
DRAFT COPY ONLY

Roombots Robot-User 3D Interface

Project Specifications

Sébastien GAY

Department of Computer Science

Institute of applied sciences (INSA) Lyon

A document submitted for the degree of

Engineer diploma

Yet to be decided

mailto:sebastien.gay@insa-lyon.fr
http://www.if.insa-lyon.fr
http://www.insa-lyon.fr

DRAFT COPY ONLY

Contents

1 Introduction 1

2 Expectations of the Project 2

2.1 Functional Requirements . 2

2.1.1 Building Robot Structures . 2

2.1.2 Saving Structures . 2

2.1.3 Building Full Rooms . 3

2.1.4 Visualizing Reconfiguration Sequences . 3

2.2 Non Functional Requirements . 3

2.2.1 Accessibility . 3

2.2.2 Portability . 3

2.2.3 Interoperability . 4

2.2.4 Generality . 4

2.2.5 Extensibility . 4

3 Comparative of Two Solutions 5

3.1 Pros and Cons of the Two Solutions . 5

3.2 Choice and Justification . 7

4 Description of the New System 8

4.1 Actors . 8

4.1.1 Users of the Learning Center . 8

4.1.2 Members of the BIRG lab . 8

4.2 Description of the modules . 9

4.3 UML model . 9

5 Conclusion 12

i

DRAFT COPY ONLY CONTENTS

A Interface Layout 13

ii

DRAFT COPY ONLY

Chapter 1
Introduction

T HE Biologically Inspired Robotic Group has been chosen to design a full system of adap-

tive auto-organized furniture. The main application of this project would be to be able to

design and arrange rooms at distance without needing anyone to move or change the furniture.

The Learning Center of the EPFL is particularly interested by this features. This implies that

the the furniture should be able to move by themselves and change shape. For this it was decided

to use modular robots (i.e. a set of identical robot units) as building blocks for this furniture.

Our work is included in this project. Our goal is to design a graphical interface enabling the

users to compose robot structures by easily assemble modules (in simulation) to compose custom

furniture and then arrange it in a room. A possible application would be for the organizer of a

meeting to arrange the room on his personal computer or on a dedicated terminal and then send

this arrangement (via TCP-IP for instance) to the controller of the robot modules which would

automatically reconfigure and reproduce the simulation model of the room at real scale.

The purpose of this document is to sum up the requirements of the customer expressed during

the interviews. We will also present the general structure of our solution so that the customer

can validate that it is in accord with his expectations.

1

DRAFT COPY ONLY

Chapter 2
Expectations of the Project

I N this chapter we summarize the requirements that have been specified by the customer

during the interview. In the first section we present the functional requirements, and in the

second one the non functional ones.

2.1 Functional Requirements

In this section we present the demanding in terms of functionality of the software. These have

been classed into four groups described next.

2.1.1 Building Robot Structures

The user should be able to build complex robot structures using virtual modules as building

blocks. It should be possible to select the modules to use, move them in the world (i.e. translate

and rotate them) and connect them to one another. The user should also be able to move some

parts of the modules according to their degrees of freedom, to orient some part of the structures

with respect to others. For our application the user would typically use modules to build furniture

like structures. The modules would be designed in advance using Webots c© and be imported to

the software somehow. It could be by importing a file created using Webots c© or by directly

interfacing our software with Webots c© as a plugin for example.

2.1.2 Saving Structures

The robot structures that have been built by the user should be possibly saved to be reused

before. This could be done in a database containing all the structures of one user or in files (i.e.

2

DRAFT COPY ONLY 2.2 Non Functional Requirements

one file per structure). It should anyway be possible to export the configurations to Webots c©
either by saving them as a Webots c© files or by a direct export.

2.1.3 Building Full Rooms

The user should be able to use the robot structures that he or another user built as new building

blocks to compose either more complex structures or arrange these structures in the world. For

our main application this shall enable the user to arrange rooms using preliminary build furniture.

This “worlds” shall also be saved similarly to robot structures.

2.1.4 Visualizing Reconfiguration Sequences

The ability to move modules around the degrees of freedom of others should enable the user

to explore the space of configurations. This can be done manually by moving the joints of the

modules one by one by hand or automatically by importing sequences of movements. These

sequences could be imported from files or directly from the software generating them.

2.2 Non Functional Requirements

In this section we present the expectations that are not anymore linked to functionalities but

constitute inner characteristics of the solution.

(modify this with real Mac Cay (or whatever) names)

2.2.1 Accessibility

The users being likely to have no knowledge in computer science or robotics, the user interface

that we are designing should be simple enough to be used by anyone. The interface should involve

common and intuitive controls i.e. buttons, check-boxes, text zones etc. For instance the mouse

should be used intensively for movements of the world, modules etc. since its use is very intuitive

to most users.

2.2.2 Portability

We want our software to be usable by the greatest number so it should be operating system

independent. The user interface should be portable to Unix and Windows systems. So we will

use only ANSII coding languages and portable libraries. This could result a single version for all

OS (like with Java for example) or more likely one version per OS (for instance if we use C++

and OpenGL/Glut).

3

DRAFT COPY ONLY 2.2 Non Functional Requirements

2.2.3 Interoperability

Our software should be fully compatible with Webots c© and the software generating reconfigu-

ration sequences. This compatibility could be achieved by directly integrating our graphical in-

terface into Webots c© by making it communicate with Webots c© (using TCP-IP or inter threads

communication systems) or by ways of common files. The choice of the final solution is discussed

in Section 3

2.2.4 Generality

Our software should be very general. That means it should allow the user to import any pre-

designed module independently of its shape and degree(s) of freedom.

2.2.5 Extensibility

Due to the tight time-line of the project, we might not be able to develop all the functionalities

expressed in this specifications document. So, the project may be taken over by some other

developer. Our solution should thus be thought to be modified and extended easily. Typically,

the final structure of the solution, communication model, shall be described precisely. The source

code shall be clearly commented, the name of the variables, functions and classes of the solution

shall be meaningful and precise conventions of naming shall be used.

4

DRAFT COPY ONLY

Chapter 3
Comparative of Two Solutions

I N this chapter we discuss the advantages and drawbacks of two solutions to interface our

solution with Webots c©. The first solution, called Plugin Solution consists of including our

solution directly in Webots c© as a plugin, a dynamic library for example. The second solution

would be a Standalone Application interfaced with Webots c© and other necessary applications

by files or inter-process communication.

The next section summarizes the pros and cons of both solutions and the following one explains

our choice.

3.1 Pros and Cons of the Two Solutions

Table 3.1 presents the good and bad points of both solutions.

5

DRAFT COPY ONLY 3.1 Pros and Cons of the Two Solutions

P
ro

s

C
on

s

P
lu

g
in

S
o
lu

ti
o
n

In
cl

ud
ed

in
a

w
el

l
kn

ow
ap

pl
ic

at
io

n
:

W
eb

ot
s

c ©
.

N
ec

es
si

ta
te

s
th

e
un

de
rs

ta
nd

in
g

an
d

m
od

-
ifi

ca
ti

on
of

th
e

W
eb

ot
s

c ©
so

ur
ce

co
de

.

Fu
ll

co
m

pa
ti

bi
lit

y
w

it
h

W
eb

ot
s

c ©
.

T
he

fu
ll

so
lu

ti
on

ha
s

to
be

in
st

al
le

d
to

us
e

on
e

fe
at

ur
e.

P
ar

t
of

a
ho

m
og

en
eo

us
co

m
pl

et
e

so
lu

ti
on

.

S
ta

n
d
a
lo

n
e

S
o
lu

ti
o
n

In
de

pe
nd

en
t

fr
om

an
y

ot
he

r
ap

pl
ic

at
io

n.
C

an
be

di
ffe

re
nt

fr
om

w
ha

t
th

e
us

er
s

ar
e

us
ed

to
.

Fa
st

to
de

ve
lo

p.
C

om
pa

ti
bi

lit
y

is
no

t
im

pl
ic

it
.

C
an

be
in

st
al

le
d

w
it

ho
ut

W
eb

ot
s

c ©
,
on

a
de

di
ca

te
d

te
rm

in
al

fo
r

ex
am

pl
e.

T
ab

le
3.

1:
T

he
m

ai
n

pr
os

an
d

co
ns

of
th

e
pl

ug
in

an
d

st
an

da
lo

ne
so

lu
ti

on
s

6

DRAFT COPY ONLY 3.2 Choice and Justification

3.2 Choice and Justification

Also the final choice will be let to the customer, we recommend to use the standalone solution.

Indeed we think that it would be useful to have our application (or at least part of it) available

for every users. These users may have no knowledge about Webots c©and thus it would be more

a burden that an advantage for them to have to use Webots c©. Furthermore, we believe that it

would be a good feature to have our application embedded in dedicated terminals or PDAs. These

devices may not have enough storage capacity and computation performances to run Webots c©.

The compatibility with Webots c© and other applications could be achieved by importing and

exporting proper files. This necessitates no changes in the source codes of the other applications.

Finally Webots c© is a big application and getting into its source might be time consuming.

A standalone solution allows us to only care about the structure of a Webots c© file.

We chose to use C++ with OpenGL and Glut for their good performance, full portability and

because these libraries are largely used in the 3D imagery community.

7

DRAFT COPY ONLY

Chapter 4
Description of the New System

OUR application will be divided into several packages, each of which should be dedicated to

one class of users. Before defining these modules the first thing to do is thus to sum up

the actors of the system and their roles, rights and goals.

4.1 Actors

This section describes the specificities of the different classes of users of our system.

4.1.1 Users of the Learning Center

These people can be anyone and thus have any kind of knowledge in the use of computers. They

are not supposed to have received any training in robotics, computer science or more specifically

on our application. They are not supposed to know about the details of the robots functions.

Thus they should not be able to interfere with the reconfiguration sequences or locomotion gaits.

They goal is to quickly and simply arrange rooms, chose and position furniture. Some special

users (any user ?) could be given the right to design new types of furniture.

4.1.2 Members of the BIRG lab

The members of the BIRG lab have all received academic education and are specialists in robotics.

They are directly linked to the reconfiguration and locomotion processes since they have take part

to the design of the system. These people may thus want to be given more possibilities than the

lame user. These users will be able to animate the furniture they have composed to explore

the space of possible configurations or import precomputed reconfiguration sequences to visualize

them.

8

DRAFT COPY ONLY 4.2 Description of the modules

4.2 Description of the modules

To satisfy the needs each of these users and be able to define rights, our system will be decomposed

into three main modules :

• Furniture Design module

• Room Arrangement module

• Reconfiguration Sequences Visualization module

Furniture Design module contains all functionalities to design new furniture by easily as-

sembling modules. This includes loading predefined modules, moving them in the world,

rotating them, connect and disconnect them, moving their degrees of freedom. The designed

furnitures can then be saved. It will also be possible to load a furniture to modify it.

Room Arrangement module enables the user to load preliminary designed furniture (generic

or custom) and position them in a room. The dimensions and specific constraints of the room

should be loadable so that furniture could be placed at valid positions. These arrangements

shall also be saved and sent to the robots.

Reconfiguration Sequences Visualization module is meant to enable advanced users to im-

port precomputed reconfiguration sequences for a given furniture and visualize the robot

changing shape. The user shall also be able to move subsets of the structure to manually

explore the space of possible configurations.

Figure 4.1 represents the communications between the modules and the rest of the systems.

Files imported and produced are specified.

4.3 UML model

In this section we present a general UML model of the system to give a first idea about it’s global

mechanism. Figure 4.2 represents the class diagram of our application, with the parts belonging

to each of the modules.

9

DRAFT COPY ONLY 4.3 UML model

1800,0 mm x 800,0 mm

Furniture Design

module
Room

Arrangement

module

Reconfiguration

Sequences

Visualization

module

Reconfiguration

Computation

Software

Reconfiguration.seq

Room

Description

File

Furniture.wbt

Module.wbt

room.wbt

Furniture.conf

12

11

10

9

16

15

14

13
4

3

2

1

8

7

6

5

21 22 23 24

32 31 30 29

36

35

34

33

40

39

38

37

Robot

Controller

Figure 4.1: The communication diagram between our application and the rest of the system.

10

DRAFT COPY ONLY 4.3 UML model

Room

-dimensions

Furniture

Module

Subpart

DegreeOfFreedom

Connector

2

*

Rotation

-axis

-currentAngle

Translation

-currentVector

Connection

2

0..1

ReconfigurationSequence

Action

Re/Dis-connectionMovement

position

* *

*

1

2

0..1

Furnitu
re D

esign m
odule

R
oom

 A
rrangem

ent m
odule

Reconfiguration Sequences Visualization module

Figure 4.2: The UML class diagram of the system. The parts belonging to each module are
precised

11

DRAFT COPY ONLY

Chapter 5
Conclusion

I N this document we summarized the requirements of the customer. For better identify-

ing and formalizing these requirements we sorted them into functional and non-functional

requirements.

Then we describe a plugin solution and a standalone solution and compare their advantages

and drawbacks.

We made a list of the users of our application, their specificities and needs.

We finished by describing the general structure of our solution, the different modules, com-

munication model and class diagram.

This documents initiates the project and shall be used by the customer to confirm his demands

and by the engineer as a reference.

12

DRAFT COPY ONLY

Appendix A
Interface Layout

T HIS appendix presents models of the interface that we aim at. Figure A.1 represents the

main window, where the user can chose what he wants to do. The next figures present

the interface layout of each of the modules. Figure A.2 represents the interface of the Furniture

Design module, Figure A.3 the one of the Room Arrangement module and Figure A.4 the one of

the Reconfiguration Sequences Visualization module.

13

DRAFT COPY ONLY

Roombots – module selectionRoombots – module selection

 Design
furniture

Arrange
 rooms

View
reconfiguration

 sequences

Figure A.1: The main window : the user can chose which module he wants to use.

14

DRAFT COPY ONLY

Roombots – furniture designRoombots – furniture design

$

Current Module

ß Add new module

Load module

Save

Quit

+ -zoom

movements

Figure A.2: The furniture design window : modules can be loaded and a mini-model of the

module is shown on the top right corner. The modules are assembled on the left sub-window.

Movements can be made with the mouse or with the dedicated buttons on the right.

15

DRAFT COPY ONLY

Roombots – room arrangementRoombots – room arrangement

Current furniture

ß Add new furniture

Load furniture

Save

Quit

+ -zoom

movements

Load room dimensions

Figure A.3: The room arrangement window : The dimensions of the room can be loaded from a

file. Furniture can be loaded and a mini-model of the furniture is shown on the top right corner.

The room is arranged on the left sub-window. Movements can be made with the mouse or with

the dedicated buttons on the right.

16

DRAFT COPY ONLY

Roombots – reconfiguration sequences visualizationRoombots – reconfiguration sequences visualization

Current sequence

ß Run reconfiguration

Load reconfiguration
 sequence

Quit

+ -zoom

movements

15

14

13

12

11

20

19

18

17

16

5

4

3

2

1

10

9

8

7

6

26 27 28 29 30

40 39 38 37 36
23

21

23

21

44

21

23

21

129

23 21 21 92

23

21

23

21

23212321

21

23

21

23

116
69

44

116

21

23

21

23

92

23

21

23

21

21

23

21

93

23

23

23

21

129

21 44

21

23

21

212321

21

21

23

92
69

117

116

21

21

23

68

21

23

21

11

10

9

8

20

19

18

17

3

2

1

0

7

6

5

4

20 21 22 23

31 30 29 28

23

21

35

34

33

32

11

6

21

23

21

36

35

34

33

32

21

21

Figure A.4: The reconfiguration sequences visualization window : sequences can be loaded and a

mini-model of the sequence is shown on the top right corner. The sequences can be viewed and

manipulated from on the left sub-window. Movements can be made with the mouse or with the

dedicated buttons on the right.

17

	1 Introduction
	2 Expectations of the Project
	2.1 Functional Requirements
	2.1.1 Building Robot Structures
	2.1.2 Saving Structures
	2.1.3 Building Full Rooms
	2.1.4 Visualizing Reconfiguration Sequences

	2.2 Non Functional Requirements
	2.2.1 Accessibility
	2.2.2 Portability
	2.2.3 Interoperability
	2.2.4 Generality
	2.2.5 Extensibility

	3 Comparative of Two Solutions
	3.1 Pros and Cons of the Two Solutions
	3.2 Choice and Justification

	4 Description of the New System
	4.1 Actors
	4.1.1 Users of the Learning Center
	4.1.2 Members of the BIRG lab

	4.2 Description of the modules
	4.3 UML model

	5 Conclusion
	A Interface Layout

