
Semester Project

Summer 2007

Programming The Robotic Dog
AIBO

Pierre-Arnaud GUYOT

Supervisor: Sarah DEGALLIER, BIRG EPFL
Responsible Professor: Auke Jan IJSPEERT, BIRG EPFL

School of Computer & Communication Sciences
Swiss Federal Institute of Technology Lausanne (EPFL)

June 29 2007

1

Contents

1 Introduction 4
1.1 Main objectives . 4
1.2 Analysis of the different solutions 4

1.2.1 Program organization . 4
1.2.2 Mark detection . 5
1.2.3 2D to 3D mapping . 5
1.2.4 Placing the leg on the mark 6
1.2.5 Simulation and implementation on the real robot 6

2 Mark detection 7
2.1 Mark color and shape . 7
2.2 Mark detection using virtual mask 7

3 Mapping from 2D to 3D 7
3.1 Camera transform: 3D to 2D . 7

3.1.1 world transform . 8
3.1.2 Perspective transform . 10
3.1.3 Sampling . 11

3.2 Camera Calibration . 12
3.3 Mark position in AIBO reference frame 12

4 Inverse kinematics 12
4.1 Forward Kinematics . 13
4.2 Inverse kinematics . 14

4.2.1 Calculation of knee joint angle q3 14
4.2.2 Calculation of knee joint angle q2 15
4.2.3 Calculation of knee joint angle q1 15
4.2.4 Anatomy correction . 16

5 Program simulation and implementation 18
5.1 Webots simulation . 18
5.2 Program cross-compilation . 19

6 Conclusion 19

2

List of Figures

1 Program organization . 4
2 Transforms to obtain the pixel corresponding to a 3D point . . . 8
3 a)Tilt, neck and front left leg joints, b)ERS7 schematics from

Webots[6] . 10
4 Perspective projection . 11
5 Left front leg with extents and angles. a)side elevation for the

calculation of knee joint angle q3. b) front elevation for the cal-
culation of shoulder joint angle q2 (taken from Uwe Duffert[5]). . 13

6 Model of AIBO leg for the calculation of shoulder joint angle q1
with all auxiliary variables (from Uwe Duffert[5]). 16

7 Position of the joints when we send an angle of 0 degrees as
consign (from Uwe Duffert[5]) . 17

8 Program simulation in Webots: a) AIBO search the mark on left
and right direction, b) and c) AIBO reach the mark. 18

3

1 Introduction

1.1 Main objectives

The objective of my semester project is to program the AIBO ERS7 robotic
dog. Created by Sony in 1999, AIBO is a commercially available quadruped
robot equipped with a color CMOS camera. The aim of my work is to make
AIBO able to detect a mark on the floor using his camera. Then it will place
his nearest paw on the detected mark.

In this work, there are three main objectives. The first one is to develop
a robust mark detection algorithm by using image processing techniques. The
second objective is to create a 2D to 3D mapping from the position in the picture
to the position in the floor. Finally the third objective is to develop an inverse
kinematics based leg controller. The entry of this controller is the previously
computed position of the mark in AIBO reference frame, and the outputs are
the leg joint angles that make the paw reach the mark. A first simulation of
the algorithms will be done using the mobile robot simulator Webots. Then the
program will be implemented in the real dog by using cross compilation.

1.2 Analysis of the different solutions

1.2.1 Program organization

The program can be separated in 3 different parts:

• First a mark detection algorithm detects the mark in the pictures. This
algorithm returns the 2D position of the mark in the picture.

• Then a 2D to 3D mapping function converts the 2D picture position into
a 3D position relative to AIBO.

• Finally a controller calculates the joints angles values and activate the 3
servos of one leg to make the AIBO’s paw reach the mark.

All the tasks are implemented in a finite state machine represented in figure 1.

Figure 1: Program organization

4

1.2.2 Mark detection

Two solutions are possible to detect the mark in the picture:

• Color recognition: By knowing in advance the color of the mark, we can
compute its position in the picture by using a virtual mask moving on
all pixels: The mean color inside the mask is calculated to find the mark
position in the picture.

• Shape recognition: Image processing algorithms allows us to find circles
or lines in the picture. In the image processing course of Mr. Jourlin
[1], we can see that circle recognition needs first different filters applied
on the picture to detect the edges (Roberts, Prewitt or Sobel filters).
After extracting edges, circles can be detected by using shape parameters
(Crofton Parameters) and lines are detected by using Hough transform.

For the 4 following reasons, we will adopt the color recognition method:

• The camera perspective distortion modify the shape of the mark and could
disturb the shape recognition.

• The shape recognition algorithms need more computational power due to
the image filtering and edge extraction.

• The floor’s color will be very different from the mark color, the color
recognition technique can then be efficient.

• Color recognition algorithms are easier to implement than shape recogni-
tion.

1.2.3 2D to 3D mapping

We need to convert the mark position in the picture into a position in the AIBO
coordinates system. In order to establish the correspondence 2D position in the
picture / 3D position in the AIBO coordinates system, 3 solutions are possible:

• We can use the AIBO ER7 simulation in Webots to construct 2D to 3D cor-
respondence matrices. These matrices of size pictureheight ·picturewidth
contains the positions on the floor corresponding to each pixels of the pic-
ture. To construct these matrices, a supervisor makes move a very small
square on the floor in front of the AIBO camera such that each pixels of
the picture ’see’ successively the small moving mark (this mark is seen as
1 to 2 pixels by the camera depending on the perspective). A supervisor
in Webots does the link pixel(i,j)/ 3D position on the floor. For each pixel
(i,j), the corresponding 3D mark position is placed on the position (i,j) in
the matrix. Finally to get the 3D position corresponding to a pixel (i,j),
we need only to read the value (i,j) of the matrix.

Note that the real AIBO camera and the modeled camera in Webots have
the same field of view and resolution, we can then use such matrices con-
structed in Webots with the real robot.

5

• A mathematical solution can be use to map from 2D to 3D. This method
called camera calibration consists of calculating the matrices of the geo-
metrical transforms that leads a 2D point in the picture into a 3D point
in the AIBO coordinates system.

• The 3D position of the mark can be found by triangulation. At least two
images should be taken at two different positions.

The first solution has yet been implemented to test the program, this solution
is adapted only if we know in advance the positions of the AIBO’s body when
the pictures are taken (one matrix per body position is needed). The calibration
method is adapted when we don’t know in advance in which direction the camera
will be oriented. The calibration matrix must be computed for each different
body position. The third solution appears to be not adapted for monocular
vision.

1.2.4 Placing the leg on the mark

The 2D to 3D mapping gives us the 3D position of the mark in AIBO coordinates
system. The legs joint values are then computed by using inverse kinematics.

1.2.5 Simulation and implementation on the real robot

The simulation in Webots allows us to validate the models used to calculate
the calibration matrix and to compute the joints values. The image processing
algorithms can also be tested in Webots. To implement the algorithms on the
real robot, 3 solutions are possible:

• Cross-compilation of the Webots program: the Webots controller code is
cross-compiled to produce a binary executable which then directly runs
on the robot . In this case, the binary executable must just be copied on
the AIBO memory stick.

• Remote-control mode: A standalone computer program enables control-
ling and monitoring of Aibo over a wireless network connection. The con-
troller runs as part of Webots simulation engine (from cyberbotics [8]).

• OpenR programming: The whole program is directly written in OpenR
language and placed on the AIBO memory stick.

The remote-control mode does not yet support camera. To use the remote
control solution, Webots should be modified to be able to get the images that
AIBO sends to the computer.

The cross-compilation does not support functions related to the camera.
The cross compiler is written in OpenR language and can be easily modified
to compile functions related to the camera. Re-witting manually the Webots
in OpenR language is quite long, that’s why the cross-compilation method has
been adopted.

6

2 Mark detection

2.1 Mark color and shape

The color of the mark to be detected should be different from the floor and
environment colors to facilitate the detection, that’s why a red mark will be
used. The simulation in webots shows that a simple red square can be easily
detected.

2.2 Mark detection using virtual mask

A virtual mask goes through all pixels of the picture. The total amount of red
inside the mask is computed for each mask position. The 2D position of the
mark corresponds to the mask position where the amount of red is maximum.
To avoid detecting light sources as mark, the amount of blue and green should
be lower than a threshold. In the same time, the amount of red should be higher
than an other threshold to be sure that the detected object is the mark.

Note: The values of these thresholds are determined by doing experiments
with the real AIBO in his environment.

3 Mapping from 2D to 3D

The 2D position of the mark in the picture is now computed by the mark detec-
tion algorithm. We will now describe the calibration method which permits to
compute the 3D position of the mark. For the next sections, we will use homoge-
neous coordinates. Inversions or combinations of linear transformations are then
represented by inversion or multiplication of the corresponding matrices (Roger
P. Woods, course on homogeneous coordinates[8]). Instead of representing each
point (x,y,z) with a single three-dimensional vector, we extend the coordinates
to 4 dimension by adding ω to x, y and z:

ω · x
ω · y
ω · z
ω

3.1 Camera transform: 3D to 2D

We should now establish the correspondence 2D position in the picture / 3D
position relative to AIBO. To find a matrix representing this correspondence,
let´s think about the reversed problem: What are the 2D coordinates (in the
picture) of a point expressed in the AIBO reference frame? We want to find a
matrix A such that:

wi · xi

wi · yi

wi · zi

wi

 = A ·

x
y
z
1

7

With:

• (x, y, z) : Coordinates of the point in the AIBO coordinates system.

• (xi, yi, zi) :Coordinates of the point in the plan of projection (zi = const.).

Note that the point (x′, y′) = {0, 0} corresponds to the center of the picture,
(x′, y′) = {-1, -1} corresponds to the upper right corner of the picture.

The transformations that lead a point in the AIBO coordinates system to a
pixel in the picture are explained in A. Rovetto and F. Scandelli thesis [4] and
illustrated in figure 2. First the World transform leads the AIBO framework to
the camera framework. Then the perspective projection consists of projecting
the 3D point into the 2D image plane. The picture in the image plane is finally
sampled into pixels.

Figure 2: Transforms to obtain the pixel corresponding to a 3D point

3.1.1 world transform

For the sections 3, we will use the following conventions and notations:

• ROTx/y(θ) means a rotation around the x/y-axis of an angle θ.

• Trans

 tx
ty
tz

 means a translation of the vector ~T (tx, ty, tz).

• The origin of the AIBO framework is placed on the tilt center (see figure
3.b), ~x is pointing in front of AIBO and ~y points on the left.

First, the point expressed in the AIBO coordinates system should be written
in the camera coordinates system. This is achieved by using one translation of
vector ~v(tx, ty, tz) and 3 rotation around the 3 axis ~x, ~y, ~z (from Wikipedia, 3D
projection[6]).

8

M = Trans

 a
b
c

 ·RotX(α) ·RotY (β) ·RotZ(γ)

The relation is equivalent to:

M =

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

 ·

0 0 0 0
0 cos(α) − sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1

 ·

cos(β) 0 sin(β) 0
0 1 0 0

− sin(β) 0 cos(β) 0
0 0 0 1

 ·

cos(γ) − sin(γ) 0 0
sin(γ) − cos(γ) 0 0

0 0 1 0
0 0 0 1

Matrices multiplication results in

cos(β) cos(γ) − sin(α) cos(β) sin(β) a

sin(α) cos(β) cos(γ) + cos(α) sin(γ) − sin(α) cos(β) sin(γ)− cos(α) cos(γ) − sin(α) cos(β) b
− cos(α) sin(β) cos(γ) + sin(α) sin(γ) sin(β) cos(α) sin(γ)− cos(γ) sin(α) cos(α) cos(β) c

0 0 0 1

The six parameters a, b, c, α, β, γ corresponds to the camera position and

orientation in the AIBO framework. To determine these values in Webots, we
make the AIBO reference frame coincide with the Webots World reference frame,
after what we read in webots the fields translation and rotation corresponding
to the camera framework.

With the real AIBO, we will need to find the matrix M by using direct
kinematics. AIBO is modeled by a chain of joints separated by links. M rep-
resents the chain of transforms that leads the AIBO framework to the Camera
framework. According to the 3 degrees of freedom J4,J5 and J6 (see figure 3.a),
the transforms are the following:

• A counterclockwise rotation around the ~y axis of angle θ4 due to the joint
J4 (Tilt Neck): ROTy(θ4)

• A translation of h1 along ~z-axis: Trans

 0
0
h1

• A counterclockwise rotation around the ~y axis of angle θ5 due to the joint

J5 (Tilt Head): ROTy(θ5)

• A counterclockwise rotation around the ~z axis of angle θ6 + π/2 due to
the joint J6 (Pan): ROTz(θ6).

9

(a)

(b)

Figure 3: a)Tilt, neck and front left leg joints, b)ERS7 schematics from We-
bots[6]

• A translation of h3 along the ~z axis: Trans

 0
0
h3

We obtain the ’world transform’ matrixM by multiplying the last transforms

matrices:

M = ROTy(θ4) · Trans

 0
0
h1

 ·ROTy(θ5) ·ROTz(θ6) · Trans

 0
0
h3

3.1.2 Perspective transform

The 3D point which is now expressed in the camera coordinates system is then
projected into the plane z=F (see figure 4).

The perspective projection matrix is the following (from Wikipedia, 3D pro-

10

Figure 4: Perspective projection

jection[6]):

T =

cot(fovx/2) 0 0 0

0 cot(fovy/2) 0 0
0 0 1 −2F
0 0 1 1

 (1)

With:

• fovx : View port’s horizontal fields of view, in radians.

• fovy : View port’s vertical fields of view, in radians.

• F : Distance of the observer from the front clipping plane.

We can now multiply M and T to find the final transform matrix called the
calibration matrix. A point P(x, y, z) in the AIBO reference frame corresponds
to the position P(xi/wi, yi/wi, zi/wi)in the picture such that:

xi

yi

zi

wi

 = M · T ·

x
y
z
1

 (2)

Note: xi and yi are divided by wi to obtain values in the range [-1; 1].

3.1.3 Sampling

The point P(xi/wi, yi/wi) of the projection plan is integrated in a pixel (i, j) of
the picture. If (0, 0) corresponds to the pixel (0, 0) we obtain:

xi = 2.(i− i0).w

yi = 2.(j − j0).h

With:

11

• w: Picture width in pixel.

• h: Picture height in pixel.

3.2 Camera Calibration

The 3 unknowns fovx, fovy and F correspond to the intrinsic parameters of the
camera. To find them, a calibration method can be used:

A very small mark is placed in front of the camera. By knowing the posi-
tion P(x, y, z) of the mark in the AIBO coordinates system, the matrix M and
the position P’(xi/wi, yi/wi) of the mark in the picture, we can find the three
unknowns fovx, fovy and F by solving the system of equations (2).

3.3 Mark position in AIBO reference frame

After finding the two matrices M and T, we can establish the correspondence
position in the picture / position in the AIBO reference frame. This mapping is
done by computing the matrix (M ·T)−1. The matrix M represents a bijection,
M is then invertible. The matrix T is invertible if his determinant is not equal
to 0. We can calculate det(T) by doing linear combinations on the lines 3 and
4 of T :

The determinant of T is:

det

cot(fovx/2) 0 0 0

0 cot(fovy/2) 0 0
0 0 1 −2F
0 0 1 1

 = det

cot(fovx/2) 0 0 0

0 cot(fovy/2) 0 0
0 0 1 −2F
0 0 0 1− 2F

= det

cot(fovx/2) 0 0 0

0 cot(fovy/2) 0 0
0 0 1 0
0 0 0 1

 = cot(fovx/2) · cot(fovy/2)

cot(fovx/2) > 0 and cot(fovy/2) > 0, T is then invertible, M · T is then
invertible. For each pixel under the horizon line, the system of equation (2) has
an unique solution.

4 Inverse kinematics

After calculating the desired foot position (position of the mark in the AIBO
reference frame), the joint angles leading to this foot position are determined by
using inverse kinematics method. In the following section, only the solution for
the left front leg will be described. To get the joints angles for the right leg, the
value of q2 should be negated. The Robot Cup German team [2] has developed
the following approach using first forward kinematics to get a set of equations,
and then inverse kinematics to find one by one the joints values.

12

4.1 Forward Kinematics

The forward kinematics problem consists in the calculation of the resulting foot
position for a given set of joint angles. Finding solution to this problem will
allow us to solve the inverse kinematics problem. For this section, the origin of
the framework corresponds to the shoulder. The figure 5 presents the left front
leg of AIBO and the axis orientation.

Figure 5: Left front leg with extents and angles. a)side elevation for the calcu-
lation of knee joint angle q3. b) front elevation for the calculation of shoulder
joint angle q2 (taken from Uwe Duffert[5]).

The foot position relative to the shoulder can be calculated by using the
composition of 5 transforms. The chain of transforms is the following:

• clockwise rotation about the y-axis by joint angle q1 on joint J1: ROTy(−q1)

• counterclockwise rotation about the x-axis by joint angle q2 on joint J2:
ROTx(−q2)

• translation along the negative z-axis by upper limb length l1: Trans

 0
0
−l1

• clockwise rotation about the y-axis by joint angle q3 on joint J3: ROTy(−q3)

• translation along the negative z-axis by lower limb l2: Trans

 0
0
−l2

To calculate the foot position relative to the shoulder, we need to multi-

ply together each transformation matrices. With transforms expressed using
homogeneous coordinates we obtain:

13

x
y
z
1

 = ROTy(−q1)·ROTx(q2)·Trans

 0
0
−l1

·ROTy(−q3)·Trans

 0
0
−l2

·

0
0
0
1

=

cos(q1) 0 − sin(q1) 0

0 1 0 0
sin(q1) 0 cos(q1) 0

0 0 0 1

 .

1 0 0 0
0 cos(q2) − sin(q2) 0
0 sin(q2) cos(q2) 0
0 0 0 1

 .

1 0 0 0
0 1 0 0
0 0 1 −l1
0 0 0 1

cos(q3) 0 − sin(q3) 0
0 1 0 0

sin(q3) 0 cos(q3) 0
0 0 0 1

 .

1 0 0 0
0 1 0 0
0 0 1 −l2
0 0 0 1

0
0
0
1

The relation between (x, y, z) and the angles q1, q2 and q3 is then,

x
y
z
1

 =

l2 cos(q1) sin(q3) + l2 sin(q1) cos(q2) cos(q3) + l1 sin(q1) cos(q2)

l1 sin(q2) + l2 sin(q2) cos(q3)
l2 cos(q1) sin(q3)− l2 cos(q1) cos(q2) cos(q3) + l1 cos(q1) cos(q2)

1

(3)

4.2 Inverse kinematics

Inverse kinematics consists of finding the angles q1, q2 and q3 from a given foot
position (x, y, z). We will first determine q3 with the law of cosine, after what
we will use the relation (3) to find one by one q2 and q1.

4.2.1 Calculation of knee joint angle q3

By fixing the knee joint angle q3, we restrict the foot positions to a sphere
around the shoulder. The angle q3 can be calculated from the distance of the
foot position (x, y, z) to the shoulder joint. Assuming that AIBO can reach the
mark with his paw, we can use the law of cosines to calculate q3. The angle
included by thigh l1 and lower leg l2 is π − q3 (see Figure 6). According to the
law of cosines, we have:

cos(π − q3) =
l21 + l22 − (x2 + y2 + z2)

2l1l2

cos(q3) =
(x2 + y2 + z2)− l21 + l22

2l1l2

if (x2+y2+z2)−l21+l22
2l1l2

) ∈[-1,1] then

q3 = ± arccos(
(x2 + y2 + z2)− l21 − l22

2l1l2
)

14

Two solutions are possible. According to the the joint limitation (larger freedom
of movement for positive q3), we will chose the positive value:

q3 = arccos(
(x2 + y2 + z2)− l21 − l22

2l1l2
)

4.2.2 Calculation of knee joint angle q2

The angle q2 can be directly calculated according to equation (3):

y = l1 · sin(q2) + l2 · sin(q2) · cos(q3)

y = sin(q2) · (l1 + l2cos(q3))

if y
l1+l2·cos(q3)

∈[-1,1] then

q2 = arcsin(
y

l1 + l2 · cos(q3)
) (4)

or
q2 = π − arcsin(

y

l1 + l2 · cos(q3)
) (5)

Due to the joint angles limitations, we will use the relation (4) to calculate
the angle q2.

4.2.3 Calculation of knee joint angle q1

According to the equation (3):

x = l2 · cos(q1) · sin(q3) + l2 · sin(q1) · cos(q2) · cos(q3) + l1 · sin(q1) · cos(q2) (6)

As q2 and q3 are calculated, the equation (5) can be simplified by introducing
the variables a, b, c, d, β (see figure 6):

a = l2 sin(q3)

b = (l1 + l2 · cos(q3)) · cos(q2)

d =
√
a2 + b2

β = arctan(
b

a
)

a and b can also be described in polar coordinates by using d and β

a = d · cos(β)

b = d · sin(β)

By introducing these variables in the equations (6) we obtain:

x = a · cos(q1) + b · sin(q1)

15

Figure 6: Model of AIBO leg for the calculation of shoulder joint angle q1 with
all auxiliary variables (from Uwe Duffert[5]).

x = d · cos(q1) · cos(β) + d · sin(q1) · sin(β)

x = d · cos(q1 − β)

and with analog substitutions:

z = d · sin(q1 − β)

If x 6=0 we obtain
q1 − β = arctan(

z

x
)

q1 = arctan(
z

x
) + β

To summarize, we obtain the following joint angles:

q3 = arccos(
(x2 + y2 + z2)− l21 − l22

2l1l2
)

q2 = arcsin(
y

l1 + l2 · cos(q3)
)

q1 = arctan(
z

x
) + arctan(

(l1 + l2 · cos(q3)) · cos(q2)
l2 · sin(q3)

)

4.2.4 Anatomy correction

By sending a 0 degree consign to all the joints, we obtain two angles q10 and q20
on the joints q1 and q2 (see figure 7). We should then add the constants (-q10)
and q20 respectively to q1 and q2 when we fix the real joints values:

16

Figure 7: Position of the joints when we send an angle of 0 degrees as consign
(from Uwe Duffert[5])

q1 := q1 − q10
q2 := q2 − q20

17

5 Program simulation and implementation

5.1 Webots simulation

Figure 8: Program simulation in Webots: a) AIBO search the mark on left and
right direction, b) and c) AIBO reach the mark.

The model of the AIBO ERS7 takes into account all servos and the camera.
The field of view and the resolution of the webots’s camera are the same that
the real one. The webot’s camera provides images formatted in the RGB color
spaces. In the real AIBO camera, the pixels are coded in the YUV color space.

The Webots simulation is very useful in this project for the following reasons:

• The three main components (see figure 1) of the program can be tested.

• The 2D to 3D mapping can be elaborated (see section 1.2.3). The 2D to 3D
correspondence matrices can be easily constructed by using a supervisor in
Webots. If we need a more robust 2D to 3D mapping, a camera calibration
matrix can also be computed. As we have seen previously, this calibration
matrix is constructed with the combination of the world transform matrix
and the perspective projection matrix. The Webots simulation enable to
check if these matrix are correctly calculated.

• The program of the simulation written in C language can be cross-compiled
to be directly transfered into the real AIBO.

The Webots simulation enable to test the robustness of the mark detection
algorithm by creating environments of various colors and lighting.

In the figure 8, we see AIBO searching the mark and placing his paw on the
mark. The webots program is divided in 4:

• Initialization: All joints values are initialized.

• Mark detection: AIBO grab a picture. If there is a mark, the mark
detection function returns the pixel corresponding to the center of the
mark.

18

• 2D to 3D: Find the 3D position corresponding to a pixel.

• Inverse kinematics: Compute the joints values to reach the 3D position of
the mark.

5.2 Program cross-compilation

Softwares for the AIBO are written in Sony’s object-oriented language called
OPEN-R. A cross-compiler written in OpenR allows us to re-use the Webots
simulation program. The idea of cross-compilation is to translate the Webots
functions into OpenR language. First the Webots program is compiled with
OpenR SDK cross-compiler, the binary files are then transfered into the AIBO
memory stick. By rebooting AIBO, the binary files are directly executed. Today,
the cross-compiler does not compile the functions related to the camera such
that camera get image() or camera image get red(). To do a cross-compilation
of the whole Webots program, the five following functions must be added into
the cross-compiler:

• One Camera get image() function to grab a picture from the camera.

• 1 function to convert the picture from the YUV to the RGB color space.

• 3 functions to get the R, G or B values of a pixel.

The function that converts YUV to RGB color space has been implemented
in OpenR language during the Raphaël Haberer-Proust semester project [3].
This function is included in the remote control program for Aibo (RCServeur).
I’m currently implementing the functions Camera get image() and camera image get red().

By using cross-compilation to implement the program in OpenR, remote
control is not possible. The whole program will then run on the AIBO´s 576MHz
processor which is powerful enough to do fast image processing and motion
control tasks.

6 Conclusion

The Webots simulation of the program is efficient. In a first time, the modeled
AIBO detects the mark on the floor, then 2D to 3D correspondence matrices are
used to determine the 3D mark position and the leg joints values are computed
through inverse kinematics. To have a more robust program, the 2D to 3D
mapping could be done by computing the calibration matrices described in the
section 3.

To enable AIBO to achieve more complex tasks, some modules could be
added to the current program: When the mark is not reachable, a walk module
that makes the robot to move toward the mark could be useful. Another module
could calculates trajectory of moving objects to reach mobile marks.

19

References

[1] Michel JOURDIN, Métriques de Formes et Applications, 2002, école CPE
Lyon, laboratoire d´élèctronique, traitement d´image et automatique, CPE
Lyon.

[2] Robot Cup German team 2003 and 2004,
http://www.germanteam.org/GT2003.pdf

[3] Raphaël Haberer-Proust, Semester project, 2005-2006, Remote control of
AIBO camera from Webots, http://birg.epfl.ch/page59430.html

[4] Alessandro Rovetto, Francesco Scandelli thesis: Semi-Autonomous
Navigation of a Legged Robot using Monocular Vision, 2005,
http://www.sais.se/mthprize/2005/rovetto scandelli2005.pdf

[5] Uwe Düffert Diploma Thesis, Quadruped Walking model-
ing and Optimization of Robot Movements, 2003 http://uwe-
dueffert.de/publication/dueffert04 diploma.pdf

[6] Wikipedia: 3D projection, http://en.wikipedia.org/wiki/3D projection

[7] David S. Touretzky and Ethan J. Tira-Thompson, Exploring Tekkotsu
Programming on the Sony AIBO, Carnegie Mellon University,
http://www.cs.cmu.edu/ dst/Tekkotsu/Tutorial/forwardkin.shtml

[8] Roger P. Woods, course on homogenous coordinates.

[9] Webots user guide: Using AIBO robots, cyberbotics.com

20

