BIOLOID Project – Final presentation 5th July 2007

Swiss Federal Institute of Technology - Lausanne

Biologically Inspired Robotics Group (BIRG)

Jean-Christophe Fillion-Robin

Project Supervisor(s): Prof. Auke Jan Ijspeert (BIRG), Olivier Michel (Cyberbotics), Yvan Bourquin (Cyberbotics, EPFL)

Project Collaborator(s): Peter Turner (Tribotix, Australia)

Outline

- Bioloid: State of the art
- Webots and 3D model
- Model and Physics
- Validation
- 2 approaches to define a gait

Bioloid: State of the art (1)

• Collection of block-shaped parts

Bioloid: State of the art (2)

• Control unit, servos and sensor module

Bioloid: State of the art (3)

• All together

Bioloid: State of the art (4)

• Apply motion and behavior

44 8 8 8 8 8 85 #2. . a 6.] -No. a.b. 10.0 . \boldsymbol{n} 10.8 3 No. **Auto** THE 160. 1.44% 11.44 # h.] [1 THE STATUTE IN 1 IN 1 1

Behavior editor

Motion editor

WebotsTM

"WebotsTM is a commercial software developed by Cyberbotics Ltd. It is a **mobile robotics simulation** software that provides you with a **rapid prototyping** environment for **modeling**, **programming** and **simulating** mobile robots."

Source: O. Michel, Cyberbotics Ltd – WebotsTM: professional mobile robot simulation. International Journal of Advanced Robotic Systems (2004) Volume 1 Number 1: pp. 39-42.

• Construction of an accurate 3D model

Applied Physics to the model (1)

• Approximation of the bounding objects

Applied Physics to the model (2)

- Letter scale to weight all parts
- Position of CoM ?

Validation of the static properties

	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9
Real	571	482	479	535	261	274	478	537	542
Webots	531	Х	0	Х	363	375	466	527	531
Diff.	40	Х	0	Х	102	101	12	10	11
Diff.(deg)	11.72	Х	0	Х	29.88	29.59	3.52	2.93	3.22

Apply motion to the model (1)

- 2 different approaches
 - Use of Inverse kinematics
 - Use of optimized Central Pattern generator

Inverse Kinematics (1)

• Find angle A1 and A2 given (x2, y2)

Inverse Kinematics (2)

• Different setup of gaits

Source: R. M. Alexander, Locomotion of Animals. Glasgow, London, U.K.:Blackie, 1982.

Inverse Kinematics (3)

• Results

·req [Hz]	Trot	Walk	Gallop	Canter	Pace	Bound	Pronk
0.5	8.68	2.63	1.25	1.11	0.93	1.19	2.98
1	11.29	3.16	0.33	0.27	2.88	0.39	0.68
1.5	11.06	4.17	0.84	0.83	2.81	0.58	2.43
2	12.41	3.80	6.32	1.70	3.55	0.26	1.41

Move forward Fall on the head or the side Walk backward Stay on the spot

Inverse Kinematics (4)

• Trotting gait with at frequency 1.5Hz

Optimized CPGs (1)

- Optimized using PSO distributed over 50 nodes
- Different kind of coupling Model
- Energy based oscillators

$$\tau \dot{v}_{i} = -\alpha \frac{x_{i}^{2} + v_{i}^{2} - E}{E} v - x + \sum_{j}^{N} \frac{(a_{ij} x_{j} + b_{ij} v_{j})}{x_{j}^{2} + v_{i}^{2}}$$

 $\tau \dot{x} \equiv v$

Source: Y. Bourquin, Self-Organization of Locomotion in Modular Robots. MSc Dissertation, p16, p26

Optimized CPGs (2)

- Different hypothesis = different coupling models
- 6 different experiments

Optimized CPGs (3)

• Cornerstones

- Number of parameters
- Performance function of PSO

CPG coupling model experiment 2

Experiment 2 - Plot of PSO performance over 240 iterations.

Team of quadruped

- Trotting gait is used
 - Turn right/left implemented using stride length variation

Conclusion

- Trade off between model efficiency and accuracy
- Worked achieve so far settle the foundation for future researches and developments.
- PSO is a powerful tools hard to tune

Thanks you

• Comments / remarks?

CPG Model 3

