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Abstract  — The fundamental achievement of this project was 
the  development  of  a  three-dimensional  model  that  closely 
resembles  the  real  quadruped  robot.  While  the  static 
characteristics of the model were validated against the actual ones 
of the real robot, the dynamical ones were defined by the results 
of applying the inverse kinematics model. These were considered 
best when compared to the ones yielded by the particle swarm 
optimization  (PSO)  of  central  pattern  generator  (CPG),  an 
alternate  method to  determine the  properties  in  question.  The 
development  of  this  model  will  serve  as  the  foundation  of  a 
demonstration involving four to six  robots playing on a virtual 
soccer field.

This  paper highlights  and contextualizes  our implementation 
and outlines the crux of the problem in order to motivate future 
related research.

Index Terms— Quadruped robot, 3D model, simulation, four-
legged walking gait , central patterns generators, particle swarm 
optimization, inverse kinematics

I.  INTRODUCTION & MOTIVATION

he modeling of a real robot is a complex and passionating 
challenge.  On the crossing point  of  mechanics,  physics 

and computer-science, the development of a complete model 
involves multiple tasks ranging from the 3D modeling of the 
different  body  parts,  the  measure  of  the  different  physic 
properties,  the  understanding  of  WebotsTM simulator  to  the 
development  of  a  central  pattern  generator  or  inverse 
kinematic model allowing the robot to move. 

T

The  project  was  built  on  the  top  of  two  cornerstones:  the 
elaboration of an accurate model both efficient and realistic, 
and the  development  of  a  demo showing the  capacities  of 
WebotsTM simulator to  render a 3D model while simulating 
the physics.

Multiple  component  were  developed  allowing  to  ease  the 
coding  of  the  model,  to  validate  easily  the  static 
characteristics,  to  distribute  the  optimization  of  a  central 
pattern generator on cluster of computers.

Experimental  results  were  gathered  leading  to  clear 
conclusions.  However,  a  additional  test  would  validate  the 
conclusions even further. There is still a large amount of work 
to be done and, with this document in hand any master-level 
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engineering student should be able to take the project further. 
Despite of what is outstanding, the overall satisfaction at this 
point  in time from both,  team member and collaborators,  is 
high.

The remaining of this document aims at describing the Bioloid 
kit used to build the robot, presenting the WebotsTM simulator 
used to render and simulate the model, and, finally illustrating 
the different phases of the project.

II.  BIOLOID KIT

Bioloid  Kit  is  a  composed  of  a  collection  of  block-shaped 
parts  (see  Appendix)  and  servos  (see  II.C), a  sensor 
module(see II.B) and a control unit (see II.A) that the user can 
assemble  together  to  build  a  sophisticated  robots.  The 
connection between the different parts can be easily achieved 
using a simple screw driver, the frames made from injection 
molded plastic fit and connect perfectly (see Figure 1).

A. Control unit and Communication bus
The control unit is so called the CM5 module and is based on 
a micro controller Atmel ATMega 128 [4]. The rechargeable 
battery pack of 9.6V is also embedded in the CM5 module. 
All servos have a network ID programmed in their non-volatile 
memory and are connected together via a TTL Serial Network 
(see Figure 2).
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Figure 1: Example of connection of a AX12 
dynamixel servo

Figure 2: Servos and sensors connected to  CM5 unit via 3  
wire TTL serial network
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Each  unit in the Bioloid Kit has his own assigned ID [5]. The 
CM-5 has  ID200. The sensor module has ID100. The servos 
module can have  IDs between 1 and 19. 
Figure 3 illustrates the connection of the different module of 
the real robot and the corresponding module IDs.

B. Sensor module
The  Sensor  Module  AX-S1 is  a  Smart  Sensor  Module  that 
integrates the following functions [21]:
– embedded  with three directions infrared sensor,  making 

it possible to detect left/center/right distance angle as well 
as the light.

– built-in remote control sensor in center, making it possible 
to  transmit  and  receive  infrared  data  between  sensor 
modules. 

– built-in micro internal microphone, making it possible not 
only to detect current sound level and maximum loudness 
but  also  an  ability  to  count  the  number  of  sounds,  for 
instance, the numbers of hand clapping.

– Built-in buzzer allows the playback of musical notes and 
other special note effects.

C. AX12 module
The  AX12  module  [22]  is  a  smart,  modular  actuator  that 
incorporates  a  gear  reducer,  a  precision  DC  motor  and  a 
control circuitry with networking functionality, all in a single 
package. Despite its compact size, it can produce high torque. 
It also has the ability to detect and act upon internal conditions 
such  as  changes  in  internal  temperature  or  supply  voltage. 
Position and speed can be controlled with a resolution of 1024 
steps (see Figure 4).

The  AX12  module[22]  can  alert  the  user  when parameters 
deviate  from user  defined  ranges  (e.g.  internal  temperature, 
torque,  voltage,  etc)  and  can  also  handle  the  problem 
automatically (e.g. torque off).

D.  Behavior editor
The Behavior Control Program allows to define a set of rules. 
Then, as a function of the robot current state and the outcome 
resulting in the application of  these predefined rules, actions 
are done.
The description of the different rules is done using a graphic 
based programming environment (see Figure 5), in this way all 

Figure 3: Wiring of the Dynamixel module
Figure  4:  Rear  view  of  the  Dynamixel  
AX-12  module  and  the  corresponding  
actuation position.

Table 2: AX-12 module technical specifications [22]

Table 1: AX-S1 sensor module technical specifications [21]
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motion  defined  using  the  Motion  editor  (see  II.E)  can  be 
connected together depending on input from the sensors and 
programmatic logic.

The commands provided with the Behavior Control Program 
include: 

• program control commands (START, END), 
• conditional branching commands (IF,ELSE 

IF,ELSE,CONT IF) with conditional operations (=, >, 
and > =, <, and < = =), 

• program sequencing commands (JUMP & 
CALL/RETURN), 

• numeric commands (COMPUTE), and 
• assignment commands (LOAD). 

After a Behavior control program is defined, this one can be 
tested remotely or uploaded to the CM5 unit.

E. Motion editor 
The Motion Editor is a package that allows the user, using a 
graphics based interface (see Figure 6), to move the motors of 
a  robot  simply by increasing or  decreasing the number that 
describes the motors current position.

Motions are built up frame-by-frame - very similar to a story 
board  in  an  animation  sequence.  This  allows  quite 
complicated"animations" to be programmed and tested. Once a 
motion has been defined it can then be downloaded into the 
CM5 memory and called from the Behavior Control Program. 

There is two way of recoding the frame:
– According to  a  function  defined  by  the  user,  all  servo 

positions  can be pre-computed and entered manually in 
the motion editor. This method presents the advantages of 
being rigorous since all servo positions are set considering 
the shape and the geometry of the robot. 

– Since the servos can be aware of their own position, the 
current  position  of  the  robot  can  be  recorded  and  a 
sequence can be described step by step. The cons of such 
a method is, for example, concerning the quadruped robot, 
the  in-accuracy between the  position  recorded  for  each 
legs.  The  position  of  the  members  being  set  manually, 
plus the fact the robot can fall due to his proper weight, 
makes this method a non rigorous way to implement gait 
or  motion.  Nevertheless,  this  later  one  allows  to   fast 
prototyping motion and could help to check ideas. 

The motion editor is a valuable option if the user limits himself 
to program the existing example. When a new robot is design, 
since the 3D model is not existing in the motion editor,  the 
user isn't able to visualize the frames already entered. He can 
only visualize the current position being reproduced remotely 
on the real robot while entering the frame.

III.  WEBOTTM SIMULATOR

WebotsTM is a commercial software developed by Cyberbotics 
Ltd. It is “a mobile robotics simulation software that provides 
you  with  a  rapid  prototyping  environment  for  modeling, 
programming  and  simulating  mobile  robots.  The  provided 
robot libraries enable you to transfer your control programs to 
several commercially available real mobile robots. WebotsTM

enable  you  to  transfer  your  control  programs  to  several 
commercially available real mobile robots. WebotsTM  lets you 
define  and  modify a  complete  mobile  robotics  setup,  even 
several  different  robots  sharing  the  same  environment.  For 
each object,  you can define a number of properties,  such as 
shape, color, texture, mass, friction, etc. You can equip each 
robot with a large number of available sensors and actuators. 
You  can  program  these  robots  using  your  favorite 
development  environment,  simulate  them  and  optionally 
transfer  the  resulting  programs  onto  your  real  robots. 
WebotsTM has been developed in collaboration with the Swiss 

Figure 5: Behavior editor GUI

Figure 6: Motion editor GUI
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Federal  Institute  of  Technology  in  Lausanne,  thoroughly 
tested, well documented and continuously maintained for over 
7 years.”[1]

The core  of  WebotsTM is  based on the robust  and powerful 
physics engine:  Open Dynamics Engine (ODE)[2].  The  two 
main  components  of  ODE  are  the  rigid  body  dynamics 
simulation engine and the collision detection engine. As we ll 
see,  the  development  of  a  model  involved  multiple  phases: 
ranging from the “drawing” of the body parts (see IV.A)., the 
definition of the bounding objects (see  IV.C.3)., the setup of 
the physical properties (see  IV.C.2). ODE is used both as a 
research-helper package or as a computer game development 
library helping at  providing more realistic  behaviors.  Open-
source and freely available, as of today, ODE is involved in 
the development of almost 100 referenced projects[3]. Started 
in 2001 and with the huge number of contributors, as a mature 
C++ API and a platform independent package, ODE is known 
to be a successful and promising Physics engine.

The basic behind the design of a WebotsTM model are quite 
simple. A fully functional model (see Figure 7) is composed of 
at least a world file (see III.2) and a controller. A controller is 
a  program  mapped  to  an  entity  represented  in  the  world, 
allowing  to  give  it  instruction  regarding  his  surrounding 
environment,  his  internal  state,  instruction received from an 
other controller [...].

The execution of world starts with the opening of a world file 
(WBT file extension). WebotsTM  parses the file and check for 
inconsistencies.  Then,  it  extracts  the  controller(s)  name(s) 
corresponding  to  the  different  entities  (customRobot, 
Supervisor node) . Finally, each entity has his own instance of 
controller running. WebotsTM with the help of ODE engine can 
animate and render the scene in respect  of the physics. The 
specificities of the simulator regarding the development of the 
model will be reviewed in the subsidiary parts of this paper.

IV.  MODELING

As stated in [1], the design of a model out of one's imagination 
could  be  done  in  few hours.  In  our  case,  it's  a  quite  more 

sophisticated  problem since  we have  the  real  robot  and  we 
want to build its most accurate representation both in respect 
of its visual and its body dynamics.

A. Visual Aspect
The  Bioloid  kit  comes  with  a  set  of   example  assembly 
instructions. For each of them, a motion file and behavior file 
are provided. Since the motion file contains the 3D model with 
the exact shape of all the body parts, it could be interesting to 
be able to extract the useful informations and generate  one file 
for each ones. A collaborator, Laurent Lessieux, specialist of 
robotic  modeling  and  simulation,   provided  me with  some 
code able to create  OBJ files for each part  from the X file 
provided  with  the  Bioloid  Kit.  The  X  files  are  the  3D 
description files used by Microsoft DirectX API[23]. Indeed, 
there is already a set of examples provided with the kit and 
each  example  has  the  corresponding 3D model  allowing to 
visualize it in the motion editor. Thanks to his work, the initial 
phase involving the shaping of the 3D body parts was speed 
up. 

1) Shape simplification using 3D modeling tool
Having all 3D files corresponding to all the different shapes is 
a  good  advantage.  The  OBJ  format  corresponds  to  the 
“standard  3D  object  file  format  created  for  use  with 
Wavefront's Advanced Visualizer. Object Files are text based 
files  supporting  both  polygonal  and  free-form  geometry 
(curves and surfaces).”[6][7]
It  exists  an  open-source  3D modeling and  rendering studio 
allowing to import an object file and export it to POV[8] file 
format  or  VRML(Virtual  Reality  Modeling  Language)  file 
format. Called Art of Illusion (AOI)[9],  this Java-based tool 
provides an easy way to model 3D shape or even edit existing 
one.
VRML is a  standard file  format to  represent 3D interactive 
graphic vectors.[10]
VRML language allows to  natively describe  spheres,  cubes, 
cones or extrusions. If the modeled element is converted to a 
triangle mesh shape. The efficiency of the rendering will be a 
direct function of the number of triangle meshes.
Some of the shape provided were too complex, they presented 
a high degree of details and for the sack of the modeling, it 
was not necessary to keep such low level details. (see Figure 8 
and Figure 9)

Figure 8: CM5 shape before simplification - the VRML 
exported file is about 158.5Kb

Figure 7: WebotsTM functional diagram
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The 3D modeling of a model is a trade of between visual 
realism and rendering complexity.

2) WebotsTM scene description
The description of scenes follows a VRML-like language, in 
that  way  all  shapes  modeled  using  the  3D  modeling  tool 
mentioned above can be easily imported.
There is two ways of describing a world scene, either using the 
WebotsTM built-in VRML editor  or using an external editor. 
Kdevelop[24] revealed to be an interesting option since it can 
handle VRML file easily and fold/unfold VRML  node. This 
last feature of the editor allows to get a better overview of the 
work done so far.
The  WebotsTM Nodes  chart  (see  Appendix)  is  useful  to 
understand what are the existing nodes, and from what kind. 

3) Model of the quadruped robot
The elaboration of the quadruped robot model was a tedious 
and long process. While at it, I tried to keep the model clear, 
efficient and simple to understand.  The various part used to 
construct  the  robot  are  referenced  in  the  QuickStart 
manual[25] with a  letter 'F' and a number discriminating the 
part.  The  same nomenclature is  used in the world file.  The 
Table 13, available in the  Appendix, shows their names and 
their corresponding shapes.
A given shape is oriented in the world, then depending on their 
location in the node hierarchy, this one needs to be rotated. 
Within VRML, rotation are expressed with the notation “euler 
angles/axis”[26] (the 3D coordinate of one point and an angle 
 )  the  field  rotation allows to  apply such  a  rotation.  The 

common way of expressing rotation and visualizing easily this 
one is the representation “euler angle” (an angle of rotation 
corresponding to each axis). To ease the development of the 
model,  a set  of two Matlab functions allows the conversion 
between the two representations (see Appendix).

Figure 10 shows the final quadruped robot model rendered in 
WebotsTM. A simplified and more readable release of the world 
file is also available in Appendix. The complete listing will be 
accessible from the project web page.

Following the recent mails and over skype exchanges with the 
members  team of  Newcastle  University,  responsible  for  the 
hardware design of the robot, they updated the design of the 

robot and added wedges below the  “knee” actuator to add a 
permanent offset of 18 degrees (Figure 11 ). The purpose of 
this update was to make the robot able to walk with an aibo-
style and  ease  the  development  of  an  efficient  gait.  In  the 
framework of this project and due to time constraints, only the 
initial design of the robot has been used and validated.

B. Animate the model
The  servo  nodes(see  Figure  12)  are  the  links  between  the 
controller and the visual representation of the model. Giving 
orders to these servos, the WebotsTM rendering engine is able 
to recompute the new position of the different joints, this way 
the model is animated and can interact with the physics of the 
world. 

Figure 9: CM5 shape after simplification - the VRML 
exported file is about 5.5Kb

Figure 10: Model of the quadruped robot rendered 
in WebotsTM

Figure 11: Model of the updated quadruped 
robot rendered in WebotsTM, having the 18 
degrees wedges
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The realism of the simulation can be achieved setting the right 
physics parameters to the servo nodes. It's safe to assume all 
the servos present similar characteristics.  No measure of the 
real performance has been done on the servo itself. Instead, the 
technical documentation has been considered (see II.C).

The different fields  of  the servo node  are  listed below,  the 
Figure 13 allows to get a better understanding of the influence 
of each one.

maxVelocity: It “specifies the default and maximum value for 
the desired motor speed'”[27] The value given in the specs is
0.196 sec /60degrees  which  can  be  converted  to 
1.70rad / sec .  This  later  value  will  be  used  in  the  servo 

node.

maxForce:  It  “specifies  the  default  and  maximum  motor 
torque/force F that is sent to the physics simulator.”[27] The 
documentation  of  the  servo  module  talks  about  “final  max 
holding torque”. The given value is  16.5 KgForce.cm  which 
can be converted to 16181 N.m .

acceleration: It “defines the default motor acceleration A used 
by the servo-controller to compute the current speed Vc”[27]

maxPosition and  minPosition: They “define the soft limits of 
the servo. Soft limits specify the software boundaries beyond 

which  the  servo-controller  will  not  attempt  to  move.  If  the 
controller calls servo_set_position() with a target position that 
exceeds  the  soft  limits,  the  desired  target  position  will  be 
clipped in order to fit into the soft limit range. Since the initial 
position of the servo is always zero,  minPosition must always 
be negative or zero and maxPosition must always be positive 
or zero. When both minPosition and maxPosition are zero (the 
default),  the  soft  limits  are  deactivated.  Note  that  the  soft 
limits can be overstepped when an external force, that exceeds 
the  motor  force,  is  applied  to  the  servo.  For  example,  it  is 
possible  that  the  own weight  of  a  robot  exceeds  the  motor 
force that is required to hold it up”.[27]

C. Physics
An accurate model is not only a visually realistic one, its body 
dynamics  need  to  match  the  ones  of  the  real  robot.  It's 
important  to  ask  ourself  the  right  questions  about  which 
physical  characteristics need to be simulated and with which 
degree  of  abstraction  or  simplification.  The  overall 
performance of the model will depend of the initial  choices 
made by the scientist.
A simulation platform runs on a computer, as a consequence 
the simulation can't be continuous in time. The physics of the 
model need to be computed at regular time step.  
One of the goals of the modeling was to be able to have at 
least 6 robots walking on the same ground in real time. The 
real time constraint is not the least, since if the simulation runs 
as wanted, it  shows how the real dogs would walk for real, 
assuming the physic of the model is enough accurate and the 
model validated.

In case physic is added to the model, WebotsTM expects to see 
its definition under any Solid node type. The WebotsTM Nodes 
Chart helps in understanding the node inheritance model and 
their relationship to each other (see Appendix).

1) Measure of the real robot properties

a) Mass of the body parts
Using a letter scale, the different body parts of the robot has 
been weighted.  The  term “body part”  is  used  to  describe  a 
section between 2 servos. Indeed, the WebotsTM simulator will 
apply the physics to all objects of the node hierarchy present 
between 2 servos . 

Figure 12: WebotsTM specification of the Servo node

Figure 13: Rotational servo  and the matching WebotsTM servo 
node fields

Table 3: Weight of the different body parts

Part id Mass [g] Part id Mass [g]
BODY 692 N_1 10
PELVIS 146 N_2 118
F_L_1 12 B_L_1 12
F_R_1 12 B_R_1 12
F_L_2 126 B_L_2 126
F_R_2 126 B_R_2 126
F_L_3 32 B_L_3 34
F_R_3 32 B_R_3 34
HEAD 110
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Table  3 summarizes  the  measures.  The  robot  presenting 
similar  body  part,  it's  has  been  admitted  their  weight  was 
equals. That hypothesis explains the redundancy of the value.

b) Center of Mass
The  next  step  was  to  determine  the  position  of  center  of 
mass(CoM) of the different body parts. The letter scale used 
before wasn't able to provide the right information concerning 
the  X,  Y,  and  Z  location  of  the  CoM.  A  simple  way  to 
overcome that problem was to construct a CoM measurer.

As illustrated on Figure 14, the CoM measurer is composed of 
3 main elements: the plate, the magnet and the axes. Before 
using it, the first step is to make the “zero”. To achieve that 
purpose, the magnet can be slided from left to right or from 
right to left until the plate is almost at equilibrium. The second 
phase concerns the measuring of the CoM itself. The body part 
is set on the plate and smoothly moved from left to right or 
right to left until the equilibrium state is reached. That last step 
should be executed for the 3 axis(X, Y, Z) of the body part. 
Particular attention has to be observed while the body part is 
set on the plate, indeed, the 3 axis should match as much as 
possible the one of the modeled shape. That was, the measured 
CoM can be directly reported in the model definition.
In order to measure the position of the CoM,  while the body 
part  is  disposed  on  the  plate  and  the  equilibrium  state  is 
reached (or  the closer  possible  to),  a  pencil  can be used to 
mark the position of a characteristic point  of the body part. 
Afterward,  with a  ruler,  it's  easier  to  measure  the  effective 
distance  of  the  marked  point  to  the  central  axis  of  the 
measurer.
After  the measure is done, it's important to translate it into the 
coordinate  system  of  the  servo  node  (see  IV.C.2.g, 
centerOfMass).
The shape of the body parts should also be considered, and 
when it's possible, for example in case of symmetry relative to 
the servo axis and assuming the internal weight distribution is 
uniform or equally distributed,  the CoM value corresponding 
to the axis X, Y or Z should be 0.

2) Physics applied to WebotsTM

Within  WebotsTM,  the  physical  characteristics  of  any  node 
derived  from  the  solid node  can  be  described  adding  the 
Physics node (see  Figure 15) which allows to define a given 
number  of  physics  parameters  to  be  used  by  the  physics 
simulation engine.

Accurate informations about the different physics parameters 
are given in the following subsections.

a)  density or mass
It  “can be used to define the total  mass of the solid.  If the 
density  field is set different from -1, then it is used regardless 
of  the  mass field  to  compute  the  mass  of  the  solid  object. 
Otherwise, the  mass field,  which should be set to a positive 
value,  is used. You should never set  both the  mass and the 
density to -1, otherwise the results will be undefined. Rather it 
is highly recommended to set either the mass or density to -1 
and the other  field  should be  set  to a  positive value.  If the 
density  field is a positive value and the mass  field is set to -1, 
the actual mass of the Solid node will be computed based on 
the  specified  density  and  the  volume  defined  in  the 
boundingObject(see  IV.C.3)  of the Solid node. However, this 
computed mass will not be displayed in the mass field which 
will remain -1.”[12]

b)  intertiaMatrix
It  “defines  the  inertia  matrix  as  specified  by  ODE.  If  this 
parameter is empty or contains less or more than nine floating 
point values, it is ignored. Moreover, if the mass field is -1, the 
inertiaMatrix field  is  ignored.  If  it  contains  exactly  nine 
floating point values, and if the mass field is different from -1, 
then it is used as follow: the nine parameters are the same as 
the ones used by the dMassSetParameters ODE function. The 
parameters given in the inertiaMatrix(1) are: cg x , cg y , cg z , 
I 1 1 ,  I 2 2 ,  I 3 3 ,  I 1 2 ,  I 1 3 ,  I 2 3 , where ( cg x , cg y ,  cg z ) 

is the center of gravity position in the body frame. The  I XX  
values  are  the  elements  of  the  inertia  matrix,  expressed  in 
kg.m2 ”[12]

inertiaMatrix =  I 1 1 I 1 2 I 1 3

cg x I 2 2 I 2 3

cg y cg z I 3 3
  (1)

c)  bounce
It “defines the bounciness of a solid. This restitution parameter 
is a floating point value ranging from 0 to 1. 0 means that the 
surfaces  are  not  bouncy at  all,  1  is  maximum bounciness. 
When two solids hit each other, the resulting bounciness is the 
average of the bounce parameter of each solid. If a solid has 
no  Physics  node,  and  hence  no  bounce  field  defined,  the 
bounce field of the other solid is used. The same principle also 
applies  for  to  bounceVelocity,  staticFriction and 
kineticFriction fields.”[12]

Figure 15: WebotsTM specification of the Physics node

Figure 14: Functional schematic of the CoM measurer
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d)  bounceVelocity
It  “defines  the  minimum  incoming  velocity  necessary  for 
bounce. Incoming velocities below this will effectively have a 
bounce parameter of 0.”[12]

e)  coulombFriction
It  “defines the friction parameter  which applies  to  the solid 
regardless  of  its  velocity.  Friction  approximation  in  ODE 
relies on the Coulomb friction model and is documented in the 
ODE documentation. It  ranges from 0 to infinity. Setting the 
coulombFriction to -1 means infinity.”[12]

f)  forceDependantSlip
It  “defines  the  force-dependent-slip  (FDS)  for  friction,  as 
explained in the ODE documentation.  FDS is  an effect that 
causes the contacting surfaces to side past each other with a 
velocity that is proportional to the force that is being applied 
tangentially to that surface. It is especially useful to combine 
FDS with an infinite coulombFriction parameter.”[12]

g)  centerOfMass
It “defines the position of the center of mass of the solid. It is 
expressed in meters in the relative coordinate system of the 
Solid  node. It is affected by the orientation  field as well.”[12]
The measure of the CoM X, Y or Z location is relative to a 
side of the body part or an other noticeable point, before using 
it  in  the physics  node  definition,  One's should  take  care  of 
translating that value into the servo coordinate system. 

h)  orientation
It  “defines  the orientation of  the local  coordinate  system in 
which the position of the center of mass (centerOfMass) and 
the inertia matrix (intertiaMatrix) are defined.”[12]

3) Bounding objects
Since  the  modeled  shapes  are  complicated  triangle  meshes, 
these one can't be used by the collision detection engine. It will 
result in too complex computation and the overall simulation 
will be slow down. An approximation of the bounding object 
should be done. There is no automatic process to determine 
there bounding object.  According to the specificities and the 
purpose of the simulation, the user should define them using 
simple  object  like  “sphere”,  “box”  or  “cylinder”.  Within 
WebotsTM, when the user click on the robot model (Figure 16), 
the bounding object are highlighted.

Particular  attention  should  be  consider  while  defining  the 
bounding object of the crutches. Indeed, the crutches are the 
contact  point  of  the  robot  with  the  ground.  This  one  was 
approximated using a box and a sphere (see Figure 17). 

A  cylinder  bounding  object  could  be  used,  but  following 
discussion with the developers of WebotsTM, due to possible 
internal problems, it was safer to use a box object.

V.  VALIDATION OF BODY STATICS

The 3D modeling and the setup of the physical properties is 
done.  The  next  step  is  to  make sure  the  model  answer  the 
initial question of matching the real  robot behaviors.  In this 
part, a method is proposed to check the accuracy of the model 
static characteristics. 

A. Experimental protocol
The main concept behind the validation of body statics is to 
avoid the dynamics to be involved in the process. To achieve 
this  purpose,  the  position  of  the  different  servos  has  to  be 
updated step by step to prevent any inertia factor to interfere 
the experiment.
The real quadruped robot is disposed in a stable position, then 
updating step by step the position of one servo, we check if the 
robot is falling down or not. The measured value is so called 

Figure  16:  Robot  model  rendered  in  WebotsTM 

with his bounding objects highlighted

Figure  17:  Approximation  of  the  crutch 
bounding object
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the equilibrium value. Then reproducing the same experiment 
on  the  simulator,  it's  possible  to  compute  the  difference 
between the equilibrium value resulting from the real and the 
modeled experiment. A series of nine experiment is realized.

The Table 4 shows for each experiment the initial value of all 
the sixteen servos of the robot.

The results of the experiments done on the real robot have to 
compared to the one done on the modeled one. 

B. Results
The Table 5 summarizes the outcome of the 9 tests. The cross 
on the red cells states that the robot fall on the ground during 
the setup of the initial posture whereas the circle in the green 
cells depict that he robot didn't fall whatever was the position 
of the updated servo.

The issue of the experiment 1, 7, 8 and 9 can be accepted since 
the difference between the result obtained with the model and 
the  one  obtained  within the  simulator  is  below 15  degrees. 
Nevertheless, the issue of the of experiment 2, 3 and 4 need to 
be observed carefully (see Figures 19, 20 and 21). 

In  the  context  of  experiment  3,  the  robot  is  “really” stable 
since in any position of the head the robot doesn't fall. Plus the 

Table  4:  Initial  servo  position  for  each  of  the  static  
experiments. The gray cell shows the servos being updated  
during the experiment.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9
PELVIS 513 513 205 819 513 513 513 513 513
F_L_1 513 513 0 0 513 513 513 513 513
F_R_1 513 513 513 513 513 513 513 513 513
F_L_2 205 819 819 819 867 513 513 513 513
F_R_2 819 205 513 513 513 166 513 513 513
F_L_3 513 513 513 513 513 513 513 513 513
F_R_3 513 513 513 513 513 513 513 513 513
B_L_1 513 513 513 513 513 513 513 513 513
B_R_1 513 513 513 513 513 513 513 513 513
B_L_2 580 444 513 513 166 513 513 513 513
B_R_2 444 580 819 819 513 867 513 513 513
B_L_3 513 513 513 513 513 513 513 513 513
B_R_3 513 513 513 513 513 513 513 513 513

N_1 513 513 513 513 513 513 513 513 513
N_2 513 513 513 513 513 513 513 819 205

HEAD 513 513 513 513 513 513 513 513 513

Table  5: Equilibrium value of the updated servo for each of  
the experiments

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9
Real 571 482 479 535 261 274 478 537 542
Webots 531 X O X 363 375 466 527 531
Diff. 40 X O X 102 101 12 10 11

11.72 X O X 29.88 29.59 3.52 2.93 3.22Diff.(deg)

Figure 19: Static test - Experiment 2

Figure 20: Static test - Experiment 3

Illustration 18: Static test - Experiment 1

Figure 22: Static test - Experiment 5

Figure 21: Static test - Experiment 4
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fact in experiment 2 and 3, it's not possible to set the robot in 
the  initial  posture.  It's  safe  to  tell  that  the  center  of  mass 
impacting the most is the one of the CM5 unit since it is the 
heaviest  element.  The  robot  being  really  stable  in  the 
experiment 2, it's safe to assume the CoM is too much toward 
the left and/or bottom of the CM5 unit. 

To  improve the issue of  the experiments,  the update of  the 
position of the 16 center of mass can be a tedious and long 
process . The use of using a particle swarm optimization (see 
VI.B.2) is to optimize the location of the different center of 
mass could be considered. The function to maximize would be 
the following:

= N

∑
i=0

N

∣reali−webots i∣
 (2)

Where    is  the  value  to  maximize,  N  the  number  of 
experiments,  real i  the outcome of  the experiment with the 
real  robot  (it's  a  fixed  parameter  during  the  optimization), 
webots i  the outcome of the experiment within the simulator.

VI. EXPERIMENTATION OF THE BODY DYNAMICS

A. Using inverse kinematics Model

1) Theoretical background
There  are  two  ways  of  solving  the  inverse  kinematics 
problems,  either  algebraically  or  geometrically.  Only  the 
solution will  be  given here.  Further  details  are  available  in 
[29]. 

From Figure 26, it's possible to extract the value for  A1  and 
A2 . 

A2= cos−1 x2 y2−L1
2−L2

2

2 L1 L2   (3)

A1 = cos−1 x2

 x2
2 y2

2 − = sin−1 y2

 x2
2 y2

2  (4)

where L1  and L2  are the respective length of both part of the 
robot leg. The extremity   x2, y2 being the bottom of the leg 
(foot), the point  x1, y1  being the axis of rotation of the lower 
leg (knee), and the origin of the coordinate system being the 
axis of rotation of the upper leg (shoulder).

x = L1 cosA1L2cosA1A2  (5)

y = L1sin A1L2sin A1A2  (6)

Using (3) and (4), it's possible to compute  A1  and  A2  given 
a position of the foot.

2) Applied to the quadruped robot
The strength of the inverse kinematics model  is  to give the 
possibility  of  computing  the  different  joint  angles  of  a 
member knowing only the final trajectory of this one. Using an 

Figure 26: Determining angles A1  and  A2  via  
geometric approach [29]

Figure 23: Static test - Experiment 6

Figure 24: Static test - Experiment 8

Figure 25: Static test - Experiment 9
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elliptic trajectory for the leg extremity is known to be efficient 
for robotic walking.  The parametric equations for an ellipse 
are (7) and  (8). 

x = ha cos  (7)

y = kbsin   (8)

Where    is  the  phase  between  0  and  2 ,  h ,k   
determining  the  center  of  the  ellipse  , a  and  b  being 
respectively the size of the radius for the x-axis and y-axis. 
The value of these parameters is relative to the anatomy of the 
real  robot.  Initially, as stated in [29],  the rules of thumb to 
determine the equation parameters are:
– center of ellipse: h , k  = 0,−L1L2 /2
– radius on y-axis: b = L2/2
– radius on x-axis: a = 0.95L1/2  

These rules set the maximum sized ellipse possible given the 
robot anatomy, not especially the most efficient.

Applying the rules  given  in  [29]  the actual  anatomy of  the 
robot is not considered. This one isn't able to bend the lower 
leg over  90  degrees.  The   Figure  27 displays a  red  ellipse 
showing the lower leg extremity without considering the actual 
anatomy. The  segment  depicted  in  blue  corresponds  to  the 
upper and lower leg having a possible position whereas the red 
segment  corresponds to impossible position since the angle 
between  the  two  segment  is  smaller  then  90  degrees.  The 
Figure 28(b) plots the servo values required to moved the leg 
given  the  current  trajectory.  A  part  of  the  red  curve,  as 
expected, is flat. This correspond to the maximum value the 
knee servo can't exceed.

To overcome this issue, the solution is to consider the actual 
robot anatomy. One of the initial rule of thumb needs to be 
updated.  Setting the x-axis radius to  b =−k−L12L22  
fixes the problem.

3) Experimental framework
As explained in [30], the different possible gait in four-legged 
animal locomotion are depicted on Figure 29.

Using the inverse kinematics model described before, all the 
four-legged gaits listed above are tried at different frequency 
ranging from 0.5Hz to 2Hz.

4) Results
Looking at the  Figure 30, the trot gait presents, from far and 
above all, the best performance. The performance is measured 
as a weighted sum of the absolute distance and the integrated 
distance done in between the 32 seconds of the simulation. A 
detailed description of the performance calculation is available 
in the part VI.B.3 page 16. 

Figure 27: Leg trajectory over 28 steps

Figure 28: (a ) Lower leg extremity trajectory, (b) AX12 
values for shoulder and knee servo

Figure 29: Gait used by four-legged walking  
animals,  distinguished  with  respect  to  the  
relative  relationships  (in  units  of  2 ) 
between their legs. The front left leg serves  
as reference. [30]
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The  Figures  31 to  34 show  the  trotting  gait  for  the  four 
frequency 0.5Hz , 1.0Hz , 1.5Hz  and 2.0Hz . Since all the 
thumbnails are exactly generated every 62ms, the  difference 
of performance is also visible. Indeed, taking all the bottom-
right thumbnails of each figure and ordering them according to 
the position of the robot gives back the ranking of Figure 30.

B. Using CPG model optimized with PSO

The  work of  Yvan  Bourquin[15]  served  as  a  basis  for  the 
design  of  the  CPG  models  and  their  optimization.  The 
subsections 1 and 2 are largely inspired from his work.

1) CPGs

a)  Origins
“The concept of using non-linear oscillators to control robotic 
locomotion is inspired from biology. Experiments [13] showed 
that,  in  a  decerebrated  cat,  the  electrical  stimulation  of  the 
brainstem is able to induce walking. Furthermore, an increase 
of  the  signal  strength  changes  the  walk  velocity  and  the 
transition  from  a  walking  to  a  trotting  gait  happens 
autonomously.  These   experiments demonstrated   that   the 
brain  is  not   involved  in  the generation of the rhythmic 
signals that produce locomotion in the cat.  
Grillner[14]  explained  that  the  locomotory  signals  that 
produce sequences of muscle activation, such as walk, trot or 
gallop  are  generated  by  Central  Pattern  Generators  (CPG) 
located in the spinal cord. These CPGs are neural circuits that 
generate oscillatory output from a tonic input coming from the 
brain. The brain appears to play a higher-level  role  such as 
regulating  the  initiation,  velocity  and  termination  of  the 
locomotory activity.”[15]

Figure  30:  Performance  as  function  of  gait  type  and 
frequency

Freq [Hz] Trot Walk Gallop Canter Pace Bound Pronk
0.5 8.68 2.63 1.25 1.11 0.93 1.19 2.98
1 11.29 3.16 0.33 0.27 2.88 0.39 0.68
1.5 11.06 4.17 0.84 0.83 2.81 0.58 2.43
2 12.41 3.80 6.32 1.70 3.55 0.26 1.41

Move f orward Walk backward

Fall on the head or the side Stay  on the spot

Figure 31: Trotting gait with f = 0.5Hz  

Figure 32: Trotting gait with f = 1Hz  

Figure 34: Trotting gait with f = 1.5Hz  

Figure 33: Trotting gait with f = 2Hz  
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b)  Non-linear oscillator
“In  animal  locomotion,  the  oscillations  of  the  joint  angles 
produced  by  the  muscular  activity  can  have  different 
waveforms.  These  waveforms  are  usually  smooth:  brutal 
transitions  are  uncommon.  In  order  to  facilitate  numerical 
simulations, a strong simplification is to model locomotion as 
sinusoidal  variations of the robot’s joint  angles. In practice, 
sinusoidal signals are not flexible enough, because they do not 
allow a soft transition from one gait to another. For example, if 
a walk gait in a robot is controlled by sinusoidal motor signals, 
the transition to a different gait, say trot, requires the activation 
of different oscillations’ phases,  amplitudes and frequencies. 
However, with sinusoidal  signals, the  transition  from  one 
gait  to  another  is  brutal  and therefore  cannot  be  carried 
out  satisfactorily  by  the  robot’s  motors.  Consequently  an 
uncontrolled  transition  appears,  during  which  the  robot 
performs an undesired brutal movement and is subject to fall. 
This is in contrast   to  gait   transitions  in  nature,   which 
always   occur   smoothly.   Furthermore,   with  sinusoidal 
signals,  there  is  no  simple  way  to  incorporate  sensory 
feedback. 

To  overcome  this  problem,  non-linear  oscillators  were 
introduced as mathematical models of the natural CPGs [18]. 
The state of oscillators changes smoothly and therefore, gait 
transitions are soft. In addition, with oscillators, feedback can 
be incorporated  in the simulation. For example,  sensors can 
detect that a foot is in contact with the ground and a feedback 
signal can be injected into the oscillators. 

The oscillator proposed in [18] is based on these differential 
equations: 

 v̇ =− x2v2−E
E

v−x  (9)

 ẋ = v  (10)

where  v  and  x  represent the current state of the oscillator, 
E  is  a  positive  constant  that  represents  the  energy of  the 

oscillator,    determines the rate of convergence towards the 
limit  cycle and    is  the time constant  that  determines the 
oscillation’s frequency. This type of oscillator converges to a 
sinusoidal signal with amplitude  E  and period 2 [18]: 

xt =E sin t /  (11)

where    depends on the initial conditions. This behavior is 
illustrated by the limit cycle presented on  Figure 35 showing 
each  run  converges  to  the  circular  attractor  of  diameter 
2 E=2 .”[15]

c)  Synchronization
“By choosing  the  E  and    parameters,  it  is  possible  to 
control  the  amplitude  and  frequency  of  the  oscillations. 
However, locomotion is efficient only when the phase shifts 
between  the  oscillations  stays  constant  through  time  and 

therefore,  a  strict  synchronization  is  required.  In the  model 
proposed in [18], synchronization is obtained by coupling the 
oscillators;  a  signal  proportional  to  the  sum of  the  state  of 
every other oscillator is added into each oscillator. Equation 
(9) seen earlier, is now completed into equation (12) [18]: 

 v̇ i =−
xi

2v i
2−E

E
v−x∑

j

N

aij x jbij v j   (12)

 ẋi = vi  (13)

where aij   and bij   represents the strength of the coupling of 
the x  and v  states of oscillator j  into the oscillator i . 

Synchronization happens only when the uncoupled frequencies 
match approximately [19].  Figure 36 illustrates this fact: the 
frequency  difference   f of  two  uncoupled  oscillators  is 
plotted versus frequency detuning F  after coupling. If the 
uncoupled frequencies are too different, synchronization does 
not occur. 

 
In order to facilitate synchronization the same time constant t 
is  used  for  all  the  oscillators  and  therefore  the  uncoupled 
frequencies are similar. A frequency of 1Hz ( =1/ 2 ) is 
chosen  as  baseline  for  all  simulations.  This  is  because  it 
corresponds to the pace of an ordinary animal and it is slow 
enough for the physical robot's servomotors to go once 180° 
back and forth. A stabilization period is necessary before the 

Figure 35: Limit cycles of a standalone oscillator  obtained  
with 30  oscillations  started  with  random  initial conditions 
x  and v  in the range [−2, 2 ] . With =0.7  and E=1 .  

[15]

Figure 36: Frequency vs. detuning graph[19]
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frequencies become locked. The duration of the stabilization 
period depends on the coupling strength. 

Figure 38 shows an example of synchronized oscillations. This 
stabilization period is  bad because it  results  in disorganized 
steps of the robot. Shorter stabilization periods are wished and 
can be obtained by increasing the coupling strength. However, 
unlike standalone oscillators, the signals produced by coupled 
oscillators are not exact sine waves. Discrepancy with the sine 
increases with the coupling strength and furthermore, when the 
coupling becomes too strong the signals turn out to be chaotic 
(Figure 37)  and  unsuitable  for  controlling locomotion.  For 
that  reason,  coupling  strengths are suitable only within an 
appropriate range that must be determined. 

When  multiple  coupled  oscillators  are  used,  the  resulting 
phase  shifts  between  the  oscillations  is  a  function  of  the 
coupling  strengths  aij  and  bij ,  however  several  different 

combination of aij   and bij  can produce the same phase shift. 
In fact, the exact outcome of a particular coupling combination 
cannot be predicted by any general theory [19]. Consequently, 
the  coupling  strengths  must  be  optimized  by  the  search 
algorithms. 

  A slight variation (14) of the original oscillators' model seen 
above was proposed in [20]. With this modification, the inputs 
are  normalized  and  therefore,  the  "strength  of  the  signal 
carried  by  a  particular  connection  does  not  depend  on  the 
energy  of  the  emitting  oscillators"  [Mojon  2004].  This 
modified model (14) is used in this project. 

 v̇ i =−
xi

2v i
2−E

E
v−x∑

j

N aij x jbij v j

x j
2v i

2  (14)

According to the simulation done, the coupling strengths were 
determined to be satisfactory in the range [−0.7,−0.7 ] .”[15]

2) Particle Swarm Optimization
“Particle Swarm Optimization (PSO) was originally developed 
in 1995 by James Kennedy and Russell  Eberhart  [16].  Like 
genetic algorithms,  PSO  is   based  on  a  population that 
slowly converges  towards  one  or  more  solutions.  However, 
with PSO,  the  particles  are  preserved throughout  the  entire 
process; they do not die. Contrary to GA, which is based on 
competition for  better  chances of survival  and reproduction, 
PSO uses a kind of cooperation between the particles. This is 
achieved through the exchange of the coordinates of the best 
solutions that have been encountered so far.
PSO’s particles are simple search agents that “fly” through the 
search space. Whilst moving, they record the best position that 
they  have  discovered  so  far.  They  communicate  with  their 
neighbors and learn, from them, the best local solution. PSO is 
based on the concepts of social interaction or more exactly, the 
tendency of an individual to go his own way, as opposed to his 
tendency to  follow his  group’s  way. At  every time  step,  a 
particle's  flight  direction is  driven by three factors:  first,  its 
own inertial speed, second, its tendency to return to the best 
solution it has discovered so far, and third, the tendency to go 
towards the best solution discovered by its neighbors. This can 
be  summarized  in  equation  (15)  which  calculates  the  new 
flight speed of a particle at time  t1 , and in equation (16) 
which calculates the new position a particle.

v id t1 =vid t1 rand  pid−xid t 
2 rand  pgd−x id t 

 (15)

xid t1=x id tv id t   (16)

where v  is the speed of a particle, i  is a particle index, d  
represents the d th  dimension in the parameter space, t  is the 
discrete time index,   is the particle speed inertia factor and 
where  the  function  rand    returns  a  uniformly distributed 
random number in the range [0, 1] . The coefficients 1   and 
2  control the individual and social levels of confidence, e.g., 

how much a particle should follow its own best solution or his 

Figure  37:  Chaotic  oscillations  resulting  of  too  strong 
coupling. Plot of the x   states  of  four  coupled  oscillators  
over  a  period  of  32  seconds.[15]

Figure  38: Example of synchronized oscillations  Plot of the 
x   states  of  four  coupled  oscillators  over  a  period  of  32  

seconds:  the  initial stabilization period is visible. [15]
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group’s  best  solution.  Finally  pi  is  the   best   previous 
position  of  particle  i ,  and  p g    is  the  best  previous 
position  in  the neighborhood of particle i . These principles 
are illustrated in Figure 39.

In  PSO,  we  speak  about  the  particles'  neighborhood.  A 
particle’s neighborhood defines from which other particles the 
information will be received. The neighborhood size can vary 
from a few particles to the entire swarm. The neighborhood 
type does also vary: some PSO techniques  are  based  on  so-
called  social  neighborhood,  while  others  use  geometrical 
neighborhood.  In  social  neighborhood,  the  particles  are 
associated with other  particles  from the beginning and their 
relationship  is  maintained  throughout  the  process.  A 
geometrical neighborhood  is  defined  in  accordance  with 
the  current  particles  “proximity”  in  the parameter space. In 
this  case,  the  particle-to-particle  distances  needs  to  be 
recomputed  at  every  iteration.  The  usually  mentioned 
advantage of social neighborhood is its lower computational 
burden  compared  to  geometrical  neighborhood.  However, 
in   our   case,   geometrical  neighborhood  was  preferred, 
because  the  processing  power  required  by  the  optimization 
algorithm are  insignificant  anyway compared  to  that  of  the 
physics simulation.
The speed inertia factor    can either be fixed or decreased 
during the optimization process.  Some authors [17] suggest 
that a decreasing inertia factor gives better results, and so this 
approach is used here.”[15]

3) Experimental framework
To  summarize,  in  order  to  obtain  suitable  oscillations, 
different  combinations  of  the  ,   , E , aij  and bij  , of 
equation  (14)  must  be  tried  out.  One  option  is  to  tune  all 
parameters  parameters  with  the  optimization  algorithms. 
However, in order to increase the likelihood of convergence it 
is better to hold down the dimensionality of the search space. 
Therefore,  it  is  favorable  to  fix some parameters  whilst  the 
most relevant ones are kept free. 
As explained in the previous paragraph, the coupling strengths 
aij  and  bij  must  be  free  because  the  oscillators’ 

synchronization  phase  depends  on  them.  The  oscillation 
amplitudes controlled  by E  must  also  be  free  because  it 
is   not   known  beforehand  how  large   joint  movements 
should be.

Oscillations  in  the  region  of  the  module’s  0°-angle  (the 
horizontal  position  in  Figure  40)  are  too  restricted.  For 
example in quadruped robots, it is known[15] that the “knee” 
joints  should  oscillate  in  a  region  below  the  0°-angle.  In 
general,  this  angle  is  not  known  beforehand  and  should 
therefore be another free parameter, that we call here x0 .

Different oscillator coupling models were validated. The PSO 
used to optimize these models was initialized with a number of 
50  particles.  According to  [15],  this  value  gives  interesting 
results. There is no defined method to determine the number of 
particle  required to solve a given optimization problem, but 
based  on  previous  experiments,  the  scientist  can  expect  a 
convergence of the problem with a swarm size between 10 and 
50 elements. 
Computationally wise, a PSO working with 50 particles is high 
demanding.  In  fact,  using  one  computer  and  thinking  to 
optimize  a  simulation  of  32  seconds.  Considering  the 
simulation runs in real time, the total time required should be 
around 107hrs. In case the simulation is slow down due to, for 
example, a high number of collision detection, this amount of 
time  will  be  increased.  In  the  case  of  our  experiment,  the 
WebotsTM simulator was running in batch mode. Run a world 
in  “batch  mode”  means  there  is  no  visual  output  of  the 
simulation and the speed of the simulation is not constrained to 
real time. If the simulation can run faster, the simulator will do 
it.  On the computer  used  for  the simulation,  WebotsTM was 
able  to  run it 1.5 faster. 
To  speed  up  the  optimization  process,  the  PSO  has  been 
distributed over a network of 50 nodes. This way, doing 240 
iterations  of the PSO, the total  time required was around 2 
hours ( 32 /1.5∗240 ).

The  implementation  of  the  CPG  realized  by  [15]  was  the 
starting  point.  That  implementation  didn't  include  the 
possibility to add bidirectional connection in the coupling of 
oscillators. Moreover, it was not possible to optimize only a 
subset  of  the  servo  modules.  For  example,  sometimes  it's 
interesting to optimize symmetrically the gait. The number of 
parameters  will  be  decreased  and  the  likelihood  of  the  gait 
optimized versus a gait existing in nature will be increased. 
To overcome these limitations, the initial implementation has 
been  improved.  In  the  configuration  file  relative  to  a 
controller, there is the description of all the servo involved in 
the  optimization  and  there  is  the  list  of  all  the  connection 
between these ones. A flag named “bidir” allows to enable or 
disable  the  mirroring  of  the  coupling  weight.  In  fact,  a 
bidirectional  connection is  a  connection were the weight of 
each  direction  are  respectively  opposed.   To  be  able  to 
optimize  only a  subset  of  the  parameters  relative  to  all  the 
oscillator, a mapping mechanisms is developed. The output of 

Figure 39: Principle of Particle Swarm Optimization

Figure 40: Module's oscillations around x0 . [15]
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the PSO optimized gives a number X of values between 0 and 
1.  Then,  inside  the   implementation  of  the  controller,  the 
parameters are mapped to their respective oscillators.  

Bidirectional coupling are interesting if ones wants to increase 
the  convergence  speed  of  an  oscillator  and/or  consider 
feedback from sensors. 

In between all the experiments, the performance  is measured 
the same way. As the crux of PSO is the optimization of the 
performance returned by a function. The function defined in 
[15] is used. Every evaluation lasts 32 seconds, in that time the 
robot has to go further possible.  “However the performance 
could not be simply measured as the straight distance between 
the start  and end location,  because in some cases the robot 
makes a  circle  and  stops  close  to  where it  started.  In such 
cases, the performance evaluates poorly even though, only a 
tiny parameter change would be required in order to correct 
the  robot’s  bent  trajectory.  To  overcome  this  problem,  the 
cumulated or  integrated ground distance was also integrated 
into the performance evaluation.  Robot moving in a straight 
line should still be favored over zigzagging ones. Therefore, 
the  performance  needs  to  reflect  both  straight  and  the 
integrated  distances.  For  this  reason,  the  performance  was 
calculated as the weighted sum of both,  using  the formula 
(17).”[15]

= ∣p N− p1∣∑
i=1

N−1

∣ pi1−pi∣  (17)

where   represents the measured performance, where  pi  is 
the i th  point sampled on the robot trajectory, where N  is the 
total  number  of  sampled  point,  and  where    and    are 
coefficients  that  allow  balancing  the  respective  weights  of 
the   absolute   and   integrated distances.  In our  simulations 
these coefficients were set to  = 1  and  = 1 . In order to 
avoid granting  the  robots  performance  scores  for  plain 
vibrations,  the  trajectory  points  pi   are sampled at 1.0 
second intervals such that a robot is always approximately in 
the same posture when sampling occurs. 

Multiple  optimization  of  CPGs  are  tried  with  a  variable 
number of parameters, below are described and motivated the 
different choices of coupling models, their schematic diagrams 
are numbered from one to five. 

The  Figure 41 states  the name of  the different  servos used 
through  the  experiments,  descriptions  and  later  on  in  the 
discussion of the results.

a) Experiment 1
All servos are linked with an oscillator, the coupling between 
them is unidirectional. The intrinsic frequency of all oscillator 
is the same. Each oscillator having 4 parameters (offset  x 0 , 
amplitude  E , coupling weight  wa  and  wb ). The number 
of parameters to optimize is 64. CPG Model 1 (Figure 42) is 
used.

Figure 41: Name of the servos

Figure 42: CPG Model 1
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b) Experiment 2
The CPG Model 2 is used (see  Figure 43). We can consider 
the movement of  the HEAD and NECK_2 servos as  useful 
only  in  tern  of  vision  stabilization  capabilities.  In  the 
framework of this optimization problem, one's could argue that 
only the impact of the weight of the head on the dynamics of 
the body is important, the servo HEAD and NECK_2 being 
used only to keep the vision stable or to look on the right or 
left, they are kept in position. Only the NECK_1 servo is used 
to  move  the  head.  The  connection  within  the  body are  all 
bidirectional, that way the oscillator of the torso and pelvis are 
supposed  to  converge  faster.  This  experiment  is  improved 
compared to the first one. Observing how a dog walks or runs, 
we can tell that the joints of the leg move the same but are only 
shift in time. Assuming this hypothesis is correct, the size of 
search  space  is  decreased  and the  chance  to  converge to  a 
valuable  optimum  performance  maximized.  Applying  that 
concept,  the  set  of  parameters  of  the  following  pairs  of 
oscillators are considered identical (F_L_3, F_R_3), (F_L_2 , 
F_R_2),  (F_L_1,  F_R_1),  (B_L_3,  B_R_3),  (B_L_2  , 
B_R_2), (B_L_1, B_R_1). It also safe to tell, while a dog is 
walking, that the frequency of the head and pelvis could be 
different from the the other joints.  That's why this time, the 
frequency of  the PELVIS  and NECK_1 oscillator  has been 
optimized between a value of 1Hz and 2Hz. The number of 
parameters to optimized is now 33.

c) Experiment 3
This  experiment  is  similar  to  the  previous  one  except  one 
detail concerning the frequency of the PELVIS and NECK_1 
oscillator.  The  frequency  parameter  is  now  removed,  the 
PELVIS and HEAD will oscillate at the same frequency the 
rest of the oscillators do.  The number of parameters is 32.

d) Experiment 4
Observing real dogs walking, it seems their pelvis is moving 
much  more  from  left  to  right  than  up  and  down.  In  this 
experiment,  the  influence  of  the  PELVIS  servo  has  been 
annihilated. In the same time the NECK_1 has been removed 
since the pelvis and the head are considered to be linked in 
frequency.  The CPG Model 3 (see Figure 44) being used, the 
total number of parameter to optimized falls to 24.

e) Experiment 5
As in experiment 4, the PELVIS and NECK_1 oscillator are 
taken  away. CPG Model  4  (see  Figure  45)  .  An additional 
hypothesis is done, real dog can hardly move their front leg 
laterally far away from their torso. As simplification, in this 
experiment, the F_R_2, F_L_2, B_R_2 and B_L_2 servos are 
kept in fixed position,  keeping their  value as  when the dog 
stand  up.  Since  the pair  of  oscillators  (F_L_1,  F_R_1)  and 
(B_R_1,  B_L_1)  are  identically  optimized,  the  number  of 
parameters is 16.

Figure 43: CPG Model 2

Figure 44: CPG Model 3
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f) Experiment 6
Keeping the same hypothesis as in experiment 5, the pairs of 
oscillators  (F_L_1,  F_R_1)  and (B_R_1,  B_L_1)  have  now 
their own set of optimized parameters. The same model is used 
(see Figure 45). Since the front and back top leg oscillator are 
unpaired, the number of parameters is 24.

4) Results and discussion

The thumbnails showing the best performance obtained so far 
within the context of a given experiment are order from left to 
right  and  top  to  bottom.  These  one  were generated  over  a 
sequence   of  approximatively  5  seconds.  The  aim of  these 
sequence is too visualize the way the robot moves.

As we can see in the plots depicted in the subsection specific 
to each experiments, a maximum of 240 iterations for the PSO 
seems to be a value allowing to converge toward a solution. 
Indeed, due to the random initialization of the 50 particles of 
the  swarm,  the  first  iterations  give wrong performance  and 
then, as the number of iterations increased,  the performance 
increases until it reached an asymptotic limit. The performance 
for all experiments oscillated between approximatively 7 and 
17. 

a) Experiment 1
 Optimized  a  function  having  64  parameters  is  quite   a 
challenge,  using  a  systematic  search  the  cardinality  of  the 
space  would have been  264  which implies  approximatively 
1.84∗1019  sets  of possible  parameters.  A way to distribute 

such a simulation, doing a systematic search, could be to ask 
each  inhabitants  of  the  world[25]  to  run  2.78∗109  
evaluations.  Then,  considering  each  one  of  them  has  a 
computer  able  to  run  the  simulation  32  times  faster.  The 

amount of time required, if we distribute the systematic search 
to all world inhabitants, would be 88 years .

Table 6:  Experiment 1 - Best performance

Observing  Table  6,  we  see  that  the  robot  moves  hardly 
forward,  like  it  was  swimming  on  the  ground.  The  gait 
obtained is not similar to what a real dog does. Nevertheless, 
it is safe to assume the optimization could be more successful 
doing hypothesis on the coupling. That way, the cardinality of 
the problem could be decreased.

b) Experiment 2
Compared to the experiment 1, the cardinality of the problem 
is divided by two. Doing the same analogy about the number 
of world inhabitants, each one of them would have to run only 
one simulation for less than a seconds.

Observing Table 7, we can see the dog is “walking” backward. 
Since the control unit of the robot is heavy compared to the 
rest  of the body, this one being located toward the torso,  a 
backward gait could be a possible solution to overcome the 
stability  problem.  That  hypothesis  seems  to  be  suitable  to 
justify the behavior observed.

Figure  46:  Experiment  1  -  Plot  of  PSO 
performance over 240 iterations.

Figure 45: CPG Model 4
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Table 7: Experiment 2 - Best performance

c) Experiment 3
Looking at  Table  8,  the  dog  is,  in  opposition  to  what  was 
observed in the previous experiment “walking” forward. The 
fact the direction is different is not especially in contradiction 
with  the  result  observed  previously.  Indeed,  in  the  present 
case, the dog keeps the back leg lower while moving, this way 
the  center  of  gravity  is  kept  close  to  the  ground  and  the 
possible problems of stability are avoided.

Table 8: Experiment 3 - Best performance

d) Experiment 4
As showed on Table 9, the robot moves backward and on the 
left keeping his back right leg up. The resulting gait is a bit 
chaotic. This leg being up, the dog as to keep his balance on 
the three other legs while moving. To overcome a possible fall 
on the side with one leg, the dog moves on the opposite side 
with a tendency to walk backward to compensate the position 
of center of gravity being near the torso.

Table 9: Experiment 4 - Best performance

Figure 47: Experiment 2 - Plot of PSO performance 
over 240 iterations.

Figure 48: Experiment 3 - Plot of PSO performance 
over 202 iterations.
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e) Experiment 5
In this experiment, the dog is moving forward. Front and back 
legs  are  respectively  synchronized.  Since  the  oscillator 
parameters of the front left leg are mirrored to the right leg and 
respectively the same for the back leg. As in a real dog gallop 
gait, the phase shift between back and front oscillator is the 
same. The center of gravity is closer to the torso, then when 
the dog is falling, his head and the fact the front leg are bended 
allows him to go back to his position.  Indeed,  while at this 
position, the movement of the back leg backward give enough 
inertia to the body to make it stand back on the four legs.

Table 10: Experiment 5 - Best performance

f) Experiment 6
Similarly to the experiment 5, the shoulder servos are in fixed 
position keeping the legs close to the body and avoiding gait 
where  the  dog  is  almost  “swimming”  on  the  ground.  In 
opposition  to  the  previous  experiment,  the  F_R_1,  F_L_1, 
B_L_1  and  B_R_1  oscillators  are  optimized  independently 
allowing to have different weight between them so different 
phases difference. As in a real dog walking gait, the four legs 
are phase shifted.

Table 11: Experiment 6 - Best performance

Figure 49: Experiment 4 - Plot of PSO performance 
over 240 iterations.

Figure 50: Experiment 5 - Plot of PSO performance 
over 240 iterations.
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VII.  CONCLUSION

It  is  believed that  the model  of  the Bioloid  robot  has been 
successfully designed. The physics were applied to the model 
and  the  static  validation  of  the  model  is  on  average  good 
enough.  Despite  the  efforts  made,  a  lot  of  work  remains 
outstanding and multiple aspects can be improved

Developing a Bioloid  specific modeling language helping at 
describing easily the connection in between the existing pre-
defined  shape   would  be  a  cornerstone  in  the  future 
development of model.

Validating  the  approximation  of  crutch  bounding  object  is 
good enough and that the physic parameters  concerning the 
coulomb friction and the bounciness are matching the behavior 
of the real quadruped robot.  And later on, developing a test 
allowing to check if WebotsTM behaves the same way when the 
simulation are done in “run”, “fast” and “batch” mode would 
consolidate the results obtained so far.

As  discussed,  with  the  Australian  team responsible  for  the 
hardware development, the initial design of the robot has been 
updated  to  give  the  quadruped  an  “aibo”  style of  walking. 
Wedges were added between the knee and the lower leg to add 
a  permanent  offset  of  18  degrees.  Adapting  the  inverse 
kinematics model and comparing the performance of the gaits 
given this new anatomy of the quadruped could be interesting. 
Moreover,  the  CPG  optimization  could  also  be  redone 
considering these wedges.

According  to  the  outcome  of  the  different  optimization, 
following the parameters optimized and the coupling  model of 
the  CPG,  it  could  be  interesting  to  implement  a  more 
sophisticated central pattern generator more sophisticated. For 
example,  the  inverse  kinematics  model  developed  could  be 
implemented with oscillators being coupled at the same time to 
the pelvis and neck. The function to measure the performance 
could also be improved. Favored forward gait, add bounding 
to  the  possible  position  of  a  body part.  For  example,  give 
credit if the head stay above a given line or stay horizontal.

The most efficient gait implemented was discovered to be the 
trotting one obtained after using the inverse kinematics model. 
However, fat from being perfect the robot do not go always 
straight. Given a target aim, the robot could adapt and try to 
add correction to his current direction to keep the orientation. 
The  turning  right  and  left  operations  could  also  be 
extrapolated from the improved gait. 

As depicted on  Figure 52, multiple robot are able to evolve 
simultaneously  on  the  soccer  field  matchng  the  demo 
requirements  [31]. Additional  work has  to  be  conducted  to 
allow the quadruped to detect the ball within his environment 
and try to kick it. 

A plus to the current implementation could be the ability to 
cross-compile the WebotsTM controller into CM5 controllers. 

ACKNOWLEDGMENT

I gratefully acknowledge the technical support and the advices 
of  Prof.  Auke Jan Ijspeert,  Olivier  Michel,  Yvan Bourquin, 
Peter  Turner  and  Robin  Fisher  in  the  design  and 
implementation of the quadruped robot model. I  would like to 
acknowledge  Laurent  Lessieux  for  his  work  on  the  X  file 
processing.  Finally,  I   also  acknowledge   Matteo  Thomas 
DeGiacomi and Allessandro Crespi for their advices and help 
in the everyday lab life. This work was made possible thanks 
to the Biologically Inspired Robotic Group.

REFERENCES

[1]        O. Michel, Cyberbotics Ltd – WebotsTM: professional  
mobile robot simulation. International Journal of Advanced 
Robotic Systems (2004) Volume 1 Number 1: pp. 39-42.

[2]        S. Russell, Open Dynamic Engine (ODE): open 
source and high performance library for simulating rigid  
body dynamics. - http://www.ode.org/

[3]        Research projects, game or various tools that are using 
ODE. - http://www.ode.org/users.html

Figure 51: Experiment 6 - Plot of PSO performance 
over 240 iterations.

Figure 52: Six quadruped playing on a soccer field

http://www.ode.org/
http://www.ode.org/users.html
http://www.ode.org/users.html
http://www.ode.org/users.html
http://www.ode.org/
http://www.ode.org/


22

[4]        Atmega128, 128-Kbyte self-programming Flash 
Program Memory, 4-kbyte SRAM, 4-kbyte EEPROM, 8 
Channel 10-bit A/D-converter. JTAG interface for on-chip-
debug. -  http://www.atmel.com

[5]        Bioloid User Guide -  Understanding ID, Address and  
data p27 - 
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%
20User%27s%20Guide.pdf

[6]        A extended Object file format description - 
http://www.eg-models.de/formats/Format_Obj.html

[7]        http://en.wikipedia.org/wiki/Wavefront_Technologies

[8]        Text File format of The Persistence of Vision 
Raytracer, or POV-Ray which is a ray tracing program 
available for a variety of computer platforms. - 
http://en.wikipedia.org/wiki/POV-Ray

[9]        Art of Illusion, free and open-source java-based 
modeling and rendering studio - http://aoi.sourceforge.net/

[10]      Virtual Reality Modeling Language - 
http://en.wikipedia.org/wiki/VRML

[11]      WebotsTM Nodes Chart - 
http://www.cyberbotics.com/cdrom/common/doc/webots/refer
ence/section4.1.html 

[12]      WebotsTM Reference Manual -Physics Node - 
http://www.cyberbotics.com/cdrom/common/doc/webots/refer
ence/section2.33.html

[13]      M. L. Shik, F. V. Severin, G. N. Orlovskii, Control of  
Walking and Running by Means  of Electrical Stimulation of  
the Mid-Brain. Biophysics, 11:756-765, 1966.
 
[14]      S. Grillner, Neurobiological Bases of Rhythmic Motor 
Acts in Vertebrates. Science, New Series, Vol. 228, No. 4696 
(Apr. 12, 1985), 143-149.

[15]      Y. Bourquin, Self-Organization of Locomotion 
in Modular Robots. MSc Dissertation, p16, p26

[16]      J. Kennedy, R. Eberhart, Particle Swarm 
Optimization. Proceedings of the 1995 IEEE International 
Conference on Neural Networks, pp. 1942-1948, IEEE Press. 

[17]     Y.  Shi, and R. C. Eberhart, (1998). Parameter 
selection in particle swarm optimization.  In Evolutionary 
Programming VII: Proc. EP98, New York: Springer-Verlag, 
pp. 591-600.

[18]      A.  J.  Ijspeert,  J.-M.  Cabelguen  (2003),  Gait  
transition  from  swimming  to  walking: investigation  of  
salamander  locomotion  control  using  non-linear 
oscillators.  In Proceedings of Adaptive Motion in Animals 
and Machines, 2003. 

[19]      A. Pikovsky, M. Rosenblum, and J. Kurths,  (2001). 
Synchronization, a universal concept in nonlinear sciences. 
Cambridge Nonlinear Sciences Series 12. 

[20]      S. Mojon, (2004). Using nonlinear oscillators to  
control the locomotion of a simulated biped robot. 
Unpublished Diploma Thesis. 
http://birg.epfl.ch/page44565.html

[21]      User manual of Dynamixel Sensor module AX-S1, 
release of 06-14-2006

[22]      User manual of Dynamixel module AX-12, release of 
06-14-2006

[23]      Microsoft Direct X API - 
http://en.wikipedia.org/wiki/DirectX

[24]      KDE development Environment - 
http://www.kdevelop.org/

[25]      Bioloid QuickStart “Comprehensive Kit” Manual - 
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickSta
rt(Comprehensive   Kit).pdf  

[26]      Rotation representation - 
http://en.wikipedia.org/wiki/Rotation_representation_(mathem
atics)

[27]      WebotsTM Reference Manual - Servo Node - 
http://www.cyberbotics.com/cdrom/common/doc/webots/refer
ence/section2.37.html

[28]      Number of world inhabitants – 
http://www.worldpopclock.com

[29]      P. Turner, Mathematics required for Legged Robotic  
Motion, rev 1, September 2006

[30]      R. M. Alexander, Locomotion of Animals. Glasgow, 
London, U.K.:Blackie, 1982.

[31]      Rules for the Four Legged Robot League - 
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007
.pdf

APPENDIX

All the videos, sources code and data files acquired during the 
different experiments will be posted on the project  website. 
The current project page is  http://wiki.epfl.ch/wsrl. This page 
is susceptible to change in the future, in case the link is dead. 
You will be able to look for additional information using the 
Biologically  Inspired  Robotic  Group  (BIRG)  page  at 
http://birg.epfl.ch or http://birg.epfl.ch/page32024.html . 

http://birg.epfl.ch/page32024.html
http://birg.epfl.ch/page32024.html
http://birg.epfl.ch/page32024.html
http://birg.epfl.ch/
http://birg.epfl.ch/
http://birg.epfl.ch/
http://wiki.epfl.ch/wsrl
http://wiki.epfl.ch/wsrl
http://wiki.epfl.ch/wsrl
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.worldpopclock.com/
http://www.worldpopclock.com/
http://www.worldpopclock.com/
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive%20Kit).pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive%20Kit).pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive%20Kit).pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.kdevelop.org/
http://www.kdevelop.org/
http://www.kdevelop.org/
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/DirectX
http://birg.epfl.ch/page44565.html
http://birg.epfl.ch/page44565.html
http://birg.epfl.ch/page44565.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/VRML
http://aoi.sourceforge.net/
http://aoi.sourceforge.net/
http://aoi.sourceforge.net/
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/Wavefront_Technologies
http://en.wikipedia.org/wiki/Wavefront_Technologies
http://en.wikipedia.org/wiki/Wavefront_Technologies
http://www.eg-models.de/formats/Format_Obj.html
http://www.eg-models.de/formats/Format_Obj.html
http://www.eg-models.de/formats/Format_Obj.html
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.atmel.com/
http://www.atmel.com/
http://www.atmel.com/


23

function [e1, e2, e3, theta] = euler2vrml(alphaX, alphaY, 
alphaZ) 
% see 
http://en.wikipedia.org/wiki/Rotation_representation_%28ma
thematics%29

%convert degree to pi-rad
alphaX = alphaX * pi/180;
alphaY = alphaY * pi/180;
alphaZ = alphaZ * pi/180;

% compute the Direction Cosine Matrix (DCM) from euler 
angles
Ax = [1 0 0; 0 cos(alphaX) -sin(alphaX); 0 sin(alphaX) 
cos(alphaX)];
Ay = [cos(alphaY) 0 sin(alphaY); 0 1 0; -sin(alphaY) 0 
cos(alphaY)];
Az =  [cos(alphaZ) -sin(alphaZ) 0; sin(alphaZ) cos(alphaZ) 
0; 0 0 1]; 
A = Az * Ay * Ax;

%check DCM back to euler
 atan2(A(3,1), A(3,2)) * 180/pi
 acos(A(3,3)) * 180/pi
 -atan2(A(1,3), A(2,3)) * 180/pi

% compute the euler angle / rotation axis from the DCM
theta = acos( (A(1,1) + A(2,2) + A(3,3) - 1) / 2); 
e1 = ( A(3,2) - A(2,3) ) / ( 2 * sin(theta) );
e2 = ( A(1,3) - A(3,1) ) / ( 2 * sin(theta) );
e3 = ( A(2,1) - A(1,2) ) / ( 2 * sin(theta) );

Table 12: Matlab script to convert from Euler angle notation  
to VRML angle(euler axis/angle) notation

CM5 F6 AX12

AX-S1 BRACKET F2

F1 F3 SPACER

Table 13: List of shape needed to build the quadruped robot.

function [alphaX, alphaY, alphaZ] = vrml2euler(X, Y, Z, 
theta) 
% see 
http://en.wikipedia.org/wiki/Rotation_representation_%28ma
thematics%29

% compute the Direction Cosine Matrix (DCM) from euler 
angle / rotation axis
E = [X Y Z]'; 

%normalized vector
E = E / norm(E);

A = eye(3) * cos(theta) + (1 - cos(theta)) * E*E' - [0 -Z 
Y; Z 0 -X; -Y X 0] * sin(theta); 

%transpose matrix
A = A';

% compute the euler angle / rotation axis from the DCM
alphaX = acos(A(3,3));
alphaY = atan2(A(3,1), A(3,2));
alphaZ = pi - atan2(A(1,3), A(2,3));

%convert  pi-rad to degree
alphaX = alphaX * 180/pi;
alphaY = alphaY * 180/pi;
alphaZ = alphaZ * 180/pi;

Table  14:  Matlab script  to convert  from VRML angle(euler  
axis/angle) notation to Euler notation

ANOUKA Supervisor
  CM5_TRANS Trans { CM5_SHAPE Shape }
  CM5UNIT_TRANS Trans { CM5UNIT_SHAPE Shape }
  F3_FRONT_LEFT_1_TRANS Trans
    F3_SHAPE Shape
    F3_FRONT_LEFT_2_TRANS Trans

Figure 53: WebotsTM Nodes Chart outlining all the  
nodes available to build Webots worlds [11]
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  AX12_FRONT_LEFT_1_TRANS Trans
    AX12_SHAPE Shape
  FRONT_LEFT_1_SERVO Servo
    F1_FRONT_LEFT_1_TRANS Trans { F1_SHAPE Shape }
    FRONT_LEFT_2_SERVO Servo
      AX12_FRONT_LEFT_2_TRANS Trans { AX12_SHAPE }
      F3_FRONT_LEFT_3_TRANS Trans
        F3_CROSSED_GRP Group { F3_SHAPE }
          F3_CROSSED1_TRANS Trans { F3_SHAPE }
        AX12_FRONT_LEFT_3_TRANS Trans { AX12_SHAPE }
      FRONT_LEFT_3_SERVO Servo
        F2_TRANS Trans { F2_SHAPE Shape } 
        CRUTCH_FRONT_LEFT Trans
          CRUTCH_DISC_SHAPE
          CRUTCH_TRANS Trans { CRUTCH_SHAPE }
          CRUTCH_PLASTIC_TOP_TRANS Trans 
{ CRUTCH_PLASTIC_TOP_SHAPE }
          CRUTCH_PLASTIC_BOTTOM_TRANS Trans 
{ CRUTCH_PLASTIC_BOTTOM_SHAPE }
  F3_NECK1_TRANS Trans
    F3_CROSSED_GRP
    AX12_NECK1_TRANS Trans { AX12_SHAPE }
  NECK1_SERVO Servo
    F2_NECK1_TRANS Trans { F2_SHAPE }
    NECK2_SERVO Servo
      AX12_NECK2_TRANS Trans { AX12_SHAPE }
      F6_NECK2_LEFT_TRANS Trans { F6_SHAPE }
      F6_NECK2_RIGHT_TRANS Trans { F6_SHAPE }
      F2_NECK2_CENTER_TRANS Trans
        F2_SHAPE
        BRACKET_NECK2_CENTER_TRANS Trans
          BRACKET_SHAPE Shape
            F1_NECK2_CENTER_TRANS Trans
              F1_SHAPE
              BRACKET_NECK2_LEFT_EAR_TRANS Trans 
{ BRACKET_SHAPE }
              BRACKET_NECK2_RIGHT_EAR_TRANS Trans 
{ BRACKET_SHAPE }
        HEAD_SERVO Servo
          AX12_HEAD_TRANS Trans { AX12_SHAPE } 
          F3_HEAD_TRANS Trans
            F3_CROSSED_GRP
            AX12_HEAD_2_TRANS Trans { AX12_SHAPE } 
  F3_FRONT_RIGHT_1_TRANS Trans { F3_FRONT_LEFT_1_TRANS }
  AX12_FRONT_RIGHT_1_TRANS Trans { AX12_SHAPE }
  FRONT_RIGHT_1_SERVO Servo
    F1_FRONT_RIGHT_1_TRANS Trans { F1_SHAPE }
    FRONT_RIGHT_2_SERVO Servo
      AX12_FRONT_RIGHT_2_TRANS Trans
        AX12_SHAPE
      F3_FRONT_RIGHT_3_TRANS Trans
        F3_CROSSED_GRP
        AX12_FRONT_RIGHT_3_TRANS Trans { AX12_SHAPE }
      FRONT_RIGHT_3_SERVO Servo
        F2_TRANS Trans { F2_SHAPE }
        CRUTCH_FRONT_LEFT
  F3_PELVIS_LEFT_1_TRANS Trans
    F3_SHAPE
    BRACKET_PELVIS_LEFT_1_TRANS Trans
      BRACKET_SHAPE
      F6_PELVIS_LEFT_1_TRANS Trans { F6_SHAPE }
  AX12_PELVIS Trans { AX12_SHAPE }
  PELVIS_SERVO Trans
    PELVIS_1_TRANS Trans
      SPACER_SHAPE Shape
      F3_PELVIS_LEFT_1 Trans { F3_SHAPE }
      AX12_BACK_LEFT_1 Trans { AX12_SHAPE }
      F3_PELVIS_RIGHT_1 Trans { F3_SHAPE }
      AX12_BACK_RIGHT_1 Trans { AX12_SHAPE }

    PELVIS_2_TRANS Trans
      SPACER_SHAPE
      F6_PELVIS_LEFT_1 Trans { F6_SHAPE }
      F6_PELVIS_RIGHT_1 Trans { F6_SHAPE }
    BACK_LEFT_1_SERVO Servo
      F1_BACK_LEFT_1_TRANS Trans { F1_SHAPE }
      BACK_LEFT_2_SERVO Servo
        AX12_BACK_LEFT_2_TRANS Trans { AX12_SHAPE }
        F3_BACK_LEFT_3_TRANS Trans
          F3_CROSSED_GRP
          AX12_BACK_LEFT_3_TRANS Trans { AX12_SHAPE }
        BACK_LEFT_3_SERVO Servo
          F1_TRANS Trans { F1_SHAPE }
          CRUTCH_BACK_LEFT Trans
            CRUTCH_FRONT_LEFT
    BACK_RIGHT_1_SERVO Servo
      F1_BACK_RIGHT_1_TRANS Trans { F1_SHAPE }
      BACK_RIGHT_2_SERVO Servo
        AX12_BACK_RIGHT_2_TRANS Trans { AX12_SHAPE }
        F3_BACK_RIGHT_3_TRANS Trans

          F3_CROSSED_GRP
          AX12_BACK_RIGHT_3_TRANS Trans { AX12_SHAPE }
        BACK_RIGHT_3_SERVO Servo
          F1_TRANS Trans { F1_SHAPE }
          CRUTCH_BACK_LEFT
  F3_PELVIS_RIGHT_1_TRANS Trans
      F3_PELVIS_LEFT_1_TRANS

Table  15: Simplified  representation of  the robot model,  the 
gray lines show the servo nodes. 
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