
1

Abstract — The fundamental achievement of this project was
the development of a three-dimensional model that closely
resembles the real quadruped robot. While the static
characteristics of the model were validated against the actual ones
of the real robot, the dynamical ones were defined by the results
of applying the inverse kinematics model. These were considered
best when compared to the ones yielded by the particle swarm
optimization (PSO) of central pattern generator (CPG), an
alternate method to determine the properties in question. The
development of this model will serve as the foundation of a
demonstration involving four to six robots playing on a virtual
soccer field.

This paper highlights and contextualizes our implementation
and outlines the crux of the problem in order to motivate future
related research.

Index Terms— Quadruped robot, 3D model, simulation, four-
legged walking gait , central patterns generators, particle swarm
optimization, inverse kinematics

I. INTRODUCTION & MOTIVATION

he modeling of a real robot is a complex and passionating
challenge. On the crossing point of mechanics, physics

and computer-science, the development of a complete model
involves multiple tasks ranging from the 3D modeling of the
different body parts, the measure of the different physic
properties, the understanding of WebotsTM simulator to the
development of a central pattern generator or inverse
kinematic model allowing the robot to move.

T

The project was built on the top of two cornerstones: the
elaboration of an accurate model both efficient and realistic,
and the development of a demo showing the capacities of
WebotsTM simulator to render a 3D model while simulating
the physics.

Multiple component were developed allowing to ease the
coding of the model, to validate easily the static
characteristics, to distribute the optimization of a central
pattern generator on cluster of computers.

Experimental results were gathered leading to clear
conclusions. However, a additional test would validate the
conclusions even further. There is still a large amount of work
to be done and, with this document in hand any master-level

Report written July 04, 2007.

1. e-mail: jean-christophe.fillion-robin@epfl.ch

engineering student should be able to take the project further.
Despite of what is outstanding, the overall satisfaction at this
point in time from both, team member and collaborators, is
high.

The remaining of this document aims at describing the Bioloid
kit used to build the robot, presenting the WebotsTM simulator
used to render and simulate the model, and, finally illustrating
the different phases of the project.

II. BIOLOID KIT

Bioloid Kit is a composed of a collection of block-shaped
parts (see Appendix) and servos (see II.C), a sensor
module(see II.B) and a control unit (see II.A) that the user can
assemble together to build a sophisticated robots. The
connection between the different parts can be easily achieved
using a simple screw driver, the frames made from injection
molded plastic fit and connect perfectly (see Figure 1).

A. Control unit and Communication bus
The control unit is so called the CM5 module and is based on
a micro controller Atmel ATMega 128 [4]. The rechargeable
battery pack of 9.6V is also embedded in the CM5 module.
All servos have a network ID programmed in their non-volatile
memory and are connected together via a TTL Serial Network
(see Figure 2).

Modeling of a real quadruped robot
using WebotsTM simulation platform

Jean-Christophe Fillion-Robin1

School of Computer and Communication Sciences (I&C)
Ecole Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland

Figure 1: Example of connection of a AX12
dynamixel servo

Figure 2: Servos and sensors connected to CM5 unit via 3
wire TTL serial network

2

Each unit in the Bioloid Kit has his own assigned ID [5]. The
CM-5 has ID200. The sensor module has ID100. The servos
module can have IDs between 1 and 19.
Figure 3 illustrates the connection of the different module of
the real robot and the corresponding module IDs.

B. Sensor module
The Sensor Module AX-S1 is a Smart Sensor Module that
integrates the following functions [21]:
– embedded with three directions infrared sensor, making

it possible to detect left/center/right distance angle as well
as the light.

– built-in remote control sensor in center, making it possible
to transmit and receive infrared data between sensor
modules.

– built-in micro internal microphone, making it possible not
only to detect current sound level and maximum loudness
but also an ability to count the number of sounds, for
instance, the numbers of hand clapping.

– Built-in buzzer allows the playback of musical notes and
other special note effects.

C. AX12 module
The AX12 module [22] is a smart, modular actuator that
incorporates a gear reducer, a precision DC motor and a
control circuitry with networking functionality, all in a single
package. Despite its compact size, it can produce high torque.
It also has the ability to detect and act upon internal conditions
such as changes in internal temperature or supply voltage.
Position and speed can be controlled with a resolution of 1024
steps (see Figure 4).

The AX12 module[22] can alert the user when parameters
deviate from user defined ranges (e.g. internal temperature,
torque, voltage, etc) and can also handle the problem
automatically (e.g. torque off).

D. Behavior editor
The Behavior Control Program allows to define a set of rules.
Then, as a function of the robot current state and the outcome
resulting in the application of these predefined rules, actions
are done.
The description of the different rules is done using a graphic
based programming environment (see Figure 5), in this way all

Figure 3: Wiring of the Dynamixel module
Figure 4: Rear view of the Dynamixel
AX-12 module and the corresponding
actuation position.

Table 2: AX-12 module technical specifications [22]

Table 1: AX-S1 sensor module technical specifications [21]

3

motion defined using the Motion editor (see II.E) can be
connected together depending on input from the sensors and
programmatic logic.

The commands provided with the Behavior Control Program
include:

• program control commands (START, END),
• conditional branching commands (IF,ELSE

IF,ELSE,CONT IF) with conditional operations (=, >,
and > =, <, and < = =),

• program sequencing commands (JUMP &
CALL/RETURN),

• numeric commands (COMPUTE), and
• assignment commands (LOAD).

After a Behavior control program is defined, this one can be
tested remotely or uploaded to the CM5 unit.

E. Motion editor
The Motion Editor is a package that allows the user, using a
graphics based interface (see Figure 6), to move the motors of
a robot simply by increasing or decreasing the number that
describes the motors current position.

Motions are built up frame-by-frame - very similar to a story
board in an animation sequence. This allows quite
complicated"animations" to be programmed and tested. Once a
motion has been defined it can then be downloaded into the
CM5 memory and called from the Behavior Control Program.

There is two way of recoding the frame:
– According to a function defined by the user, all servo

positions can be pre-computed and entered manually in
the motion editor. This method presents the advantages of
being rigorous since all servo positions are set considering
the shape and the geometry of the robot.

– Since the servos can be aware of their own position, the
current position of the robot can be recorded and a
sequence can be described step by step. The cons of such
a method is, for example, concerning the quadruped robot,
the in-accuracy between the position recorded for each
legs. The position of the members being set manually,
plus the fact the robot can fall due to his proper weight,
makes this method a non rigorous way to implement gait
or motion. Nevertheless, this later one allows to fast
prototyping motion and could help to check ideas.

The motion editor is a valuable option if the user limits himself
to program the existing example. When a new robot is design,
since the 3D model is not existing in the motion editor, the
user isn't able to visualize the frames already entered. He can
only visualize the current position being reproduced remotely
on the real robot while entering the frame.

III. WEBOTTM SIMULATOR

WebotsTM is a commercial software developed by Cyberbotics
Ltd. It is “a mobile robotics simulation software that provides
you with a rapid prototyping environment for modeling,
programming and simulating mobile robots. The provided
robot libraries enable you to transfer your control programs to
several commercially available real mobile robots. WebotsTM

enable you to transfer your control programs to several
commercially available real mobile robots. WebotsTM lets you
define and modify a complete mobile robotics setup, even
several different robots sharing the same environment. For
each object, you can define a number of properties, such as
shape, color, texture, mass, friction, etc. You can equip each
robot with a large number of available sensors and actuators.
You can program these robots using your favorite
development environment, simulate them and optionally
transfer the resulting programs onto your real robots.
WebotsTM has been developed in collaboration with the Swiss

Figure 5: Behavior editor GUI

Figure 6: Motion editor GUI

4

Federal Institute of Technology in Lausanne, thoroughly
tested, well documented and continuously maintained for over
7 years.”[1]

The core of WebotsTM is based on the robust and powerful
physics engine: Open Dynamics Engine (ODE)[2]. The two
main components of ODE are the rigid body dynamics
simulation engine and the collision detection engine. As we ll
see, the development of a model involved multiple phases:
ranging from the “drawing” of the body parts (see IV.A)., the
definition of the bounding objects (see IV.C.3)., the setup of
the physical properties (see IV.C.2). ODE is used both as a
research-helper package or as a computer game development
library helping at providing more realistic behaviors. Open-
source and freely available, as of today, ODE is involved in
the development of almost 100 referenced projects[3]. Started
in 2001 and with the huge number of contributors, as a mature
C++ API and a platform independent package, ODE is known
to be a successful and promising Physics engine.

The basic behind the design of a WebotsTM model are quite
simple. A fully functional model (see Figure 7) is composed of
at least a world file (see III.2) and a controller. A controller is
a program mapped to an entity represented in the world,
allowing to give it instruction regarding his surrounding
environment, his internal state, instruction received from an
other controller [...].

The execution of world starts with the opening of a world file
(WBT file extension). WebotsTM parses the file and check for
inconsistencies. Then, it extracts the controller(s) name(s)
corresponding to the different entities (customRobot,
Supervisor node) . Finally, each entity has his own instance of
controller running. WebotsTM with the help of ODE engine can
animate and render the scene in respect of the physics. The
specificities of the simulator regarding the development of the
model will be reviewed in the subsidiary parts of this paper.

IV. MODELING

As stated in [1], the design of a model out of one's imagination
could be done in few hours. In our case, it's a quite more

sophisticated problem since we have the real robot and we
want to build its most accurate representation both in respect
of its visual and its body dynamics.

A. Visual Aspect
The Bioloid kit comes with a set of example assembly
instructions. For each of them, a motion file and behavior file
are provided. Since the motion file contains the 3D model with
the exact shape of all the body parts, it could be interesting to
be able to extract the useful informations and generate one file
for each ones. A collaborator, Laurent Lessieux, specialist of
robotic modeling and simulation, provided me with some
code able to create OBJ files for each part from the X file
provided with the Bioloid Kit. The X files are the 3D
description files used by Microsoft DirectX API[23]. Indeed,
there is already a set of examples provided with the kit and
each example has the corresponding 3D model allowing to
visualize it in the motion editor. Thanks to his work, the initial
phase involving the shaping of the 3D body parts was speed
up.

1) Shape simplification using 3D modeling tool
Having all 3D files corresponding to all the different shapes is
a good advantage. The OBJ format corresponds to the
“standard 3D object file format created for use with
Wavefront's Advanced Visualizer. Object Files are text based
files supporting both polygonal and free-form geometry
(curves and surfaces).”[6][7]
It exists an open-source 3D modeling and rendering studio
allowing to import an object file and export it to POV[8] file
format or VRML(Virtual Reality Modeling Language) file
format. Called Art of Illusion (AOI)[9], this Java-based tool
provides an easy way to model 3D shape or even edit existing
one.
VRML is a standard file format to represent 3D interactive
graphic vectors.[10]
VRML language allows to natively describe spheres, cubes,
cones or extrusions. If the modeled element is converted to a
triangle mesh shape. The efficiency of the rendering will be a
direct function of the number of triangle meshes.
Some of the shape provided were too complex, they presented
a high degree of details and for the sack of the modeling, it
was not necessary to keep such low level details. (see Figure 8
and Figure 9)

Figure 8: CM5 shape before simplification - the VRML
exported file is about 158.5Kb

Figure 7: WebotsTM functional diagram

5

The 3D modeling of a model is a trade of between visual
realism and rendering complexity.

2) WebotsTM scene description
The description of scenes follows a VRML-like language, in
that way all shapes modeled using the 3D modeling tool
mentioned above can be easily imported.
There is two ways of describing a world scene, either using the
WebotsTM built-in VRML editor or using an external editor.
Kdevelop[24] revealed to be an interesting option since it can
handle VRML file easily and fold/unfold VRML node. This
last feature of the editor allows to get a better overview of the
work done so far.
The WebotsTM Nodes chart (see Appendix) is useful to
understand what are the existing nodes, and from what kind.

3) Model of the quadruped robot
The elaboration of the quadruped robot model was a tedious
and long process. While at it, I tried to keep the model clear,
efficient and simple to understand. The various part used to
construct the robot are referenced in the QuickStart
manual[25] with a letter 'F' and a number discriminating the
part. The same nomenclature is used in the world file. The
Table 13, available in the Appendix, shows their names and
their corresponding shapes.
A given shape is oriented in the world, then depending on their
location in the node hierarchy, this one needs to be rotated.
Within VRML, rotation are expressed with the notation “euler
angles/axis”[26] (the 3D coordinate of one point and an angle
) the field rotation allows to apply such a rotation. The

common way of expressing rotation and visualizing easily this
one is the representation “euler angle” (an angle of rotation
corresponding to each axis). To ease the development of the
model, a set of two Matlab functions allows the conversion
between the two representations (see Appendix).

Figure 10 shows the final quadruped robot model rendered in
WebotsTM. A simplified and more readable release of the world
file is also available in Appendix. The complete listing will be
accessible from the project web page.

Following the recent mails and over skype exchanges with the
members team of Newcastle University, responsible for the
hardware design of the robot, they updated the design of the

robot and added wedges below the “knee” actuator to add a
permanent offset of 18 degrees (Figure 11). The purpose of
this update was to make the robot able to walk with an aibo-
style and ease the development of an efficient gait. In the
framework of this project and due to time constraints, only the
initial design of the robot has been used and validated.

B. Animate the model
The servo nodes(see Figure 12) are the links between the
controller and the visual representation of the model. Giving
orders to these servos, the WebotsTM rendering engine is able
to recompute the new position of the different joints, this way
the model is animated and can interact with the physics of the
world.

Figure 9: CM5 shape after simplification - the VRML
exported file is about 5.5Kb

Figure 10: Model of the quadruped robot rendered
in WebotsTM

Figure 11: Model of the updated quadruped
robot rendered in WebotsTM, having the 18
degrees wedges

6

The realism of the simulation can be achieved setting the right
physics parameters to the servo nodes. It's safe to assume all
the servos present similar characteristics. No measure of the
real performance has been done on the servo itself. Instead, the
technical documentation has been considered (see II.C).

The different fields of the servo node are listed below, the
Figure 13 allows to get a better understanding of the influence
of each one.

maxVelocity: It “specifies the default and maximum value for
the desired motor speed'”[27] The value given in the specs is
0.196 sec /60degrees which can be converted to
1.70rad / sec . This later value will be used in the servo

node.

maxForce: It “specifies the default and maximum motor
torque/force F that is sent to the physics simulator.”[27] The
documentation of the servo module talks about “final max
holding torque”. The given value is 16.5 KgForce.cm which
can be converted to 16181 N.m .

acceleration: It “defines the default motor acceleration A used
by the servo-controller to compute the current speed Vc”[27]

maxPosition and minPosition: They “define the soft limits of
the servo. Soft limits specify the software boundaries beyond

which the servo-controller will not attempt to move. If the
controller calls servo_set_position() with a target position that
exceeds the soft limits, the desired target position will be
clipped in order to fit into the soft limit range. Since the initial
position of the servo is always zero, minPosition must always
be negative or zero and maxPosition must always be positive
or zero. When both minPosition and maxPosition are zero (the
default), the soft limits are deactivated. Note that the soft
limits can be overstepped when an external force, that exceeds
the motor force, is applied to the servo. For example, it is
possible that the own weight of a robot exceeds the motor
force that is required to hold it up”.[27]

C. Physics
An accurate model is not only a visually realistic one, its body
dynamics need to match the ones of the real robot. It's
important to ask ourself the right questions about which
physical characteristics need to be simulated and with which
degree of abstraction or simplification. The overall
performance of the model will depend of the initial choices
made by the scientist.
A simulation platform runs on a computer, as a consequence
the simulation can't be continuous in time. The physics of the
model need to be computed at regular time step.
One of the goals of the modeling was to be able to have at
least 6 robots walking on the same ground in real time. The
real time constraint is not the least, since if the simulation runs
as wanted, it shows how the real dogs would walk for real,
assuming the physic of the model is enough accurate and the
model validated.

In case physic is added to the model, WebotsTM expects to see
its definition under any Solid node type. The WebotsTM Nodes
Chart helps in understanding the node inheritance model and
their relationship to each other (see Appendix).

1) Measure of the real robot properties

a) Mass of the body parts
Using a letter scale, the different body parts of the robot has
been weighted. The term “body part” is used to describe a
section between 2 servos. Indeed, the WebotsTM simulator will
apply the physics to all objects of the node hierarchy present
between 2 servos .

Figure 12: WebotsTM specification of the Servo node

Figure 13: Rotational servo and the matching WebotsTM servo
node fields

Table 3: Weight of the different body parts

Part id Mass [g] Part id Mass [g]
BODY 692 N_1 10
PELVIS 146 N_2 118
F_L_1 12 B_L_1 12
F_R_1 12 B_R_1 12
F_L_2 126 B_L_2 126
F_R_2 126 B_R_2 126
F_L_3 32 B_L_3 34
F_R_3 32 B_R_3 34
HEAD 110

7

Table 3 summarizes the measures. The robot presenting
similar body part, it's has been admitted their weight was
equals. That hypothesis explains the redundancy of the value.

b) Center of Mass
The next step was to determine the position of center of
mass(CoM) of the different body parts. The letter scale used
before wasn't able to provide the right information concerning
the X, Y, and Z location of the CoM. A simple way to
overcome that problem was to construct a CoM measurer.

As illustrated on Figure 14, the CoM measurer is composed of
3 main elements: the plate, the magnet and the axes. Before
using it, the first step is to make the “zero”. To achieve that
purpose, the magnet can be slided from left to right or from
right to left until the plate is almost at equilibrium. The second
phase concerns the measuring of the CoM itself. The body part
is set on the plate and smoothly moved from left to right or
right to left until the equilibrium state is reached. That last step
should be executed for the 3 axis(X, Y, Z) of the body part.
Particular attention has to be observed while the body part is
set on the plate, indeed, the 3 axis should match as much as
possible the one of the modeled shape. That was, the measured
CoM can be directly reported in the model definition.
In order to measure the position of the CoM, while the body
part is disposed on the plate and the equilibrium state is
reached (or the closer possible to), a pencil can be used to
mark the position of a characteristic point of the body part.
Afterward, with a ruler, it's easier to measure the effective
distance of the marked point to the central axis of the
measurer.
After the measure is done, it's important to translate it into the
coordinate system of the servo node (see IV.C.2.g,
centerOfMass).
The shape of the body parts should also be considered, and
when it's possible, for example in case of symmetry relative to
the servo axis and assuming the internal weight distribution is
uniform or equally distributed, the CoM value corresponding
to the axis X, Y or Z should be 0.

2) Physics applied to WebotsTM

Within WebotsTM, the physical characteristics of any node
derived from the solid node can be described adding the
Physics node (see Figure 15) which allows to define a given
number of physics parameters to be used by the physics
simulation engine.

Accurate informations about the different physics parameters
are given in the following subsections.

a) density or mass
It “can be used to define the total mass of the solid. If the
density field is set different from -1, then it is used regardless
of the mass field to compute the mass of the solid object.
Otherwise, the mass field, which should be set to a positive
value, is used. You should never set both the mass and the
density to -1, otherwise the results will be undefined. Rather it
is highly recommended to set either the mass or density to -1
and the other field should be set to a positive value. If the
density field is a positive value and the mass field is set to -1,
the actual mass of the Solid node will be computed based on
the specified density and the volume defined in the
boundingObject(see IV.C.3) of the Solid node. However, this
computed mass will not be displayed in the mass field which
will remain -1.”[12]

b) intertiaMatrix
It “defines the inertia matrix as specified by ODE. If this
parameter is empty or contains less or more than nine floating
point values, it is ignored. Moreover, if the mass field is -1, the
inertiaMatrix field is ignored. If it contains exactly nine
floating point values, and if the mass field is different from -1,
then it is used as follow: the nine parameters are the same as
the ones used by the dMassSetParameters ODE function. The
parameters given in the inertiaMatrix(1) are: cg x , cg y , cg z ,
I 1 1 , I 2 2 , I 3 3 , I 1 2 , I 1 3 , I 2 3 , where (cg x , cg y , cg z)

is the center of gravity position in the body frame. The I XX
values are the elements of the inertia matrix, expressed in
kg.m2 ”[12]

inertiaMatrix =  I 1 1 I 1 2 I 1 3

cg x I 2 2 I 2 3

cg y cg z I 3 3
 (1)

c) bounce
It “defines the bounciness of a solid. This restitution parameter
is a floating point value ranging from 0 to 1. 0 means that the
surfaces are not bouncy at all, 1 is maximum bounciness.
When two solids hit each other, the resulting bounciness is the
average of the bounce parameter of each solid. If a solid has
no Physics node, and hence no bounce field defined, the
bounce field of the other solid is used. The same principle also
applies for to bounceVelocity, staticFriction and
kineticFriction fields.”[12]

Figure 15: WebotsTM specification of the Physics node

Figure 14: Functional schematic of the CoM measurer

8

d) bounceVelocity
It “defines the minimum incoming velocity necessary for
bounce. Incoming velocities below this will effectively have a
bounce parameter of 0.”[12]

e) coulombFriction
It “defines the friction parameter which applies to the solid
regardless of its velocity. Friction approximation in ODE
relies on the Coulomb friction model and is documented in the
ODE documentation. It ranges from 0 to infinity. Setting the
coulombFriction to -1 means infinity.”[12]

f) forceDependantSlip
It “defines the force-dependent-slip (FDS) for friction, as
explained in the ODE documentation. FDS is an effect that
causes the contacting surfaces to side past each other with a
velocity that is proportional to the force that is being applied
tangentially to that surface. It is especially useful to combine
FDS with an infinite coulombFriction parameter.”[12]

g) centerOfMass
It “defines the position of the center of mass of the solid. It is
expressed in meters in the relative coordinate system of the
Solid node. It is affected by the orientation field as well.”[12]
The measure of the CoM X, Y or Z location is relative to a
side of the body part or an other noticeable point, before using
it in the physics node definition, One's should take care of
translating that value into the servo coordinate system.

h) orientation
It “defines the orientation of the local coordinate system in
which the position of the center of mass (centerOfMass) and
the inertia matrix (intertiaMatrix) are defined.”[12]

3) Bounding objects
Since the modeled shapes are complicated triangle meshes,
these one can't be used by the collision detection engine. It will
result in too complex computation and the overall simulation
will be slow down. An approximation of the bounding object
should be done. There is no automatic process to determine
there bounding object. According to the specificities and the
purpose of the simulation, the user should define them using
simple object like “sphere”, “box” or “cylinder”. Within
WebotsTM, when the user click on the robot model (Figure 16),
the bounding object are highlighted.

Particular attention should be consider while defining the
bounding object of the crutches. Indeed, the crutches are the
contact point of the robot with the ground. This one was
approximated using a box and a sphere (see Figure 17).

A cylinder bounding object could be used, but following
discussion with the developers of WebotsTM, due to possible
internal problems, it was safer to use a box object.

V. VALIDATION OF BODY STATICS

The 3D modeling and the setup of the physical properties is
done. The next step is to make sure the model answer the
initial question of matching the real robot behaviors. In this
part, a method is proposed to check the accuracy of the model
static characteristics.

A. Experimental protocol
The main concept behind the validation of body statics is to
avoid the dynamics to be involved in the process. To achieve
this purpose, the position of the different servos has to be
updated step by step to prevent any inertia factor to interfere
the experiment.
The real quadruped robot is disposed in a stable position, then
updating step by step the position of one servo, we check if the
robot is falling down or not. The measured value is so called

Figure 16: Robot model rendered in WebotsTM

with his bounding objects highlighted

Figure 17: Approximation of the crutch
bounding object

9

the equilibrium value. Then reproducing the same experiment
on the simulator, it's possible to compute the difference
between the equilibrium value resulting from the real and the
modeled experiment. A series of nine experiment is realized.

The Table 4 shows for each experiment the initial value of all
the sixteen servos of the robot.

The results of the experiments done on the real robot have to
compared to the one done on the modeled one.

B. Results
The Table 5 summarizes the outcome of the 9 tests. The cross
on the red cells states that the robot fall on the ground during
the setup of the initial posture whereas the circle in the green
cells depict that he robot didn't fall whatever was the position
of the updated servo.

The issue of the experiment 1, 7, 8 and 9 can be accepted since
the difference between the result obtained with the model and
the one obtained within the simulator is below 15 degrees.
Nevertheless, the issue of the of experiment 2, 3 and 4 need to
be observed carefully (see Figures 19, 20 and 21).

In the context of experiment 3, the robot is “really” stable
since in any position of the head the robot doesn't fall. Plus the

Table 4: Initial servo position for each of the static
experiments. The gray cell shows the servos being updated
during the experiment.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9
PELVIS 513 513 205 819 513 513 513 513 513
F_L_1 513 513 0 0 513 513 513 513 513
F_R_1 513 513 513 513 513 513 513 513 513
F_L_2 205 819 819 819 867 513 513 513 513
F_R_2 819 205 513 513 513 166 513 513 513
F_L_3 513 513 513 513 513 513 513 513 513
F_R_3 513 513 513 513 513 513 513 513 513
B_L_1 513 513 513 513 513 513 513 513 513
B_R_1 513 513 513 513 513 513 513 513 513
B_L_2 580 444 513 513 166 513 513 513 513
B_R_2 444 580 819 819 513 867 513 513 513
B_L_3 513 513 513 513 513 513 513 513 513
B_R_3 513 513 513 513 513 513 513 513 513

N_1 513 513 513 513 513 513 513 513 513
N_2 513 513 513 513 513 513 513 819 205

HEAD 513 513 513 513 513 513 513 513 513

Table 5: Equilibrium value of the updated servo for each of
the experiments

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9
Real 571 482 479 535 261 274 478 537 542
Webots 531 X O X 363 375 466 527 531
Diff. 40 X O X 102 101 12 10 11

11.72 X O X 29.88 29.59 3.52 2.93 3.22Diff.(deg)

Figure 19: Static test - Experiment 2

Figure 20: Static test - Experiment 3

Illustration 18: Static test - Experiment 1

Figure 22: Static test - Experiment 5

Figure 21: Static test - Experiment 4

10

fact in experiment 2 and 3, it's not possible to set the robot in
the initial posture. It's safe to tell that the center of mass
impacting the most is the one of the CM5 unit since it is the
heaviest element. The robot being really stable in the
experiment 2, it's safe to assume the CoM is too much toward
the left and/or bottom of the CM5 unit.

To improve the issue of the experiments, the update of the
position of the 16 center of mass can be a tedious and long
process . The use of using a particle swarm optimization (see
VI.B.2) is to optimize the location of the different center of
mass could be considered. The function to maximize would be
the following:

= N

∑
i=0

N

∣reali−webots i∣
 (2)

Where  is the value to maximize, N the number of
experiments, real i the outcome of the experiment with the
real robot (it's a fixed parameter during the optimization),
webots i the outcome of the experiment within the simulator.

VI. EXPERIMENTATION OF THE BODY DYNAMICS

A. Using inverse kinematics Model

1) Theoretical background
There are two ways of solving the inverse kinematics
problems, either algebraically or geometrically. Only the
solution will be given here. Further details are available in
[29].

From Figure 26, it's possible to extract the value for A1 and
A2 .

A2= cos−1 x2 y2−L1
2−L2

2

2 L1 L2  (3)

A1 = cos−1 x2

 x2
2 y2

2 − = sin−1 y2

 x2
2 y2

2 (4)

where L1 and L2 are the respective length of both part of the
robot leg. The extremity  x2, y2 being the bottom of the leg
(foot), the point  x1, y1 being the axis of rotation of the lower
leg (knee), and the origin of the coordinate system being the
axis of rotation of the upper leg (shoulder).

x = L1 cosA1L2cosA1A2 (5)

y = L1sin A1L2sin A1A2 (6)

Using (3) and (4), it's possible to compute A1 and A2 given
a position of the foot.

2) Applied to the quadruped robot
The strength of the inverse kinematics model is to give the
possibility of computing the different joint angles of a
member knowing only the final trajectory of this one. Using an

Figure 26: Determining angles A1 and A2 via
geometric approach [29]

Figure 23: Static test - Experiment 6

Figure 24: Static test - Experiment 8

Figure 25: Static test - Experiment 9

11

elliptic trajectory for the leg extremity is known to be efficient
for robotic walking. The parametric equations for an ellipse
are (7) and (8).

x = ha cos (7)

y = kbsin  (8)

Where  is the phase between 0 and 2 , h ,k 
determining the center of the ellipse , a and b being
respectively the size of the radius for the x-axis and y-axis.
The value of these parameters is relative to the anatomy of the
real robot. Initially, as stated in [29], the rules of thumb to
determine the equation parameters are:
– center of ellipse: h , k  = 0,−L1L2 /2
– radius on y-axis: b = L2/2
– radius on x-axis: a = 0.95L1/2

These rules set the maximum sized ellipse possible given the
robot anatomy, not especially the most efficient.

Applying the rules given in [29] the actual anatomy of the
robot is not considered. This one isn't able to bend the lower
leg over 90 degrees. The Figure 27 displays a red ellipse
showing the lower leg extremity without considering the actual
anatomy. The segment depicted in blue corresponds to the
upper and lower leg having a possible position whereas the red
segment corresponds to impossible position since the angle
between the two segment is smaller then 90 degrees. The
Figure 28(b) plots the servo values required to moved the leg
given the current trajectory. A part of the red curve, as
expected, is flat. This correspond to the maximum value the
knee servo can't exceed.

To overcome this issue, the solution is to consider the actual
robot anatomy. One of the initial rule of thumb needs to be
updated. Setting the x-axis radius to b =−k−L12L22
fixes the problem.

3) Experimental framework
As explained in [30], the different possible gait in four-legged
animal locomotion are depicted on Figure 29.

Using the inverse kinematics model described before, all the
four-legged gaits listed above are tried at different frequency
ranging from 0.5Hz to 2Hz.

4) Results
Looking at the Figure 30, the trot gait presents, from far and
above all, the best performance. The performance is measured
as a weighted sum of the absolute distance and the integrated
distance done in between the 32 seconds of the simulation. A
detailed description of the performance calculation is available
in the part VI.B.3 page 16.

Figure 27: Leg trajectory over 28 steps

Figure 28: (a) Lower leg extremity trajectory, (b) AX12
values for shoulder and knee servo

Figure 29: Gait used by four-legged walking
animals, distinguished with respect to the
relative relationships (in units of 2)
between their legs. The front left leg serves
as reference. [30]

12

The Figures 31 to 34 show the trotting gait for the four
frequency 0.5Hz , 1.0Hz , 1.5Hz and 2.0Hz . Since all the
thumbnails are exactly generated every 62ms, the difference
of performance is also visible. Indeed, taking all the bottom-
right thumbnails of each figure and ordering them according to
the position of the robot gives back the ranking of Figure 30.

B. Using CPG model optimized with PSO

The work of Yvan Bourquin[15] served as a basis for the
design of the CPG models and their optimization. The
subsections 1 and 2 are largely inspired from his work.

1) CPGs

a) Origins
“The concept of using non-linear oscillators to control robotic
locomotion is inspired from biology. Experiments [13] showed
that, in a decerebrated cat, the electrical stimulation of the
brainstem is able to induce walking. Furthermore, an increase
of the signal strength changes the walk velocity and the
transition from a walking to a trotting gait happens
autonomously. These experiments demonstrated that the
brain is not involved in the generation of the rhythmic
signals that produce locomotion in the cat.
Grillner[14] explained that the locomotory signals that
produce sequences of muscle activation, such as walk, trot or
gallop are generated by Central Pattern Generators (CPG)
located in the spinal cord. These CPGs are neural circuits that
generate oscillatory output from a tonic input coming from the
brain. The brain appears to play a higher-level role such as
regulating the initiation, velocity and termination of the
locomotory activity.”[15]

Figure 30: Performance as function of gait type and
frequency

Freq [Hz] Trot Walk Gallop Canter Pace Bound Pronk
0.5 8.68 2.63 1.25 1.11 0.93 1.19 2.98
1 11.29 3.16 0.33 0.27 2.88 0.39 0.68
1.5 11.06 4.17 0.84 0.83 2.81 0.58 2.43
2 12.41 3.80 6.32 1.70 3.55 0.26 1.41

Move f orward Walk backward

Fall on the head or the side Stay on the spot

Figure 31: Trotting gait with f = 0.5Hz

Figure 32: Trotting gait with f = 1Hz

Figure 34: Trotting gait with f = 1.5Hz

Figure 33: Trotting gait with f = 2Hz

13

b) Non-linear oscillator
“In animal locomotion, the oscillations of the joint angles
produced by the muscular activity can have different
waveforms. These waveforms are usually smooth: brutal
transitions are uncommon. In order to facilitate numerical
simulations, a strong simplification is to model locomotion as
sinusoidal variations of the robot’s joint angles. In practice,
sinusoidal signals are not flexible enough, because they do not
allow a soft transition from one gait to another. For example, if
a walk gait in a robot is controlled by sinusoidal motor signals,
the transition to a different gait, say trot, requires the activation
of different oscillations’ phases, amplitudes and frequencies.
However, with sinusoidal signals, the transition from one
gait to another is brutal and therefore cannot be carried
out satisfactorily by the robot’s motors. Consequently an
uncontrolled transition appears, during which the robot
performs an undesired brutal movement and is subject to fall.
This is in contrast to gait transitions in nature, which
always occur smoothly. Furthermore, with sinusoidal
signals, there is no simple way to incorporate sensory
feedback.

To overcome this problem, non-linear oscillators were
introduced as mathematical models of the natural CPGs [18].
The state of oscillators changes smoothly and therefore, gait
transitions are soft. In addition, with oscillators, feedback can
be incorporated in the simulation. For example, sensors can
detect that a foot is in contact with the ground and a feedback
signal can be injected into the oscillators.

The oscillator proposed in [18] is based on these differential
equations:

 v̇ =− x2v2−E
E

v−x (9)

 ẋ = v (10)

where v and x represent the current state of the oscillator,
E is a positive constant that represents the energy of the

oscillator,  determines the rate of convergence towards the
limit cycle and  is the time constant that determines the
oscillation’s frequency. This type of oscillator converges to a
sinusoidal signal with amplitude  E and period 2 [18]:

xt =E sin t / (11)

where  depends on the initial conditions. This behavior is
illustrated by the limit cycle presented on Figure 35 showing
each run converges to the circular attractor of diameter
2 E=2 .”[15]

c) Synchronization
“By choosing the E and  parameters, it is possible to
control the amplitude and frequency of the oscillations.
However, locomotion is efficient only when the phase shifts
between the oscillations stays constant through time and

therefore, a strict synchronization is required. In the model
proposed in [18], synchronization is obtained by coupling the
oscillators; a signal proportional to the sum of the state of
every other oscillator is added into each oscillator. Equation
(9) seen earlier, is now completed into equation (12) [18]:

 v̇ i =−
xi

2v i
2−E

E
v−x∑

j

N

aij x jbij v j  (12)

 ẋi = vi (13)

where aij and bij represents the strength of the coupling of
the x and v states of oscillator j into the oscillator i .

Synchronization happens only when the uncoupled frequencies
match approximately [19]. Figure 36 illustrates this fact: the
frequency difference  f of two uncoupled oscillators is
plotted versus frequency detuning F after coupling. If the
uncoupled frequencies are too different, synchronization does
not occur.

In order to facilitate synchronization the same time constant t
is used for all the oscillators and therefore the uncoupled
frequencies are similar. A frequency of 1Hz (=1/ 2) is
chosen as baseline for all simulations. This is because it
corresponds to the pace of an ordinary animal and it is slow
enough for the physical robot's servomotors to go once 180°
back and forth. A stabilization period is necessary before the

Figure 35: Limit cycles of a standalone oscillator obtained
with 30 oscillations started with random initial conditions
x and v in the range [−2, 2] . With =0.7 and E=1 .

[15]

Figure 36: Frequency vs. detuning graph[19]

14

frequencies become locked. The duration of the stabilization
period depends on the coupling strength.

Figure 38 shows an example of synchronized oscillations. This
stabilization period is bad because it results in disorganized
steps of the robot. Shorter stabilization periods are wished and
can be obtained by increasing the coupling strength. However,
unlike standalone oscillators, the signals produced by coupled
oscillators are not exact sine waves. Discrepancy with the sine
increases with the coupling strength and furthermore, when the
coupling becomes too strong the signals turn out to be chaotic
(Figure 37) and unsuitable for controlling locomotion. For
that reason, coupling strengths are suitable only within an
appropriate range that must be determined.

When multiple coupled oscillators are used, the resulting
phase shifts between the oscillations is a function of the
coupling strengths aij and bij , however several different

combination of aij and bij can produce the same phase shift.
In fact, the exact outcome of a particular coupling combination
cannot be predicted by any general theory [19]. Consequently,
the coupling strengths must be optimized by the search
algorithms.

 A slight variation (14) of the original oscillators' model seen
above was proposed in [20]. With this modification, the inputs
are normalized and therefore, the "strength of the signal
carried by a particular connection does not depend on the
energy of the emitting oscillators" [Mojon 2004]. This
modified model (14) is used in this project.

 v̇ i =−
xi

2v i
2−E

E
v−x∑

j

N aij x jbij v j

x j
2v i

2 (14)

According to the simulation done, the coupling strengths were
determined to be satisfactory in the range [−0.7,−0.7] .”[15]

2) Particle Swarm Optimization
“Particle Swarm Optimization (PSO) was originally developed
in 1995 by James Kennedy and Russell Eberhart [16]. Like
genetic algorithms, PSO is based on a population that
slowly converges towards one or more solutions. However,
with PSO, the particles are preserved throughout the entire
process; they do not die. Contrary to GA, which is based on
competition for better chances of survival and reproduction,
PSO uses a kind of cooperation between the particles. This is
achieved through the exchange of the coordinates of the best
solutions that have been encountered so far.
PSO’s particles are simple search agents that “fly” through the
search space. Whilst moving, they record the best position that
they have discovered so far. They communicate with their
neighbors and learn, from them, the best local solution. PSO is
based on the concepts of social interaction or more exactly, the
tendency of an individual to go his own way, as opposed to his
tendency to follow his group’s way. At every time step, a
particle's flight direction is driven by three factors: first, its
own inertial speed, second, its tendency to return to the best
solution it has discovered so far, and third, the tendency to go
towards the best solution discovered by its neighbors. This can
be summarized in equation (15) which calculates the new
flight speed of a particle at time t1 , and in equation (16)
which calculates the new position a particle.

v id t1 =vid t1 rand  pid−xid t 
2 rand  pgd−x id t 

 (15)

xid t1=x id tv id t  (16)

where v is the speed of a particle, i is a particle index, d
represents the d th dimension in the parameter space, t is the
discrete time index,  is the particle speed inertia factor and
where the function rand   returns a uniformly distributed
random number in the range [0, 1] . The coefficients 1 and
2 control the individual and social levels of confidence, e.g.,

how much a particle should follow its own best solution or his

Figure 37: Chaotic oscillations resulting of too strong
coupling. Plot of the x states of four coupled oscillators
over a period of 32 seconds.[15]

Figure 38: Example of synchronized oscillations Plot of the
x states of four coupled oscillators over a period of 32

seconds: the initial stabilization period is visible. [15]

15

group’s best solution. Finally pi is the best previous
position of particle i , and p g is the best previous
position in the neighborhood of particle i . These principles
are illustrated in Figure 39.

In PSO, we speak about the particles' neighborhood. A
particle’s neighborhood defines from which other particles the
information will be received. The neighborhood size can vary
from a few particles to the entire swarm. The neighborhood
type does also vary: some PSO techniques are based on so-
called social neighborhood, while others use geometrical
neighborhood. In social neighborhood, the particles are
associated with other particles from the beginning and their
relationship is maintained throughout the process. A
geometrical neighborhood is defined in accordance with
the current particles “proximity” in the parameter space. In
this case, the particle-to-particle distances needs to be
recomputed at every iteration. The usually mentioned
advantage of social neighborhood is its lower computational
burden compared to geometrical neighborhood. However,
in our case, geometrical neighborhood was preferred,
because the processing power required by the optimization
algorithm are insignificant anyway compared to that of the
physics simulation.
The speed inertia factor  can either be fixed or decreased
during the optimization process. Some authors [17] suggest
that a decreasing inertia factor gives better results, and so this
approach is used here.”[15]

3) Experimental framework
To summarize, in order to obtain suitable oscillations,
different combinations of the  ,  , E , aij and bij , of
equation (14) must be tried out. One option is to tune all
parameters parameters with the optimization algorithms.
However, in order to increase the likelihood of convergence it
is better to hold down the dimensionality of the search space.
Therefore, it is favorable to fix some parameters whilst the
most relevant ones are kept free.
As explained in the previous paragraph, the coupling strengths
aij and bij must be free because the oscillators’

synchronization phase depends on them. The oscillation
amplitudes controlled by E must also be free because it
is not known beforehand how large joint movements
should be.

Oscillations in the region of the module’s 0°-angle (the
horizontal position in Figure 40) are too restricted. For
example in quadruped robots, it is known[15] that the “knee”
joints should oscillate in a region below the 0°-angle. In
general, this angle is not known beforehand and should
therefore be another free parameter, that we call here x0 .

Different oscillator coupling models were validated. The PSO
used to optimize these models was initialized with a number of
50 particles. According to [15], this value gives interesting
results. There is no defined method to determine the number of
particle required to solve a given optimization problem, but
based on previous experiments, the scientist can expect a
convergence of the problem with a swarm size between 10 and
50 elements.
Computationally wise, a PSO working with 50 particles is high
demanding. In fact, using one computer and thinking to
optimize a simulation of 32 seconds. Considering the
simulation runs in real time, the total time required should be
around 107hrs. In case the simulation is slow down due to, for
example, a high number of collision detection, this amount of
time will be increased. In the case of our experiment, the
WebotsTM simulator was running in batch mode. Run a world
in “batch mode” means there is no visual output of the
simulation and the speed of the simulation is not constrained to
real time. If the simulation can run faster, the simulator will do
it. On the computer used for the simulation, WebotsTM was
able to run it 1.5 faster.
To speed up the optimization process, the PSO has been
distributed over a network of 50 nodes. This way, doing 240
iterations of the PSO, the total time required was around 2
hours (32 /1.5∗240).

The implementation of the CPG realized by [15] was the
starting point. That implementation didn't include the
possibility to add bidirectional connection in the coupling of
oscillators. Moreover, it was not possible to optimize only a
subset of the servo modules. For example, sometimes it's
interesting to optimize symmetrically the gait. The number of
parameters will be decreased and the likelihood of the gait
optimized versus a gait existing in nature will be increased.
To overcome these limitations, the initial implementation has
been improved. In the configuration file relative to a
controller, there is the description of all the servo involved in
the optimization and there is the list of all the connection
between these ones. A flag named “bidir” allows to enable or
disable the mirroring of the coupling weight. In fact, a
bidirectional connection is a connection were the weight of
each direction are respectively opposed. To be able to
optimize only a subset of the parameters relative to all the
oscillator, a mapping mechanisms is developed. The output of

Figure 39: Principle of Particle Swarm Optimization

Figure 40: Module's oscillations around x0 . [15]

16

the PSO optimized gives a number X of values between 0 and
1. Then, inside the implementation of the controller, the
parameters are mapped to their respective oscillators.

Bidirectional coupling are interesting if ones wants to increase
the convergence speed of an oscillator and/or consider
feedback from sensors.

In between all the experiments, the performance is measured
the same way. As the crux of PSO is the optimization of the
performance returned by a function. The function defined in
[15] is used. Every evaluation lasts 32 seconds, in that time the
robot has to go further possible. “However the performance
could not be simply measured as the straight distance between
the start and end location, because in some cases the robot
makes a circle and stops close to where it started. In such
cases, the performance evaluates poorly even though, only a
tiny parameter change would be required in order to correct
the robot’s bent trajectory. To overcome this problem, the
cumulated or integrated ground distance was also integrated
into the performance evaluation. Robot moving in a straight
line should still be favored over zigzagging ones. Therefore,
the performance needs to reflect both straight and the
integrated distances. For this reason, the performance was
calculated as the weighted sum of both, using the formula
(17).”[15]

= ∣p N− p1∣∑
i=1

N−1

∣ pi1−pi∣ (17)

where  represents the measured performance, where pi is
the i th point sampled on the robot trajectory, where N is the
total number of sampled point, and where  and  are
coefficients that allow balancing the respective weights of
the absolute and integrated distances. In our simulations
these coefficients were set to  = 1 and  = 1 . In order to
avoid granting the robots performance scores for plain
vibrations, the trajectory points pi are sampled at 1.0
second intervals such that a robot is always approximately in
the same posture when sampling occurs.

Multiple optimization of CPGs are tried with a variable
number of parameters, below are described and motivated the
different choices of coupling models, their schematic diagrams
are numbered from one to five.

The Figure 41 states the name of the different servos used
through the experiments, descriptions and later on in the
discussion of the results.

a) Experiment 1
All servos are linked with an oscillator, the coupling between
them is unidirectional. The intrinsic frequency of all oscillator
is the same. Each oscillator having 4 parameters (offset x 0 ,
amplitude E , coupling weight wa and wb). The number
of parameters to optimize is 64. CPG Model 1 (Figure 42) is
used.

Figure 41: Name of the servos

Figure 42: CPG Model 1

17

b) Experiment 2
The CPG Model 2 is used (see Figure 43). We can consider
the movement of the HEAD and NECK_2 servos as useful
only in tern of vision stabilization capabilities. In the
framework of this optimization problem, one's could argue that
only the impact of the weight of the head on the dynamics of
the body is important, the servo HEAD and NECK_2 being
used only to keep the vision stable or to look on the right or
left, they are kept in position. Only the NECK_1 servo is used
to move the head. The connection within the body are all
bidirectional, that way the oscillator of the torso and pelvis are
supposed to converge faster. This experiment is improved
compared to the first one. Observing how a dog walks or runs,
we can tell that the joints of the leg move the same but are only
shift in time. Assuming this hypothesis is correct, the size of
search space is decreased and the chance to converge to a
valuable optimum performance maximized. Applying that
concept, the set of parameters of the following pairs of
oscillators are considered identical (F_L_3, F_R_3), (F_L_2 ,
F_R_2), (F_L_1, F_R_1), (B_L_3, B_R_3), (B_L_2 ,
B_R_2), (B_L_1, B_R_1). It also safe to tell, while a dog is
walking, that the frequency of the head and pelvis could be
different from the the other joints. That's why this time, the
frequency of the PELVIS and NECK_1 oscillator has been
optimized between a value of 1Hz and 2Hz. The number of
parameters to optimized is now 33.

c) Experiment 3
This experiment is similar to the previous one except one
detail concerning the frequency of the PELVIS and NECK_1
oscillator. The frequency parameter is now removed, the
PELVIS and HEAD will oscillate at the same frequency the
rest of the oscillators do. The number of parameters is 32.

d) Experiment 4
Observing real dogs walking, it seems their pelvis is moving
much more from left to right than up and down. In this
experiment, the influence of the PELVIS servo has been
annihilated. In the same time the NECK_1 has been removed
since the pelvis and the head are considered to be linked in
frequency. The CPG Model 3 (see Figure 44) being used, the
total number of parameter to optimized falls to 24.

e) Experiment 5
As in experiment 4, the PELVIS and NECK_1 oscillator are
taken away. CPG Model 4 (see Figure 45) . An additional
hypothesis is done, real dog can hardly move their front leg
laterally far away from their torso. As simplification, in this
experiment, the F_R_2, F_L_2, B_R_2 and B_L_2 servos are
kept in fixed position, keeping their value as when the dog
stand up. Since the pair of oscillators (F_L_1, F_R_1) and
(B_R_1, B_L_1) are identically optimized, the number of
parameters is 16.

Figure 43: CPG Model 2

Figure 44: CPG Model 3

18

f) Experiment 6
Keeping the same hypothesis as in experiment 5, the pairs of
oscillators (F_L_1, F_R_1) and (B_R_1, B_L_1) have now
their own set of optimized parameters. The same model is used
(see Figure 45). Since the front and back top leg oscillator are
unpaired, the number of parameters is 24.

4) Results and discussion

The thumbnails showing the best performance obtained so far
within the context of a given experiment are order from left to
right and top to bottom. These one were generated over a
sequence of approximatively 5 seconds. The aim of these
sequence is too visualize the way the robot moves.

As we can see in the plots depicted in the subsection specific
to each experiments, a maximum of 240 iterations for the PSO
seems to be a value allowing to converge toward a solution.
Indeed, due to the random initialization of the 50 particles of
the swarm, the first iterations give wrong performance and
then, as the number of iterations increased, the performance
increases until it reached an asymptotic limit. The performance
for all experiments oscillated between approximatively 7 and
17.

a) Experiment 1
 Optimized a function having 64 parameters is quite a
challenge, using a systematic search the cardinality of the
space would have been 264 which implies approximatively
1.84∗1019 sets of possible parameters. A way to distribute

such a simulation, doing a systematic search, could be to ask
each inhabitants of the world[25] to run 2.78∗109
evaluations. Then, considering each one of them has a
computer able to run the simulation 32 times faster. The

amount of time required, if we distribute the systematic search
to all world inhabitants, would be 88 years .

Table 6: Experiment 1 - Best performance

Observing Table 6, we see that the robot moves hardly
forward, like it was swimming on the ground. The gait
obtained is not similar to what a real dog does. Nevertheless,
it is safe to assume the optimization could be more successful
doing hypothesis on the coupling. That way, the cardinality of
the problem could be decreased.

b) Experiment 2
Compared to the experiment 1, the cardinality of the problem
is divided by two. Doing the same analogy about the number
of world inhabitants, each one of them would have to run only
one simulation for less than a seconds.

Observing Table 7, we can see the dog is “walking” backward.
Since the control unit of the robot is heavy compared to the
rest of the body, this one being located toward the torso, a
backward gait could be a possible solution to overcome the
stability problem. That hypothesis seems to be suitable to
justify the behavior observed.

Figure 46: Experiment 1 - Plot of PSO
performance over 240 iterations.

Figure 45: CPG Model 4

19

Table 7: Experiment 2 - Best performance

c) Experiment 3
Looking at Table 8, the dog is, in opposition to what was
observed in the previous experiment “walking” forward. The
fact the direction is different is not especially in contradiction
with the result observed previously. Indeed, in the present
case, the dog keeps the back leg lower while moving, this way
the center of gravity is kept close to the ground and the
possible problems of stability are avoided.

Table 8: Experiment 3 - Best performance

d) Experiment 4
As showed on Table 9, the robot moves backward and on the
left keeping his back right leg up. The resulting gait is a bit
chaotic. This leg being up, the dog as to keep his balance on
the three other legs while moving. To overcome a possible fall
on the side with one leg, the dog moves on the opposite side
with a tendency to walk backward to compensate the position
of center of gravity being near the torso.

Table 9: Experiment 4 - Best performance

Figure 47: Experiment 2 - Plot of PSO performance
over 240 iterations.

Figure 48: Experiment 3 - Plot of PSO performance
over 202 iterations.

20

e) Experiment 5
In this experiment, the dog is moving forward. Front and back
legs are respectively synchronized. Since the oscillator
parameters of the front left leg are mirrored to the right leg and
respectively the same for the back leg. As in a real dog gallop
gait, the phase shift between back and front oscillator is the
same. The center of gravity is closer to the torso, then when
the dog is falling, his head and the fact the front leg are bended
allows him to go back to his position. Indeed, while at this
position, the movement of the back leg backward give enough
inertia to the body to make it stand back on the four legs.

Table 10: Experiment 5 - Best performance

f) Experiment 6
Similarly to the experiment 5, the shoulder servos are in fixed
position keeping the legs close to the body and avoiding gait
where the dog is almost “swimming” on the ground. In
opposition to the previous experiment, the F_R_1, F_L_1,
B_L_1 and B_R_1 oscillators are optimized independently
allowing to have different weight between them so different
phases difference. As in a real dog walking gait, the four legs
are phase shifted.

Table 11: Experiment 6 - Best performance

Figure 49: Experiment 4 - Plot of PSO performance
over 240 iterations.

Figure 50: Experiment 5 - Plot of PSO performance
over 240 iterations.

21

VII. CONCLUSION

It is believed that the model of the Bioloid robot has been
successfully designed. The physics were applied to the model
and the static validation of the model is on average good
enough. Despite the efforts made, a lot of work remains
outstanding and multiple aspects can be improved

Developing a Bioloid specific modeling language helping at
describing easily the connection in between the existing pre-
defined shape would be a cornerstone in the future
development of model.

Validating the approximation of crutch bounding object is
good enough and that the physic parameters concerning the
coulomb friction and the bounciness are matching the behavior
of the real quadruped robot. And later on, developing a test
allowing to check if WebotsTM behaves the same way when the
simulation are done in “run”, “fast” and “batch” mode would
consolidate the results obtained so far.

As discussed, with the Australian team responsible for the
hardware development, the initial design of the robot has been
updated to give the quadruped an “aibo” style of walking.
Wedges were added between the knee and the lower leg to add
a permanent offset of 18 degrees. Adapting the inverse
kinematics model and comparing the performance of the gaits
given this new anatomy of the quadruped could be interesting.
Moreover, the CPG optimization could also be redone
considering these wedges.

According to the outcome of the different optimization,
following the parameters optimized and the coupling model of
the CPG, it could be interesting to implement a more
sophisticated central pattern generator more sophisticated. For
example, the inverse kinematics model developed could be
implemented with oscillators being coupled at the same time to
the pelvis and neck. The function to measure the performance
could also be improved. Favored forward gait, add bounding
to the possible position of a body part. For example, give
credit if the head stay above a given line or stay horizontal.

The most efficient gait implemented was discovered to be the
trotting one obtained after using the inverse kinematics model.
However, fat from being perfect the robot do not go always
straight. Given a target aim, the robot could adapt and try to
add correction to his current direction to keep the orientation.
The turning right and left operations could also be
extrapolated from the improved gait.

As depicted on Figure 52, multiple robot are able to evolve
simultaneously on the soccer field matchng the demo
requirements [31]. Additional work has to be conducted to
allow the quadruped to detect the ball within his environment
and try to kick it.

A plus to the current implementation could be the ability to
cross-compile the WebotsTM controller into CM5 controllers.

ACKNOWLEDGMENT

I gratefully acknowledge the technical support and the advices
of Prof. Auke Jan Ijspeert, Olivier Michel, Yvan Bourquin,
Peter Turner and Robin Fisher in the design and
implementation of the quadruped robot model. I would like to
acknowledge Laurent Lessieux for his work on the X file
processing. Finally, I also acknowledge Matteo Thomas
DeGiacomi and Allessandro Crespi for their advices and help
in the everyday lab life. This work was made possible thanks
to the Biologically Inspired Robotic Group.

REFERENCES

[1] O. Michel, Cyberbotics Ltd – WebotsTM: professional
mobile robot simulation. International Journal of Advanced
Robotic Systems (2004) Volume 1 Number 1: pp. 39-42.

[2] S. Russell, Open Dynamic Engine (ODE): open
source and high performance library for simulating rigid
body dynamics. - http://www.ode.org/

[3] Research projects, game or various tools that are using
ODE. - http://www.ode.org/users.html

Figure 51: Experiment 6 - Plot of PSO performance
over 240 iterations.

Figure 52: Six quadruped playing on a soccer field

http://www.ode.org/
http://www.ode.org/users.html
http://www.ode.org/users.html
http://www.ode.org/users.html
http://www.ode.org/
http://www.ode.org/

22

[4] Atmega128, 128-Kbyte self-programming Flash
Program Memory, 4-kbyte SRAM, 4-kbyte EEPROM, 8
Channel 10-bit A/D-converter. JTAG interface for on-chip-
debug. - http://www.atmel.com

[5] Bioloid User Guide - Understanding ID, Address and
data p27 -
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%
20User%27s%20Guide.pdf

[6] A extended Object file format description -
http://www.eg-models.de/formats/Format_Obj.html

[7] http://en.wikipedia.org/wiki/Wavefront_Technologies

[8] Text File format of The Persistence of Vision
Raytracer, or POV-Ray which is a ray tracing program
available for a variety of computer platforms. -
http://en.wikipedia.org/wiki/POV-Ray

[9] Art of Illusion, free and open-source java-based
modeling and rendering studio - http://aoi.sourceforge.net/

[10] Virtual Reality Modeling Language -
http://en.wikipedia.org/wiki/VRML

[11] WebotsTM Nodes Chart -
http://www.cyberbotics.com/cdrom/common/doc/webots/refer
ence/section4.1.html

[12] WebotsTM Reference Manual -Physics Node -
http://www.cyberbotics.com/cdrom/common/doc/webots/refer
ence/section2.33.html

[13] M. L. Shik, F. V. Severin, G. N. Orlovskii, Control of
Walking and Running by Means of Electrical Stimulation of
the Mid-Brain. Biophysics, 11:756-765, 1966.

[14] S. Grillner, Neurobiological Bases of Rhythmic Motor
Acts in Vertebrates. Science, New Series, Vol. 228, No. 4696
(Apr. 12, 1985), 143-149.

[15] Y. Bourquin, Self-Organization of Locomotion
in Modular Robots. MSc Dissertation, p16, p26

[16] J. Kennedy, R. Eberhart, Particle Swarm
Optimization. Proceedings of the 1995 IEEE International
Conference on Neural Networks, pp. 1942-1948, IEEE Press.

[17] Y. Shi, and R. C. Eberhart, (1998). Parameter
selection in particle swarm optimization. In Evolutionary
Programming VII: Proc. EP98, New York: Springer-Verlag,
pp. 591-600.

[18] A. J. Ijspeert, J.-M. Cabelguen (2003), Gait
transition from swimming to walking: investigation of
salamander locomotion control using non-linear
oscillators. In Proceedings of Adaptive Motion in Animals
and Machines, 2003.

[19] A. Pikovsky, M. Rosenblum, and J. Kurths, (2001).
Synchronization, a universal concept in nonlinear sciences.
Cambridge Nonlinear Sciences Series 12.

[20] S. Mojon, (2004). Using nonlinear oscillators to
control the locomotion of a simulated biped robot.
Unpublished Diploma Thesis.
http://birg.epfl.ch/page44565.html

[21] User manual of Dynamixel Sensor module AX-S1,
release of 06-14-2006

[22] User manual of Dynamixel module AX-12, release of
06-14-2006

[23] Microsoft Direct X API -
http://en.wikipedia.org/wiki/DirectX

[24] KDE development Environment -
http://www.kdevelop.org/

[25] Bioloid QuickStart “Comprehensive Kit” Manual -
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickSta
rt(Comprehensive Kit).pdf

[26] Rotation representation -
http://en.wikipedia.org/wiki/Rotation_representation_(mathem
atics)

[27] WebotsTM Reference Manual - Servo Node -
http://www.cyberbotics.com/cdrom/common/doc/webots/refer
ence/section2.37.html

[28] Number of world inhabitants –
http://www.worldpopclock.com

[29] P. Turner, Mathematics required for Legged Robotic
Motion, rev 1, September 2006

[30] R. M. Alexander, Locomotion of Animals. Glasgow,
London, U.K.:Blackie, 1982.

[31] Rules for the Four Legged Robot League -
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007
.pdf

APPENDIX

All the videos, sources code and data files acquired during the
different experiments will be posted on the project website.
The current project page is http://wiki.epfl.ch/wsrl. This page
is susceptible to change in the future, in case the link is dead.
You will be able to look for additional information using the
Biologically Inspired Robotic Group (BIRG) page at
http://birg.epfl.ch or http://birg.epfl.ch/page32024.html .

http://birg.epfl.ch/page32024.html
http://birg.epfl.ch/page32024.html
http://birg.epfl.ch/page32024.html
http://birg.epfl.ch/
http://birg.epfl.ch/
http://birg.epfl.ch/
http://wiki.epfl.ch/wsrl
http://wiki.epfl.ch/wsrl
http://wiki.epfl.ch/wsrl
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.worldpopclock.com/
http://www.worldpopclock.com/
http://www.worldpopclock.com/
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.37.html
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive%20Kit).pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive%20Kit).pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive%20Kit).pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.tribotix.info/Downloads/Robotis/Bioloid/QuickStart(Comprehensive
http://www.kdevelop.org/
http://www.kdevelop.org/
http://www.kdevelop.org/
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/DirectX
http://birg.epfl.ch/page44565.html
http://birg.epfl.ch/page44565.html
http://birg.epfl.ch/page44565.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section2.33.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/section4.1.html
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/VRML
http://aoi.sourceforge.net/
http://aoi.sourceforge.net/
http://aoi.sourceforge.net/
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/Wavefront_Technologies
http://en.wikipedia.org/wiki/Wavefront_Technologies
http://en.wikipedia.org/wiki/Wavefront_Technologies
http://www.eg-models.de/formats/Format_Obj.html
http://www.eg-models.de/formats/Format_Obj.html
http://www.eg-models.de/formats/Format_Obj.html
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.tribotix.info/Downloads/Robotis/Bioloid/Bioloid%20User's%20Guide.pdf
http://www.atmel.com/
http://www.atmel.com/
http://www.atmel.com/

23

function [e1, e2, e3, theta] = euler2vrml(alphaX, alphaY,
alphaZ)
% see
http://en.wikipedia.org/wiki/Rotation_representation_%28ma
thematics%29

%convert degree to pi-rad
alphaX = alphaX * pi/180;
alphaY = alphaY * pi/180;
alphaZ = alphaZ * pi/180;

% compute the Direction Cosine Matrix (DCM) from euler
angles
Ax = [1 0 0; 0 cos(alphaX) -sin(alphaX); 0 sin(alphaX)
cos(alphaX)];
Ay = [cos(alphaY) 0 sin(alphaY); 0 1 0; -sin(alphaY) 0
cos(alphaY)];
Az = [cos(alphaZ) -sin(alphaZ) 0; sin(alphaZ) cos(alphaZ)
0; 0 0 1];
A = Az * Ay * Ax;

%check DCM back to euler
 atan2(A(3,1), A(3,2)) * 180/pi
 acos(A(3,3)) * 180/pi
 -atan2(A(1,3), A(2,3)) * 180/pi

% compute the euler angle / rotation axis from the DCM
theta = acos((A(1,1) + A(2,2) + A(3,3) - 1) / 2);
e1 = (A(3,2) - A(2,3)) / (2 * sin(theta));
e2 = (A(1,3) - A(3,1)) / (2 * sin(theta));
e3 = (A(2,1) - A(1,2)) / (2 * sin(theta));

Table 12: Matlab script to convert from Euler angle notation
to VRML angle(euler axis/angle) notation

CM5 F6 AX12

AX-S1 BRACKET F2

F1 F3 SPACER

Table 13: List of shape needed to build the quadruped robot.

function [alphaX, alphaY, alphaZ] = vrml2euler(X, Y, Z,
theta)
% see
http://en.wikipedia.org/wiki/Rotation_representation_%28ma
thematics%29

% compute the Direction Cosine Matrix (DCM) from euler
angle / rotation axis
E = [X Y Z]';

%normalized vector
E = E / norm(E);

A = eye(3) * cos(theta) + (1 - cos(theta)) * E*E' - [0 -Z
Y; Z 0 -X; -Y X 0] * sin(theta);

%transpose matrix
A = A';

% compute the euler angle / rotation axis from the DCM
alphaX = acos(A(3,3));
alphaY = atan2(A(3,1), A(3,2));
alphaZ = pi - atan2(A(1,3), A(2,3));

%convert pi-rad to degree
alphaX = alphaX * 180/pi;
alphaY = alphaY * 180/pi;
alphaZ = alphaZ * 180/pi;

Table 14: Matlab script to convert from VRML angle(euler
axis/angle) notation to Euler notation

ANOUKA Supervisor
 CM5_TRANS Trans { CM5_SHAPE Shape }
 CM5UNIT_TRANS Trans { CM5UNIT_SHAPE Shape }
 F3_FRONT_LEFT_1_TRANS Trans
 F3_SHAPE Shape
 F3_FRONT_LEFT_2_TRANS Trans

Figure 53: WebotsTM Nodes Chart outlining all the
nodes available to build Webots worlds [11]

24

 AX12_FRONT_LEFT_1_TRANS Trans
 AX12_SHAPE Shape
 FRONT_LEFT_1_SERVO Servo
 F1_FRONT_LEFT_1_TRANS Trans { F1_SHAPE Shape }
 FRONT_LEFT_2_SERVO Servo
 AX12_FRONT_LEFT_2_TRANS Trans { AX12_SHAPE }
 F3_FRONT_LEFT_3_TRANS Trans
 F3_CROSSED_GRP Group { F3_SHAPE }
 F3_CROSSED1_TRANS Trans { F3_SHAPE }
 AX12_FRONT_LEFT_3_TRANS Trans { AX12_SHAPE }
 FRONT_LEFT_3_SERVO Servo
 F2_TRANS Trans { F2_SHAPE Shape }
 CRUTCH_FRONT_LEFT Trans
 CRUTCH_DISC_SHAPE
 CRUTCH_TRANS Trans { CRUTCH_SHAPE }
 CRUTCH_PLASTIC_TOP_TRANS Trans
{ CRUTCH_PLASTIC_TOP_SHAPE }
 CRUTCH_PLASTIC_BOTTOM_TRANS Trans
{ CRUTCH_PLASTIC_BOTTOM_SHAPE }
 F3_NECK1_TRANS Trans
 F3_CROSSED_GRP
 AX12_NECK1_TRANS Trans { AX12_SHAPE }
 NECK1_SERVO Servo
 F2_NECK1_TRANS Trans { F2_SHAPE }
 NECK2_SERVO Servo
 AX12_NECK2_TRANS Trans { AX12_SHAPE }
 F6_NECK2_LEFT_TRANS Trans { F6_SHAPE }
 F6_NECK2_RIGHT_TRANS Trans { F6_SHAPE }
 F2_NECK2_CENTER_TRANS Trans
 F2_SHAPE
 BRACKET_NECK2_CENTER_TRANS Trans
 BRACKET_SHAPE Shape
 F1_NECK2_CENTER_TRANS Trans
 F1_SHAPE
 BRACKET_NECK2_LEFT_EAR_TRANS Trans
{ BRACKET_SHAPE }
 BRACKET_NECK2_RIGHT_EAR_TRANS Trans
{ BRACKET_SHAPE }
 HEAD_SERVO Servo
 AX12_HEAD_TRANS Trans { AX12_SHAPE }
 F3_HEAD_TRANS Trans
 F3_CROSSED_GRP
 AX12_HEAD_2_TRANS Trans { AX12_SHAPE }
 F3_FRONT_RIGHT_1_TRANS Trans { F3_FRONT_LEFT_1_TRANS }
 AX12_FRONT_RIGHT_1_TRANS Trans { AX12_SHAPE }
 FRONT_RIGHT_1_SERVO Servo
 F1_FRONT_RIGHT_1_TRANS Trans { F1_SHAPE }
 FRONT_RIGHT_2_SERVO Servo
 AX12_FRONT_RIGHT_2_TRANS Trans
 AX12_SHAPE
 F3_FRONT_RIGHT_3_TRANS Trans
 F3_CROSSED_GRP
 AX12_FRONT_RIGHT_3_TRANS Trans { AX12_SHAPE }
 FRONT_RIGHT_3_SERVO Servo
 F2_TRANS Trans { F2_SHAPE }
 CRUTCH_FRONT_LEFT
 F3_PELVIS_LEFT_1_TRANS Trans
 F3_SHAPE
 BRACKET_PELVIS_LEFT_1_TRANS Trans
 BRACKET_SHAPE
 F6_PELVIS_LEFT_1_TRANS Trans { F6_SHAPE }
 AX12_PELVIS Trans { AX12_SHAPE }
 PELVIS_SERVO Trans
 PELVIS_1_TRANS Trans
 SPACER_SHAPE Shape
 F3_PELVIS_LEFT_1 Trans { F3_SHAPE }
 AX12_BACK_LEFT_1 Trans { AX12_SHAPE }
 F3_PELVIS_RIGHT_1 Trans { F3_SHAPE }
 AX12_BACK_RIGHT_1 Trans { AX12_SHAPE }

 PELVIS_2_TRANS Trans
 SPACER_SHAPE
 F6_PELVIS_LEFT_1 Trans { F6_SHAPE }
 F6_PELVIS_RIGHT_1 Trans { F6_SHAPE }
 BACK_LEFT_1_SERVO Servo
 F1_BACK_LEFT_1_TRANS Trans { F1_SHAPE }
 BACK_LEFT_2_SERVO Servo
 AX12_BACK_LEFT_2_TRANS Trans { AX12_SHAPE }
 F3_BACK_LEFT_3_TRANS Trans
 F3_CROSSED_GRP
 AX12_BACK_LEFT_3_TRANS Trans { AX12_SHAPE }
 BACK_LEFT_3_SERVO Servo
 F1_TRANS Trans { F1_SHAPE }
 CRUTCH_BACK_LEFT Trans
 CRUTCH_FRONT_LEFT
 BACK_RIGHT_1_SERVO Servo
 F1_BACK_RIGHT_1_TRANS Trans { F1_SHAPE }
 BACK_RIGHT_2_SERVO Servo
 AX12_BACK_RIGHT_2_TRANS Trans { AX12_SHAPE }
 F3_BACK_RIGHT_3_TRANS Trans

 F3_CROSSED_GRP
 AX12_BACK_RIGHT_3_TRANS Trans { AX12_SHAPE }
 BACK_RIGHT_3_SERVO Servo
 F1_TRANS Trans { F1_SHAPE }
 CRUTCH_BACK_LEFT
 F3_PELVIS_RIGHT_1_TRANS Trans
 F3_PELVIS_LEFT_1_TRANS

Table 15: Simplified representation of the robot model, the
gray lines show the servo nodes.

	I. INTRODUCTION & MOTIVATION
	II. Bioloid Kit
	A. Control unit and Communication bus
	B. Sensor module
	C. AX12 module
	D. Behavior editor
	E. Motion editor

	III. Webottm Simulator
	IV. Modeling
	A. Visual Aspect
	1) Shape simplification using 3D modeling tool
	2) WebotsTM scene description
	3) Model of the quadruped robot

	B. Animate the model
	C. Physics
	1) Measure of the real robot properties
	a)Mass of the body parts
	b)Center of Mass

	2) Physics applied to WebotsTM
	a) density or mass
	b) intertiaMatrix
	c) bounce
	d) bounceVelocity
	e) coulombFriction
	f) forceDependantSlip
	g) centerOfMass
	h) orientation

	3) Bounding objects

	V. Validation of Body Statics
	A. Experimental protocol
	B. Results

	VI. Experimentation of the Body Dynamics
	A. Using inverse kinematics Model
	1) Theoretical background
	2) Applied to the quadruped robot
	3) Experimental framework
	4) Results

	B. Using CPG model optimized with PSO
	1) CPGs
	a) Origins
	b) Non-linear oscillator
	c) Synchronization

	2) Particle Swarm Optimization
	3) Experimental framework
	a)Experiment 1
	b)Experiment 2
	c)Experiment 3
	d)Experiment 4
	e)Experiment 5
	f)Experiment 6

	4) Results and discussion
	a)Experiment 1
	b)Experiment 2
	c)Experiment 3
	d)Experiment 4
	e)Experiment 5
	f)Experiment 6

	VII. Conclusion

