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Abstract— In this contribution we present a CPG (central
pattern generator) controller based on coupled Rössler systems.
It is able to generate both limit cycle and chaotic behaviors
through bifurcation. We develop an experimental test bench to
measure quantitatively the performance of different controllers
on unknown terrains of increasing difficulty. First, we show
that for flat terrains, open loop limit cycle systems are the
most efficient (in terms of speed of locomotion) but that
they are quite sensitive to environmental changes. Second, we
show that sensory feedback is a crucial addition for unknown
terrains. Third, we show that the chaotic controller with
sensory feedback outperforms the other controllers in very
difficult terrains and actually promotes the emergence of short
synchronized movement patterns. All that is done using an
unified framework for the generation of limit cycle and chaotic
behaviors, where a simple parameter change can switch from
one behavior to the other through bifurcation. Such flexibility
would allow the automatic adaptation of the robot locomotion
strategy to the terrain uncertainty.

I. INTRODUCTION

The control of legged locomotion on unknown uneven
terrains is not yet a solved problem. In this case, model based
controllers are difficult to use since it is extremely hard to
maintain an accurate model of the environment. Recently
researchers have proposed to use Central Pattern Generators
(CPGs), taking direct inspiration from biology, to generate
control policies for locomotion of legged robots. In robotics
these CPGs are often modeled as coupled dynamical systems,
mostly oscillators. The advantages of CPGs are their stability
properties (limit cycle behavior) and synchronization abilities
(e.g. coordination between the legs and/or coupling to the
body and the environment). Moreover since these methods
are model free and since limit cycles with sensory feedback
help to deal with perturbations, they are well adapted to
locomotion in unknown environments. CPG based controllers
for salamander robots [1], quadruped robots [2], [3] and
humanoid robots [4], [5] are a few examples of successful
applications.

As an alternative to CPGs, Kuniyoshi et al. [6] have
proposed the use of chaotic controllers coupled to the robot
and the environment via sensory feedback to generate control
policies. They showed that it was possible to have emer-
gent coordinated patterns that would change and reorganize
according to environmental changes. This allows for a fast
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Fig. 1. Model of the Centipede robot in the physics simulator Webots.
Consists of 8 body segments, each equipped with 2 rotary legs. Z axis goes
up.

exploration of possible patterns of coordination, with sensory
feedback stabilizing the useful patterns. The use of chaos to
design controllers is spreading slowly [7].

However, several questions arise from these experiments.
First, how can the structural properties of the chaotic system
be used to enhance exploration? Specifically, to what extent
is the use of chaotic controllers to explore new coordina-
tion patterns more efficient than just using controllers that
generate random signals and are directed by some sensory
feedback? Second, does the use of chaotic systems provide
more flexibility to the controller, as compared to limit cycle
systems with adequate sensory feedback loops? Third, is
the choice of appropriate sensory feedback pathways more
important than the underlying feedforward controller (e.g.
chaotic or limit cycle controller)?

In this work, we try to partially answer these questions
by experimentally exploring the advantages of using chaotic
controllers to locomote in uneven terrains compared to limit
cycle systems and purely random movement generators. To
do so we design a CPG controller based on coupled Rössler
systems. The system is able to generate stable limit cycles
for efficient locomotion on flat terrains. Then by a simple
parameter change the system can bifurcate to a chaotic
regime. Our goal is to propose a controller that uses limit
cycle behavior for steady-state locomotion, and chaos for
dealing with complex terrain and getting out of difficult
situations. We use a simulated centipede robot (with 16 legs
and a total of 32 degrees of freedom) locomoting on terrains
of increasing difficulty. For each setup we also explore the
importance of sensory feedback in the control loop.

We start by presenting our robot model, the CPG controller
based on Rössler systems and all controllers compared in the
experimental study. We then introduce the methodology used
in the test bench. Finally, we comment on the results obtained
for different environments’ difficulty and the implications on
the movement patterns created.

II. MODEL

We start by presenting the simulated robot and the different
controllers we use. First, we describe the CPG based on



Rössler systems that generates a limit cycle and show how to
switch it to chaotic behavior. Then, we present the random
movement controllers used in the test bench. Finally, we de-
scribe how to integrate sensory feedback into our controllers.

A. Centipede robot

For this experimental study, we use a simulation of a
centipede robot, see Fig. 1. We choose this type of robot
because of the large variety of gaits its many degrees of
freedom allowed. Moreover, it does not require complex
controllers to maintain equilibrium, being very close to the
ground (as opposed to humanoid or quadruped robots). The
robot consists of 8 similar body segments. Each segment has
the following active DOFs: two independent rotating legs and
a joint connected to the next segment. This joint actively
rotates in the XY-plane for movement and passively rotates
in the YZ-plane to allow compliance on uneven ground. All
active DOFs are implemented as position servomotors (i.e.
are controlled by PD control loops that receive desired po-
sitions from the locomotion controllers). There are pressure
sensors on the feet of the robot.

Each segment is based on an existing module that was used
for a salamander robot previously introduced in [1] and [8],
except for the pressure sensors that we added to the feet in
this work. We perform our study using Webots [9], which
is a simulator based on ODE [10], an open source physics
engine for simulating 3D rigid body dynamics. The model of
a module has the same DOF’s, mass distribution and inertia
matrix as a real one. A real implementation is possible in
future works.

B. Limit cycle controller

We want to reproduce with a CPG the movements used
by real centipedes, like scolopendra heros. They move by
propagating traveling waves along their legs while undulating
their body lightly [11]. We chose to build a CPG that
could switch between limit cycle or chaotic behavior with a
parameter-controlled bifurcation. We use Rössler systems as
basic oscillators, as they offer this bifurcation feature. They
also are well studied systems, with known parameter ranges,
behaviors and synchronization possibilities. Moreover, they
create simple limit cycles, easy to transform into motor
commands for our robot.

We use the classical system definition of Rössler systems,
with the addition of a scaling term ω to control the frequency
of the oscillators. The equations are as follows:

ẋi = ω
(− (yi + zi) +

∑
j C(~xi, ~xj) + Γi

)
ẏi = ω

(
xi + ayi

)
żi = ω

(
b+ zi(xi − c)

) (1)

Where i ∈ {1, ..., 24} is the oscillating element index and
a, b and c are free parameters (set to a = 0.2, b = 3.0
and c = 5.7 for a limit cycle behavior). By changing the b
parameter, the system can undergo a bifurcation that drives
the system into chaotic regime. Γi is the sensory feedback
for element i. The frequency of oscillations is defined by
F = ω

2π Hz.
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Fig. 2. Rössler CPG for centipede robot locomotion. Create a nature-like
movement pattern which is then mapped to the centipede robot. Arrows
show enforced phase differences. α is an open parameter controlling the
phase lag between the body and the limbs.

C(~xi, ~xj) defines the coupling between two oscillators.
This coupling term allows us to couple two Rössler elements
with any phase difference desired by taking advantage of
the geometric properties of the phase plane. The idea is
to rotate one phase space with respect to the other, and
then to use diffusive coupling. For the Rössler oscillator,
we can approximate the phase plan by projecting the state
variables on the (x, y) plane (i.e. use (xi, yi) directly). This
is generalizable to every dynamical system if we can define
a phase plane where the rotation has to take place. The
coupling can then be written as:

C(~xi, ~xj) = K · ( (cosφ · xj − sinφ · yj)− xi
)

(2)

where ~xj is rotated by an angle φ on the (x, y) plane and
K is a gain parameter (= 0.5 in our case). Note that we do
not use the coupling term on the y variables as it introduced
instabilities (due to competition between oscillators), without
improving the convergence time.

We use Eqs. (1) with a Rössler oscillator element for every
motor and specific phase differences to create a movement
pattern for our robot (Fig. 2). Body segments have a phase
difference of π

2 , producing a traveling wave along the body.
Legs are set to be in anti-phase with a open bias α by
design choice and in accordance to nature. α is a parameter
controlling the phase lag between the body and the limbs
(see Fig. 2).

The body joints receive the following position command:
χi = Ax̃i (sine-like signal). We can control the movement
by modifying the amplitude of body oscillations A (scaling
the output of the CPG), the frequency of the oscillators and
tuning the α parameter. x̃i is a dynamic normalization of the
signal xi in a moving window of 50 samples. We need to
normalize xi because of amplitudes variations and because
our motors take input values in a fixed range. The legs are in
permanent rotation following a phase signal calculated using
xi and yi, Θi = atan( yi

xi
) (this gives an angle of rotation).



We implemented three types of limit cycle controllers. The
limit cycle controller uses arbitrary chosen A and α param-
eters, without sensory feedback (Γi = 0). Limit cycle with
sensory feedback uses the same parameters but with sensory
feedback (explained in Section II-E). For the optimized limit
cycle controller, we performed a systematic exploration of
the amplitude A and the α parameter, for fixed frequencies
of oscillations, to find the gait with highest speed on flat
terrains. The obtained optimized movement pattern closely
resembles the one obtained for scolopendra heros[11], except
its body amplitude is bigger. We think this is due to the
smaller mobility of our robot’s legs, which is compensated
by bigger body oscillations increasing the accessible space
for each foot.

C. Chaotic controller

We make the Rössler CPG bifurcate to the chaotic regime
by setting b = 0.2. We use the same number of oscillators
and relations to the robot motors. As we want to know
if chaos could make efficient locomotion patterns emerge,
we want our controller to be as unconstrained as possible.
Therefore, we remove coupling between the elements.

The only interactions between the chaotic elements will
be through sensory feedback integration. The oscillators are
thus indirectly coupled via their interaction with the outside
world. This idea of indirect interaction is consistent with
the previous work on chaotic controllers by Y.Kuniyoshi [6]
[12].

D. Random controller

1) Pure random controller: The first random controller is
a simple phase oscillator with randomly varying frequency:

Θ̇i = ω · (2 · U(0, 1)− 1) (3)
where U(0, 1) is a random number following a uniform
distribution between 0 and 1 and ω controls the desired
frequency with F = w

4π . Θi is updated every 32ms. We
use an oscillator for each motor. The legs receive directly
the angle Θi. The body elements receive A sin(Θi) as
angular position. They do not receive sensory feedback. This
controller can make the legs go forward and backward.

2) Forward random controller: Since for locomotion, it
is likely that the legs always rotate forward, we introduce
another random oscillator:

Θ̇i = ω · U(0, 1) (4)
The controls are sent to the robot as before.

E. Sensory feedback integration

We consider the feedback given by pressure sensors placed
on every foot of the robot, and study its effect on different
controllers. It is the easiest feedback that gives actual insight
on the effect of movement patterns and terrain features.
A rhythmic pressure sensory feedback indicates a constant
movement pattern on an even terrain. More complicated ter-
rains will introduce different patterns in the pressure sensory
feedback. The signal coming from the pressure sensor is
preprocessed and confined to a [0; 15] Nm2 range.

TABLE I
PARAMETER SETS OF THE CONTROLLERS FOR F = 2Hz.

A ω α Kf
Optimized limit cycle 1.6 6π 2.93 0

Limit cycle 0.8 6π −π
2

0
Limit cycle with sensory feedback 0.8 6π −π

2
0.5

Random forward 0.4 8π – –
Random pure 0.4 8π – –

Chaos without sensory feedback 0.3 6π – 0
Chaos with sensory feedback 0.3 6π – -0.5

The sensor information from a given leg is sent to the
Rössler system controlling this leg and the one controlling
the opposite leg of the same segment. This creates a local
feedback for legs. The body segments do not receive any
feedback, as no good feedback scheme was found to create
interesting patterns. We define the feedback as:

Γi =
{
Kf · (Ti − Tk) If i is a leg
0 If i is not a leg (5)

Ti is the pressure sensor signal coming from the leg cor-
responding to oscillator i, Tk is the signal coming from the
opposite leg on the same body segment. Kf is a signed open
gain parameter.

This sensory integration is limited and can only periodi-
cally affect the oscillators. It can modify the swing time of
one segment based on timing discrepancies of the sensory
signals. It cannot be used to predict coming difficulties, but
only reacts to instantaneous changes in the outside world.

III. EXPERIMENTAL SETUP

We want to measure quantitatively how these different
controllers behave when they face unknown terrain. Ob-
viously, when the terrain is known and simple, a limit
cycle behavior will produce the best results. But when
the environment becomes unknown, we do not have such
insight anymore. Chaos could be a way to explore interesting
patterns of coordination when facing uneven terrain or when
stuck in a hole, for instance.

We developed a complete and precise test bench to assert
this fact, with the following components:

1) An experiment area (see Fig. 3) consisting of a starting
zone for the robot, a randomly generated uneven terrain
as test area and extra flat terrain after that. The robot
has to walk through the test area and beyond.

2) A defined difficulty level between 0.1 and 1.0 for the
uneven terrain. The test area is generated automatically,
by creating a mesh of triangles with randomly chosen
heights. The derivative along successive heights is used
to define the difficulty level. We use 10 difficulty levels,
0.1 being the simplest terrain and 1.0 the hardest.

3) 8 terrains are generated for each difficulty level. Runs
are distributed equally between them.

4) 120 runs are done for each combination of difficulty
level and controller. Controllers are initialized ran-
domly.

5) The random controllers are used as references to see
if the chaotic regime is more efficient than a random
exploration.
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Fig. 3. Sketch of the Experiment area created for the study. The Test area
consists of a triangle mesh with randomly generated heights. The derivative
along successive heights is used as a difficulty level parameter.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

D
is

ta
nc

e 
tr

av
el

le
d 

[m
]

Difficulty level

 

 
Random forward
Random pure
Chaos without sensory feedback
Chaos with sensory feedback
Optimized limit cycle
Limit cycle
Limit cycle with sensory feedback

Fig. 4. Benchmark results for all controllers. We show the average distance
traveled as a function of the terrain difficulty together with its standard
deviation.

We remove as much as possible random side effects of
the simulations by doing a large number of experiments.
The controllers use fixed parameters defined in Table I.
ω are chosen to get a common frequency F = 2Hz for
every controller. All the parameters α, A and Kf in Table I
(except for limit cycle and limit cycle with sensory feedback,
as explained before) have been found by performing an
extensive parameter search. We systematically vary them for
each controller in order to optimize the forward speed on flat
terrain (over 20 runs).

IV. RESULTS

A. Performance on uneven terrains

We measure the performance of the controllers as the
distance traveled in a fixed period (20 seconds) on the
different terrains1. The traveled distances for all controllers
on the different worlds are shown in Fig. 4.

We see that:
• Optimized limit cycle performs best on easy terrain, but

its performance drops dramatically while the difficulty
level increases. It nearly does not move when the
difficulty is higher than 0.7.

• Limit cycle behaves less well on easy terrain, but
manages to keep acceptable performances when the
difficulty level increases. We think this is due to the

1A video showing the obtained movement patterns and the experimental
area is available on http://birg.epfl.ch/page67190.html
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Fig. 5. Boxplot of the performances of controllers on terrain of difficulty
1.0. Horizontal bars are the median values, boxes shows the interquartile
distance and crosses are outlier values.

smaller body amplitude, which, while being sub-optimal
on easy terrain, tends to be more efficient on uneven
terrain.

• When adding sensory feedback to the limit cycle, we
see an increase in performance on every world. This
is an interesting result, as it shows that sensory in-
formation is used to increase the speed independently
of the terrain configuration. It even manages to allow
movement on the hardest terrain, where the other limit
cycle controllers produce no real movement (see Fig. 5).

• The random pure controller cannot make the robot
move on any terrain. The random forward controller
has minimal performances on all difficulty levels, which
confirms initial assumptions.

• The chaotic controllers have good performances, even
when the difficulty increases. Moreover, when sensory
feedback is present, the performance attains the one
from a limit cycle controller, which is a surprising
fact, since there is no explicit coordination between the
elements of the controller. Compared to the network
architecture of the limit cycle, with its carefully de-
signed phase differences, this is quite an achievement.
Another interesting feature is its high performance on
very difficult worlds. Looking at a box-plot view of
the performances on difficulty 1.0 (Fig. 5), we see that
chaos with sensory feedback is the only controller with
a positive median, indicating a good robustness on this
difficulty.

The best performing controllers on uneven terrain are thus
the ones with sensory feedback information, which indicates
its importance on unknown terrains. Moreover, the chaotic
controller does better on average than the limit cycle systems
on worlds of difficulty higher than 0.6 (Fig. 4 and 5). It is
interesting to note that the best performance on flat terrain
is the limit cycle controller without feedback, which can
be explained by the fact that in control theory feedforward
controllers achieve the best performance in perfectly known
environments but their performance degrades rapidly under
unexpected disturbances.

B. Patterns of coordination for the different controllers

The movement pattern of the limit cycle system on flat
terrain is easy to observe, as we have explicitly designed it.
On the contrary, observing the movement pattern of the chaos
controller with sensory feedback is more complicated, as no
stable movement emerges, and because the state values are
intrinsically hard to study. We cannot study directly the be-
havior of the oscillator in state space, as the sensory feedback
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Fig. 6. Time lag for the left legs, with respect to the first left leg, for
optimized limit cycle on flat terrain. Stride index is the number of the current
stride. Distribution of time lags, indicating a traveling wave along the body.

adds unknown components to it. A simple visual observation
did not reveal any stable structure in state space over time.
But while observing the movement of the chaos controller,
we detected short bursts of synchronization between legs of
the same segment, so synchronization or patterns should exist
(data not shown).

To find out about those patterns, we studied the temporal
distribution of the touchdown of the different legs of our
robot. We take inspiration from an approach for studying
the coordination patterns during unsteady locomotion of
mammals, proposed by Abourachid et al.[13]. We observe
the times at which different legs touch the ground with
respect to a reference leg, to define a dynamical way of
expressing gaits. We take the first left leg as a reference.
The intervals between two touchdowns of this leg define
the dynamical strides. If we then express the moment of
touch of the other legs in term of time lag percentage with
respect to this interval, we can detect movement patterns.
The time lag is just the difference between the time of
touch of some leg with respect to the start of the current
reference interval of the first left leg. By dividing by the
duration of the current reference interval, we have the time
lag percentage. A time lag percentage of 50% indicates
“anti-phase” synchronization, and values around 0% or 100%
indicate “in-phase” synchronization. A time lag percentage
can be thought of as a dynamical gait definition.

Fig. 6 shows the time lag percentages for the left legs,
with respect to the first left leg for the optimized limit
cycle controller. The distribution of the percentages are in
accordance with the traveling wave along the body. The time
lags percentages are fairly constant, which indicate a stable
movement pattern.

When applying the same methodology to the chaos with
sensory feedback controller, we obtain quite different results.
Fig. 7 shows in the upper part the time lag percentage of the
first right leg with respect to the first left leg. This figure
could show the possible synchronization in a same segment.
It only reveals a big change of the time lag percentage
performance over time, which indicates a strong irregularity
of the movement patterns used by the chaos controller. But
as can be seen in the lower part of the figure, the speed stays
quite constant on average.

Another way to interpret the average presence of move-
ment patterns is to show the distribution of time lag per-
centages using histograms. Typical results for the first right
leg and second right leg, using the optimized limit cycle, the
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Fig. 7. Top: Time lag of first right leg for chaos with sensory feedback on
flat terrain. Bottom: instantaneous speed of the robot.

limit cycle with sensory feedback and the chaos with sensory
feedback controllers are shown in Fig. 8. From these figures,
we see that:

• Optimized limit cycle: Uses nearly always the same
movement pattern, with a 50% time lag for the Right
leg, corresponding to anti-phase synchronization, and
75% time lag for the second right leg, which corre-
sponds to the designed relation between segments. On
difficult terrain, the robot gets stuck, so aberrant values
appear (near 80%) and fewer strides are done in total,
which decreases the relevance of those values.

• Limit cycle with sensory feedback: We find the previous
time lags again, but now with greater variance around
them. The number of successful strides is much higher
than for the optimized limit cycle, which shows the
effect of the sensory feedback on uneven terrain. For
a difficult terrain, the controller manages to keep the
desired patterns while exploring a little around them,
which is sufficient if the terrain is not too complicated.

• Chaos with sensory feedback: We see that some move-
ment patterns indeed exists for the this controller. For
the first right leg on easy terrain, there is a Gaussian-
like distribution of time lags with a mean of about 50%.
Anti-phase synchronization between legs of the same
segment is thus promoted, even if these synchronized
patterns are quickly changing. This is still the case in
difficult terrain. The results for the second right leg are
harder to interpret; it seems that no real synchronization
occurs between segments. This could be explained by
the fact that no sensory feedback is exchanged between
segments. This is more visible for the difficult terrain,
where we have a quasi uniform distribution of time
lag percentages. This distribution shows that the system
explores a lot of possible coordination patterns without
stabilizing to a specific one.

We thus showed that motion patterns are promoted by chaos
with sensory feedback. Moreover, sensory feedback adds
flexibility to the possible movement patterns since it allows
exploration of these patterns, which is useful in uneven
terrain.

V. CONCLUSION

In this work, we have developed a CPG controller for
a centipede robot based on coupled Rössler systems. The
same controller can be used to generate both limit cycle and
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Fig. 8. Distribution of the time lag percentages used by the different controllers over a run of 30 sec. These time lags are calculated with respect to the
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chaotic behaviors by a simple parameter change, using the
bifurcation characteristics of the Rössler elements. We added
sensory feedback to the system.

First, comparison with random controllers show that our
chaotic controller is able to explore new coordination pat-
terns in difficult terrains in an efficient way, certainly ex-
ploiting some structural properties that are absent in random
movement generators. Second, the chaotic system provides
more flexibility in the exploration of patterns when compared
to the limit cycle system and thus performs better in very
difficult terrains. However, the limit cycle systems are still
better on simple terrains. Third, appropriate sensory feedback
loops are extremely important, independently of the type
of controller, since on the very difficult terrains it was the
only way to have a moving robot. Finally, since we use a
unified framework for the different controllers, it is possible
to choose the appropriate controller behavior according to
the environment.

In future work it would be interesting to explore the
relation between the structural properties of the chaotic
controller and the sensory feedback loops, in order to be
able to provide general design methodologies for chaotic
controllers for locomotion. Extension of the test bench to
other types of terrains would also be needed. Finally, we
could make our robot switch automatically between limit
cycle and chaos regime when stuck, to exploit the exploration
capabilities of the chaotic regime to resume movement.
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