nodes labeled 1 to 8 with connections indicating the movement angles (φ) and AB angles.
Quadruped Robot - Powell’s Method

Motivation

Our Contribution/Results

Summary

Implementation of the Experimental Setup

Experiments

Jérôme Maye

Control of Locomotion in Modular Robotics
Quadruped Robot - Particle Swarm Optimization

Motivation

Our Contribution/Results

Summary

Implementation of the Experimental Setup

Experiments

Quadruped Robot - Particle Swarm Optimization

- Normalized fitness over iteration
- Fitness [pix/s] over evaluation
Summary

- Building of a complete distributed system, with software running on different platforms
- Validation of the previous simulations with Powell’s method
- Comparison with Particle Swarm Optimization

Outlook
- Long-life learning
- Control of direction