
Swiss Federal Institute of Technology of Lausanne
University of Fribourg

YaMoR Lifelong Learning

Michel Yerly

Project type Master Project 2007
Computer Science Department
University of Fribourg

Students Michel Yerly

Supervisors Alexander Sproewitz, Auke Jan Ijspeert

Responsible professors Beat Hirsbrunner

Work place EPFL
Lausanne
Switzerland

Start/end dates 19.03.2007/ 24.08.2007

Contents

1 Introduction 6
1.1 Goals . 8
1.2 Achieved Work . 9
1.3 Report Organization . 9

2 State of the Art 10
2.1 History . 10
2.2 Current Modular Robots . 10

2.2.1 Roombots . 10
2.2.2 M-TRAN III (2005) . 11
2.2.3 Stochastic 3D (2005) . 11
2.2.4 Molecubes (2005) . 12
2.2.5 SuperBot (2006) . 12

2.3 Lifelong Learning . 13

3 Task List 14
3.1 Tasks . 14
3.2 Schedule . 15

4 Accelerometer Measurement 16
4.1 Sensor Board . 16

4.1.1 Overview . 16
4.1.2 Accelerometers MMA7260Q 16
4.1.3 PIC 16F876A . 17

4.2 Measurement Setup . 17
4.2.1 Setup . 17
4.2.2 PIC Software . 18
4.2.3 RS232 Software . 18

4.3 Measurements . 18
4.3.1 Noise Measurement . 18
4.3.2 Filtering . 19
4.3.3 Acceleration, Velocity, Position 19
4.3.4 Movements Measurements 19

4.4 Results . 20
4.4.1 Noise . 21
4.4.2 Movements . 21

4.5 Discussion . 22
4.5.1 Noise . 22

2

4.5.2 Movements . 22
4.5.3 Conclusion . 22

5 Framework Software 24
5.1 Existing Software . 24

5.1.1 YaMoR Host . 24
5.1.2 CamApp . 24

5.2 Motivations . 24
5.2.1 Time Saving . 24
5.2.2 Flexibility . 25
5.2.3 Maintenance . 25
5.2.4 Programming Language 25

5.3 Architecture . 26
5.4 YaMoR Webots Bridge . 26

5.4.1 Analysis . 26
5.4.2 Design . 28
5.4.3 Implementation . 32
5.4.4 Issues and Known Bugs 32
5.4.5 Future . 33

5.5 YaMoR Host 3 . 33
5.5.1 Analysis . 33
5.5.2 Design . 34
5.5.3 Implementation . 35
5.5.4 Issues and Known Bugs 42

5.6 MathEval . 42
5.6.1 Analysis . 42
5.6.2 Design . 42
5.6.3 Implementation . 43
5.6.4 Issues and Known Bugs 44

5.7 YaMoR Optimizer . 44
5.7.1 Analysis . 44
5.7.2 Design . 44
5.7.3 Implementation . 46
5.7.4 Issues and Known Bugs 50

6 Gait Optimization 51
6.1 Central Pattern Generators . 51

6.1.1 Overview . 51
6.1.2 YaMoR Application . 52

6.2 Optimization . 52
6.2.1 Velocity Evaluation . 52
6.2.2 Powell Explained . 55
6.2.3 Stadium Bounding . 56
6.2.4 Easy Direction Change . 59
6.2.5 One-Dimensional Function Optimization 61

6.3 From Simulation to Real World 61
6.4 Future . 61

3

7 Lifelong Learning 64
7.1 Overview . 64
7.2 Base Strategy . 64
7.3 Anomaly Detection . 64
7.4 Adaptation . 65

7.4.1 CPG Network Construction 66
7.4.2 Constraining . 66

7.5 Tests . 69
7.5.1 Transformation . 69
7.5.2 Upside Down . 69

7.6 Results . 70
7.7 Discussion . 70
7.8 Future . 72

7.8.1 CPG Network Construction 72
7.8.2 Gaits Database . 72

8 Conclusion 73

9 Acknowledgement 75

A Experimental Configurations 78
A.1 Snake . 78
A.2 Trebuchet . 78
A.3 Dog . 79
A.4 Wheel . 81

B Accelerometer Measurements 84

C YaMoR Host 3 Documentation 95
C.1 Settings . 95
C.2 Graphical User Interface . 96

C.2.1 Configure the Robot . 96
C.2.2 Connect the Robot . 98
C.2.3 Send the Configuration 98
C.2.4 Send Control Messages . 99
C.2.5 LED Tracking . 99
C.2.6 Defect Motors . 99
C.2.7 Physical Links . 99

C.3 RPC Interface . 100
C.4 Configuration File . 101

C.4.1 XML Schema . 101
C.4.2 Configuration Example 101

D YaMoR Optimizer Documentation 103
D.1 Graphical User Interface . 103

D.1.1 Simulation Hosts Window 103
D.1.2 Optimizer Selection Window 104

D.2 Writing an Optimizer . 104
D.2.1 Workflow . 104
D.2.2 IOptimizer Interface . 104

4

D.2.3 UserConfig . 105
D.2.4 Parallelizability . 105

E CD-ROM 106

5

Chapter 1

Introduction

In 2004 the Biologically Inspired Robotics Group (BIRG) started developing
the modular robot YaMoR (Figure 1.1) at the Swiss Federal Institute of Tech-
nology of Lausanne, Switzerland. The acronym YaMoR stands for ”yet another
modular robot”.

Figure 1.1: Tripod, a YaMoR robot. Picture taken from [15]

In fact a YaMoR robot is made up of several identical modules shown in
Figure 1.2. Each one of them has one degree of freedom: the handle can move
in a range of 180◦ around its axis. This movement is controlled by a servomo-
tor inside the module. The modules can communicate with each other via a
Bluetooth network using a protocol developed at the BIRG called SNP [18].

6

Figure 1.2: A YaMoR module. Picture taken from [15]

An advantage of modular robotics is that a robot can adapt or be adapted
to the situation or the environment. If it has to pass for example through a tiny
hole, it can transform itself into a snake to pass through and once it is on the
other side, it turns itself back to a spider in order to walk faster. At a larger
scale a modular robot could transform itself into a bridge for other robots to pass
over a gap. Because all the modules are identical, they can be manufactured at
a large scale, which considerably reduces the cost of each module. If a module
gets damaged, it can easily be replaced by another one, and if the module
software is well designed it is almost instantaneously operational with the rest
of the robot. YaMoR requires a manual assembly of the modules, whereas
its upcoming successor – Roombot – will be able to connect and disconnect
modules by itself. In YaMoR they are attached to one to another by a screw on
the handle that can fit in one of the five connectors of the other module. The
connector can be connected to the module every 15◦ arround the screw. The
module also contains a infrared sensor and accelerometers.

YaMoR robot is driven by a gait system inspired by the human spine called
Central Pattern Generators (CPG) (see Section 6.1). The CPG model used in
YaMoR is made of coupled non-linear oscillators. Each module contains one
oscillator, which is coupled with those of other modules. The output of an
oscillator controls the servomotor directly. A restricted set of parameters is
sufficient to describe a rhythmic gait. When these parameters change, the old
gait smoothly and quickly converges to a new one, without imposing strong
physical constraints to the servomotors. Sensory inputs or constraints can be
added on the oscillator of a module and would influence the behavior of the
whole network. For example if the servomotors have feedback on their respective
oscillators and a leg is blocked, this would influence the whole gait. When the
leg is released, the gait would return smoothly to normality [1].

7

Because the shape of YaMoR is subject to change at any time, it is convenient
that the robot is able to learn walking gaits by itself. The gait self learning also
allows it to recover from odd situations, such has module malfunction, ground
becoming slippery or muddy, slope variation, etc. but currently the robot is not
able to adapt its gait by itself during its operation. Gait learning is made offline.
YaMoR does not know anything about its geometrical structure, whereas many
other modular robots know at least their tree or graph structure, such as the
upcoming Roombot. It has thus no way for computing internally an efficient
gait. It has to try out gaits and draw conclusions about them. Thanks to
the CPG system plus the fact that symmetries can be introduced, the set of
parameters to optimize is very reduced. Finding a good gait for a 10-modules
robot usually takes less than five hours.

The technique used to find the values of the free parameters is a function
optimization. This function returns the velocity of the robot in function of the
inputed free parameters. Unfortunately, the function is not known and each time
one wants to know the velocity for a given set of parameters, a simulation has
to be performed, which takes more than 20s. In order to find the maximum of
this function, Powell’s algorithm is used (Section 6.2.2). Currently the velocity
measurement is made by a robot tracking system using a camera fixed on the
ceiling of the experimentation area.

As previously mentioned, finding a gait can take several hours. This is the
reason why many of the experiments are done in Webots. Webots is a robot
simulator developed at the Swiss Federal Institute of Technologies of Lausanne
and is widely used in the academic domain all over the world. It offers a 3D
interface and a physics engine. The modeled robot are controlled by independent
software. Webots brings several advantages over YaMoR experimentations: the
simulation can be run faster than realtime, no need to recharge the batteries,
no geometrical bounds for the experimenting area, no waiting for the Bluetooth
network to be established. Furthermore an arbitrary number of modules can
be used in Webots. Unfortunately, current interfaces to Webots and to the
real robot are not complete (some features are missing), not made uniform and
inconvenient to use.

1.1 Goals

The goals of this project are the following:

• Accelerometers characterization. Determine if the accelerometers can be
used or not for positioning. The goal is to replace the current robot
tracking system by calculating the position and velocity internally.

• Develop a framework to work with YaMoR easily either in Webots simu-
lator or in the real world.

• Study and if possible improve the learning algorithm.

• Create a lifelong learning strategy for YaMoR in order to overcome possible
module addition and removal or malfunction.

8

1.2 Achieved Work

The accelerometers were characterized in several experiments. It appears that
they cannot be used for the positioning due to accuracy issues and the fact
that it is impossible to differentiate between an acceleration caused by velocity
variation or by the earth gravity.

The framework has been successfully developed and provides now a good
platform to work with YaMoR either in Webots or on the real hardware. The
new YaMoR Host 3 is a kind of driver that can be used either for controlling
the real robot or to work with a Webots simulation. YaMoR Optimizer is a
plugin-based optimization platform that is able to distribute the work on many
computers. YaMoR Webots Bridge enables Webots simulation to be controlled
via an external program.

The optimization algorithm was examined in detail to determine if it was
possible or not to improve the learning phase either by shortening the time
required or by improving the gait quality. An adaptation that improves both
most of the time has been added.

A lifelong learning system was created, which allows YaMoR to detect an
anomaly and relearn a new gait with this defect. A system allowing to remove
or add modules dynamically in Webots was also developed.

1.3 Report Organization

This document is made of nine chapters and five appendices. You are currently
reading Chapter 1, the introduction. Chapter 2 aims at giving a brief overview
of what is done or what has been done in this research field. Chapter 3 provides
the task list and the planning for this project. In Chapter 4 YaMoR module’s
accelerometer is characterized. Appendix B provides some measurement results
for this chapter. Chapter 5 explains the framework software conception. Ap-
pendices C and D provide detailed information about the developed software. In
Chapter 6 the CPG network and the gait optimization are explored. Chapter 7
talks about the long life learning process. Chapter 8 is the conclusion and finally
Chapter 9 contains the acknowledgement. Appendix A lists some experimental
configurations done with YaMoR. Appendix E contains a CD-ROM with all the
files of the project.

9

Chapter 2

State of the Art

2.1 History

The story of self-reconfigurable modular robots began in the seventies with
industrial robotic arms that could automatically change the tool at end of the
arm to accomplish various tasks. A common connection mechanism concept
that was applied to the whole robot has been developed for the first time at the
end of the eighties by Toshio Fukuda for CEBOT (acronym stands for cellular
robot) [3].

Greg Chirikjian, Joseph Michael, and Satoshi Murata developed lattice re-
configuration systems, whereas Mark Yim developed a chain based system at
the beginning of the nineties. ”There is a growing number of research groups
actively involved in modular robotics research. To date, more than 30 systems
have been designed and constructed.” [2] The next section presents some of the
current systems.

2.2 Current Modular Robots

2.2.1 Roombots

The project for the upcoming successor of YaMoR, Roombots [4], is developed at
the BIRG and is funded by Microsoft Research Cambridge and the Swiss Federal
Institute of Technology of Lausanne. It aims at creating modules that can
assemble together to create furniture such as tables, chairs, stools, etc. that can
move around by themselves. Moreover Roombots is capable of reconfiguration
i.e. detach some modules and reattach them at another place to change its
shape. If an user requires more chairs for example, a table can reconfigure itself
into four chairs. Or vice-versa.

The objectives are the design and construction of Roombots modules, the
control of locomotion of multi-module Roombots, the control of self reconfigu-
ration and the design and realization of the robot user interface.

10

2.2.2 M-TRAN III (2005)

From the author’s point of view, M-TRAN III [5], developed by AIST and
Tokyo-Tech since 1998, is currently the most interesting modular robot. It is an
hybrid (lattice and chain) self-reconfigurable robot. Its low energy consuming
mechanical connectors allow it to dynamically reconfigure.

Currently M-TRAN group is working on self-reconfiguration, locomotion
and adaptation. Their most active field of research is the self-reconfiguration.
They study how to reconfigure from the current structure to another given
one, the parallel local reconfiguration forming a global flow of module clusters,
generation of small structures from a block of modules. They also plan to
work on the self-repair: removal of a damaged module and the reconnection of
separate robots [5].

For the locomotion they designed motion patterns for various configuration
of the robot by offline computation using a genetical algorithm to find out
the parameters of a central pattern generator that produces the gait. The
locomotion patterns produced by the genetic algorithm were evaluated by a
simulator. For the adaptation, they make experiments on realtime CPG control
for the gait to be generated adaptively on a surface with variable friction. They
also make experiments on shape change in order to walk in conditions where
the current shape does not allow to go any further.

Figure 2.1: MTRAN III module. Picture is taken from [5].

2.2.3 Stochastic 3D (2005)

The Computational Synthesis Laboratory of Cornell University is working on
the three dimensional stochastic reconfiguration of modular robots [6]. The
particularity in their project is that the modules by themselves have no means
of actuating. Furthermore, they can only draw power when attached to the main
structure. The unattached modules are moved randomly by the environment.
The research group explores factors that govern the rate of the assembly and
reconfiguration and shows that self reconfiguration can be exploited to accelerate
the assembly of a particular shape, as compared with the static self-assembly.
It also explores building such systems at microscale.

11

Figure 2.2: Stochastic assembly process. Video snapshot taken from [6].

2.2.4 Molecubes (2005)

Developed by Zykov, Mytilinaios, Adams, and Lipson at the Computational
Synthesis Laboratory of Cornell University, Molecubes [7] is a self-reconfigurable
robot where modules are connected by electromagnets. The main research field
with this robot is the self-replication.

Figure 2.3: Molecube (8 modules here). Picture is taken from [7].

2.2.5 SuperBot (2006)

SuperBot [8] is a reconfigurable modular robot developed by Prof. Wei-Min
(Weimin) Shen at University of Southern California. The goal of SuperBot is
eventually to accomplish mission is space. SuperBot modules have three degrees
of freedom and their casing is made of metal. For the control and coordination
of multi-module structures they use a system called digital hormone control [10].

12

Figure 2.4: A SuperBot module. Picture is taken from [9].

2.3 Lifelong Learning

The life of a robot starts at the first time it is turned on and lasts until the
robot is reset or destroyed. Turning it off does not necessarily terminate its
task but can also simply suspend it. Very often robots have their behavior set
before their task starts. However it is possible to give them the ability to learn
an exhibit new behavior by themselves during their operation. This is called
lifelong learning.

Whereas lifelong learning has already been implemented in regular robots
for long, it remains a big challenge to give a modular robot the possibility to
completely and dynamically change its gait to adapt to a new situations not
known a priori, because it is continuously changing its topology.

13

Chapter 3

Task List

3.1 Tasks

• Getting Started: this include studying the existing code, learn about
central pattern generators, learn how YaMoR works in its whole, how the
gait optimization works, how Webots works.

• Study Webots API: get the necessary knowledge to work and interact
with Webots by program.

• Robot Movies: Make some robot movies for the website. The goal here
is also to get familiar with the whole robot setup.

• Accelerometers Characterization: make measurements on the Sen-
sorboard’s accelerometers. The purpose is eventually to determine if the
accelerometers can be used in gait optimization and lifelong learning and
how.

• YaMoR Host 3 Coding: create a kind of common driver software for
controlling YaMoR either in a Webots simulation or in the real world.
The program should also be controlled by another program. Create the
necessary Webots interface for this.

• YaMoR Optimizer Coding: create a framework for YaMoR gait op-
timization that uses YaMoR Host 3 to interact with the robot. Create a
plugin architecture.

• Various Optimizers Coding Create some plugins for YaMoR Opti-
mizer. Powell, PSO, brute force optimizer, ...

• Powell Improvement: Study Powell’s algorithm in detail and see if
improvements are possible.

• Change Detection: Create a lifelong learning plugin for YaMoR Opti-
mizer that detects when an anomaly occurs in YaMoR. Adapt the Webots
interface to be able to add or remove modules dynamically to YaMoR.

• Change Adaptation: Add the ability to recover from anomaly in the
lifelong learning plugin.

14

• Report Writing: the redaction of this document.

3.2 Schedule

Figure 3.1 lists all the tasks with the estimated time investment for each task.
The whole work is planned on 20 weeks but one more week was added to com-
pensate official swiss non-working days that occurred during the project. The
two gaps correspond to the author’s holidays.

mmmmmmmmmm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21

Getting Started

Study Webots API

Robot Movies

Accelerometer

Charecterization

YaMoR Host3

Coding

YaMoR Optimizer

Coding

Various

Optimizers Coding

Powell

Improvement

Change Detection

Change Adaptaion

Report Writing

Figure 3.1: Planning. Numbers correspond to the weeks of of work.

15

Chapter 4

Accelerometer
Measurement

In order to determine in which way the YaMoR modules accelerometers could
help in the control of locomotion some measurement have been made. The
point here is mainly to determine if the accelerometers can or cannot be used
to estimate the position of a module and eventually the average velocity of the
robot. Beside this main goal, they could also be used to detect impacts, check
if a leg is moving or not or even measure the orientation of a module.

4.1 Sensor Board

4.1.1 Overview

The Sensor Board [11] shown in Figure 4.1, a part of the YaMoR module, is lo-
cated at the bottom the box. It contains accelerometers and an infrared sensor,
all of them accessible via a programmable PIC microcontroller. The accelerom-
eters can be used either statically to measure the orientation of the module or
dynamically to get the acceleration, assuming the orientation is known. The
infrared sensor is able to measure a distance between an object and the module
or the ambiant light intensity. The Sensor Board communicates with other parts
of the module or a personnal computer via a serial line (UART) controlled by
the PIC. Additionally there are two LEDs — a green one and a red one — that
can be controlled via the PIC.

4.1.2 Accelerometers MMA7260Q

The accelerometers, which are here the main part of interest are wrapped in
a MMA7260Q manufactured by Freescale Semiconductor. It has a selectable
sensitivity from 1.5g to 6g, low current consumption (500µA) and low volt-
age operation (2.2V − 3.6V). Typical applications are freefall detection, image
stability in cellphone cameras, motion sensing in pedometers, tilt and motion
sensing in video games and robotics.

16

Figure 4.1: Sensor Board

4.1.3 PIC 16F876A

The PIC microcontroller allows to read sensors values, make computations and
communicate the result to the outside of the board. On the Sensor Board it is
running at 10MHz. The following list shows up its main features.

• 22 inputs and outputs

• Self programmable, with low voltage (here 3.3V)

• 14kB flash for the program memory, 368 bytes RAM, 256 bytes data EEP-
ROM for persistent storage

• 2 analog comparators, 5 analog to digital converters (10 bits of precision
each), 2 capture / compare / PWM pins

• I2C bus and USART

4.2 Measurement Setup

4.2.1 Setup

The measurement setup shown in Figure 4.2 consists in a camera 2.7m above
the ground, two interconnected computers and the SensorBoard with a LED
attached. PC1 collects the data sent by the SensorBoard through a RS-232
serial line. It also collects the data from the LED tracking system. PC2 is
responsible for the LED tracking. It runs CamApp (see Section 5.1.2), which
finds the position of the LED on the camera image.

The acceleration measured on each of the axis is translated into a directly
proportional voltage. This voltage is then quantized by a 10-bits analog to
digital converter in the PIC thus generating an integer value between 0 and
1023. The sensitivity is set to 1.5g, which is the most sensitive one. According to
the manufacturer, this is the most suitable for position estimation. The output
signal will change by 800mV for an acceleration of 9.81m/s2, which means
that an unit of the integer value corresponds to an acceleration of 0.0395m/s2

according to the following equation.

δ =
g ∗ VDD

0.8V ∗ 1024
=

9.81m/s2 ∗ 3.3V

0.8V ∗ 1024
= 0.0395m/s2

17

PC1 PC2

IEEE 1394

TCP
RS-232

SensorBoard

Figure 4.2: Measurement setup

The data is then processed by the PIC and sent out via its UART serial
interface to a computer that logs everything that comes in.

4.2.2 PIC Software

As described in Section 4.3 two ways of getting data are explored. First read
out raw data for noise measurement and then read out filtered data. Therefore
two PIC programs are required. You can find the developed assembly source
code of these on the enclosed CD-ROM.

4.2.3 RS232 Software

A program has been coded to read the incoming data computer side and write
them to a comma separated values file. The developed C++ source code can
be found on the enclosed CD-ROM.

4.3 Measurements

In the first part of this section the noise of the accelerometers output signal is
measured. The second part explains some filtering techniques applied to the raw
data to improve the position estimation and compares unfiltered, filtered and
LED tracking data. Measured values and graphs can be found in Appendix B.

4.3.1 Noise Measurement

Noise is added to the measured values at many places. The imprecision of
the accelerometer, the electromagnetic disturbances on the wires that bind the
accelerometers and the PIC, the imprecision of the analog to digital converter
and the quantization of the value are all sources of noise.

Noise measurement have been done to determine how the noise affects the
signal. The accelerometers signal is measured during about 10 seconds with the
Sensor Board steady, which will provide more than 1000 sample values for each
axis. Because the sensor board is not moving, the theoretical acceleration value
is 0.

18

4.3.2 Filtering

Filtering techniques dedicated to the improvement of the data quality are ap-
plied. This section shows the filtering method proposed by the manufacturer
of the accelerometer MMA7260Q for the position tracking [13]. The raw data
crosses three filter stages, namely the noise filter, the window filter and then
the movement end detection. Those filters are explained below.

Noise Filter

The noise filter is applied directly on raw data from the accelerometer. Instead
of measuring only one instantaneous value, 64 values are averaged for each axis
within the same time window. This is basically a low-pass filter, which will
evict some of the noise generated by electromagnetic perturbations and other
sources. The noise signal should sum up to zero over the time.

Window Filter

If an acceleration is detected it will be translated as a velocity. If the counter-
acceleration is not measured the velocity will stay constant leading to a wrong
position estimation of the object. This may happen because some noise still
passes through the noise filter. To avoid this, very weak accelerations (between
-3 and +3) are considered as no acceleration at all.

Movement End Detection

When the moving object returns to steady state the acceleration values should
perfectly sum up to zero (from the moment it started moving), which practically
almost never happens because of the noise and the quantization of the signal. If
they do not then the computed speed does return to zero and the estimation of
the position will be worse and worse over the time. This can be tweaked using
this so called ”movement end detection” which assume that if no acceleration
is detected during a given amount of time then the object is very likely steady.
In this case the velocity is set to 0.

4.3.3 Acceleration, Velocity, Position

The accelerometers output an acceleration signal but the point of interest here is
the position and not the velocity, because from the position the average velocity
can be easily computed. The acceleration signal is thus integrated one time
to get the velocity signal and a second time to get the position signal. The
trapezoidal method [13] was chosen for the integration.

4.3.4 Movements Measurements

Several movements have been tried and measured. Most of them are movements
on the ground firstly because YaMoR is designed to walk on a flat surface and
secondly because the camera cannot track vertical movement and this would
result in a loss of precision on the two other axis. However other kinds of
movement that might happen in YaMoR, such as impact and tilting have also
been experimented. The following list enumerates the movements tried.

19

X
Y

Figure 4.3: Pattern for the sine move.

• Sine movement, about 10cm amplitude and 25cm displacement on the X
axis, shown in Figure 4.3.

• Circular movement, about 5cm radius, clockwise, returns to the starting
position, shown in Figure 4.4.

• Go and return movement, about 10cm, returns to the starting position,
shown in Figure 4.5.

• Random movement in the air, max 10cm high, with tilting, returns to the
starting position.

• Impact, dropped from a height of 7cm.

X
Y

Figure 4.4: Pattern for the circular move.

X
Y

Figure 4.5: Pattern for the go and return move.

4.4 Results

This section provides a summary of the results obtained. For the details please
refer to Appendix B.

20

4.4.1 Noise

Figure B.1 shows the noise signal that is present after quantization, thus after
having passed through the PIC’s analog to digital converter. The probability
distribution of the measured values for each axis is shown in Figures B.2, B.3
and B.4.

The noise ratio is computed in function of the full scale, where Nampl is the
noise amplitude, δ is the unit factor (0.0395m/s2) to convert the integer value
that comes out from the analog to digital converter to an acceleration in meters
per square seconds.

Nampl = Nmax −Nmin

Nratio =
Nampl

1024 ∗ δ
=

Nampl

40.44m/s2

From those measurements the minimal value Nmin and the maximal value
Nmax of the noise are extracted and shown in Table 4.1 as well as the compu-
tation of the amplitude Nampl the noise ratio Nratio for each axis.

Axis Nmin [m/s2] Nmax [m/s2] Nampl [m/s2] Nratio

X -0.269 0.363 0.632 1.56%
Y -0.267 0.246 0.514 1.27%
Z -0.249 0.304 0.553 1.37%

Table 4.1: Noise Amplitude

4.4.2 Movements

Table 4.2 indicates for each movement the references of the figures that show
the accelerations, the velocities and the positions for each axis. Please note that
LED data is missing for the sine move from 1.5s to 2s.

Table 4.2: Figures references

Movement Accelerations Velocities Positions
Sine Figure B.5 Figure B.6 Figure B.7

Circular Figure B.8 Figure B.9 Figure B.10
Go and return Figure B.11 Figure B.12 Figure B.13

Random Figure B.14 Figure B.15 Figure B.16
Impact Figure B.17 Figure B.18 Figure B.19

21

4.5 Discussion

4.5.1 Noise

The noise measurement shows that there is a noise with a maximal amplitude
of 0.632m/s2. Altough this represents only 1.56% of the full scale, this is quite
huge in comparison to the low acceleration variations expected in the YaMoR
application (about 5% of the full scale for typical accelerations). Moreover the
measurements were done without the whole YaMoR module, that means with
a stable power supply and no servomotor spinning in the neighborhood, which
could also add noise.

The probability distribution graphs were expected to show gaussian curves,
which is obviously not the case. The worst one is shown in Figure B.2 where
some values close to the center of the curve never occurred. Imperfections in the
PIC’s analog to digital converter would explain this, but no further investigation
will be made in this project to determine the exact origin of this curious behavior
because of lack of time.

4.5.2 Movements

As one can see in positions graphs where the LED data is available (blue curve),
the filtered data (red curve) is always much better, i.e. closer to the LED curve
than the unfiltered data (black curve).

At the end of each move, the object is steady. In the velocities graphs of all
movements one can see the effect of the movement end detection that translates
into a brutal return to zero of the velocity (red curve). On the positions graphs
this causes the position to stabilize. When the object has stopped moving then
its velocity gets set to zero, thus the position is not changing and getting wronger
and wronger anymore. The movement end detection improves the positioning
in all the measurements done.

The filtered and unfiltered data seem to be very close in the random move,
but pay attention to the scale: they are actually both very far from the LED
tracked position (blue curve). This big error is due to the tilting of the Sensor-
Board. In fact the accelerometer cannot see the difference between tilting and
accelerating because of the earth gravity that always enters into account when
measuring an acceleration.

In the impact measurement the accelerometers offsets changes after the
shock, which result in a constant acceleration. This one is not visible in Fig-
ure B.17 because the shift is too small in comparison with the amplitude of the
impact signal, but in Figure B.18 one can see the effect of this slight change: the
speed continues to increase except for the Z axis where the shift was fortunately
small enough to be cancelled by the window filter. This is also the reason why
the movement end detection worked for this axis.

4.5.3 Conclusion

The measurements performed show that the accelerometer is not suitable for
positioning. The previously mentionned imprecision problem, even after filtering
are summed up during the computation of the speed (integration) and again
during the computation of the position (integration too). Small acceleration

22

imprecisions lead to big position imprecisions. Moreover, after an impact, offset
voltages change making the PIC think that an acceleration is measured, thus
speed increases more and more (Figure B.18).

Also if the orientation of the module changes, it becomes very difficult to
estimate the position. Since the measured acceleration vector is composed of
the earth gravity and the actual acceleration, either the orientation is known
and the actual acceleration can be computed or the actual acceleration is known
and the orientation can be determined.

However the accelerometer can still be used to detect impacts. Impacts are
valuable information to detect for example that a limb hit the ground. The
fact that offset voltages change and the orientation of a module does not affect
the detection of an impact. They can also be used to determine if a module is
moving or not.

One could also try to determine precisely where do the strange noise come
from. As stated in Section 4.5.1, there is very likely a problem with the analog to
digital conversion within the PIC. Measuring which range of voltage corresponds
to which digital value may provide relevant clues, for example differently sized
ranges.

23

Chapter 5

Framework Software

5.1 Existing Software

5.1.1 YaMoR Host

YaMoR Host 2.0 developed by Jerome Maye at the Swiss Federal Institute of
Technology of Lausanne (EPFL) was used to control the robot and perform
the gait optimization. This comprises the establishment and destruction of
a bluetooth network between the modules, the setup of the CPG structure
and parameters as well as the activation and deactivation of various part of
each module. The gait learning is done using one of the three implemented
optimization methods, namely PSO, Brent and Powell. YaMoR Host 2.0 is also
able to get the position of the robot using a robot tracking system by camera
running on another computer. An altered version of YaMoR Host 2.0 exists for
running a Webot simulation instead or at the same time than the real robot.

5.1.2 CamApp

This program is a LED tracking application that determines the position (x,y)
of a lit LED on an realtime image captured by a camera. It accepts TCP
connections and sends continuously the tracked position of the LED to the
remote computer.

The position given by CamApp is a pair of integer number representing the
coordinates X and Y of the tracked led. These values are expressed in [pixels].
The ranges of the X value is an integer between 0 and 639 and the coordinate
of the Y value is an integer between 0 and 479. A function has to be applied to
convert these coordinates in meters taking in account the distance of the LED
to the camera. Even if the LED is moved on a flat surface, the distance to the
camera is changing.

5.2 Motivations

5.2.1 Time Saving

To create a robot configuration in YaMoR Host 2.0 the user has to create five
text files by hand, describing the bluetooth network, the limit angles, the CPG

24

structure, the CPG parameters and the optimization parameters, which is not
so convenient.

Once these files are created the user runs YaMoR Host 2.0. She is asked
to enter the serial communication port number, the name of the computer that
runs CamApp, the port number for CamApp and the identifier of the master
module. Then she has to type ”B” to build the bluetooth network, ”L” to send
the limit angles, ”U255” to enable the UART of the modules, ”C255” to enable
the CPG oscillators, ”N” to send the CPG structure, ”O” to set the optimization
parameters and CPG parameters, ”M255” to enable all the servomotors.

This work aims at improving all these time-consuming steps, optimize and
or automate them in a more user-friendly interface.

5.2.2 Flexibility

YaMoR Host 2.0 is not very flexible. If the user wants to add features she has
to understand most of the code and program her modification inside of it. If
another user wants to develop other features at the same time, the two modified
version have to be merged at the end. If the next user does not like the new
features, she has to remove it by first understanding all of the code. A modular
architecture and an object oriented programming language would increase the
flexibility drastically.

5.2.3 Maintenance

As stated in Section 5.1.1, there are two version of YaMoR Host 2.0. One for
the real robot, and one for the simulation in Webot, implemented as a Webot
controller. The problem is that when fixing a bug or adding a feature in one of
them, the same modification has to be done to the other one. A unique program
for both the simulation and the real world would be much more suitable.

5.2.4 Programming Language

YaMoR Host 2.0 was written in C, which is an old language. Its main advan-
tages are its speed of execution, the low memory consumption and the low level
control over the underlying hardware. However it is much more difficult to write
programs than with nowadays languages because the programmer has to worry
about things she should not have to, such as memory management, function
prototyping, array overflows, etc. Finally it is not an object oriented language,
which would provide a great level of flexibility and reusability.

As speed of execution is not a critical point in this application, the C pro-
gramming language is not adapted. Cross-platform compatibility is not re-
quired, therefore Microsoft’s C# is a good choice. It allows first to easily reuse
the code of YaMoR Host 2.0 with few adaptations since the syntax is pretty
much the same. Secondly the very good integrated development environment
Microsoft Visual Studio 2005 can be used, which will save a lot of programming
time. Thirdly it is an object oriented language.

25

5.3 Architecture

The whole software is split up in several programs as shown in Figure 5.1. A
brief overview of all these parts is given in this section although each of them
is described in more detail in the following sections.

YaMoR
Robot

YaMoR
Webots Sim.

YaMoR Host 3

YaMoR
Optimizer

... ...

SNP
(RS232)

SNP
(TCP/IP)

RPC
(TCP/IP)

RPC
(TCP/IP)

RPC
(TCP/IP)

YaMoR
Webots Bridge

Webots
API

Powell PSO LLL ...

Figure 5.1: Software global architecture

The purposes of YaMoR Host 3.0 is to provide a common interface either
to control the real robot or a Webots simulation, and to hide the underlying
SNP protocol [18] used by the robot from the user or driving programs. YaMoR
Host 3.0 also provides a friendly user interface to configure the robot.

YaMoR Webots Bridge deals with all the stuff that is not exactly the same
in the real world than in the Webot simulation. It also dispatches SNP messages
to all the YaMoR modules.

YaMoR Optimizer is a program that connects to YaMoR Host 3 via RPC
(remote procedure call) and performs gaits optimizations using end-user made
libraries like Powell, PSO, Lifelong learning, ...

5.4 YaMoR Webots Bridge

5.4.1 Analysis

Needs

A Webots simulation is used to perform experiments in a more convenient way
than on the real robot. In the real world one has to charge accumulators, wait
long delays to connect all the modules via Bluetooth (up to seven seconds per

26

module) and one second between each SNP1 message that is sent to the robot.

Figure 5.2: Webots snapshot: simulation of YaMoR quadruped.

The purpose of YaMoR Webots Bridge is to allow any software to control a
YaMoR Webots simulation by sending it the same data as it would have done to
the real robot. As the YaMoR modules use the same program in the simulation
as in the real world, they read in SNP messages. This way one can assume that
it is possible to send the same bytes either to the real robot or to the Webots
simulation. Actually some small changes need to be done and are described in
the following sections.

Messages other than SNP message should also be read by YaMoR Webots
Bridge so that the client can interract with Webots too, for example to get the
position of the robot or to tell Webots which module is the master node.

Although Webots offers direct interfaces to interact with it, a TCP/IP com-
munication is preferred because it allows to run Webots either on a Windows,
Mac or Linux machine. Often computer clusters are made of Linux machines,
thus not being Windows dependent in this part is a big advantage for the par-
allelization of simulations (see Appendix D.2.4).

Input

YaMoR Webots Bridge should be started with as command line argument the
name of the central module i.e. the one that returns its position when the
robot position is requested. Then it should start listening for an incoming TCP
connection, which will provide all the commands to be executed by the program.
Those are either SNP messages or special requests to be passed to Webots.

1Protocol used for the the communication of the modules [18]

27

Output

The same TCP connection that is used to read in commands is also used to
provide SNP feedbacks and other special Webots requests replies.

Webots Special Commands

The following list is a non exhaustive list of Webots special commands that
YaMoR Webots bridge should be able to satisfy.

• Get the robot position

• Set a timer

• Get the simulation time

• Set the master node ID

• Connect a module to another one

• Disconnect two modules

5.4.2 Design

Architecture

YaMoR Webots Bridge is the so called Supervisor Controller in Webots. It is
responsible of the whole simulation whereas standard controllers take each care
of one of the YaMoR module. Every controller is compiled to a binary file and
every instance of a controller results in a process running one of these binary
file. For example a four modules robot requires two binary files – one for the
supervisor and one for the module controller – and will lead in the execution of
five processes – one for the supervisor and one for each module. The standard
controller YaMoR 2007 used in this project has been developed by Jerome
Maye [15] and will not be described here.

Figure 5.3 shows YaMoR Webots Bridge architecture, which is run as the
supervisor controller. It waits for an incoming TCP connection. The incoming
messages are then split in two groups namely the SNP messages and the special
Webots commands. The SNP messages are directly forwarded to every modules
(i.e. to the standard controllers). The special Webots command are decoded
and executed by the supervisor controller.

Threading

There are two tasks to perform that may have to wait for external events. Thus
they are each executed in a separate thread. One of them is reading and filtering
the incoming TCP traffic, the other one is reading the data coming from the
modules, and possibly generate outgoing TCP packets.

As the two thread access the same resource, namely the TCP socket, syn-
chronization has to be performed in order to prevent data corruption. The
critical section has been chosen here to solve this problem. The Windows API
offers three methods to handle critical sections.

• InitializeCriticalSection()

28

YaMoR
2007

TCP
reciever

Message
decoding and
dispatching

Special
commands

TCP
sender

SNP+
Spec.

Comm.

SNP+Special commands

Special
Webots

Commands

SNP
SNP

YaMoR
2007

YaMoR
2007

...

Broadcast channel supervisor's emmitter

Broadcast channel supervisor's receiver

SNP

SNP

SNP

SNP

Figure 5.3: YaMoR Webots Bridge architecture

• EnterCriticalSection()

• LeaveCriticalSection()

Each of these functions take as parameter a variable that represents the critical
section. The critical section has first to be initialized. Then when a thread
calls EnterCriticalSection it passes through if no other thread already entered
the critical section; otherwise it is blocked until the thread, which is in, calls
LeaveCriticalSection. This allows to prevent a block of code of being executed
by more than one thread at a time.

Module Positioning

In order to connect two modules together, their connectors must be perfectly
aligned before being able to activate them. A challenging part of this project was
to compute the module position and rotation for connection. When connecting
two modules together one of them stays at its place and the other one is moved
so that the connection is possible. The former is called destination module,
whereas the latter is called source module.

For each connector the position relative to the module is determined. Also
the normal going to outside and the connector north vector are determined.
Those are all fixed values except for the front connector, whose values depend
on the servomotor angle (front connector computing is described further). Fig-
ure 5.4 shows the positions of the connectors on the module and Figure 5.5
shows the normal and north vector of a connector.

Firstly the module rotation is computed. Rotations in Webots are expressed
by a rotation axis represented by a vector and an angle. The rotation matrix R

29

Top

Bottom

RearFront

(Left otherside)

Right

Figure 5.4: Connectors positions

Normal

North

Figure 5.5: Connector normal and north vectors

depending on the rotation angle θ and the unit vector (u, v, w) is

R(u, v, w, θ) =

 u2+(v2+w2) cos θ uv(1−cos θ)−w sin θ uw(1−cos θ)+v sin θ

uv(1−cos θ)+w sin θ v2+(u2+w2) cos θ vw(1−cos θ)−u sin θ

uw(1−cos θ)−v sin θ vw(1−cos θ)+u sin θ w2+(u2+v2) cos θ

Let −→a be the normal vector and

−→
b the north vector of the destination con-

nector before rotation. As stated before, these values are known. Let (dx, dy, dz)
and θd be the rotation vector and angle of the destination module, which can
also be easily retrieved through the Webot API. The values after rotation

−→
a′

and
−→
b′ are

Rd = R(dx, dy, dz, θd)−→
a′ = Rd · −→a−→
b′ = Rd ·

−→
b

Let
−→
j be the normal and

−→
k the north vector of the source connector before

rotation. As stated before these values are known. Let
−→
j′ and

−→
k′ be the normal,

respectively the north vector of the source connector after rotation. The normals
of the two connectors

−→
a′ and

−→
j′ must be parallel and in opposite direction. The

north vectors
−→
b′ and

−→
k′ must have an angle of φ in-between, which is the angle of

connection (a multiple of π/12, according to the real module’s possible angles).
Therefore the north vector

−→
b′ is rotated around the normal vector

−→
a′ .

30

Ra′ = R(a′x, a′y, a′z, φ)
−→
j′ = −

−→
a′

−→
k′ = Ra′ ·

−→
b′

The point now is to determine how
−→
j and

−→
k can become

−→
j′ and

−→
k′ after a

rotation around an axis. In other words what is this axis and how many degrees
to rotate. There are many ways to rotate a vector around an axis so that is
comes to another given vector. For every axis lying in a given plane and passing
through the origin, there is an angle that fulfills the equation. This planes is
defined as if it were a mirror reflecting the vector as the rotated vector. One
can compute the planes normals −→pa and −→pb as follow.

−→na =
−→
j ×

−→
j′ −→nb =

−→
k ×

−→
k′

−→ma =
−→
j +

−→
j′

2
−→mb =

−→
k +

−→
k′

2−→pa = −→na ×−→ma
−→pb = −→nb ×−→mb

The searched rotation axis directed by −→vec lies in both planes −→pa and −→pb .
Thus it is defined by the intersection of the planes.

−→v = −→pb ×−→pb
−→vec =

−→v
||−→v ||

The angle of rotation φ is measured perpendicularly to the rotation axis thus
the vectors

−→
j and

−→
j′ need to be projected on the rotation axis to find out −→v1

and −→v2 in-between which the angle can be computed.

−−−→a1proj = (
−→
j · −→vec) · −→vec

−−−→a2proj = (
−→
j′ · −→vec) · −→vec

−→v1 =
−→
j −−−−→a1proj

−→v2 =
−→
j′ −−−−→a2proj

φ′ = cos−1 −→v1·−→v2
||v1||·||v2||

Two rotation matrices are built because the rotation can be done using the
shortest angle φ′ or the longest one 2π−φ′. The scalar product technique always
returns the shortest one. The two original vectors

−→
j and

−→
k are then rotated

once using the first matrix, and once using the second one, and compared with
the targets

−→
j′ and

−→
k′ . φ is set to the one that produce the right result and Rs

to the matrix that was used to produce it.
The rotation is known i.e. the source and the destination connectors are

oriented properly. It remains to face them to each other with a small space
in-between to avoid physical engine discordance due to machine floating point
imprecision. Let −→ps and −→pd be the positions of the source and destination con-
nectors relative to the module. The absolute positions of the source connector
−→cs and of the destination connector −→cd are computed. The translation −→x to
apply to the source module is simply the difference between these two positions.
Note that a factor k is introduced to avoid the precision problem. The value
used is 0.0001, which corresponds to an offset of 100µm.

−→cs = Rs · −→ps−→cd = Rd · (−→pd +−→a · k)
−→x = −→cd −−→cs

31

In order to determine the position of the front connector the position of the
servomotor must be known by the supervisor controller but is available only in
the concerned module’s controller. The master controller should require this
position using the broadcast channel, which would require an adaptation of the
protocol, and including some more time lags in the whole computation, which
causes – as explained in Section 5.4.3 – concurrency problems. In order to
simplify the resolution of this problem, all servomotors are deactivated and set
to position 0 during the dynamic connection phase. This allows to treat the
front connectors the same way as any other.

5.4.3 Implementation

YaMoR Webots Bridge is based on Jerome Maye’s code for YaMoR Host 2 We-
bots Edition, with optimization and LED tracking parts removed. The command
line interface was replaced by a TCP/SNP interface with no user interaction at
all for controlling the application.

Bypassing Webots

A problem that occured in the module positioning is that each module con-
troller, the supervisor controller and Webots run in different processes. This
is a problem for the physical dynamic connection of the modules. The module
positioning must be done be the supervisor controller, whereas the connector
activation must be done by one of the two modules. The connector activation
must be done after the positioning. Therefore the supervisor sends a special
message to the module that has to connect. But in this time interval, the
physics engine still runs, which causes the module to connect to start falling
down, and when the connector activates it is maybe already to far away.

A workaround that allows to improve the probability of good connection
(but not to reach 100% of success) consists in freezing all the motors, position
repetitively the module during half a second, tell the modules to activate their
connector, keep the repetitive positioning during another half second and then
unfreeze the robot.

5.4.4 Issues and Known Bugs

Dynamic Physical Connetion

As stated in Section 5.4.3, because of lacks of functions in Webots’ API the
physical connection of two module is not guaranteed to work. Furthermore if
the user tries to connect a module where there is no place or where the module
will be partially below the ground, the connection will not take place and the
robot could even break up. There is no possibility of lifting up the robot with
the current API, because each module has to be lifted separately, which causes
the physics engine to panic. Ideally the API should offer a way of deactivating
temporarily the physics engine.

Repeated Connect

A non relevant issue present in YaMoR Webots Bridge is that once the TCP
connection with the connected program is interrupted the only way to reconnect

32

is to restart the supervisor controller.

5.4.5 Future

Further development can be made to improve the flexibility of YaMoR Webots
Bridge. For instance there is no way of resetting a simulation. This can be
achieved either by a real Webots revert or by repositioning the robot at its
original position and resetting Webots’ physical engine. The former requires
the connected program to reconnect; the latter does not.

5.5 YaMoR Host 3

5.5.1 Analysis

Needs

YaMoR Host 2.0 was used to control the real robot. A special version of it was
also able to control a Webot Simulation. YaMoR Host 3.0 must at least cover
the features offered by this previous program (except for the optimization part,
which is taken apart).

YaMoR Host 3.0 can be seen as a driver for the robot. It will either control
the real robot or a Webots simulation without requiring the user to take care
of whether she is using the real robot or not.

The application should provide a more convenient user interface than in the
previous version, which was using a command line like interface. The goal here
is to save time when experiencing robot gaits or configuration.

YaMoR Host 3.0 should also provide a way for other programs to drive the
robot (for example, an optimizer will use this feature). A remote procedure
call has been chosen so that the program that use this interface is not forced
to run on the same machine. This allows optimization clustering (on several
computers).

Input

The program takes as input an XML file describing the robot configuration.
This includes the configuration of each module (amplitude, offset, frequency,
minimum angle and maximum angle), the CPG structure (network structure,
phase lag and weight for each edge) and the bluetooth network structure. This
file sets up the default configuration at startup. Alternatively, another file can
be loaded by the user.

The user or another program can then change any of these parameters during
the execution.

Output

The program outputs the correct SNP messages either through a serial line to
the real robot or by TCP/IP to the Webot simulation (YaMoR Webot Bridge,
see Section 5.4).

33

5.5.2 Design

Architecture

Figure 5.6 provides a simplified overview of YaMoR Host 3 architecture. The
graphical user interface (GUI) and the remote procedure call interface (RPC) are
the upper layer of this application that allows to control the robot with a certain
abstraction for example by clicking buttons or calling high level procedures.
In counterpart, RS232, TCP and the LED tracking are the lower level and
deal directly with the real robot or with YaMoR Webots Bridge to control
a simulation. The remaining elements are part of the middle layers, which
interconnect the upper and the lower layer.

Robot
Communication

Input Dispatcher

RS232 TCP

GUI

LED
Tracking

Robot
Configuration

To Webots

To CamApp
over TCP

To real robot

RPC
Interface

To other
programs

Figure 5.6: YaMoR Host 3 architecture

The robot configuration stores information about the CPG network (de-
scribed in Section 6.1), which implies how the oscillators are connected together
with what phase and what weight. It contains also the bluetooth network struc-
ture and the modules properties, namely the amplitude, the offset, the frequency
and the limit angles for each of them.

The robot communication translates high level commands from the GUI or
the RPC into SNP messages and sends them either to the simulation via TCP
or to the real robot via RS232. It also updates the GUI when needed.

The input dispatcher reads in the SNP messages received from the robot
and notifies the robot communication with a higher abstraction.

34

Threading

The following list show the tasks that have to be performed at the same time
by YaMoR Host 3.

• Read and decode data sent by the real robot

• Read and decode data sent by the Webots simulation

• Read data from the LED tracking software

• Send data either to the real robot or to the Webots simulation

Each of these tasks is performed by a different thread. In order to simplify
the threads interaction, sending data is done by the GUI thread which causes the
graphical user interface to freeze when the program is sending data to the robot.
The GUI thread is the thread that executes most of the code. It terminates
automatically after the main window has been closed.

The RS232 thread is responsible for data that comes from the real robot.
Currently it only signalizes to the GUI thread the income of a connection com-
plete SNP message. This notification is done using a semaphore. The RS232
thread terminates when the communication port is closed.

The purpose of the TCP thread is the same as the RS232 except that instead
of reading on a serial line, it reads on a TCP channel. It terminates when the
TCP port is closed or if the connection is interrupted.

The LED thread continuously reads in data that comes from the LED track-
ing software and expose this data to any other thread that is interested. Access
to the shared data is made by the C#’s lock() statement, which implements the
concept of critical sections.

5.5.3 Implementation

Class Diagrams

Figures 5.7 and 5.8 show the class diagram of YaMoR Host 3. Figure 5.9 show
the class diagram for the interfaces library and Figure 5.10 show the class dia-
gram for the common library.

Interfaces Description

The interface IYaMoRHost3 defines the following methods and properties:

• ElapsedTime Get the time elapsed since the simulation mode started.
This gets the virtual time.

• RobotPosition Get the robot position either in Webots or using the LED
tracking system.

• SimulationModeEnabled Tells wether the simulation mode is enabled
or not.

• AddCoupling Add a coupling between two modules.

• CloseSimulation Exit Webots.

35

AboutBox

Form

Class

ConfigPanel

Form

Class

InputDispatcher
Class

Properties

MasterNodeId

Methods

Dispose

Input

Events

DeviceAlive

DeviceConnected

DeviceDisconnected

Log

RobotPositionReceived

TimeReceived

TimerElapsed

Nested Types

LogEventHandler
Delegate

PositionEventHandler
Delegate

TimeEventHandler
Delegate

TimerEventHandler
Delegate

StateDelegate
Delegate

LedTracker
Class

Properties

IsConnected

Methods

Connect

Disconnect

Dispose

GetLastPosition

Events

Connected

Disconnected

LedDataArrived

Nested Types

LedEventHandler
Delegate

LedTracking

Form

Class

Methods

Dispose

LedTracking

UpdateForm

Nested Types

UpdateDelegate
Delegate

MainForm

Form

Class

Methods

Log

WndProc

Nested Types

ModuleListItem
Class

Properties

Id

Methods

ToString

LogDelegate
Delegate

PhyLinkForm

Form

Class

Program
Static Class

RemoteAccess

MarshalByRefObject

Class

Properties

ElapsedTime

RobotPosition

SimulationModeEnabled

Methods

AddCoupling

CloseSimulation

ConnectRobot

Flush

GetAllModulesId

GetCouplingPhase

GetCouplingWeight

GetModuleAmplitude

GetModuleMaxAngle

GetModuleMinAngle

GetModuleNeighbors

GetModuleOffset

GetModuleSpeed

InitializeLifetimeService

OpenSimulation

Refresh

RemoveAllCouplings

RemoveCoupling

SendControlMessage

SetCouplingPhase

SetCouplingWeight

SetModuleAmplitude

SetModuleMaxAngle

SetModuleMinAngle

SetModuleOffset

SetModuleSpeed

Sleep

RCComItem
Class

RCByte

RCComItem

Class

RCId

RCComItem

Class

RobotCom
Class

Properties

HasBTNetworkChanged

Modules

RealWorldDelays

RealWorldInput

Methods

BuildNetwork

ChangePhysical

DestroyNetwork

Dispose

Output

Read

ReadItem

RefreshCPGNetwork

SendControlMessage (+ 1 …

StartMotor

StopMotor

Write

Events

DataReady

RobotPositionReceived

StatusChanged

TimeReceived

TimerElapsed

Nested Types

Switch
Enum

OFF

ON

DISCARD

StatusEventHandler
Delegate

PositionEventHandler
Delegate

TimeEventHandler
Delegate

TimerEventHandler
Delegate

RobotConfig

Form

Class

Properties

Modules

Methods

RobotConfig

Events

RequireApply

TristateSwitch

Button

Class

Pair<T>
Generic Class

Util
Class

Methods

ConvertEndian

CorrectCamCoords

IDrawable
Interface

Methods

ModuleEditorForm

Form

Class

Properties

Amplitude

MaxAngle

MinAngle

Offset

Speed

Nested Types

DlgDraw
Delegate

ShapeAngle
Class

Properties

Color

EndAngle

InnerRadius

MaxAngle

MinAngle

OuterRadius

StartAngle

Methods

Draw

Nested Types

Draging
Enum

NOTHING

LEFT

RIGHT

ShapeModule
Class

Properties

Angle

Methods

Draw

Resources
Class

Settings

ApplicationSettingsBase

Sealed Class

Properties

Default

ModuleIDMapping

RealModeBaudRate

RealModeCameraHost

RealModeCameraPort

RealModeComPort

RealModeLEDTracking

RealModeMasterNode

RemotingPort

SimModeHost

SimModePort

IDisposable IDisposable

IYaMoRHost3

IDisposable

IDrawable

IDrawable

Figure 5.7: YaMoR Host 3 class diagram, part 1 of 2

36

AboutBox

Form

Class

ConfigPanel

Form

Class

InputDispatcher
Class

Properties

MasterNodeId

Methods

Dispose

Input

Events

DeviceAlive

DeviceConnected

DeviceDisconnected

Log

RobotPositionReceived

TimeReceived

TimerElapsed

Nested Types

LogEventHandler
Delegate

PositionEventHandler
Delegate

TimeEventHandler
Delegate

TimerEventHandler
Delegate

StateDelegate
Delegate

LedTracker
Class

Properties

IsConnected

Methods

Connect

Disconnect

Dispose

GetLastPosition

Events

Connected

Disconnected

LedDataArrived

Nested Types

LedEventHandler
Delegate

LedTracking

Form

Class

Methods

Dispose

LedTracking

UpdateForm

Nested Types

UpdateDelegate
Delegate

MainForm

Form

Class

Methods

Log

WndProc

Nested Types

ModuleListItem
Class

Properties

Id

Methods

ToString

LogDelegate
Delegate

PhyLinkForm

Form

Class

Program
Static Class

RemoteAccess

MarshalByRefObject

Class

Properties

ElapsedTime

RobotPosition

SimulationModeEnabled

Methods

AddCoupling

CloseSimulation

ConnectRobot

Flush

GetAllModulesId

GetCouplingPhase

GetCouplingWeight

GetModuleAmplitude

GetModuleMaxAngle

GetModuleMinAngle

GetModuleNeighbors

GetModuleOffset

GetModuleSpeed

InitializeLifetimeService

OpenSimulation

Refresh

RemoveAllCouplings

RemoveCoupling

SendControlMessage

SetCouplingPhase

SetCouplingWeight

SetModuleAmplitude

SetModuleMaxAngle

SetModuleMinAngle

SetModuleOffset

SetModuleSpeed

Sleep

RCComItem
Class

RCByte

RCComItem

Class

RCId

RCComItem

Class

RobotCom
Class

Properties

HasBTNetworkChanged

Modules

RealWorldDelays

RealWorldInput

Methods

BuildNetwork

ChangePhysical

DestroyNetwork

Dispose

Output

Read

ReadItem

RefreshCPGNetwork

SendControlMessage (+ 1 …

StartMotor

StopMotor

Write

Events

DataReady

RobotPositionReceived

StatusChanged

TimeReceived

TimerElapsed

Nested Types

Switch
Enum

OFF

ON

DISCARD

StatusEventHandler
Delegate

PositionEventHandler
Delegate

TimeEventHandler
Delegate

TimerEventHandler
Delegate

RobotConfig

Form

Class

Properties

Modules

Methods

RobotConfig

Events

RequireApply

TristateSwitch

Button

Class

Pair<T>
Generic Class

Util
Class

Methods

ConvertEndian

CorrectCamCoords

IDrawable
Interface

Methods

ModuleEditorForm

Form

Class

Properties

Amplitude

MaxAngle

MinAngle

Offset

Speed

Nested Types

DlgDraw
Delegate

ShapeAngle
Class

Properties

Color

EndAngle

InnerRadius

MaxAngle

MinAngle

OuterRadius

StartAngle

Methods

Draw

Nested Types

Draging
Enum

NOTHING

LEFT

RIGHT

ShapeModule
Class

Properties

Angle

Methods

Draw

Resources
Class

Settings

ApplicationSettingsBase

Sealed Class

Properties

Default

ModuleIDMapping

RealModeBaudRate

RealModeCameraHost

RealModeCameraPort

RealModeComPort

RealModeLEDTracking

RealModeMasterNode

RemotingPort

SimModeHost

SimModePort

IDisposable IDisposable

IYaMoRHost3

IDisposable

IDrawable

IDrawable

Figure 5.8: YaMoR Host 3 class diagram, part 2 of 2

37

IYaMoRHost3

Interface

Properties

Methods

Figure 5.9: YaMoR Host 3 Interfaces Library class diagram

38

Module
Class

Properties

Amplitude

BTConnections

Cpg

MaxAngle

MinAngle

Motor

Neighbors

Offset

RealID

Speed

Uart

Methods

Clone

GetTag

IsMoving

IsValidParams

Module

SetAngleRange

SetTag

Nested Types

CPGEdge
Class

Properties

CouplingWeight

OtherModule

PhaseShift

ModuleList

List<Module>

Class

Methods

CloneModuleList

FindModuleByRealID

GetXml

IsMoving

IsValidList

ICloneable

Figure 5.10: YaMoR Host 3 Common Library class diagram

39

• ConnectRobot Set up the robot’s bluetooth network.

• Flush Send all the pending commands to the robot.

• GetAllModulesId Get the ids of all the modules.

• GetCouplingPhase Get the coupling phase between two modules in
radians.

• GetCouplingWeight Get the coupling weight between two modules.

• GetModuleAmplitude Get the movement amplitude of a module in
radians.

• GetModuleMaxAngle Get the servomotor maximal angle of a module
in radians.

• GetModuleMinAngle Get the servomotor minimal angle of a module
in radians.

• GetModuleOffset Get the movement offset of a module in radians.

• GetModuleSpeed Get the movement period of a module in Hz.

• OpenSimulation Open a Webots file (*.wbt).

• Refresh Resend all the parameters to the robot.

• RemoveAllCoupling Remove all the existing coupling between all the
modules.

• SendControlMessage Send a control message to the robot.

• SetCouplingPhase Set the phase shift in a coupling between two mod-
ules in radians.

• SetCouplingWeight Set the coupling weight between two modules in
radians.

• SetModuleAmplitude Set the movement amplitude of a module in ra-
dians.

• SetModuleMaxAngle Set the servomotor maximal angle in radians.

• SetModuleMinAngle Set the servomotor minimal angle in radians.

• SetModuleOffset Set the movement offset in radians.

• SetModuleSpeed Set the movement period in radians per Hz.

• Sleep Pause the calling thread a given amount of either virtual or real
time depending on the activated mode.

40

Classes Description

The following classes were created for YaMoR Host 3:

• Program Contains the entry point for the application.

• RCComItem Represents a information that makes SNP message.

• RCByte Represents a byte to put in a SNP message.

• RCId Represents an id to put in a SNP message. Ids are translated before
being actually sent, depending on wether they go to the simulation or to
the real robot.

• Pair< T > Represents a pair of two values of type T.

• RemoteAccess An implementation of the interface IYaMoRHost3.

• Util Contains utility methods.

• Settings Allows to access the data that must persist after the program
shuts down.

• ModuleEditorForm The form that allows to edit graphically a module.

• InputDispatcher Receives and dispatches the data that comes from the
robot.

• RobotConfig The robot configuration window.

• RobotCom Contains all the required methods to communicate with the
robot.

• ShapeModule A graphical representation of the module.

• ShapeAngle A graphical representation of an angle.

• MainForm The main window.

• AboutBox The about window.

• LedTracker The LED tracking system.

• LedTracking A graphical user interface for the LED tracking system.

• PhyLinkForm The window that allow to edit physical links.

• TristateSwitch A button that can be leaved in three distinct states.

• ConfigPanel The settings window.

The following classes are part of YaMoR Host 3 common library:

• Module Represents a YaMoR module with its bluetooth connections,
CPG links and own oscillator properties.

• ModuleList Represents a list of modules. It is used to represent the
whole robot.

41

5.5.4 Issues and Known Bugs

There is a bug in the real YaMoR modules that causes the bluetooth connec-
tion setup not to work properly. When a module connects it should send an
acknowledgment message back, which it for some reasons not always does. The
workaround implemented in YaMoR Host 3 is waiting ten seconds instead of the
acknowledgment message. This slows down drastically the connection process.

5.6 MathEval

5.6.1 Analysis

Needs

The upcoming software for gait optimization (Section 5.7) requires strings to be
evaluated as mathematical expression with the possibility for the user of adding
custom functions. After some unsuccessful searches for an existing and suitable
library, the decision of creating a self-made library was taken.

The MathEval library should be compiled in a DLL so that it can be used in
several programs. It has to be able to evaluate a mathematical expression with
an integer numbers or a real numbers engine. A mathematical expression is
made of values, brackets, custom function and the operators plus, minus, times
and divide with their respective precedence. The custom functions should be
addable without having to modify the library.

Input

The evaluator takes as input a string that represents the mathematical expres-
sion to evaluate, the desired number format (integer of real), and optionally a
set of user functions.

Output

The output is the result of the evaluation in the specified format.

5.6.2 Design

Architecture

Figure 5.11 shows an overview of the MathEval library architecture.

User Functions Evaluation

User functions appear in the form FuncName(params) in a mathematical ex-
pression, where FuncName is the name of the user function and params is the
input parameters list, values separated by commas. Note that the brackets are
always required even if there is no parameters.

When the evaluator needs to evaluate a user function it first looks if the user
has registered the function using AddFunction. If the function is not registered
and the user specified an auto-reflect object, the evaluators tries to find the
required function inside the object by reflection (even private methods). If it
is still unsuccessful, it raises the event RequireFunctionEvaluation. And if this

42

Evaluator

Registered
functions
directory

User code

Lookup

Function call
by reflection

or
Event raise

Function
call

Evaluation
request

Figure 5.11: MathEval architecture

also fails then it throws an exception. For the three possible calls, parameters
are passed to the function as an array of values.

Genericity

MathEval is a generic type; however only int, double and float are supported.
The type of MathEval defines the type values in the expression are converted
to, the return type of the evaluation and the type of the parameters and the
return type for custom functions.

5.6.3 Implementation

Class Diagram

Figure 5.12 shows the class diagram for the MathEval library.

MathEval<T>

Generic Class

Properties

AutoReflectObject { get; set; } : object

Methods

AddFunction(CustomFunctionDelegate d) : void

Eval(string expr) : T

Events

RequireFunctionEvaluation : RequireFunctionEvalHandler

Nested Types

Figure 5.12: MathEval class diagram.

Classes Description

• MathEval is the main class of the library. It contains the evaluator and
stores the registered user functions.

43

5.6.4 Issues and Known Bugs

There are no known issue or bug in MathEval.

5.7 YaMoR Optimizer

5.7.1 Analysis

Needs

One of the key features of YaMoR robot is its ability to learn walking by itself.
Therefore an optimization program is used. As shown in the past [15] it might
be relevant to be able to experiment different optimization techniques.

The role of YaMoR Optimizer is – despite its name – not to do the optimiza-
tion by itself, but to provide to the actual optimizers a common an convenient
way of performing optimizations. It should allow the optimizers to submit sim-
ulations. The simulations are then run by YaMoR Optimizer whenever and
wherever possible.

As one does not want to recompile the whole program each time an optimizer
is added or modified, the optimizers are compiled as separated libraries (DLL)
that are dynamically loaded by YaMoR Optimizer, as a kind of a plugin.

The optimizers should also be able to start without user interaction, which
allows to make a batch start i.e. start automatically several instances of the
same optimizer with different parameters for each.

Last but not least, the program should of course use YaMoR Host 3 to
interact with the Webots simulation or the real robot. Its RPC interface over
TCP/IP can be used for this and allows to run simulation on any machine that
has YaMoR Host 3 running.

Input

The programs require a list of host names (computer names or IP addresses) and
TCP ports, which correspond to computers that are running YaMoR Host 3.
This way optimizers can benefit from the parallelization of their simulations (if
possible).

It also needs a list of DLL that contain an optimizer. The user can then
choose within this list which optimizer she wants to load.

Output

YaMoR Optimizer should issue the correct RPC calls to run the submitted
simulations on the available machines.

5.7.2 Design

Architecture

Figure 5.13 shows an overview of the YaMoR Optimizer architecture. The
main component in this program is the simulation organizer. Its task is to
wait for a host to be available and for a simulation to be submitted. Then
it creates a simulation manager object with both. The simulation manager

44

has thus a simulation and a host to execute this simulation. It is responsible of
executing this simulation on that host. Once it is done, it notifies the simulation
organizer back and the host becomes available again for another simulation. The
simulation manager is destroyed.

Simulation
Manager

Simulation
Organizer

List of Hosts

Simulation Queue

Simulation
Manager

Simulation
Manager

YaMoR
Host 3
remote
object

Simulation Simulation Simulation

YaMoR
Host 3
remote
object

YaMoR
Host 3
remote
object

...

...

...

GUI List of
Optimizers

Optimizer
X

Optimizer
Y

Optimizer
...

Load

Figure 5.13: YaMoR Optimizer architecture

Threading

The base of YaMoR Optimizer runs in its own thread. When the user starts an
optimizer, it is run in a new thread. Then an optimizer usually creates and runs
simulations which are each executed in a separated thread. The simulation-to-
execute queue and the free-hosts queue is also managed in another thread to
avoid the user interface to freeze when there is no awaiting simulation or no
free host. The control over the execution of a simulation is done via a returned
ISyncObject. This one allows to know when the simulation execution has started
and when it is finished. The synchronization for the simulation manager is
made by a semaphore. Each free host adds a resource to the semaphore. Each

45

simulation consumes a resource and releases it when it is over.

General Optimization Configuration

YaMoR Optimizer offer a general optimization configuration file format sup-
port. There are two main parts. The first one is the robot structure with the
starting values for all the parameters exactly as it was before (described in Ap-
pendix C.4). The second part describes which parameter have to be optimized
and the parameters whose value are constrained depending on other parameters
values. These rules are listed as direct child of the yamorconfig element.

To tell the optimizer that a parameter has to be optimized, an optimize rule
has to be placed as follow:

<optimize param="..." min="..." max="..." />

The attribute param is the name of the parameter to be optimized followed
by an underscore and the module id, for instance "amplitude 3". For the
parameter involving two modules the id of the second module is simply added
at the end, like "phase 2 5". The attributes min and max specify the bounds
of this parameter.

To create constraints i.e. parameters with value depending on other ones a
contrain rule has to be placed as follow:

<optimize param="..." expr="..." />

The attribute param is the same as for the optimize rule. The attribute expres-
sion is a MathEval expression that will be evaluated each time the optimized
parameters are changed. The user can use in this expression all the parameters
name as functions (so do not forget brackets) plus some predefined functions
such as M2Pi which computes the angle to add to its argument to get a multiple
of 2π. An example for expr : "M2Pi(phase 0 1()+phase 1 2()+phase 2 3())".

5.7.3 Implementation

Class Diagram

Figure 5.14 shows the class diagram for YaMoR Optimizer and Figure 5.15
shows the class diagram for YaMoR Optimizer Interfaces library.

Interfaces Description

The interface IOptimizer is the interface that must be implemented to create a
new optimizer. It defines the following method, properties and events:

• Author Get the author’s name.

• Name Get the name of the optimizer.

• UserConfig Get the UserConfig object, which describes the optimizer’s
parameters.

• Version Get the version of the optimizer.

• BatchStart Start many instances of the same optimizer.

46

BatchStartForm

Form

Class

EditHost

Form

Class

MainForm

Form

Class

OptimizerSelection

Form

Class

HostInfo
Struct

Fields

name

port

status

HostStatus
Enum

Program
Static Class

Properties

MainForm

Settings

SimOrganizer

Methods

SetupOptimizer

Stop

RobotConfig
Class

SimulationHostsForm

Form

Class

SimulationManager
Class

Properties

SimStatus

Simulation

Methods

Abort

Go

SimulationManager

Events

StatusChanged

Nested Types

Status
Enum

StatusEventHandler
Delegate

SimulationOrganizer
Class

Methods

ActivateHost

AddHost

DeactivateHost

EnqueueSimulation

GetHostsList

IsHostActive

RemoveHost

Run

SimulationOrganizer

Stop

Events

HostAdded

HostRemoved

HostStatusChanged

Nested Types

SQItem
Struct

Host
Class

Properties

Disabling

Manager

Name

Port

Removing

Status

HostStatusHan…
Delegate

SyncObject
Class

Properties

AbnormalTermination

ExecutionTime

Methods

NotifyEndOfExecution

NotifyRobotConnected

NotifyStartOfExecution

StartTimer

StopTimer

WaitEndOfExecution

WaitRobotConnected

WaitStartOfExecution

Resources
Class

Settings

ApplicationSettingsBase

Sealed Class

ICloneable

IComparable

ISyncObject

Forms

Figure 5.14: YaMoR Optimizer class diagram

47

SimulationEventHandler
Delegate

IOptimizer
Interface

Properties

Methods

Events

ISyncObject
Interface

Properties

Methods

ModuleListMerger
Class

Properties

VariableCount

Methods

FindElements

GetAllMax

GetAllMin

GetDoubleArray

GetMax (+ 1 overload)

GetMin (+ 1 overload)

GetParameter

MergeDoubleArray

SetParameter

SetVariable

Nested Types

Param
Struct

Fields

max

min

name

OptimizationConfig
Class

Properties

ModuleListMerger

Modules

Methods

DoConstraints

MergeParams

OptimizationConfig

Abstract Class

Properties

WebotFile

YamorHost

Methods

Execute

SendModuleList

Stop

BooleanField
Class

FileField
Class

IntegerField
Class

IField
Interface

Properties

Methods

UserConfig
Class

Properties

Labels

Methods

AddBooleanField

AddFileField

AddIntegerField

Configure

ReadValue

SetValuesByString

UserConfigForm

Form

Class

IField

IField

IField

Figure 5.15: YaMoR Optimizer Interfaces library class diagram

48

• Init Initialize the optimizer.

• SubmitSimulation Event. The optimizer raises it when it want to sub-
mit a simulation for execution.

Classes Description

The following classes were created for YaMoR Optimizer:

• Program Contains the entry point of the application. Spawns the simu-
lation organizer thread.

• RobotConfig Unused.

• Settings Allows to access the data that must persist after the program
shuts down.

• SimulationManager

• SimulationOrganizer Manages the execution of the pending simulations
on the available hosts.

• SyncObject Contains methods to get information about the simulation
execution status.

• MainForm The main window (multi-document interface).

• OptimizerSelection The window that lists the available optimizers.

• BatchStartFrom A dynamic form whose fields depend on the selected
optimizer. Allows to start many instances of the same optimizer at a time.

• SimulationHostForm The window that lists the available hosts and
their status.

• EditHost The window that allow to edit host information.

The following classes are part of YaMoR Optimizer Interfaces library:

• IntegerField A field that accepts bounded integer for the UserConfig-
Form.

• BooleanField A checkbox for the UserConfigForm.

• FileField A field that accepts a file name and allows the user to browse
the file system.

• UserConfigForm A dynamically generated form that allow to configure
an optimizer.

• UserConfig Describes and store the optimizer configuration.

• OptimizationConfig The optimization configuration. Can read the con-
figuration file.

• ModuleListMerger A class that merges the module list (the robot con-
figuration) with an array of double describing the values of the parameters.
It also does the constraints.

49

• Simulation Abstract. Represents a simulation. Optimizers that want
to submit simulations must create a concrete class based on this one.
Method to implement are DoExecute, which actually runs the simulation,
and CreateNew to clone the simulation.

5.7.4 Issues and Known Bugs

The program does not shut down the started optimizers when it shuts down.
This causes their thread to continue their execution so the process is not ter-
minated. When the user exits YaMoR optimizer, she has to close first all the
optimizers. Otherwise she can terminate the process using the Windows’ Task
Manager.

50

Chapter 6

Gait Optimization

6.1 Central Pattern Generators

This section provides a quick overview on the central pattern generators (CPG)
and their application in YaMoR robot. An exhaustive description is available in
Jerome Maye’s master thesis ”Control of Locomotion in Modular Robotics” [15].

6.1.1 Overview

”A CPG is a network of neurons, capableof producing oscillatory signals without
oscillatory inputs” [1]. CPGs are present in spines and allow the brain not to
care about the detail of the gait but only to send simple signals like walk, run,
etc. Since all the actuator must be synchronized in a gait there are connections
in-between the neurons. The CPG is robust to perturbations: if it has motor
feedback and an actuator is blocked for example the whole gait is modified.
When the actuator is released the gait smoothly returns to normality. The
oscillators run in a so-called limit cycle and if for some constraints they leave
it, they smoothly reconverge to it when the constraints are released.

A model of CPG has been developed in the robot locomotion control ap-
plication field, using coupled non-linear oscillators [1]. The parameters that
characterize the network are for each connection the phase shift and the weight
of the connection; for each oscillator, the frequency, the amplitude and the off-
set. If θi [rad] is the oscillator set-point, φi [rad], ri [rad] and xi [rad] are the
state variables corresponding to the phase, the amplitude, resp. the offset, ωi

[rad], Ri [rad] and Xi [rad] are the control parameters for the desired frequency,
amplitude, resp. offset, ωij and ϕij are the coupling weights and phases biases
with oscillator j, rj and φj are state variables from oscillator j, and ar and ax

are constant positive gains that control the speed of convergence both set to
4rad/s, then the oscillator i is ruled by the following equations:

51

φ̇i = ωi +
∑

j

ωijrj sin(φj − φi − ϕij)

r̈i = ar(
ar

4
(Ri − ri)− ṙi)

ẍi = ax(
ax

4
(Xi − xi)− ẋi)

θi = xi + ri cos(φi)

6.1.2 YaMoR Application

The CPGs are a very suitable way for the modular robot locomotion because
each module can contain a part of the network on which his motors are directly
plugged. Thus all the module can have the same code for the motor command.
It is only necessary for them to know which part of the network they are, i.e.
what are their direct neighbors (in the CPG network, which are not necessarily
the same as the physical neighbors).

For the YaMoR robot, each active module contains one oscillator. The
coupling is up to the user, but usually she wants to put CPG links at the same
place as physical connections, with a coupling weight of 1. As an example,
Figure 6.2 shows the CPG network for the quadruped robot.

In the YaMoR modules limit angles are also implemented, which causes the
output to the servomotor to be bounded to a specified range. The CPG however
does not know nor see anything about these bounds. Those were introduced to
avoid module collisions, but can also be used to get output signal shapes other
than sines.

6.2 Optimization

The gait of YaMoR is obtained by the optimization of a function which is the
velocity of the robot (see Section 6.2.1) depending on the robot’s free CPG
parameters. Several optimization techniques have been tried, namely Powell,
particle swarm optimization (PSO), simplex and other ones. Powell produces
the best result in terms of quality of gait and time required. PSO converges more
slowly but is highly parallelizable because all the particles can be computed in
parallel since they do not depend on each other within one iteration. Powell is
not parallelizable at all: a new simulation is generated according to the result
provided by the last one. Simplex and other methods have not shown results as
good as those [15] [21].

In this chapter, all the measurements are done on a quadruped modular
robot [17]. Its physical structure is shown in Figure 6.1. Figure 6.2 shows its
CPG network structure. The optimization configuration is detailed in Table 6.1.

6.2.1 Velocity Evaluation

The velocity of the robot is computed by dividing the distance travelled in a
given time span. The distance is taken to be the shortest path between the
robot position at the beginning of the time span and its position at the end of

52

Figure 6.1: Quadruped Robot.

4

5

7

0
3

2
1

6

Figure 6.2: Quadruped Robot CPG Structure.

Factor range
Amplitude of modules 0, 1, 2, 3 [0 : π/4] rad
Amplitude of modules 5, 6, 7, 8 [0 : π/2] rad
Offset of modules 5, 6, 7, 8 [0 : −π/2] rad
Phase lag from inside to outside [0 : 2π] rad
Phase lag from 0 to 1 [0 : 2π] rad
Phase lag from 1 to 2 [0 : 2π] rad
Phase lag from 2 to 3 [0 : 2π] rad

Table 6.1: Free parameters for the quadruped.

53

the time span. This favors straight gaits because the straight line is the shortest
path between two points. If the robot would not have followed a straight path
it would never have gone that far with the same velocity. The robot position
in the real world is obtained by a LED tracking system with a camera. The
module that carries the LED is called the central module.

The beginning of the time span is fixed at the eighth second. It gives the
time for all the control messages (networking) to arrive at destination and for the
central pattern generator to converge to some limit cycle. The second boundary
is up to the user. The longer she waits, the more precise the velocity measure-
ment will be. This is due to the noise introduced by the fact that gaits are not
smooth as if the robot were rolling on wheels. For the quadruped it showed out
that 12s is long enough to produce good and usable results. In the simulation
the noise is however reduced by the fact that the simulation starts always with
the same initial conditions.

Usual resulting gaits from the first optimizations caused the robot to walk
in circle with a smaller or bigger radius. It is very unlikely that it goes perfectly
in a straight gait. So it tends to go either to the left or to the right. Consider
two gaits A and B. The gait A makes the robot go straight forward, whereas
the gait B makes it walk hafl of a circle, but at the end it is further than with
gait A. The optimization would select gait B as the best one. However, if the
evaluation time is doubled, gait B will make the robot to return at its starting
position (complete circle), and thus gait A will be selected. Optimizations with
a longer evaluation time span produced straighter gaits.

Figure 6.3 shows an example of the velocity in function of the two out of the
seven free parameters: the phase lags between inner and outer modules and the
offset of the outer modules. The five other parameters listed in Table 6.1 are set
to fixed value taken from a previous gait optimization. The figures are obtained
by measuring 3969 (64x64)points all over the valid domain at regular intervals.
A cubic interpolation is then applied to draw the surface going through these
points. The walk duration is 12 seconds.

(a)

phase laginner-outer [rad]

of
fs

et
s ou

te
r [r

ad
]

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

(b)

Figure 6.3: Robot velocity in function of two parameters: the outer offsets and
the inner-to-outer phase lags. The red zones correspond to the higher velocities
whereas the dark blue ones show the lowers.

54

6.2.2 Powell Explained

As stated in [15], the Powell optimization is the most suitable algorithm for this
application. It converges generally with few function evaluations to a maximum,
which is not necessarily the global maximum. Tests showed that a good solution
is found quickly in comparison to other algorithms. The Powell’s algorithm
works as follow:

1 Build a d i r e c t i o n s e t D made o f the un i t v e c t o r s a l i gned
to the ax i s o f the space .

2 Pick a s t a r t i n g po int ps
3 p = ps
4 Repeat
5 Foreach d i r e c t i o n d o f D
6 Find the funct ion ’ s maximum s t a r t i n g from p and

f o l l ow i n g the d i r e c t i o n d .
7 Set p to be the po s i t i o n o f the maximum found so f a r .
8 End For
9 Create a d i r e c t i o n d1 from ps to p

10 I f va lue at ps+2∗(p−ps) > value at p
11 Find the funct ion ’ s maximum s t a r t i n g from ps and

f o l l ow i n g d1
12 Set p to be the maximum found so f a r .
13 I f d1 did a big cur rent maximum improvement
14 Add i t to D
15 Evict the d i r e c t i o n that produced the best

improvement so f a r from D.
16 End I f
17 End I f
18 ps = p
19 Unt i l the maximum improvement reaches a g iven th r e sho ld .

In order to find the maximum of the function following a direction one can
transpose it to a one-parameter function and find the maximum using the Brent
method [20] [19]. The Brent method requires the minimum to be firstly brack-
eted. This is done by a golden section search algorithm [19].

Unfortunately this does not take into account that the search space is bounded
i.e. all the parameters have a range of possible values. At first the invalid domain
was set to provide bad values as shown in Figure 6.4 so that the optimization
algorithm would quickly focus on the region of interest. Knowing the bounds of
the problem can lead in this case to a more clever way of doing it. Also one of
the reasons that make Powell’s algorithm powerful is its ability to replace some
of its directions by more relevant one. Experiences on the quadruped showed
that it is rare that new directions are introduced. It appeared that in most of
the cases the evaluation of a new direction requested points from the invalid
domain because of a to big jump, causing the direction to be obviously not
taken in the set. Some modifications have been brought and are explained in
Section 6.2.3, 6.2.4 and 6.2.5.

Powell’s algorithm has been ported from the numerical recipes C source
code [19] to C#. In order to study its good operation and behavior some
optimization were done with the seven free parameters set and with the two
free parameters set. The former provides a real simulation framework, whereas
the latter allows to draw the powell path on the previously measured contour
plot (Figure 6.3).

Figures 6.5, 6.6 and 6.7 show some of the results obtained doing the same
simulation but with different starting points. In the first one the maximum is

55

f(x)

x

valid domain

Figure 6.4: One dimensional function with constant value for the invalid domain.

quickly found, thanks to the introduction of a new direction. In the second one,
the algorithm converges to a local optimum. It is very improbable to get out of
such a maximum because no other better maximum exists in the directions the
algorithm can move (except if some new directions have already been added).
In the third one, for some reason related to the slope at the starting point plus
a random factor that is part of the bracketing algorithm, the path starts in the
wrong direction and gets a little lost before converging to a local optimum.

Figure 6.8 shows the optimization timeline of the seven parameters set. The
upper graph shows the evolution of the seven parameters. The lower graph
shows the evolution of the robot velocity. The evaluation time was 20s here. In
this optimization no new direction was introduced. Figure 6.9 shows the same
optimization but this time a new direction was added at simulation 280. It is
used again at simulations 340 and 415. When all the parameters change very
briefly (red arrow) it means that a new direction is being evaluated to decide
wether insert it in the directions set or not.

Because of the random factor used in the bracketing in Powell’s algorithm
and because of the noise of the robot velocity measurement, it is very improbable
that two simulations with the same initial parameters and starting point produce
the same path in the solution space. Often they do not even produce the same
result at all as shown in Figure 6.10.

6.2.3 Stadium Bounding

The first idea to speed up the convergence of the one-dimensional function
optimization is to replace the bad values of the invalid domain by a stadium-
shaped function as shown in Figure 6.11. The further the required point is
from the valid domain, the worse the returned value is, instead of returning
a constant value. The constant value causes the function to be discontinuous,
which is suspected to slow down the convergence of the algorithm. The name
”stadium” comes from the football stadium shape of such a function with two
parameters (vertically reversed).

Function computation inside the valid space requires a simulation whereas an
outside evaluation requires no simulation in the case of the constant bad value
approach; the bad value can be returned directly. With the stadium approach,
the value at the border has to be determined once so that the outside value
can be computed by adding to the border value a malus corresponding to the
distance to the valid domain.

The bracketing algorithm uses the same number of iterations with both ap-

56

phase lagsinner-outer [rad]

of
fs

et
s ou

te
r [r

ad
]

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.5: Powell path starting from (0;−0.5). Direction set change after the
first iteration.

phase lagsinner-outer [rad]

of
fs

et
s ou

te
r [r

ad
]

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.6: Powell path starting from (2;−1.5). Converges to a local maximum.

57

phase lagsinner-outer [rad]

of
fs

et
s ou

te
r [r

ad
]

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.7: Powell path starting from (2; 0.5). Starts in the opposite direction
for some reason depending on the slope at the starting point. Does not recover
from this ”choice”.

0 50 100 150 200 250
-4

-2

0

2

4

6

op
t.

pa
ra

m
et

er
 [r

ad
]

0 50 100 150 200 250
-4

-2

0

2

4

6

op
t.

pa
ra

m
et

er
 [r

ad
]

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

[simulation#]

ve
lo

ci
ty

 [m
/s

]

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

[simulation#]

ve
lo

ci
ty

 [m
/s

]

Figure 6.8: Powell optimization of the seven parameters set. No new direction
was introduced.

58

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

6

8

op
t.

pa
ra

m
et

er
 [r

ad
]

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

6

8

op
t.

pa
ra

m
et

er
 [r

ad
]

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

[simulation#]

ve
lo

ci
ty

 [m
/s

]

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

[simulation#]

ve
lo

ci
ty

 [m
/s

]

Figure 6.9: Powell optimization of the seven parameters set. A new direction
was introduced at simulation 280 and reused afterwards.

proaches. However in some cases the bracketed interval is smaller with the sta-
dium approach. A smaller interval causes the brent method to converge slightly
quicker, but it is in average compensated by the additional simulation needed to
compute the stadium function. Experimentations showed no differences neither
in time of execution, nor in result quality.

6.2.4 Easy Direction Change

As stated before, new directions are rarely introduced by Powell’s algorithm
because when new directions are tried, points from the invalid domain are often
requested. New directions, if relevant, allow the algorithm to converge much
faster.

When an invalid point is requested, a bad value is returned making Powell’s
algorithm decide that the direction is not good. In order to avoid this prob-
lem, the invalid point requests are translated to the nearest valid point for the
direction evaluation. It causes the new direction to be evaluated on a shorter
distance but validly.

The results produced by this method are worse than the ones from the classic
one. It might be due to the fact that there is a bug in the program both in
PowellOptimizer plugin and in LifelongLearning plugin, which use the same
code. The bug causes the result file to contain NaN values (not a number).
It has not been fixed yet due to lack of time. However making the direction
change easier is not necessarily a good thing. If new directions are added too
easily even if they are not really good some other directions are evicted even if
they are more relevant.

59

0 10 20 30 40 50
Time [min]

0.00

0.01

0.02

0.03

0.04

Ve
lo

ci
ty

 [m
/s

]

Evaluation Direction Best

(a)

0 5 10 15 20 25
Time [min]

0.000

0.005

0.010

0.015

0.020

Ve
lo

ci
ty

 [m
/s

]

Evaluation Direction Best

(b)

Figure 6.10: The same optimization configuration run two times may produce
completely different results.

60

f(x)

x

valid domain

Figure 6.11: One dimensional function with gradient outside value (stadium).

6.2.5 One-Dimensional Function Optimization

The golden section search and the Brent method were replaced by a regular
interval search. In order to find the maximum, the new algorithm measures ten
points at regular intervals to cover the whole direction space. Then nearby the
best measured point five other points are measured at smaller interval to get
more accuracy.

This method is less sensitive to the local maxima because the whole direction
domain is considered at each step, so it is easy for the algorithm to jump from
one maximum to another one. With the classic method one has to be lucky
to make such a jump because it depends of the size of the initial step, which
is chosen randomly. This new method takes advantage of the fact that the
bounds are known and the approximative minimal width of the maxima too.
In YaMoR, changing a parameter for a few degrees does usually not cause big
velocity change in both directions (adding or substracting degrees). Furthermore
the 10 simulations (resp. the 5) are not interdependent and can be parallelized.

This method provides better results in most of the cases. Figure 6.12 com-
pares the two methods running ten times an optimization on the seven pa-
rameters set each time with a different starting point. With the new method,
optimizations a and b are much better, e and f are better, c, h and i are
equivalent, d and j are worse.

6.3 From Simulation to Real World

The CPG configuration of the best gait found by Powell’s algorithm for the
quadruped and the seven parameters set using Webots simulations was trans-
fered on the real robot. It could not walk. This is due to the fact that the
gait caused the body to move close to the ground and because of the lag of the
servomotors the robot could not lift up from the ground. However simulation
and real world still have some other differences. The result of the simulations
should provide a good starting point for a real world optimization since the real
world and the simulated environment are not that far from each other.

6.4 Future

The technique of easily changing the direction set should be explored. In case
of a high number of free parameters moving in diagonal can save a lot of simu-

61

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

simulation #

V
 [m

/s
]

(a)

0 100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

simulation #

V
 [m

/s
]

(b)

0 50 100 150 200 250 300 350
0.015

0.02

0.025

0.03

0.035

0.04

0.045

simulation #

V
 [m

/s
]

(c)

0 50 100 150 200 250 300 350
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

simulation #

V
 [m

/s
]

(d)

0 50 100 150 200 250 300 350 400 450
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

simulation #

V
 [m

/s
]

(e)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

simulation #

V
 [m

/s
]

(f)

0 50 100 150 200 250 300 350 400 450
0

0.01

0.02

0.03

0.04

0.05

0.06

simulation #

V
 [m

/s
]

(g)

0 50 100 150 200 250 300 350 400 450
0

0.01

0.02

0.03

0.04

0.05

0.06

simulation #

V
 [m

/s
]

(h)

0 50 100 150 200 250 300 350
0.005

0.01

0.015

0.02

0.025

0.03

0.035

simulation #

V
 [m

/s
]

(i)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

simulation #

V
 [m

/s
]

(j)

Figure 6.12: The curves show the best velocity achieved so far during an opti-
mization. The blue one is the classic Powell method, the red one is the one with
enhanced one-dimensional function minimization.

62

lations. However as stated before this could also deteriorate performances.
Within the set of directions, using the right direction at the right time could

improve a lot the time needed for convergence. One could design a statistics-
based approach for choosing the direction instead of looping through them al-
ways in the same order. It can be that some specific direction is not relevant at
all during many iteration. A statistics oriented system could rearrange direc-
tions in the set so that they come up in a probable optimal order.

63

Chapter 7

Lifelong Learning

7.1 Overview

With lifelong learning abilities, YaMoR can learn or relearn during its life i.e.
without being shut down, to adapt itself to new situations it is faced to and
prevent it from normally walking. Whereas common situations like a motor
getting damaged or the whole robot turning upside down can naturally happen,
more specific ones are also considered, such as spontaneous module insertion
or removal. Because one of the goals of modular robotics is to give robots the
ability to change their shape, YaMoR must be able to recover from or take
advantage of such situations.

To simplify the task it is assumed that the Bluetooth network is always
connecting all of the modules present and even the malfunction of a module has
no influence on the Bluetooth network.

7.2 Base Strategy

In order to give YaMoR lifelong learning abilities, a plugin was developed for
YaMoR Optimizer (see Section 5.7). It consists in the following main program:

1 Load a YaMoR robot (Webots)
2 Load a walking ga i t
3 Repeat
4 Make ga i t s t a t i s t i c s (v e l o c i t y measurement)
5 Wait un t i l anomaly de t e c t i on
6 Adapt to the anomaly (r e l e a r n)
7 Loop

The velocity estimation, the anomaly detection and the relearning process
are described in the following sections. In order to focus mainly on the gait
adaptation, the bluetooth network is assumed to be always fully operational i.e.
all involved modules can communicate together.

7.3 Anomaly Detection

There are many types of anomaly that can occur during the life of YaMoR. The
following ones are identified:

64

• Motor defect. When a motor is damaged it has either no force anymore
or completely stuck, whereas the software, i.e. the CPG node, continues
to work normally.

• Module defect. The software or the battery is down. The CPG node
does not work anymore.

• Turning upside down. The robot cannot move anymore because it is
not in its normal orientation.

• Ground material change. The ground becomes more slippery or more
sticky.

• Module insertion. Some modules were added to the robot.

• Module removal. Some modules were removed from the robot.

Any of these anomalies result in a velocity change of the robot, either better or
worse. If the velocity gets increased a relearning is maybe not worth because it
takes time and the velocity has already been improved. However it could lead
to an even better gait. Anyway in the case of a velocity decrease, a relearning
should be performed. When the physical structure is changed (module addition
and removal), it is assumed that YaMoR is aware of it. Even if it is actually
not, the upcoming Roombots is designed to know about physical changes. Also
in this case a relearning might be thrown.

The accelerometers may also be used to detect an anomaly. If the robot
is upside down for example, the accelerometers are well-suited to detect this.
They could also observe a change in a periodic signal they usually measure.
However they are not used for the moment because velocity measurement and
physical changes detection were sufficient for this project and because using the
accelerometers would have required of a software adaptation of the YaMoR,
which is time costly.

Velocity is unfortunately hard to measure in lifelong learning because of the
noise. The robot movement is not a straight movement with constant velocity
but some quasi chaotic movement that repeats at each CPG oscillator period. If
the distance travelled during one period would be measured and divided by the
period time, this would give a good velocity estimation. However, the period
time is not exactly the same from one period to the other probably because of
Webots bad timings and the operating system’s process scheduler. Moreover
the distance travelled by the robot in one period is not always the same because
of various sources of noise. These two imprecisions cause the velocity measure
to vary a lot (tested only in Webots).

The velocity is measured during a time span of three periods to reduce the
noise introduced. Be v the current stored velocity, v+ the last measured one
and t the anomaly threshold. If |v − v+| < t then v := 0.9v + 0.1v+. Otherwise
the anomaly is signaled. This equation allows the velocity to be subject to small
variations along the robot’s life.

7.4 Adaptation

If the CPG structure requires no changes a Powell optimization can be started
directly. It is convinient to start the optimization from the current gait’s param-

65

eters set because often the new optimum is not that far away from the old one.
However, when a module is added, removed or damaged (CPG node not work-
ing anymore) the CPG network needs adaptation. The next section describes a
method to auto-generate a CPG network from the modules physical connections
graph. The assumption is made, that there is a CPG coupling wherever there
is a physical connection. The following questions arise now: how to build the
CPG network? What parameters are free and which ones depend on others?
Which parameters are to be optimized and which ones are fixed?

7.4.1 CPG Network Construction

The base data that the algorithm has is the physical connections graph. The
vertices represent the modules and the edges the physical connections. Fig-
ure 7.1 shows on the left a physical graph. Be G the physical graph of the
available modules and H the CPG network directed graph, that contains the
same vertices as G. The bigger connected subgraph g is extracted. This causes
the algorithm to ignore detached modules. Be A and B two vertices in g and A′

and B′ the two corresponding vertices in H. If there is an edge between A and
B then there is an edge from A′ to B′ and from B′ to A′, with a phase shift of
0 and a weight of 1. Figure 7.1 shows on the right the resulting graph H of G.

1 2

4 5

1 2

4 5

G H

3

6

g

Figure 7.1: Example graphs. Left: physical graph G and bigger connected
subgraph g, right: CPG graph H.

7.4.2 Constraining

The next step is to establish constraints for the phase shifts. The phase shifts of
each loop in the CPG network must sum up to a multiple of 2π. If each phase
shift is variable and each loop is an equation using those variables, one can
compute how many phase shifts are constrained and how many are free (note
that not each loop provides a valuable equation; some of them are redundant).

66

Find Paths

A function Path(G, A,B) that finds all the paths from A to B in a graph G is
defined. It returns all the paths i.e. possible lists of vertices traveled from A
to B, including A at the beginning and B at the end. The algorithm used is a
recursive graph walkthrough.

Find Loops

A function Loop(G, A) that finds all the path starting from A and ending at A
is defined. It returns all the loops i.e. lists of vertices traveled from A and back
to A. It runs Path(G, A,A). The function Loops(G) that finds all the loops in
G is defined. For all vertices A in G it runs Loop(G, A). The resulting loops
are then put together and filtered to remove redundancy; for example the loop
1-2-3-4-1 is the same as 3-4-1-2-3.

Constraints Algorithm

The constraints algorithm produces a list of all the edges with the sum descrip-
tion required for the phase shift computation. The value of the edge’s phase shift
must be added to this sum so that total is a multiple of 2π. These constraints
can then easily be translated to MathEval expressions (see Section 5.6). It is
also possible to provide a list of edges the user would like not to be dependent
on other edges, i.e. unconstrained.

1 l oops = Loops (CPG)
2 cn = an empty d i c t i ona ry
3

4 Repeat end l e s s
5 f i x = Fal se
6

7 // Try to look in the keep−non−constrained− l i s t
8 For each edge (A,B) In keepNonConstrained
9 I f cn not conta in s key (A,B) then

10 cn [(A,B)] = 0 ;
11 f i x = True
12 Exit For
13 End I f
14 End For
15

16 // Pick any o f them
17 I f f i x = Fal se then
18 For each loop L In loops
19 For i = 0 to l ength (L) − 2
20 A = L [i]
21 B = L [i +1]
22 I f cn not conta in s key (A,B) then
23 cn [(A,B)] = 0 ;
24 f i x = True
25 Exit For
26 End I f
27 End For
28 I f f i x = True then Exit For
29 End For
30 End I f
31

32 I f f i x = Fal se then Exit Repeat
33

67

34 // Look fo r new con s t r a i n t s
35 Repeat
36 changed = False
37 For each loop L In loops
38 n f r e e = 0 ;
39 For i = 0 to l ength (L) − 2
40 A = L [i]
41 B = L [i +1]
42 I f cn not conta in s key (A,B) then
43 n f r e e = n f r e e + 1
44 f r e e = (A,B)
45 End I f
46 End For
47

48 // Only one unset edge in the loop
49 // Must cons t ra in i t .
50 I f n f r e e = 1 then
51 newCn = empty l i s t
52 For i = 0 to l ength (L) − 2
53 I f (L [i] , L [i +1]) <> f r e e
54 Add (A,B,−1) to newCn
55 // Expand i f depending on other
56 // cons tra ined v a r i a b l e s
57 Repeat
58 expanded = False ;
59 For each tup l e (A,B,C) In newCn
60 expansion = cn [(A,B)] ;
61 I f l ength (expansion) > 0
62 newCn . RemoveAt(i) ;
63 For j = 0 to l ength (expansion) −1
64 edge = (expansion [j] [0] ,
65 expansion [j] [1] ,
66 expansion [j] [2] ∗ C) ;
67 I n s e r t edge In newCn at po s i t i o n i
68 End For
69 expanded = True ;
70 Exit For
71 End I f
72 End For
73 While expanded = True
74 cn [f r e e] = newCn
75 changed = True ;
76 End I f
77 End For
78 End I f
79 End For
80 While changed = True
81 End Repeat

Figure 7.2 shows the constraints algorithm run on the CPG sample graph
shown in Figure 7.1.

Parameters Fixation

The output of the constraints algorithm contains a lot of free parameters (not
depending on some others). Furthermore, the amplitude and offset for each
module become also free. The weight for all edges and the frequency and the
limit angles for all modules are left unchanged. However the total amount of
free parameters might be too high for the optimization i.e. too much time would
be required to get a good gait. In order to limit the number of free parameters,

68

1. Loops

1-2-1
1-3-1
1-2-3-1
1-3-2-1
2-1-2
2-3-2
2-3-1-2
2-1-3-2
3-1-3
3-2-3
3-4-3
3-1-2-3
3-2-1-3

10. Constrain

1 ? 2 ! 1
1 ? 3 ! 1
1 ? 2 ! 3 ! 1
2 ! 3 ! 2
3 ? 4 ! 3

4_3 = M2Pi(-3_4)

9. fix 3-4

1 ? 2 ! 1
1 ? 3 ! 1
1 ? 2 ! 3 ! 1
2 ! 3 ! 2
3 ? 4 - 3

8. Constrain

1 ? 2 ! 1
1 ? 3 ! 1
1 ? 2 ! 3 ! 1
2 ! 3 ! 2
3 - 4 - 3

3_2 = M2Pi(-2_3)
 = M2Pi(1_2-1_3)

7. Constrain

1 ? 2 ! 1
1 ? 3 ! 1
1 ? 2 ! 3 ! 1
2 ! 3 - 2
3 - 4 - 3

2_3 = M2Pi(-1_2-3_1)
 = M2Pi(-1_2+1_3)

6. Constrain

1 ? 2 ! 1
1 ? 3 ! 1
1 ? 2 - 3 ! 1
2 - 3 - 2
3 - 4 - 3

3_1 = M2Pi(-1_3)

5. fix 1-3

1 ? 2 ! 1
1 ? 3 - 1
1 ? 2 - 3 - 1
2 - 3 - 2
3 - 4 - 3

4. Constrain

1 ? 2 ! 1
1 - 3 - 1
1 ? 2 - 3 - 1
2 - 3 - 2
3 - 4 – 3

2_1 = M2Pi(-1_2)

3. fix 1-2

1 ? 2 - 1
1 - 3 - 1
1 ? 2 - 3 - 1
2 - 3 - 2
3 - 4 - 3

2. Loops

1-2-1
1-3-1
1-2-3-1
2-3-2
3-4-3

Figure 7.2: Constraints algorithm run example

a given number of them are picked randomly and set to a random value.

7.5 Tests

7.5.1 Transformation

As a test a transformation script was created. It shortens two legs of the
quadruped and put the removed modules on the end of the other two legs (see
Figure 7.3).Webots is started with the quadruped reproducing the best gait it
learnt with the seven parameters set (see Table 6.1). The robot walks for a few
minutes. Then the transformation script is executed. At this moment the veloc-
ity is expected to decrease. The robot should notice the structure change and
start the optimization process until the gait becomes good again. Before doing
the optimization it first generates a new CPG network with 7 free parameters
(not the same parameters as before because the network is transformed). Limit
angles are kept.

7.5.2 Upside Down

Another test was to make the robot fall from a table from a height such that
it lands upside down. Webots is started with an extended legs version of the
quadruped so that it is possible for it to walk upside down. The initial gait is the
best gait learnt by the regular quadruped using the seven parameters set. The
four new modules are neither actuated nor part of the CPG network. The robot

69

(a) (b)

Figure 7.3: The quadruped robot before and after transformation.

walks on the table and then falls down. It should notice a velocity decrease and
trigger an gait optimization. It is expected that it develop the ability of walking
upside down. This test does not require a CPG network structure change.

7.6 Results

Figure 7.4 shows the robot velocity in function of the time. The initial velocity is
about 5cm/s. The transformation takes place at the fourth minute and is visible
in the graph through a velocity decrease as expected. A new CPG network that
corresponds to the new physical structure is generated with 7 free parameters.
The relearning process is then started and after 80min the robot is able to walk
again with a velocity of about 4.5cm/s. A movie of this adaptation is available
on the enclosed CD-ROM.

Figure 7.5 shows the recovery process after having fallen upside down. These
are screenshots from the movie that can be found on the enclosed CD-ROM.

7.7 Discussion

The results obtained and presented in Section 7.6 show that the developed
lifelong learning strategy works very well for the implemented experimental
scenarios. However because of the CPG network free parameters limitation,
some of the parameters are randomly picked and set to random values. Because
of this not only achieving the optimal gait is probably impossible but also a
suitable gait may be impossible to find depending on which parameters remain
free. This problem does not occur when the CPG structure is not required to
be changed.

70

0 10 20 30 40 50 60 70 80 90 100
t [min]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
[m

/s
]

Speed

Figure 7.4: Quadruped velocity evolution upon sudden transformation.

(a) (b)

(c) (d)

Figure 7.5: Quadruped recovery after fall.

71

7.8 Future

7.8.1 CPG Network Construction

As stated in the discussion, the CPG structure change may cause a walking gait
to be unreachable. The CPG network construction algorithm should be more
investigated, particularly to detect symmetries. Symmetries are a simple way
to reduce the number of free parameters. They allow to replace free parameters
by constraints that depend on other free parameters. The seven parameters set
used for the quadruped had typically a lot of symmetries introduced by hand.
The CPG network construction algorithm should be able to automatize this
task. Limit angles are however always set by hand.

7.8.2 Gaits Database

For all the abnormal situations that occur which do not require a CPG structure
change or involve a defect motor i.e. the situations where the environment or
the robot orientation is responsible for a velocity decrease, a gait database can
be built for each along the robot’s life. For example when it comes up to a
slippery ground, it relearns the walking gait but without forgetting the old one
that was good on regular ground. When it comes back to normal ground it
can retake the old gait without having to run a time-costly optimization. The
database would contain records made of the following information

• Parameters values for the CPG.

• When was the gait used for the last time.

• What gaits were used before this one and what were the symptoms of the
anomaly (described later) for each of these gaits.

• The robot orientation for the gait.

• The expected velocity with this gait.

This is a non exhaustive list of the information that could be kept in the
database. The gaits used before this gait and when the gait was used for the
last time can provide statistical information that could be used for the new gait
selection. The symptoms that occurred in each of this gait (such as accelerome-
ter signals, velocity decrease, values of the light sensors) when the anomaly was
detected allow to attribute a likeliness value to each of the gait of the database
so that they can be tried out in the most efficient order. If none of the database
gaits allows to reach the expected velocity, then a new optimization is made and
the new gait is stored in the database.

72

Chapter 8

Conclusion

This work showed that the accelerometers signal of the YaMoR modules cannot
be used to evaluate the robot position. The only option at the moment is to track
the robot using a camera. However, accelerometer data can still be used for other
purpose such as determining the orientation of the robot or detecting impacts.
The light sensors present in each module could be used too to determine if the
module is facing the ground for example.

The software developed during this project allows to work with YaMoR,
focusing only on robotic problems with no need to worry about programing
issues. It has already been proved to be very helpful in this project, especially
during the gait optimization phase and the long life learning phase. The author
did not need to worry anymore about the way data is transported to the real
robot or the simulation or how the computer cluster is going to parallelize the
requested simulations. He just had to use the convenient high-level application
programming interface offered by YaMoR Optimizer, which itself uses YaMoR
Host 3 – a program that can be seen as a kind of driver for YaMoR, with an
additional graphical user interface.

The gait optimization algorithm (Powell) used in Jerome Maye’s work [15]
was improved by taking into account that the gait parameters are bounded.
This had not been considered before. Now it finds better gaits or converges
faster in most cases. However some more work should still be done in this field.
As a matter of fact, a techique imagined to reduce the time needed to find a
good gait could not be experienced properly because of a bug in the software
discovered at a too advanced stage of this project (see Section 6.2.4).

The lifelong learning abilities allow robots to overcome unusual situations
that occur along their life. In this project, efforts were put in always being able
to walk. The robot is subject to standard anomalies such as motor failure, being
turned upside down or arriving on a slippery ground. Since it is modular and
the goal is eventually that it changes its shape by itself, it is also subject to
module addition and removal, which interferes with the walking. That is why
the CPG network used for the gait generation can be created automatically.

A system of a gaits database was also imagined, enabling the robot to remem-
ber gaits it used and to reuse them when it feels that the situation currently
faced has already occurred in the past. The gaits database could spare the
robot having to relearn gaits it already found once from scratch and, by this,
save several hours of optimization.

73

The optimized objective function could be changed to make YaMoR learn
other types of gait, such as turning left and right or flip itself if upside down.
Afterwards, by adding more sensors to the modules, it could have a behavior
more complex than simply walking straight forward. One can imagine for exam-
ple obstacle avoidance, like the Salamandra Robot also developed at the BIRG,
which is also a modular robot working with CPGs but not reconfigurable.

The author feels a little frustrated by the fact that he did not have more
time to explore this cutting-edge topic, but the framework software took a large
part of the time allowed for this work and was really a must-have before going
on in lifelong learning.

Future work is described in Sections 5.4.5, 6.4 and 7.8.

74

Chapter 9

Acknowledgement

The author would really like to thank the following persons:

• Alexander Sproewitz who assisted him along this work. He introduced
the author to YaMoR hardware. He was always available to answer ques-
tions. He pre-read this report a brought valuable comments. He did
Matlab programs to display some of the results the author got.

• Auke Jan Ijspeert, responsible for the BIRG, who proposed this project
in his laboratory.

• Beat Hirsbrunner, official supervisor for this work at the University of
Fribourg.

• Jerome Maye, who did the work on which this one is built and helped
the author to get started with his code.

• Ivan Bourquin, who provided valuable help about Webots simulator.

• Alessandro Crespi, last but not least, for his computer technical sup-
port.

Also he appreciated the fact that the University of Fribourg and the Swiss
Federal Institute of Technology of Lausanne can collaborate for such projects.

75

Bibliography

[1] J. Buchli, A.J. Ijspeert, ”Distributed central pattern generator model for
robotics application based on phase sensitivity analysis.” In A.J. Ijspeert,
M. Murata, and N. Wakamiya, editors, Biologically Inspired Approaches
to Advanced Information Technology: First International Workshop, BioA-
DIT 2004, volume 3141 of Lecture Notes in Computer Science, pages 333-
349. Springer Verlag Berlin Heidelberg, 2004.

[2] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G.
S. Chirikjian, ”Modular Self-Reconfigurable Robot Systems”, 1070-9932/07
IEEE, 03/2007.

[3] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, ”Self organizing
robots based on cell structuresCEBOT”, in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Nov. 1988, pp. 145150.

[4] http://birg.epfl.ch/page65721.html

[5] http://unit.aist.go.jp/is/dsysd/mtran3

[6] P. White, V. Zykov, J. Bongard, and H. Lipson, ”Three Dimensional
Stochastic Reconfiguration of Modular Robots”, Computational Synthesis
Laboratory, Cornell University, Ithaca, NY 14853

[7] http://ccsl.mae.cornell.edu/research/selfrep

[8] Dr. Wei-Min Shen, ”Modular, Multifunctional and Reconfigurable Super-
Bot”, Information Sciences Institute, University of Southern California

[9] http://www.isi.edu/robots/superbot.htm

[10] Behnam Salemi, Mark Moll, and Wei-Min Shen, ”SUPERBOT: A Deploy-
able, Multi-Functional, and Modular Self-Reconfigurable Robotic System”,
Information Sciences Institute, University of Southern California

[11] Adamo Madalena, ”Sensors Board, Reference Guide 2.0”, Biologically In-
spired Robotics Group, Swiss Federal Institute of Technology of Lausanne,
01/2006.

[12] Adamo Madalena, ”YaMoR II”, Biologically Inspired Robotics Group,
Swiss Federal Institute of Technology of Lausanne, 01/2006, master thesis.

[13] Kurt Seifert and Oscar Camacho, ”Implementing Positioning Algorithms
Using Accelerometers”, Freescale Semiconductor Inc, AN3397 Rev 0,
02/2007, technical report.

76

[14] Josh Bongard, Victor Zykov, Hod Lipson, ”Resilient Machines Through
Continuous Self-Modeling”, Science, 10.1126/science.1133687, 11/2006

[15] Jerome Maye, ”Control of Locomotion in Modular Robotics”, Biologically
Inspired Robotics Group, Swiss Federal Institute of Technology of Lau-
sanne, master thesis.

[16] A. Sproewitz, R. Moeckel, J. Maye, A. J. Ijspeert, ”Learning to move in
modular robots using central pattern generators and online optimization”,
Biologically Inspired Robotics Group, Swiss Federal Institute of Technology
of Lausanne, under review.

[17] A. Sproewitz, Y. Ye, X. Zhang, ”Towards Gait Optimization on a
Quadruped Modular Robot: Design of Experiments”, Biologically In-
spired Robotics Group, Swiss Federal Institute of Technology of Lausanne,
05/2007, report.

[18] Rico Mockel, ”Bluetooth Scatternet Protocol (SNP), User Guide”, Biolog-
ically Inspired Robotics Group, Swiss Federal Institude of Technology of
Lausanne, Ver 1.0, 03/2007, technical report.

[19] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, ”Numerical
Recipes in C”, Second Edition, 1992.

[20] R. Brent, ”Algorithms for Minimization without Derivatives”, NJ:
Prentice-Hall, 1973.

[21] Willson Sudarsandhari Shibani and Klaske Van Heusden, ”Comparing dif-
ferent optimization algorithms for optimizing locomotion of a modular
robot system”, 2007, Report.

77

Appendix A

Experimental
Configurations

A.1 Snake

The snake robot is made of eight active modules plus one inactive as shown in
Figure A.1. The CPG network as simple as it can be connects bidirectionally
the physical neighbors. The weight of each connection is 1.0; the phase shift of
a connection going from left to right is π/2 and −π/2 for a connection going
from right to left.

114 5 1268 107

Figure A.1: Snake robot setup

Those values will make the snake undulate with a wavelength equivalent to
the length of a chain of four modules. This choice is made because a module is
able to lift itself plus two other. Trying to lift more could cause damages to the
servomotor.

The parameters of the modules are the same for each module. The offset is
0, the amplitude has been empirically set to 0.6rad and the frequency has been
arbitrarily set to 0.6rad/s.

A.2 Trebuchet

The trebuchet robot has three active modules and one inactive one. The CPG
network shown in Figure A.2 connects bidirectionally the physical neighbors. If
the phase shift from a module a to one of its neighbors b is φ then the phase
shift from b to a is −φ. All the connection weights are set to 1.0.

78

12107

Figure A.2: Trebuchet robot setup

(a) (b)

Figure A.3: Snapshots from the Trebuchet video.

The phase shifts are set such that the two ”legs” (modules 7 and 12) move
in anti-phase so that they open and close. The top module makes a brutal
velocity change when the legs open, which causes the robot to move forward.
All the non sinusoidal signals are created using the limit angles of the modules,
which cause the servomotor to block brutally if trying to go over the limits.
All the values have been determined empirically and are detailed in Table A.1.
Snapshots from the trebuchet video are shown in Figure A.3.

Module Ampl Offset Freq Limits CPG links
[rad] [rad] [rad/s] [rad] (to, φ [rad])

10 1.0 0.0 1.0 −1.0; 0.0 (7, 3.0)(12, 0.0)
7 1.0 0.8 1.0 1.0; 1.57 (10,−3.0)
12 1.0 −0.8 1.0 −1.57;−1.0 (12, 0.0)

Table A.1: Trebuchet configuration

A.3 Dog

The dog robot shown in Figure A.4 is made of four active modules plus one
inactive one (the head). The imagined gait consists in carrying itself on the
rear leg, jump forwards as far as it can, then fold, and repeat the operation. All
the parameters have been determined empirically and are listed in Table A.2.
Snapshots from the dog video are shown in Figure A.5.

79

Figure A.4: Dog robot setup

Module Ampl Offset Freq Limits CPG links
[rad] [rad] [rad/s] [rad] (to, φ [rad])

5 1.0 −1.0 0.6 −1.55; 0.7 (12, 3.2)
10 0.9 0.0 0.6 −0.7; 0.7 (11,−3.2)
11 0.6 0.0 0.6 −0.7; 0.7 (10,−3.0)(12, 0.0)
12 0.9 0.2 0.6 −0.9; 1.0 (5,−3.2)(11, 0.0)

Table A.2: Dog configuration

(a) (b) (c)

Figure A.5: Snapshots from the Dog video.

80

A.4 Wheel

The wheel robot is made of three active modules and three inactive ones as
shown in Figure A.6. The gait wanted is the robot rolling to go forwards. The
wheel robot is the trickiest experimental configuration tried. The point is to
avoid the servomotor to destroy themselves by opposing their forces.

6

7 12

Figure A.6: Wheel robot setup

The chosen CPG configuration prevents such conflicts. If one considers a
pair of an active and an inactive module as a stretchable segment, the robot
can be seen as a triangle (see Figure A.7). As the longer possible segment is
less than twice the shorter possible segment, any physically possible servomotor
angles combination builds up a valid triangle. To avoid collisions modules pairs
must always bend to the outside.

The position signals that have to be fed to the servomotors is shown in
Figure A.8 as a black curve. They have a trapezoidal-like shape. They have
to be approximated to a sine, which can possibly be bounded. The key points
are that the signal goes from 0 to π/2 during one third of the period time,
stays at π/2 during the next third and goes from π/2 to 0 on the next third,
then repeats. It must never go below 0 or over π/2. A signal that fulfills these
constraints is a sine passing through (0, 0), (2π/3, π/2) and (4π/3, π/2). This
gives us the following equation system if a is the amplitude of the sine, x the
offset and φ the phase shift. sin(φ) a +x = 0

sin(φ + 2π
3) a +x = π

2
sin(φ + 4π

3) a +x = π
2

The resolution of this equation system gives us π/3 for the amplitude, π/3
for the offset and 3π/4+2πk, k ∈ N for the phase shift. Actually there is another
solution with different values for the amplitude and the phase shift that produces
exactly the same signal. Only the first solution is considered. Each parameter
is used for each of the active modules. For the phase shifts, k is chosen to be
0 thus the phase shifts are 3π/4. The phase shifts sum up to a multiple of 2π,
which is required in a CPG loop. Swapping the active modules will only affect
the direction the wheel will roll in. Snapshots from the wheel video are shown
in Figure A.9.

81

6

7 12

(a)

6

7

12

(b)

7

12

6

(c)

7

12

6

(d)

Figure A.7: Wheel gait steps.

0

1/2 pi

2/3 pi

an
gl

e
[ra

d]

0

1/2 pi

2/3 pi

an
gl

e
[ra

d]

0 1/3 2/3 1
0

1/2 pi

2/3 pi

time [1/f]

an
gl

e
[ra

d]

Figure A.8: The 3 servomotors positions of the wheel robot. The black line is
the desired position function whereas the red line is the actual position function.

82

(a) (b)

Figure A.9: Snapshots from the Wheel video.

83

Appendix B

Accelerometer
Measurements

This appendix provides detailed information about the measurements done for
SensorBoard’s accelerometer characterization described in Chapter 4.

For all of the figures showing either the accelerations, the velocities or the
positions on the three axis, the blue curve shows the information gathered by the
LED tracking system (see Section blabla). The position is directly given by the
system. The velocity and the acceleration are differentiated from the position.
The black curve shows the data from the accelerometers with the noise filter,
whereas the red curve represents the same data with after the window filter and
movement end filter have been applied (see Section blabla). The acceleration is
given by the accelerometers for these two curves; the velocity and the position
are integrated from the acceleration. For easy comparisons, each of the axis X,
Y and Z has the same scale in a plot.

The blue curve (LED) is the most trusted one for the positioning because it
is not the result of a double integration. Furthermore the LED tracking system
has a very low noise and a good resolution (about 3.3mm).

84

0 2 4 6 8 10

-0.2

0

0.2
a x [m

/s
2]

0 2 4 6 8 10

-0.2

0

0.2

a y [m
/s

2]

0 2 4 6 8 10

-0.2

0

0.2

a z [m
/s

2]

t [s]

Figure B.1: Noise of the accelerometers.

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ax [m/s2]

Pr
ob

ab
ilit

y

Figure B.2: Noise probability distribution for the X axis.

85

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ay [m/s2]

Pr
ob

ab
ilit

y

Figure B.3: Noise probability distribution for the Y axis.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

az [m/s2]

Pr
ob

ab
ilit

y

Figure B.4: Noise probability distribution for the Z axis.

86

0 0.5 1 1.5 2 2.5 3 3.5

-10

-5

0

5

10
a x [m

/s
2]

0 0.5 1 1.5 2 2.5 3 3.5

-10

-5

0

5

10

a y [m
/s

2]

0 0.5 1 1.5 2 2.5 3 3.5

-10

-5

0

5

10

a z [m
/s

2]

t [s]

Figure B.5: Accelerations for the sine move.

0 0.5 1 1.5 2 2.5 3 3.5

-0.4

-0.2

0

V x [m
/s

]

0 0.5 1 1.5 2 2.5 3 3.5

-0.2

0

0.2

V y [m
/s

]

0 0.5 1 1.5 2 2.5 3 3.5

-0.2

0

0.2

V z [m
/s

]

t [s]

Figure B.6: Velocities for the sine move.

87

0 0.5 1 1.5 2 2.5 3 3.5

-0.8

-0.6

-0.4

-0.2

0
S x [m

]

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

S y [m
]

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

S z [m
]

t [s]

Figure B.7: Positions for the sine move.

0 0.5 1 1.5 2 2.5
-8
-6
-4
-2
0
2
4

a x [m
/s

2]

0 0.5 1 1.5 2 2.5

-5

0

5

a y [m
/s

2]

0 0.5 1 1.5 2 2.5

-5

0

5

a z [m
/s

2]

t [s]

Figure B.8: Accelerations for the circular move.

88

0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4
V x [m

/s
]

0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4

V y [m
/s

]

0 0.5 1 1.5 2 2.5
-0.4

-0.2

0

0.2

V z [m
/s

]

t [s]

Figure B.9: Velocities for the circular move.

0 0.5 1 1.5 2 2.5

-0.1

0

0.1

0.2

S x [m
]

0 0.5 1 1.5 2 2.5
-0.1

0

0.1

0.2

S y [m
]

0 0.5 1 1.5 2 2.5
-0.3

-0.2

-0.1

0

S z [m
]

t [s]

Figure B.10: Positions for the circular move.

89

0 0.5 1 1.5 2 2.5

-10

-5

0

5
a x [m

/s
2]

0 0.5 1 1.5 2 2.5
-10

-5

0

5

10

a y [m
/s

2]

0 0.5 1 1.5 2 2.5

-5

0

5

10

a z [m
/s

2]

t [s]

Figure B.11: Accelerations for the go and return move.

0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4

V x [m
/s

]

0 0.5 1 1.5 2 2.5

-0.4

-0.2

0

0.2

V y [m
/s

]

0 0.5 1 1.5 2 2.5

-0.4

-0.2

0

0.2

0.4

V z [m
/s

]

t [s]

Figure B.12: Velocities for the go and return move.

90

0 0.5 1 1.5 2 2.5

-0.1

0

0.1

0.2
S x [m

]

0 0.5 1 1.5 2 2.5
-0.3

-0.2

-0.1

0

S y [m
]

0 0.5 1 1.5 2 2.5
-0.2

-0.1

0

0.1

S z [m
]

t [s]

Figure B.13: Positions for the go and return move.

0 1 2 3 4 5 6 7 8

-5

0

5

a x [m
/s

2]

0 1 2 3 4 5 6 7 8

-5

0

5

a y [m
/s

2]

0 1 2 3 4 5 6 7 8

-10

-5

0

a z [m
/s

2]

t [s]

Figure B.14: Accelerations for the random move.

91

0 1 2 3 4 5 6 7 8
-1.5

-1

-0.5

0

V x [m
/s

]

0 1 2 3 4 5 6 7 8
-1.5

-1

-0.5

0

0.5

V y [m
/s

]

0 1 2 3 4 5 6 7 8

-0.5

0

0.5

1

V z [m
/s

]

t [s]

Figure B.15: Velocities for the random move.

0 1 2 3 4 5 6 7 8

-4

-2

0

S x [m
]

0 1 2 3 4 5 6 7 8

-4

-2

0

S y [m
]

0 1 2 3 4 5 6 7 8
-2

0

2

S z [m
]

t [s]

Figure B.16: Positions for the random move.

92

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-20

-10

0

10
a x [m

/s
2]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-20

-10

0

10

a y [m
/s

2]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-20

-10

0

10

a z [m
/s

2]

t [s]

Figure B.17: Accelerations for the impact move.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-0.5

0

0.5

V x [m
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-0.5

0

0.5

V y [m
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-1

-0.5

0

V z [m
/s

]

t [s]

Figure B.18: Velocities for the impact move.

93

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-1.5

-1

-0.5

0
S x [m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-1

-0.5

0

S y [m
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-1

-0.5

0

S z [m
]

t [s]

Figure B.19: Positions for the impact move.

94

Appendix C

YaMoR Host 3
Documentation

C.1 Settings

Before using YaMoR Host 3 you have to configure the settings properly. Click
Tools, Settings to display the settings window (Figure C.1). Define the COM
port settings if you want to use the real mode. If you want to use the LED
tracking system, define its settings as well. Even if you do not use the real
mode, you have to set the master node ID, which corresponds to the module
that makes the bluetooth communication with the PC. If you want to use the
simulation mode, set the host, which Webots is running on (usually localhost)
and the port it is listening to (usually 2223).

Figure C.1: YaMoR Host 3 Settings window

Because module IDs are not necessarily the same on the real robot than in
Webots, you can define an ID mapping from the real IDs to the simulation IDs.

95

All IDs will be automatically translated by YaMoR Host 3 before being sent to
Webots when using the simulation mode.

C.2 Graphical User Interface

Figure C.2: YaMoR Host 3 Main window

C.2.1 Configure the Robot

The robot configuration describes the bluetooth network, the CPG network and
the modules parameters. It can be loaded from or saved to a file using File,
Open and File, Save.

Bluetooth

First set the bluetooth network in the Bluetooth tab (Figure C.3). Each row
represents a connection from a module to another one. The left part of a row
must appear as right part in a previous row. The left part of the very first row
should be the master node id. The IDs listed also define which modules are
available (except the master node).

CPG Network

In the CPG tab (Figure C.4), each cell of the CPG network grid represents a
possible connection from the ID of the the row to the ID of the column. The
connection values are expressed in the form phaseshift,weight. Leaving a cell
blank means no connection.

Modules

All the modules can be configured in the Modules tab (Figure C.5). It contains
the amplitude, the offset, the frequency and the limit angles for each modules.

96

Figure C.3: Robot configuration: Bluetooth network

Figure C.4: Robot configuration: CPG network

97

If you click the rightmost button of a row, you will get a graphical module editor
(Figure C.6).

Figure C.5: Robot configuration: Module parameters

Figure C.6: Robot configuration: Interactive module editor

C.2.2 Connect the Robot

In order to connect the robot either the real mode or the simulation mode must
be enabled first. Click on desired button on the main window to enable the
mode you want. Once the mode is enabled, click Robot, Connect.

C.2.3 Send the Configuration

Once the robot is connected you have to send the parameters to it. Click Robot,
Full CPG Refresh, which is going to sent all the parameters to the robot. When
you modify the robot configuration, this is done automatically, but only for the
parameters that changed.

98

C.2.4 Send Control Messages

With the main window you can send control messages as described in SNP
protocol [18]. Click a control message option button to make it green, right-
click to make it red. Select the modules you want to send the control message
to and click Send. Options marked in red will be turned off, option marked in
green will be turned on and options marked in gray will not be changed. You
typically want to activate the UART, the CPG, and the motors for all modules.

C.2.5 LED Tracking

You can activate the LED tracking by clicking Tools, LED Tracking. Note that
you must have a CamApp running on the machine you specified in the settings
of YaMoR Host 3. The window (Figure C.7) displays the raw coordinates that
are sent by CamApp and the corrected coordinates after the barrel deformation
has been corrected. You can record the path of the LED to a comma separated
values file by clicking Record.

Figure C.7: LED tracking system interface

C.2.6 Defect Motors

You can simulate a motor defect by clicking Robot, Defect Motors. When a
motor is set as defect, a motor off control message is sent to the corresponding
modules and motor on control messages will not be forwarded to this module
anymore until you remove the check mark in the menu.

C.2.7 Physical Links

You can connect or disconnect modules by clicking Robot, Physical Links. To
disconnect a module and put it away, select the module you want and click
Disconnect. To connect a module to another one, select the module you want
to take (it must be disconnected from any other) select the connector you want,
select then the destination module and its connector and click Connect.

You can also run a transformation script. A script is an XML document
whose document element is <script>. There are three possible commands in a
script:

<connect idfrom="..." connfrom="..."
idto="..." connto="..." angle="..." />

99

<disconnect id="..." />

<pause delay="..." />

Figure C.8: Physical links editor

The attributes id, idfrom and idto are the real ids of the modules you want
to connect or disconnect. The connectors connfrom and connto have one of the
following values: front, rear, left, right, top or bottom. The pause delay is an
integer value expressed in milliseconds.

C.3 RPC Interface

Before using the RPC interface you have to get the remote object that im-
plements IYaMoRHost3 defined in IYaMoRHost3.dll. This is achieved by the
following C# code.

1 IYamorHost3 yamorHost;

2 string host = "localhost";

3 int port = 2224;

4 try

5 {

6 if (ChannelServices.GetChannel("tcp") == null)

7 {

8 ChannelServices.RegisterChannel(

9 new TcpChannel (), false);

10 }

11 yamorHost = (IYaMoRHost3)Activator.GetObject(

12 typeof(IYaMoRHost3),

13 "tcp://"+host+":"+

14 port+"/RemoteAccess");

15 // effectively test the connection

16 PointF p = yamorHost.RobotPosition;

17 }

18 catch (Exception e)

19 {

20 Console.WriteLine("Could not connect to server. " +

21 e.Message);

22 }

Listing C.1: Code to connect to the RPC server

Once the remote object is properly acquired you can call the method de-
scribed in IYaMoRHost3 from this object. Note that YaMoR Host 3 must be
running in order to access its RPC interface.

100

C.4 Configuration File

This section describes the robot XML configuration file format for YaMoR
Host 3. Robots configurations are saved to, and loaded from this format.

C.4.1 XML Schema

<?xml version="1.0" encoding="Windows-1252"?>

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="yamorconfig">

<xs:complexType>

<xs:sequence>

<xs:element name="modulelist" maxOccurs="1" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" name="module">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" name="bluetooth">

<xs:complexType>

<xs:attribute name="to" type="xs:unsignedInt" use="required" />

</xs:complexType>

</xs:element>

<xs:element minOccurs="0" maxOccurs="unbounded" name="cpglink">

<xs:complexType>

<xs:attribute name="to" type="xs:unsignedInt" use="required" />

<xs:attribute name="phase" type="xs:decimal" use="required" />

<xs:attribute name="weight" type="xs:decimal" use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="realid" use="required" type="xs:unsignedInt" />

<xs:attribute name="amplitude" type="xs:decimal" use="required" />

<xs:attribute name="speed" type="xs:decimal" use="required" />

<xs:attribute name="offset" type="xs:decimal" use="required" />

<xs:attribute name="minangle" type="xs:decimal" use="required" />

<xs:attribute name="maxangle" type="xs:decimal" use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

C.4.2 Configuration Example

The following configuration example is used for the wheel (see Section A.4).

101

<?xml version="1.0" encoding="Windows-1252"?>

<yamorconfig>

<modulelist>

<module id="1" amplitude="0" offset="0" speed="0"

minangle="-1.57" maxangle="1.57">

<bluetooth to="6"/>

</module>

<module id="6" amplitude="1.04" offset="1.04" speed="0.6"

minangle="-1.57" maxangle="1.57">

<bluetooth to="7"/>

<cpglink to="12" phase="-2.09" weight="1.0" />

<cpglink to="7" phase="2.09" weight="1.0" />

</module>

<module id="7" amplitude="1.04" offset="1.04" speed="0.6"

minangle="-1.57" maxangle="1.57">

<bluetooth to="12"/>

<cpglink to="6" phase="-2.09" weight="1.0" />

<cpglink to="12" phase="2.09" weight="1.0" />

</module>

<module id="12" amplitude="1.04" offset="1.04" speed="0.6"

minangle="-1.57" maxangle="1.57">

<cpglink to="7" phase="-2.09" weight="1.0" />

<cpglink to="6" phase="2.09" weight="1.0" />

</module>

</modulelist>

</yamorconfig>

102

Appendix D

YaMoR Optimizer
Documentation

D.1 Graphical User Interface

Figure D.1: YaMoR Optimizer Framework

D.1.1 Simulation Hosts Window

To get the simulation host window shown in Figure D.1, click on Tools, Simula-
tion Hosts. In this window you can enumerate the available hosts for simulation
running. It also displays the status of each of the hosts.

103

D.1.2 Optimizer Selection Window

To get the optimizer selection window also shown in Figure D.1, click on Tools,
Optimizer Selection. In this window you see all the available optimizer and you
can start them from here or make a batch start.

D.2 Writing an Optimizer

D.2.1 Workflow

An optimizer creates simulations it needs to execute, according to its own al-
gorithm. Then it submits them to YaMoR Optimizer so that it can eventually
run them on a idle machine and return the results.

D.2.2 IOptimizer Interface

In order to write an optimizer that is compatible with YaMoR Optimizer you
have to implement the interface IOptimizer defined in YaMoROptimizerInter-
faces.dll. There are several self description method to implement such as Name,
Version or Author, but focus is accorded to the most important ones.

Init

Called when YaMoR Optimizer initializes your optimizer. The YaMoR Opti-
mizer’s main form is passed as parameter so if your optimizer owns a window,
you probably want to put in the following code.

1 public void Init(Form mainForm)

2 {

3 frmParent = mainForm;

4 frmMain = new MainForm(this);

5 frmMain.MdiParent = frmParent;

6 frmMain.Show();

7 }

Listing D.1: Code to initialize a child window

UserConfig

Should return a UserConfig object (see Section D.2.3) that represents the win-
dow used to set the parameters of the optimizer. It also contains the actual
values for each of them. Usually this object is global to your class and is built
up in the constructor of your class.

SubmitSimulation

This is an event you must raise when you want YaMoR Optimizer to run a
simulation. The simulation you pass as parameter must be a subclass of Simu-
lation. As return value when throwing the event, you get an ISyncObject, which
provides information about the state of execution of your simulation. For in-
stance, you can make your thread wait for the simulation to begin, or end, get
the simulation duration, etc.

104

BatchStart

This method is called when the user wants to start many instances of your
optimizer. Usually you want to execute the following code sheme.

1 public void BatchStart(string [] parms)

2 {

3 cfg.SetAllValuesByString(parms);

4 myOptimizer.Start();

5 }

Listing D.2: Code template for the batch start

D.2.3 UserConfig

The UserConfig class allows you to create an optimizer configuration window
in a very convenient way. You just have to add fields the the objects with the
methods Add<x>Field, where <x>represents the kind of field you want. You
can then display the window by calling the Configure method and then read out
the value using ReadValue. All the values can be set at a time programmatically
using SetAllValuesByString.

Currently the implemented fields are IntegerField, FileField and Boolean-
Field. If you want to add new file type you have to create a new class that im-
plements the interface IField. Then you have to add the method Add<x>Field
to the class UserConfig.

D.2.4 Parallelizability

In order to take advantage of the many hosts you have set up in YaMoR Host 3
your optimizer should submit as many simulations as possible at the same time.
If it needs the result from one previous simulation to create the next one, then
parallelizing is not possible.

105

Appendix E

CD-ROM

106

	1 Introduction
	1.1 Goals
	1.2 Achieved Work
	1.3 Report Organization

	2 State of the Art
	2.1 History
	2.2 Current Modular Robots
	2.2.1 Roombots
	2.2.2 M-TRAN III (2005)
	2.2.3 Stochastic 3D (2005)
	2.2.4 Molecubes (2005)
	2.2.5 SuperBot (2006)

	2.3 Lifelong Learning

	3 Task List
	3.1 Tasks
	3.2 Schedule

	4 Accelerometer Measurement
	4.1 Sensor Board
	4.1.1 Overview
	4.1.2 Accelerometers MMA7260Q
	4.1.3 PIC 16F876A

	4.2 Measurement Setup
	4.2.1 Setup
	4.2.2 PIC Software
	4.2.3 RS232 Software

	4.3 Measurements
	4.3.1 Noise Measurement
	4.3.2 Filtering
	4.3.3 Acceleration, Velocity, Position
	4.3.4 Movements Measurements

	4.4 Results
	4.4.1 Noise
	4.4.2 Movements

	4.5 Discussion
	4.5.1 Noise
	4.5.2 Movements
	4.5.3 Conclusion

	5 Framework Software
	5.1 Existing Software
	5.1.1 YaMoR Host
	5.1.2 CamApp

	5.2 Motivations
	5.2.1 Time Saving
	5.2.2 Flexibility
	5.2.3 Maintenance
	5.2.4 Programming Language

	5.3 Architecture
	5.4 YaMoR Webots Bridge
	5.4.1 Analysis
	5.4.2 Design
	5.4.3 Implementation
	5.4.4 Issues and Known Bugs
	5.4.5 Future

	5.5 YaMoR Host 3
	5.5.1 Analysis
	5.5.2 Design
	5.5.3 Implementation
	5.5.4 Issues and Known Bugs

	5.6 MathEval
	5.6.1 Analysis
	5.6.2 Design
	5.6.3 Implementation
	5.6.4 Issues and Known Bugs

	5.7 YaMoR Optimizer
	5.7.1 Analysis
	5.7.2 Design
	5.7.3 Implementation
	5.7.4 Issues and Known Bugs

	6 Gait Optimization
	6.1 Central Pattern Generators
	6.1.1 Overview
	6.1.2 YaMoR Application

	6.2 Optimization
	6.2.1 Velocity Evaluation
	6.2.2 Powell Explained
	6.2.3 Stadium Bounding
	6.2.4 Easy Direction Change
	6.2.5 One-Dimensional Function Optimization

	6.3 From Simulation to Real World
	6.4 Future

	7 Lifelong Learning
	7.1 Overview
	7.2 Base Strategy
	7.3 Anomaly Detection
	7.4 Adaptation
	7.4.1 CPG Network Construction
	7.4.2 Constraining

	7.5 Tests
	7.5.1 Transformation
	7.5.2 Upside Down

	7.6 Results
	7.7 Discussion
	7.8 Future
	7.8.1 CPG Network Construction
	7.8.2 Gaits Database

	8 Conclusion
	9 Acknowledgement
	A Experimental Configurations
	A.1 Snake
	A.2 Trebuchet
	A.3 Dog
	A.4 Wheel

	B Accelerometer Measurements
	C YaMoR Host 3 Documentation
	C.1 Settings
	C.2 Graphical User Interface
	C.2.1 Configure the Robot
	C.2.2 Connect the Robot
	C.2.3 Send the Configuration
	C.2.4 Send Control Messages
	C.2.5 LED Tracking
	C.2.6 Defect Motors
	C.2.7 Physical Links

	C.3 RPC Interface
	C.4 Configuration File
	C.4.1 XML Schema
	C.4.2 Configuration Example

	D YaMoR Optimizer Documentation
	D.1 Graphical User Interface
	D.1.1 Simulation Hosts Window
	D.1.2 Optimizer Selection Window

	D.2 Writing an Optimizer
	D.2.1 Workflow
	D.2.2 IOptimizer Interface
	D.2.3 UserConfig
	D.2.4 Parallelizability

	E CD-ROM

