
IMOROD Developper Guide

Sébastien GAY

Department of Computer Science

Institute of applied sciences (INSA) Lyon

A Program under

GNU GPL License

2007

mailto:sebastien.gay@insa-lyon.fr
http://www.if.insa-lyon.fr
http://www.insa-lyon.fr

Contents

1 Introduction 1

2 Structure of the Program 3

2.1 General structure . 3

2.2 Detailed structure . 5

2.2.1 Windowing system . 5

3 Class Reference 9

3.1 Windowing system . 9

3.1.1 DesignWindow . 9

3.1.1.1 DesignWindow . 9

3.1.1.2 DesignWidgetsPanel . 10

3.1.1.3 DesignDrawingComponent 11

3.1.1.4 MovementPanel . 11

3.1.2 FurnitureDesignWindow . 11

3.1.2.1 FurnitureDesignWindow 11

3.1.2.2 FurnitureDesignWidgetsPanel 11

3.1.3 ModuleWidget . 11

3.1.3.1 ModuleWidget . 12

3.1.3.2 ModuleWidgetDrawingComponent 12

3.1.4 ModuleSelectionWindow . 12

3.1.5 OpenFileWindow . 12

3.1.6 ReconfigurationSequencesWindow 12

3.1.7 RoomArrangementWindow . 12

3.2 OpenGL scene . 12

i

CONTENTS

3.2.1 Scene . 12

3.2.2 Element . 13

3.2.3 Module . 13

3.2.4 SubPart . 14

3.2.5 Connector . 14

3.2.6 Servo . 14

3.2.7 Parallelepiped, Cylinder, Cube . 14

3.3 Graph structure . 14

3.3.1 Graph . 14

3.3.2 Node . 15

3.3.3 Edge . 15

4 Visualize reconfiguration 16

ii

Chapter 1
Introduction

IMOROD stands for Interface for MOdular RObots Design. IMOROD is a 3D inter-

face meant to very easily assemble robotic modules to build complex modular struc-

tures. It has been designed originally in the framework of the project Roombots to intu-

itively create furniture made with Roombots robot modules, but can be extended to the

design of any modular robotic structure. As IMOROD may be further developed, this guide

is meant to help the developer to understand the structure and functioning of the program.

This program is based on the GLOW library, which is a very simple widgets and user

1

interface design library, implemented in C++ and thus fully object oriented. GLOW acts

also as a C++ wrapper for OpenGL and GLUT. These two libraries have been implemented

in C and are thus not well adapted to object oriented languages. GLOW implements a set of

objects, mapping their member functions to OpenGL and GLUT procedures. This enables

the developer to use OpenGL and GLUT functions in C++ objects.

The full reference of the GLOW library as well as some tutorials can be found at

http://glow.sourceforge.net/ as well as in the GLOW package.

2

http://glow.sourceforge.net/

Chapter 2
Structure of the Program

T HIS chapter details the structure of IMOROD.

2.1 General structure

IMROD is split into three modules, or packs of functionalities.

The three modules are called :

• Furniture Design

• Room Arrangement Design

• Reconfiguration Visualization

This implies three different windows. The Furniture Design window contains every tools

necessary for the user to manipulate and connect modules in a scene, in order to compose a

more complex structure. The Room Arrangement window is dedicated to the positioning of

previously created furniture in a virtual room. The Reconfiguration Visualization is useful

for visualizing the robot reconfiguring, transforming from one shape to another according

to a previously computed sequence.

The relevant window can be chosen by the user at application startup on the Module

Selection window. The next figure (Figure 2.1) shows the communication between the

application modules and with extern applications.

3

2.1 General structure

Fichier de

description

de la pièce

Room ArrangementFurniture design
Reconfiguration

Visualization

Webots©

Reconfiguration

Planning

software

Common Functions

Furniture

description file

Module

description file

Configuration description

file (graph)

Furniture

description file

Reconfiguration

sequence

description file

Communication

Heritage

Intern module

Extern application

Figure 2.1: IMOROD communication model.

4

2.2 Detailed structure

2.2 Detailed structure

This section details the structure of the solution, starting with the windowing system, and

continuing with the scene objects to finish with the graph structure. Since only the Furniture

Design Module has been implemented, nothing related to the two other application modules

is described.

2.2.1 Windowing system

As explained before, IMOROD is composed of three main windows, one for each application

module, which inherit from a common class : DesignWindow. The DesignWindow class in-

herits from the GlowWindow class, from the GLOW library. DesignWindow class contains

two interesting objects : DesignWidgetsPanel and DesignDrawingComponent. DesignWid-

getsPanel inherits from GlowWidgetSubwindow and contains all the widgets of the window

(buttons, checkbox etc...). DesignDrawingComponent inherits from GlowComponent and

contains the 3D scene (OpenGL scene).

Each of the three windows FurnitureDesignWindow, RoomArrangementWindow and

ReconfigurationWindow inherits from the DesignWindow class and contain their own Dran-

wingComponent and WidgetsPanel.

Figure 2.2 presents IMOROD’s windowing system structure (UML 2.0 standard).

5

2.2 Detailed structure
G

lo
w

W
in

d
o

w

G
lo

w
W

id
g

e
tS

u
b

w
in

d
o

w
G

lo
w

C
o

m
p

o
n

e
n

t
D

e
s

ig
n

W
in

d
o

w

D
e

s
ig

n
D

ra
w

in
g

C
o

m
p

o
n

e
n

t
D

e
s

ig
n

W
id

g
e

ts
P

a
n

e
l

1

1
1

1

F
u

rn
it

u
re

D
e

s
ig

n
W

in
d

o
w

F
u

rn
it

u
re

D
e

s
ig

n
W

id
g

e
ts

P
a

n
e

l
F

u
rn

it
u

re
D

e
s

ig
n

D
ra

w
in

g
C

o
m

p
o

n
e

n
t

R
o

o
m

A
rr

a
n

g
e

m
e

tD
ra

w
in

g
C

o
m

p
o

n
e

n
t

R
e

c
o

n
fi

g
u

ra
ti

o
n

D
ra

w
in

g
C

o
m

p
o

n
e

n
t

R
o

o
m

A
rr

a
n

g
e

m
e

n
tW

in
d

o
w

R
e

c
o

n
fi

g
u

ra
ti

o
n

W
in

d
o

w

R
o

o
m

A
rr

a
n

g
e

m
e

n
tW

id
g

e
ts

P
a

n
e

l

R
e

c
o

n
fi

g
u

ra
ti

o
n

W
id

g
e

ts
P

a
n

e
l

F
ig

ur
e

2.
2:

IM
O

R
O

D
w

in
do

w
in

g
sy

st
em

st
ru

ct
ur

e

6

2.2 Detailed structure

The DesignDrawingComponent class oontains the scene to be drawn. This scene con-

tains elements which is a generic term for each object of the scene. A module, for instance,

is an element. A module is composed of subparts, connector and of a servo. A connector is

also a subpart and a servo is also composed of subparts. Examples of subparts are cubes,

cylinders...

Figure 2.3 is the UML model of the classes composing the scene.

Connector

Cube Cylinder

Element

Module

Parallepiped

Scene

ServoSubpart

1

1

Figure 2.3: UML diagram of the classes composing the scene

The goal of the Furniture Design Module is to construct a configuration using virtual

robotic modules and obtain a configuration description understandable by the reconfigura-

tion planning software. The format of the file as input of this software is XML with a graph

structure. Thus we maintain a graph description of the configuration where each node of

the graph is a particular connector of a particular module and each edge is a set of exactly

two nodes (ie. a connection).

Figure 2.4 is the UML class diagram of the graph structure we imagined.

7

2.2 Detailed structure

Graph

Edge

Node

Module

*

2

Connector

*

1

*

1

Figure 2.4: UML diagram of the graph structure

8

Chapter 3
Class Reference

T HIS chapter is a simplified class reference and describes the classes and main functions

of the solution at the time this document has been written. Only the Furniture Design

Module has been implemented yet so the classes concerning the two other modules are not

present here.

The sections have the same structure than the folders (filters) in the Visual Studio

solution.

3.1 Windowing system

3.1.1 DesignWindow

Although not all the classes of this section are abstract classes, they are supposed to be

inherited by other classes that would specify them : for instance add new control behaviors,

new widgets ...

3.1.1.1 DesignWindow

Inherits from GlowWindow from the GLOW library.

This class constitutes the main window. It handles everything concerning mouse and key-

boards events.

Important functions :

• int Pick(double x, double y, double delX, double delY) : handles mouse selection

events when the user clicks on an element. It gets the name of the clicked element

and selects it (with a red box).

9

3.1 Windowing system

x and y : mouse position when click event occurred.

delX and delY : maximum error tolerance for picking. For instance if delX = delY

= 3, then the user can click 3 pixels around the object and still select it.

• bool OnBeginPaint(void) : Occurs before the scene is (re)drawn

• void OnEndPaint(void) : Occurs after the scene is (re)drawn

• void OnReshape(int myWidth, int myHeight) : Occurs when the user resizes the

window

• virtual void OnMouseDrag(int x, int y) : occurs when the users drags the mouse

(click + move)

• virtual void OnMouseUp(Glow::MouseButton button, int x, int y, Glow::Modifiers

modifiers) : occurs when the users pushes one of the button of the mouse down

• virtual void OnMouseDown(Glow::MouseButton button, int x, int y, Glow::Modifiers

modifiers) : occurs when the users releases one of the button of the mouse

• virtual void OnKeyboard(Glow::KeyCode key, int x, int y, Glow::Modifiers mod-

ifiers) : occurs when the user presses on a key

3.1.1.2 DesignWidgetsPanel

Inherits from GlowWidgetSubwindow from the GLOW library.

This class handles everything linked to widgets (creation, events...).

Important functions :

• virtual void OnMessage(const GlowPushButtonMessage &message) : The func-

tion to tackle buttons click events

• virtual void OnMessage(const GlowCheckBoxMessage &message) : The function

to tackle checkbox events

• virtual void OpenFileWindowCallBack(const char *fileSelected, bool OK =

true) = 0 : callback function for the open file dialog (called after the dialog is closed).

• void RepositionWidgets(int startPosition, int yOffset) : When inserting a new

widget between two already placed widgets, this function repositions vertically the

controls considering the new inserted control.

10

3.1 Windowing system

startPosition : the starting position, in the list of widgets, of the controls to repo-

sition.

yOffset : the offset to add to each y coordinate of the controls to reposition.

3.1.1.3 DesignDrawingComponent

Inherits from GlowComponent from the GLOW library. This class handles everything

linked to the scene manipulation : movements of modules, connections and disconnections.

Its main role is to make the link between the DesignWindow and Scene classes.

3.1.1.4 MovementPanel

This class inherits from the GlowPanelWidget class of the GLOW library and is a new

widget containing all the widgets to manipulate the scene (translation, rotation, zoom).

3.1.2 FurnitureDesignWindow

Since we did not need to implement new functionalities to the DesignDrawingComponent

class, we did not implement any FurnitureDesignDrawingComponent class to specify it.

3.1.2.1 FurnitureDesignWindow

Inherits from DesignWindow.

Important functions :

• fileErrors Load(const char *filename) : Loads a configuration from a file, using

the parameter filename as input. if there is a file error, the function returns an

enumeration value for the corresponding type of error.

3.1.2.2 FurnitureDesignWidgetsPanel

Inherits from DesignWidgetsPanel.

This class adds some widgets to the DesignWidgetsPanel and handles their events.

3.1.3 ModuleWidget

These classes defines a new widget : the widget representing the current module in the top

left hand corner of the window.

11

3.2 OpenGL scene

3.1.3.1 ModuleWidget

Inherits from GlowWidget from the GLOW library.

This class defines and draws the widget.

GlowViewManipulator* widgetManipulator : the object enabling the user to rotate

the drawing component inside the widget.

3.1.3.2 ModuleWidgetDrawingComponent

Inherits from GlowComponent from the GLOW library.

This class defines the content of the drawing region of the widget (the module).

3.1.4 ModuleSelectionWindow

This class defines the window for selecting one of the three application module when the

application starts.

3.1.5 OpenFileWindow

This class defines the dialog for selecting a configuration in the configuration list.

3.1.6 ReconfigurationSequencesWindow

Under developpement.

3.1.7 RoomArrangementWindow

Under developpement.

3.2 OpenGL scene

3.2.1 Scene

This class defines the scene and the actions that can be done on the scene.

Important functions :

• void Connect(int moduleID1, int connectorID1, int moduleID2, int connectorID2,

float angle) : Connects the two specified modules by their specified connectors and

with the specified angle.

12

3.2 OpenGL scene

• void Disconnect(int moduleID1, int connectorID1, int moduleID2, int connectorID2)

: Disconnects two connectors.

• void Snap(int moduleID) : snaps the element of ID elementID to the an eventual

near module : when dragging a module around, if the snapping mode is enabled

and the moving modules gets near from another module, this function automatically

positions and connects the two modules.

3.2.2 Element

A scene contains objects defined as elements. This class defines the large concept of element

and the generic actions that can be performed on it and is meant to be inherited by more

specific classes.

Important functions :

• virtual void Translate(const Vec3f &translation) : translate an element by the

specified translation vector.

• virtual void Rotate(const Vec3f &pointOffset, const Vec3f &axis, float angle, bool

absoluteFrame = false) : Rotates the element around the axis of direction vector

axis and passing through the the point of relative coordinates pointOffset and of the

specified angle. The last parameter specifies if the basis to consider is absolute or

relative.

• const Mat4f &GetTransformationMatrix(void) const : returns the transforma-

tion matrix of the element. This transformation matrix is a 4x4 matrix in standard

OpenGL format.

3.2.3 Module

Inherits from Element.

This class describes the module object and the specific actions that can be applied like the

rotation of its servo.

Important functions :

• void RefreshConnectorPositions(void) : computes the absolute position of each

connector of the module and stores it into a global list. This is useful to quickly

find out which connector is the nearest from a specific connector when snapping two

modules.

13

3.3 Graph structure

• void RotateServo(float angle) : rotates the servo on its degree of freedom.

3.2.4 SubPart

A module contains objects defined as subparts. This class defines the large concept of

subpart and the generic actions that can be performed on it and is meant to be inherited

by more specific classes. Examples of subparts include a cube, a cylinder etc...

3.2.5 Connector

Inherits from Subpart.

Defines a connector which is a particular type of subpart.

3.2.6 Servo

Inherits from Subpart.

This class defines a servo which can be composed of other subparts, here, a cylinder and a

parallelepiped.

3.2.7 Parallelepiped, Cylinder, Cube

These classes are particular types of subparts and are sufficiently explicit in themselves.

3.3 Graph structure

3.3.1 Graph

This class represents the graph structure of the robotic configuration. It’s composed of a

set of nodes (robot modules and connectors) and edges (connections between modules).

• bool EdgeExists(int moduleID1, int connectorID1, int moduleID2, int connec-

torID2) const : returns true if the particular connection between the specified con-

nectors of the specified modules.

• void GetSubGraph(int moduleID, int connectorID, vector<int> &subGraph, int

originModuleID) const : returns the subgraph connected to the specified module and

connector. This is useful when some modules are connected to a servo and one try to

rotate this servo. The whole connected subgraph should be rotated as well.

• fileErrors Save(char *inputFilename, char *outputFilename) const : saves the cur-

rent configuration graph in a XML file and adds it to the list of configurations.

14

3.3 Graph structure

3.3.2 Node

Defines a node of the graph as a specific connector of a specific module.

3.3.3 Edge

Defines an edge as a set of two nodes. Important functions :

• bool IsEqual(int moduleID1, int connectorID1, int moduleID2, int connectorID2)

const : returns true if the edge represents the connection between the specified mod-

ules and connectors.

• bool Contains(int moduleID, int connectorID) const : returns true if the specified

node (module and connector) appears in this edge, ie. if it’s connected.

• bool Contains(int moduleID) const : the same way as the precedent, returns true

if the specified module is connected (by at least one connector).

15

Chapter 4
Visualize reconfiguration

U NDER development.

16

	1 Introduction
	2 Structure of the Program
	2.1 General structure
	2.2 Detailed structure
	2.2.1 Windowing system

	3 Class Reference
	3.1 Windowing system
	3.1.1 DesignWindow
	3.1.1.1 DesignWindow
	3.1.1.2 DesignWidgetsPanel
	3.1.1.3 DesignDrawingComponent
	3.1.1.4 MovementPanel

	3.1.2 FurnitureDesignWindow
	3.1.2.1 FurnitureDesignWindow
	3.1.2.2 FurnitureDesignWidgetsPanel

	3.1.3 ModuleWidget
	3.1.3.1 ModuleWidget
	3.1.3.2 ModuleWidgetDrawingComponent

	3.1.4 ModuleSelectionWindow
	3.1.5 OpenFileWindow
	3.1.6 ReconfigurationSequencesWindow
	3.1.7 RoomArrangementWindow

	3.2 OpenGL scene
	3.2.1 Scene
	3.2.2 Element
	3.2.3 Module
	3.2.4 SubPart
	3.2.5 Connector
	3.2.6 Servo
	3.2.7 Parallelepiped, Cylinder, Cube

	3.3 Graph structure
	3.3.1 Graph
	3.3.2 Node
	3.3.3 Edge

	4 Visualize reconfiguration

