
Semester Project

Chaotic systems for escape and exploration in robots

Löıc Matthey

Under supervision of L. Righetti and Prof. A.J. Ijspeert.
Biologically Inspired Robotics Group

January 12, 2008

page left on purpose.

Abstract

This report presents the work accomplished during a Semester project at the BIRG Laboratory of
EPFL. It took place in the Master winter semester of 2007-2008 at the EPFL.

We present a study of the applicability of Chaotic Systems for the control of robots. This approach to
control being very new, very little is available as of now about its usability, usefulness or even robustness.
But the first steps along the use of Chaos to control robots are very encouraging and promising. We
implement a controller able to produce either a defined limit cycle behavior or chaotic exploration of
movement, depending on the situation. We use feedback to stabilize the limit cycle behavior and provide
information about the environment for the chaotic behavior.

We then study the advantages of using chaotic exploration in unknown terrains, compared to limit
cycle behavior and pure random exploration. For that we perform a systematic benchmark of movement
performance on uneven terrain of defined difficulties. We found out that a chaotic controller is able to
move effectively on difficult uneven terrains, where a completely designed controller fails.

This work is inspired and strongly linked to the research of Prof. Yasuo Kuniyoshi, which is of the
first people having introduced and studied chaotic systems for robot control.

page left on purpose.

List of Figures

2.1 Coupled Chaotic Field of Y. Kuniyoshi. Taken from [37] 11
2.2 Muscle-joint robot of Y. Kuniyoshi. Taken from [22]. 11
2.3 Multi-legged insect-like robot. Taken from [22] . 12
2.4 Multi-legged insect with goal control. Taken from [22] . 12
2.5 Wheel like robot model. Taken from [37]. 13
2.6 Min-max density and Spectral Bifurcation Diagram for a Lorenz ‘96 in 4D. Taken from [27]. 13
2.7 Lorenz strange attractor, taken from Lewis Dartnell, UCL 16
2.8 Lorenz limit cycle, for ρ = 400, taken from Michael Cross, Caltech 16
2.9 Attractor for Rössler System, chaotic mode, a = 0.2, b = 0.2, c = 5.7 17
2.10 Projection onto XY-plan of the Rössler System in chaotic mode, a = 0.2, b = 0.2, c = 5.7 17

3.1 Centipede robot model and its hardware counterpart. 20
(a) Robot model in Webots . 20
(b) Real body-leg segment . 20

3.2 Illustration of the obtained locomotion pattern (Taken from B. Jimenez [20]). 22
3.3 Motion of a real centipede, scolopendra heros (Taken from B. Anderson [1]). 22

4.1 Two coupled Rössler oscillators, with a phase difference of π
2 . Illustration of phase ap-

proximation artifacts . 25
(a) Time series, without artifacts . 25
(b) Phase difference and its artifacts . 25

4.2 Different time series obtained with a Rössler element, while varying parameter b. a = 0.2,
c = 5.7 . 26
(a) Convergence to equilibrium point. b = 10 . 26
(b) Sin-like limit-cycle. b = 3 . 26
(c) Chaotic mode. b = 0.2 . 26

4.3 Bifurcation Diagram for Rössler system while varying b. a = 0.2, c = 5.7. Done with a
Matlab script of J. Buchli. 26

4.4 Amplitude Spectrum of a Rössler element. ω = 3π . 27
(a) Limit-cycle mode . 27
(b) Chaotic mode. b = 3 . 27

4.5 Rotation of the XY -plans, to keep a constant φ phase difference. 29
4.6 Synchronization of two Rössler elements to φ = 0. Coupling K = 0.2 turned on at t = 550s. 30

(a) Time series . 30
(b) Phase difference. The oscillations are artifacts, the phase difference is constant. . . . 30
(c) Lissajou plot . 30

4.7 Synchronization of two Rössler elements to φ = π
2 . 32

(a) Time series . 32
(b) Phase difference. The oscillations are artifacts, the phase difference is constant. . . . 32
(c) Lissajou plot . 32

4.8 State space of a Rössler element in Limit cycle mode and synchronized with π
2 33

4.9 Synchronization of two Rössler elements to φ = π. 33

1

LIST OF FIGURES 2

4.10 Synchronization of two Rössler elements in chaotic mode to φ = 0. Coupling K = 0.2
turned on at t = 750s. 34
(a) Time series . 34
(b) Phase difference . 34

4.11 Lag Synchronization of two Rössler elements in chaotic mode to φ = 0.9. Coupling turned
on at t = 435s. 34

5.1 Rössler network CPG for Centipede locomotion pattern. 36
5.2 Adapted Rössler CPG network . 37
5.3 Timeseries for Rössler CPG for centipede movement. 38
5.4 Phase difference between Body 1 and Body 2. The oscillations after the time t = 750s are

artifacts, the phase difference is constant. 38
5.5 Lissajou plot between Body 1 and Body 2. 39
5.6 Mapping of the Rössler CPG architecture on the Centipede robot, dropping the α term . 40
5.7 Optimization of Bias for the touch of the legs . 41
5.8 Dependance of performance on Body amplitude and Frequency 42

6.1 Sensory feedback given by the Touch Sensor of one leg when moving. 44
6.2 Sensory feedback processed to add tails. 47
6.3 Effect of feedback parameter Kf on Optimized Limit Cycle 2Hz. 47
6.4 Final positions for different Sensory Feedback strength Kf for the Optimized Limit Cycle. 48
6.5 Effect of feedback parameter Kf on Bad Limit Cycle . 49
6.6 Confidence intervals for the different values of Sensory Feedback strength Kf on Bad Limit

Cycle . 50
6.7 Final positions for different Sensory feedback strength Kf for the Bad Limit Cycle. 50

7.1 Relation between Body Amplitude and Frequency for the Chaotic controller 53
7.2 Effect of Sensory Feedback strength on performance of Chaotic controller on flat terrain. . 53
7.3 Final positions for different Sensory Feedback strength Kf for the Chaotic controller . . . 54
7.4 Observed Chaos controller block diagram. 56

8.1 Is a Chaotic controller standing between a Random controller and a Limit cycle controller ? 58
8.2 Experiment area schema. 59
8.3 View of the Webots simulation of the Experiment area. World of difficulty 0.5. 60

(a) General view of the Experiment area. 60
(b) Close view of the uneven terrain. 60

8.4 Random movement along a circle . 61
8.5 Optimization of Body Amplitude for Chaotic controller on different worlds 62
8.6 Benchmark results for all controllers with F = 2Hz. Distance travelled on Test Area on

the y-axis, different difficulty levels on the x-axis. 64
8.7 Performances of controllers on terrain of difficulty 0.1. 66
8.8 Performances of controllers on terrain of difficulty 1.0. 66
8.9 Kruskal-Wallis confidence intervals for World 1. Intervals that don’t overlap are indepen-

dant with 95% confidence. 67
8.10 Kruskal-Wallis confidence intervals for World 10. Intervals that don’t overlap are inde-

pendant with 95% confidence. 67
8.11 Performance of Chaotic controller depending on the Sensory feedback strength 68
8.12 Performance comparison, at F = 3Hz . 69
8.13 Performances of all controllers on World 10, at Frequency F = 3Hz 70
8.14 Kruskal-Wallis confidence intervals for World 10, at Frequency F = 3Hz. Intervals that

don’t overlap are independant with 95% confidence. 70

List of Tables

3.1 Optimal parameters for Centipede locomotion, taken from B. Jimenez [20] 22

4.1 Comparison between Lorenz and Rössler element . 23

5.1 Parameter sets for the Rössler CPG in Limit cycle mode 43

6.1 Effect of Sensory Feedback on legs. 46

8.1 Parameter sets for frequency F = 2Hz . 63
8.2 Parameter sets for frequency F = 3Hz . 63

3

page left on purpose.

Contents

1 Introduction 7
1.1 Problem overview . 7
1.2 Outline . 8

2 Chaotic systems and control 10
2.1 Yasuo Kuniyoshi‘s work . 10

2.1.1 Introducing the Coupled Chaotic Field . 10
2.1.2 Creating analyzing tools . 11
2.1.3 From simple adaptation to motor development . 14

2.2 Other uses of chaos for robot control . 14
2.3 Chaos control and Anticontrol . 15
2.4 Chaotic oscillators and attractors . 15

2.4.1 Lorenz system . 15
2.4.2 Rössler system . 16

2.5 Synchronization of oscillators . 18
2.6 Central Pattern Generators . 18

3 Movement of a Centipede robot 20
3.1 Earlier work . 20
3.2 Locomotion pattern . 21

4 Rössler oscillators networks 23
4.1 Rössler element . 23

4.1.1 The Phase problem . 24
4.1.2 Modulating the frequency . 24
4.1.3 Behavior of Rössler element . 25

4.2 Coupling . 28
4.2.1 Diffusive coupling . 28
4.2.2 Introducing arbitrary phase locking . 28

4.3 Results . 29
4.3.1 Limit cycle mode . 29
4.3.2 Chaotic mode . 31

5 Rössler network CPG for Centipede robot locomotion 35
5.1 Architecture of network . 35
5.2 Theoretical results . 35

5.2.1 Stability problems and adaptation . 35
5.2.2 Results . 37

5.3 Adaptation to robot . 38
5.3.1 Normalization of outputs . 40
5.3.2 Optimization of touch of legs . 41
5.3.3 Effect of amplitude of body and frequency . 42

5

CONTENTS 6

5.3.4 Obtained movement discussion . 42

6 Sensory Feedback 44
6.1 Sensory feedback for the centipede robot . 44
6.2 Theoretical implications . 45
6.3 Sensory feedback in the Rössler CPG . 45

6.3.1 Pre-processing of touch sensor signal . 46
6.4 Effect of feedback on performance . 46

6.4.1 Optimized Limit Cycle 2 Hz . 47
6.4.2 Bad Limit Cycle . 48

7 Chaotic controller 51
7.1 Simple Chaotic controller . 51

7.1.1 Behavior and parameters . 51
7.1.2 Dependance on parameters . 52

7.2 Movement obtained and discussion . 55
7.3 Observed Chaos controller . 55

7.3.1 Theoretical concept . 55
7.3.2 Relations with other works . 57

8 Benchmarking on uneven terrain 58
8.1 Goal and description . 58
8.2 Random uneven terrain generator . 59
8.3 Building a fair random controller . 60
8.4 Forward random controller . 60
8.5 Pure Random controller . 61
8.6 Benchmarking parameters . 62
8.7 Benchmark result for Frequency F = 2Hz . 64

8.7.1 Performance of Limit Cycle . 64
8.7.2 Random controllers . 65
8.7.3 Chaotic controllers . 65
8.7.4 Kruskal-Wallis tests . 65

8.8 Benchmark results for Frequency F = 3Hz . 68
8.9 Is Chaos more than just a Random movement ? . 69

9 Conclusion and Outlook 72
9.1 Conclusion . 72
9.2 Outlook . 73

10 Bibliography and Additional Material 74
10.1 Videos . 74
10.2 Acknowledgement . 74

Chapter 1

Introduction

1.1 Problem overview

Controlling robots is an old problem. It has been solved in many ways, and has given birth to a
complete theoretical field: Control theory. But all this available theory was created and is applied in
very well-known situations, where specific tasks had to be done. A typical example is the manufacturing
of goods by industrial robotics. There is no place for unknown in general and the whole theory is build
to produce strong and reliable behavior. To produce such a robust behavior, Control theory models and
predict the unknown and the uncertainty for a given situation.

On the other side, the real world isn’t well-known, isn’t simple. Information changes all the time, noise
is everywhere and unknown appears at every side-step. We can’t model every cases. We need a theory
that adapts well to a very changing environment, that can reacts to events and take new decisions if
needed. We need something behaving like living things.

In our everyday life, we face changing environments all the time. We are able to move in this
environment, modify our behavior accordingly, while still pursuing some goals.

Lots of different approaches on learning robust behavior have been proposed. They are usually divided
in three categories :

1. Supervised learning.

2. Unsupervised learning.

3. Reinforcement learning.

In the first case, we want to learn something with the help of a “supervisor”. This supervisor knows
a-priori the answers, provides a measure of correctness for a given number of training examples. Appli-
cations of Supervised learning are for example “pattern classification”. A typical pattern classification
example is the recognition of hand-written digits.

In the second case, we just have the examples. We need to detect similarities among them, group
them by those similarities (this is called clustering) and make sense of all these examples. This is a
much harder problem, because we don’t know what we want at the beginning. A typical example is the
discovery of similarity in large database, for example buying habits on Amazon.

In the third case, we often have an agent, which can do several actions. Depending on what it has
done, it can receive a reward. The agent tries to maximize its reward. A typical example is a mouse
in a labyrinth, searching for cheese. The mouse has to search the space, and if it succeeds, will find
the rewarding cheese. The problem is the lack of synchronization between actions and reward. Rewards
comes very sparsely, and doesn’t just depend on the action, but more on the global state of the agent in
its environment.

7

CHAPTER 1. INTRODUCTION 8

Reinforcement learning is most similar to applications in robotics. Clearly, we want an agent to
perform some task, with no prior knowledge of how to accomplish it, but with a notion of reward if the
goal is reached. Such learning can be performed “online”, that means directly while acting in the world,
while doing trial and error. But this needs a lot of different trials before arriving to a good solution, and
we want to avoid such long training time.

In nature, we can see young fawns stand on their legs just 20 minutes after being born [11]. This
is not an easy task, yet they do this very quickly. It is thought now that the movement patterns are
hard-coded into their spinal cord, so the only thing left to do is learn how to use the hard-coded elements.
Still some adaptation has to be done very quickly.

We want to combine the two approaches, by learning quickly without doing so much trials. If we
could rely on information that helped the learning, like the knowledge of our body or some pre-coded
parts, then we could learn new behavior very quickly.

Chaotic Systems may prove useful in this way, because they allow a quick adaptation to the body,
almost in real-time [22]. This makes them very interesting to produce really robust behavior that can
adapt to deep changes in the environment in a few seconds. On the other hand, we can’t store for
now this information, so this isn’t really “learning” yet. Moreover, we don’t have much control on the
obtained behavior, as it seems to emerge from body-environment interactions. But this is a first step
using a completely different method, which may prove successful later on.

The use of chaos is more and more explored nowadays, as it seems to provides new ideas to solve
existing problems. Moreover, studies have shown that sensory neurons of mammals have chaotic behavior,
which is thought to be used to self-organize the information coming from the senses [12].

We want to combine existing control with the possible exploration power of chaos. Therefore, we want
to design a system that can “switch” between normal and chaotic behaviors. The normal behavior is
activated when the environment is known, when no problem arise. We can design such normal behavior
very accurately, for example with non-linear oscillators via limit cycles ([16], [18]). But when the envi-
ronment isn’t smooth, when obstacles arise, such normal behaviors don’t work anymore. So instead of
taking care of every possible cases, we could switch the robot to chaotic behavior. We hope that such
a chaotic behavior would take care of the uncertainty in the environment automatically. Then if the
environment is safe again, we go to normal behavior again.

But before doing that, we first need to be sure that Chaos can actually bring something for control,
and is not just a source of randomness. Our work will therefore concentrate on the following question:

• Is Chaos more than just a Random movement ?

To answer this question, we will implement a controller on a Robot. We will use a physics simulator
called Webots to do this. The robot will be a Centipede Robot, developed at the BIRG Laboratory.
We will then test the behavior of this robot using different kind of controllers, to see if the Chaos bring
us something. Our main assumption is that the Chaos may be useful when the robot is on a unknown
terrain. We will then test its behavior on such terrains, compared to more classical controllers.

We think that chaos can be very interesting and the research around it is quite new for robot control.
It seems that this project takes place at a very promising time, and could provide useful insight. We
hope it will.

1.2 Outline

This report is organized as follows: Chapter 2 presents the work of Y. Kuniyoshi and gives and overview
of the theoretical notions used in this project. Chapter 3 introduce the Centipede robot and the work
done by B. Jimenez on a locomotion pattern adapted to it. Chapter 4 shows the creation of our Rössler
CPG and its mathematical investigation. Chapter 5 addresses the adaptation of the Rössler CPG

CHAPTER 1. INTRODUCTION 9

into a controller adapted to the Centipede robot, with a search of the optimal locomotion pattern.
Chapter 6 shows the introduction of Sensory Feedback to our robot and its effect on our controller.
Chapter 7 presents the creation of a Chaotic controller out of our Rössler CPG working in chaotic
regime, and the optimization of its parameters. Chapter 8 introduces all the work we did to perform
a systematic experiment to test the behavior of controllers on uneven terrain of growing difficulties.
Furthermore, this chapter presents the conclusions that we could get out of these results. Chapter 9
concludes our work and present further possible work. Finally, Chapter 10 presents the additional
material, the acknowledgements and the bibliography.

Chapter 2

Chaotic systems and control

As remarked in the introduction, robot control is a big field, with well established theory. On the
other hand, while being studied mathematically for quite some time, and applied on weather models
(which was the real example of chaotic behavior), chaos is less used in engineering fields. It is easily
understandable: Chaos is hard to predict and control, which is exactly what we want for engineering
problems. Nevertheless, we have theory on chaotic systems ([46]) and more interestingly for our scope,
about their synchronization ([34]).

This chapter will present a small overview of the field and uses of chaos. We’ll begin by what first
triggered this project: the work of Y. Kuniyoshi on chaotic control of robots ([22] [21] [38] [37]). We’ll
then move toward more classical uses of chaos, and present some chaotic systems of interest for us.

2.1 Yasuo Kuniyoshi‘s work

2.1.1 Introducing the Coupled Chaotic Field

Y. Kuniyoshi first introduced his chaotic system model in a paper from 2004 [22].
He modeled a chaotic system with sensory feedback to dynamically produce movements adapted to

the body. The goal was to be able to learn quickly how to move, by emergence of the rhythmic outputs
adapted to the body.

This chaotic system is composed of an array of chaotic elements, following a standard logistic map
(2.1), with a dependence on the sensory feedback provided by the body.

fα(xi(t)) = 1− αxi(t)2 + ηFi(t) (2.1)

The output of these elements are then combined to produce the signal driving the body (2.2). They
are not directly coupled, but the coupling is thought to be carried out by the interaction between the
body and the environment, carried out by the sensory feedback. See Figure 2.1 for a schema of this
chaotic system.

xi(t+ 1) = (1− ε)fα(xi(t)) +
ε

N

N∑
j=1

fα(xj(t)) (2.2)

He then tried his Coupled Chaotic Field, as it is called, on two kind of robots: one simple “muscle-
joint” model (Figure 2.2) and an “multi-legged insect” model (2.3).

For the muscle-joint, they observed a back and forth movement on one axis. This axis could change
over time, but it was pretty stable. When they modified the joint (for example added links), the movement
changed, for example to a circle-like motion.

For the multi-legged robot, the robot started moving forward in a randomly chosen direction. This
movement was stable and with a constant speed. They then modified the model to impose a goal to
follow, by putting a weight on top of the robot (Figure 2.4). It allowed them to control the direction of

10

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 11

Figure 2.1: Coupled Chaotic Field of Y. Kuniyoshi. Taken from [37]

Figure 2.2: Muscle-joint robot of Y. Kuniyoshi. Taken from [22].

movement of the robot. All these movements emerged spontaneously due to the exploratory factor of
chaotic elements. They then stabilized as the chaotic elements were brought to periodic behavior by the
sensory feedback.

This is a very useful feature of chaotic elements: under certain conditions (e.g. external forcing)
or parameters setting, they can have chaotic behavior or instead behave like nonlinear oscillators. The
interesting question is then to know what can trigger this change. The first method to stabilize chaotic
systems was proposed by Ott, Grebogi and Yorke (OGY) [29], by applying a specific periodic input to
the chaotic system. Others methods exist to control chaos based on special input signals ([39]).

But the main problem with Kuniyoshi’s approach is the lack of insight in the synchronization process
and stabilization of the chaotic elements. Another EPFL student encountered problem when trying
to reproduce the results from [22], as it seems that the system is highly dependent on the simulation
parameters [4]. But this first work was very promising because the kind of movements produced were
still possible and behaved nicely, which is impressive because the number of degrees of freedom was huge.

Y. Kuniyoshi and the members of his laboratory looked further into the possibilities offered by this
new model. They tried incrementally to produce more and more theoretical insight on the learning and
adaptation process.

2.1.2 Creating analyzing tools

The second paper on Kuniyoshi’s Chaotic controller, published in 2005 by A. Pitti [37], introduced a
new robot model. It consists of 10 prismatic elements connected by 10 force-controlled sliding joints.
Each joint has 3 degrees of freedom. They are arranged in a ring-like fashion, creating some kind of

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 12

Figure 2.3: Multi-legged insect-like robot. Taken from [22]

Figure 2.4: Multi-legged insect with goal control. Taken from [22]

flexible wheel (Figure 2.5). We see here that there are 30 DOF total. So figuring out a movement
behavior isn’t that trivial. They still use the Coupled Chaotic Field to study which movement emerged.
Again the controller proved to produce interesting movement and behavior, adapting very smoothly to
the body. But here the kind of movement obtained depends on the degree of chaoticity given to the
chaotic elements. The robot could for example vibrate on place, or start moving forward then turn
around and move forward for some more. It could also just rotate in equilibrium on some edge. So the
obtained behavior was still way away from a complete controlled movement. It wasn’t possible to control
the behavior, and analyzing the synchronization and movement patterns was a hard problem. To try
to gain insight in the movement patterns, they used three different tools to analyze the data: Spectral
Bifurcation Diagram, Wavelet transform and Wavelet Bifurcation Diagram.

Spectral Bifurcation Diagram: This method has been introduced by Orrell and Smith in [27]. It of-
fers another way of visualizing bifurcations for continuous-time systems. Bifurcations occurs when
a parameter change produce a qualitative change of the system, for example period-doubling or
becoming chaotic. Usual methods to visualize bifurcations like plotting the min and max values
touched, don’t show precisely the addition of harmonics and period of chaos, especially in high-
dimensional systems. In order to obtain such a representation, the Spectral Bifurcation Diagram
shows the amplitude power spectrum of the system, with respect to the parameter value. This
allows to see brief periods of periodicity between chaotic periods more easily, as well as other bi-
furcations behavior. See bottom of Figure 2.6 for an example of a Spectral Bifurcation Diagram,
taken from [27]. The chosen system is a 4-dimensional Lorenz‘96 system. The Lorenz‘96 system is
a idealized one-dimensional model of the atmosphere, who can model the variation of the tempera-
ture, for example. It models a chosen “layers” of atmosphere, which control the dimensionality and
precision of the model [27]. You can see the onset of chaos around F = 12 and the brief periodic
windows at F = 14.7. On the same figure, on top, you can see a classical min-max diagram,
which gives some indication about chaos and periodic behavior, but is clearly less precise than the
Spectral Bifurcation Diagram. Moreover, the paper presents a 80-dimensional Lorenz‘96 system,
for which Spectral Bifurcation Diagram showed more than classical tools.

Wavelet Bifurcation Diagram This is a new tool introcuced by Pitti [37]. It observes the system with

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 13

Figure 2.5: Wheel like robot model. Taken from [37].

respect to frequency, time and index of the neural unit. It is therefore able to see spatiotemporal
changes, like the Wavelet Transform, but also to observe the behavior of neural units or groups of
neural units, showing bifurcations in the system behavior (like the Spectral Bifurcation Diagram).

Figure 2.6: Min-max density and Spectral Bifurcation Diagram for a Lorenz ‘96 in 4D. Taken from [27].

They applied the Spectral Bifurcation Diagram on the body movement, providing information on
the presence of coherent behavior. The Wavelet Transform and the Wavelet Bifurcation Diagram were
applied to the output of the chaotic elements themselves, to detect whenever they showed temporal
or spatial patterns. While providing some information, these tools weren’t completely successful at
capturing the interactions and synchronization that occurred between chaotic elements.

Continuing on the testing of the Coupled Chaotic Field, a third paper proposes yet another robot
model and analyzing tools [38]. The robot proposed is a simple two dimensional bipedal robot. It
again proved to generate interesting behavior, with walking, jumping and hopping movements. The

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 14

Spectral Bifurcation Diagram were used once again and this time provides really interesting inside on
the dependance on the chaoticity degree of the elements. The Wavelet transform and the Wavelet
Bifurcation Diagram showed a changing of scale of the stability of the dynamics when the movement
became more complex. More precisely, when the movement is simple (like vibrating on spot), we see
stability on low-scale study of the chaotic elements. On the other hand, when the movement is more
complicated (like jumping), the low-scales show fractal patterns while high-scale are stable. This is in
concordance with work on human locomotion [14].

We see that they tried to include some theoretical insight in the analysis of the results obtained
with their Coupled Chaotic Field. Unfortunately, nothing is so much known about the real behavior
of the chaotic elements. How do they synchronize and show periodic patterns ? Why do they produce
these behaviors ? How important is the precision of the body model and the simulation ? What is the
dependance between the sensory feedback and the behavior ? All these questions remain open.

2.1.3 From simple adaptation to motor development

After having conduct these experiments on different robots, one could easily foresee the possible appli-
cations of this new adapting model. The Coupled Chaotic Fields seems to capture quite well and really
quickly the possibilities offered by the body. So we could try to use this capability to reproduce the
learning occurring in Nature for every moving animal that has to use his body. This is called Motor
development.

This is what Y. Kuniyoshi and S. Sangawa did in 2006 [21]: trying to model the learning of motor
primitives. For this work, they took a strong inspiration from biological data and organization of the
neuro-musculo-skeletal system.

They were able to see a spontaneous exploration of motor patterns, as well as some reduction of the
degrees of freedom when the learning cortical model was present. This is very promising compared to
known biological facts. They then implemented that learning model on a baby model, which showed
nice preliminary results.

The important point here is that Chaos allows for quick and complete (in some sense) research of the
posture/movement space. Moreover, the chaotic elements synchronize themselves automatically thanks
to sensory feedback. But it is clear that a lot more insight in the inside process is needed before being
able to really use such systems for more complex cases.

2.2 Other uses of chaos for robot control

When searching for other related work using chaos to control robot, we were quite surprised: there is
nearly nothing else done, apart from Y. Kuniyoshi research. Chaos isn’t really used for robots, maybe
the field is too new, or the difficulties of controlling such emergent behaviors are too big.

We found an interesting application of chaos for perception-based navigation [3]. In this work, they use
another kind of chaotic systems: Multiscroll system. This system consist of several cycle-like trajectory,
aligned on an grid. The system can be driven to go trough certain scrolls only, creating recognizable
patterns. They then used these patterns to represent the perception of the environment by the agent.
While interesting, this work doesn’t bring so much, as it’s too linked with “common” robot control. Then
didn’t linked to perception directly to behavior for example, but relied instead on some movement rules.

But in a new conference on self-adaptive and self-organizing systems (SASO 2007), a work has been
presented that shows an interesting application of Y. Kuniyoshi’s work [10]. Duran et al. applied the
Coupled Chaotic Fields to the control of a mechanical eye. This eye had to pursuit a dark point, moving
in front of him. The only input was the difference between the point position and the center of the field of
view. The pursuit obtained seems very good, even with a goal-directed input like that. This needs to be
looked further into, because it may provides a really good method to implement goal-oriented behavior.

It seems that the use of chaos in robot control is slowly starting to grow, so the timing of this work
is good.

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 15

2.3 Chaos control and Anticontrol

When looking into the use of Chaos in other fields than robotics, we quickly discovered one of it’s most
studied application: chaos control. A very good overview of the uses of chaos is given in [24].

Chaos control is used when engineers have some dynamical systems that can behave chaotically
under certain conditions. Usually, this is a dangerous situation and chaos should be removed as soon
as possible. The whole field tries then to attenuate chaos or to give securities on the non-existence of
chaotic patterns for a given dynamical system (e.g. [13]).

Chaos control can also correspond to the goal of blocking some chaotic system to a given stable
periodicity. This is most similar to the use needed to control robots, as common coupled oscillators are
used to generate known trajectories producing some interesting behavior or movement. We don’t have
here the learning part and adaptation to the body present in Y. Kuniyoshi work, which can be a good or
a bad thing. But, even without these added features, these methods aren’t perfect and depend strongly
on the models and desired trajectories [2].

Another research direction about chaos is Chaos Anticontrol. This is completely different from what
we saw before. With Anticontrol, we try to create chaos out of some non-chaotic system. Known non-
linear systems can switch to chaotic mode with certain inputs (e.g. Rössler oscillators). People modeled
Neural Networks that could behave chaotically [6]. The goal is to use and direct them while in this mode
to realize some goal. Usually, we want to explore some space. Again this is comparable but still different
from what we’re trying to do, because we need to keep the obtained insight of the chaotic exploration
and reuse it later.

2.4 Chaotic oscillators and attractors

Chaotic systems have been discovered and studied since 1900. Their analysis is said to have started
with the work of Henri Poincaré, while studying the dynamics of three-body orbits. He showed that
very complicated (chaotic in fact) orbits were possible depending on initial conditions. Later studies
were carried out by other scientists, such as G. Birkhoff, M.L. Cartwright, J.E. Littlewood, S. Smale and
Soviet mathematicians, like A. N. Kolmogorov. But these studies didn’t provide a lot of insight in the
dynamics of chaotic systems, and their contribution wasn’t embraced by the scientific community. But
as computers allowed to repeat simulations trials, chaotic behavior became clearer and easy to observe
([28]).

A very important contribution to the field of chaos theory was published by E. Lorenz in 1963. He
studied a simplified set of three equations based on the dynamics of a fluid near the convection onset.
This system is now called the “Lorenz system” and is one of the most understood chaotic system available
([43]).

The name “chaos” itself was introduced in 1975, by the work of Li and Yorke. Their paper, “Period
Three Implies Chaos”, was very influential and anchored the name in the scientific community. Based
on the work of A. N. Sharkovski, they proved that if we can observe a loop of period three in a system,
then there exist loops of every possible period, which correspond to the definition of chaoticity [43].

Since then, a lot of different chaotic system have been proposed and studied. We don’t want to present
all of them, but only consider two of them, which are interesting for our application.

2.4.1 Lorenz system

The famous Lorenz system, being so much studied, has to be considered for our controller. It is defined
by the following state equations :

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 16

 ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

(2.3)

It produces a 3-dimensional attractor with a butterfly shape, see Figure 2.7. σ is called the “Prandth
number”, ρ the “Rayleigh number”. σ, ρ, β > 0, but usually one fix σ = 10 and β = 8

3 , while varying ρ to
produce different behaviors.

Figure 2.7: Lorenz strange attractor, taken from Lewis Dartnell, UCL

Small values of ρ make the system converge to a stable point, which is of no interest in our case.
The typical value of ρ = 28 produces the chaotic butterfly shown before. Such a closed trajectory is
interesting, but its 3D characteristic may be problematic, if we need to define some kind of phase. Bigger
values for ρ, like ρ = 400, produces limit cycles, which could be useful, but still poses some problem for
phase definition. See Fig 2.8.

Figure 2.8: Lorenz limit cycle, for ρ = 400, taken from Michael Cross, Caltech

2.4.2 Rössler system

We consider another chaotic system, the Rössler system. It was build by Rössler in 1976 to exhibit the
simplest possible strange attractor. Here is its description : ẋ = −(y + z)

ẏ = x+ ay
ż = b+ z(x− c)

(2.4)

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 17

It only has one non-linearity, xz, and can produce interesting behavior. Its attractor is a simple cycle,
with periodic “jumps”, see Figure 2.9. These jumps introduce the chaoticity of the system. It can be put
in non-chaotic mode, thus producing a smooth circle limit-cycle.

Figure 2.9: Attractor for Rössler System, chaotic mode, a = 0.2, b = 0.2, c = 5.7

If we fix a and c, b directly controls the chaoticity. Typical values are a = 0.2, c = 5.7 and b varied.
With b = 3, we have a simple circular limit-cycle. When reducing b, we have several period-doubling
bifurcations occurring, till chaos is reached at b = 0.2.

The fact that the attractor is pretty flat and close to a circle allows to define a simple approximation
to the phase of the system. We simply project the trajectory onto the XY -plan, then calculate the phase
like a circle :

Θ = atan(
y

x
) (2.5)

This is only an approximation, because when the system elevates from the XY -plan, we overestimate
or underestimate the phase. But this is simpler than using the Hilbert transform (i.e. defining the phase
as the argument of s(t) + i ·H{s(t)}). See Figure 2.10 for the projection on the XY-plan.

Figure 2.10: Projection onto XY-plan of the Rössler System in chaotic mode, a = 0.2, b = 0.2, c = 5.7

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 18

2.5 Synchronization of oscillators

We are going to use several oscillators for our controller, which need to be linked together to act as a
whole system. This link is done by synchronizing the oscillators. Therefore, we need to define what we
mean by synchronization and the different kind of synchronization possibles. This part is mainly inspired
by the book on Synchronization by A. Pikovsky [34].

By Synchronization, we mean an “adjustment of rhythms of oscillating objects due to their weak
interaction”. In other words, we have two oscillating elements, say with frequencies f1 and f2, and via
their interaction, their frequency detunning ∆f = f1 − f2 will be modified. The oscillators produce a
rhythmic signal, with an intensity of oscillation which is called their amplitude. We also need to define for
each oscillator a phase. This phase depends on the time, and for a typical sine wave is something of the
form φ(t) = ω0t+φ0. Now, we define the phase difference between two oscillators as ∆φ(t) = φi(t)−φj(t).

Then we have the following definitions:

Phase locking: Phase locking occurs when we have ∆φ(t) ≈ constant. Meaning that there is a rela-
tionship between the phases of two oscillators.

Phase synchronization: Such a synchronization occurs when two coupled oscillators achieve a certain
phase locking. There is no constraints on the amplitudes of the oscillators. Such synchronization
is interesting if we don’t want to correlate the amplitudes of the oscillators, but we need to be able
to define a phase.

Complete synchronization: Also called Amplitude synchronization. Occurs when both oscillators
are synchronized to produce the same amplitudes at the same time. Simply speaking, we have
xi(t) = xj(t), i.e. a total synchronization between the oscillators. A complete synchronization
implies a phase synchronization of 0, trivially. Such synchronization can be considered even when
we cannot introduce a phase.

Such synchronization can be applied to non-linear dynamical system, even for system producing
chaotic signals. It is therefore possible to synchronize two oscillators working in chaotic regime.

2.6 Central Pattern Generators

Another notion that we will need is the definition of a Central Pattern Generator, or CPG. A Central
Pattern Generator is a “neural circuit that can produce a rhythmic motor pattern with no need for
sensory feedback or descending control” [35].

In vertebrates, movement is generated by rhythmic electrical activities sent to muscles. Such rhythmic
activities are generated by specific organization of neurons along the spinal cord. These groups of neurons
are called Central Pattern Generators (CPG), as they are able to generate specific rhythmic output. The
brain send different signals toward the spinal cord, called “drive signals”, which can in turn activate
certain area of the spinal cord, certain CPGs. The CPGs then send specific rhythmic output directly
onto the muscles. It is thought that different groups of CPG generate different kind of movement, for
example walking or trotting in quadrupeds.

As their biological existence is strongly assessed, people started building controllers based on the
same principles.

A CPG in robot control is a single or a combination of oscillators, capable of producing rhythmic
outputs. A very big range of oscillators can be used for this purpose (e.g. Hopf, Van der Pol), all we
need is a dynamical system producing a limit-cycle behavior. If we use nonlinear dynamical systems, we
can design the CPG in such a way that it will converge to a specific limit-cycle despite initial condition
or perturbations. We obviously want that limit-cycle to correspond to a plausible locomotion pattern
for our robot.

CHAPTER 2. CHAOTIC SYSTEMS AND CONTROL 19

It is common to use one oscillator for every output desired, and then to link them, to couple them, to
ensure a global predefined behavior. Such organization of oscillators are often represented as a graph.
The nodes corresponds to the oscillators, while the label corresponds to the phase difference and coupling
strength between them.

Chapter 3

Movement of a Centipede robot

For this project, we want to measure the applicability of chaotic system on a concrete robot platform.
We used a new model of robot, which is an evolution of the previous ones developed at the Biologically
Inspired Robotic Group of EPFL.

3.1 Earlier work

This robot is a Centipede-like robot, composed of a chosen number of body-leg segments. Each segment
can articulate laterally to produce snake-like traveling waves. Moreover, to allow movement on uneven
ground, movement is possible along the vertical axis with a spring joint. Each leg is independent and
can turn around its axis. See Fig 3.1(a) and 3.1(b).

(a) Robot model in Webots (b) Real body-leg segment

Figure 3.1: Centipede robot model and its hardware counterpart.

This robot uses the same hardware blocks as those used in the Salamander robot [19], which allows a
easy construction of this new model. It has not been yet created in real hardware, so we use a simulation
model instead. This simulation is done using the 3D physics simulator Webots c©. It allows to get a
realistic behavior, and in our case to incorporate the sensory feedback accurately.

A Webots model of the Centipede robot has been developed by B. Jimenez during his Master Thesis
[20]. He studied the locomotion capabilities of the robot, optimizing controller parameters. He also
studied movement on complex terrain, to test the robustness of the controller. He could obtain interesting
behavior, which is a good point toward to use of this robot model for our experience on unknown terrain.

20

CHAPTER 3. MOVEMENT OF A CENTIPEDE ROBOT 21

This also allows us to take example on the optimal locomotion pattern he obtained, and try to adapt
it to our new controller.

3.2 Locomotion pattern

B. Jimenez tried several movement patterns, but we only consider the most complex one. The locomotion
pattern is as follows :

1. Body segment oscillates according to the following equation :

f(k) = Aksin(ωt+ ϕ+ ∆ϕ · k)

• Ak is the amplitude of oscillation.

• ω is the intrinsic frequency.

• ϕ is the phase difference between the body segment and its legs.

• ∆ϕ is the phase difference between two consecutive body segment.

• k is the index of the current body segment

Depending on the ∆ϕ, we can create a traveling or a standing wave on the body.

2. Body segment are connected between them via a spring-damped joint, that can move vertically.
The torque on this joint follows the classical expression :

T = −ωjointθ − µjointθ̇

• ωjoint is the spring constant.

• µjoint is the damping parameter.

3. Legs servos are directly positioned to the following angles:

ϕright = ωt+ φr + φ · i

ϕleft = ωt+ φl + φ · i
• ω is the intrinsic frequency.

• φr and φl are the initial phase angles.

• φ is the phase difference between two consecutive legs of the same side (just like ∆ϕ in the
body).

• i is the index of the leg.

To determine the optimal locomotion pattern, B. Jimenez optimized several parameters (Ak, ω, ϕ,
∆ϕ, ωjoint, µjoint and φ), with respect to the forward speed and capabilities of movement on uneven
terrain.

See Tab. 3.1 for the obtained optimal parameters.
With these optimized parameters, we arrive at a plausible locomotion pattern: the legs touch the

ground alternatively, following a descending traveling wave, while the body oscillates slowly in synchrony.
See Figure 3.2 for an illustration of the obtained behavior (taken from B. Jimenez [20]). We’ll try to
mimic this behavior in our own system.

This kind of behavior is confirmed by a study on the scolopendra heros by Anderson et al. [1], See
Figure 3.3. We can see in their paper that the body bend slowly following a traveling wave, with a much
lower amplitude than our optimal locomotion pattern. We think this is most likely due to mechanical
differences, as the real centipede is equipped with much more flexible and capable legs, compared to our
rotating rigid legs.

CHAPTER 3. MOVEMENT OF A CENTIPEDE ROBOT 22

Parameter Optimized value
Ak (rad) 1.0
ω (Hz) 1.0
ϕ (rad) 0.0

∆ϕ (rad) −π2
φr (rad) π

2

φl (rad) 3π
2

φ (rad) −π2
ωspring (Nm) 2.0
µspring (Nsm) 0.1

Table 3.1: Optimal parameters for Centipede locomotion, taken from B. Jimenez [20]

Figure 3.2: Illustration of the obtained locomotion pattern (Taken from B. Jimenez [20]).

Figure 3.3: Motion of a real centipede, scolopendra heros (Taken from B. Anderson [1]).

Chapter 4

Rössler oscillators networks

As we already said before, what we want to create is a system that is capable of :

• Work in a completely fixed pre-defined fashion. For example its elements could follow specific
limit-cycles, with known phase locking between different elements. Namely we want to design a
Central Pattern Generator for robot control, like those used by Ijspeert et al. ([16], [18], [19]) and
others.

• Switch to chaotic mode when desired. This mode will be used as exploration process and we hope
will help to move the robot in unknown environment.

We thus need a mathematical oscillator capable of such dual behavior and that can be coupled, while
following specific phase locking relations. We will then construct a CPG of those elements. The aim is to
design the limit-cycle when the system is in “normal” mode, and then to switch the oscillators in chaotic
mode when desired. We thus have complete control of the locomotion pattern when the conditions are
good, with securities on the robustness and stability of the limit cycles obtained.

4.1 Rössler element

The first step to build our CPG is to choose the individual oscillators, which we call elements.
We presented in Section 2.4 several chaotic systems that can produced controlled oscillations: the

Lorenz and Rössler systems. Both can be switched between normal and chaotic behavior by varying a
parameter, and both can produce stable limit-cycle as well as chaotic behavior.

After a quick study, we compared the two elements with respect to our interests, see Tab 4.1.
They have both pros and cons, as we would expect. Important features here are the following :

Simplicity of behavior This is just a subjective measure of the obtained signals. In the case of the
Rössler, it is very simple because it was designed to study chaos. The output of Rössler is just like

Criterion Lorenz Rössler
Scientifically studied ++ +

Simplicity of behavior + ++
Numerical stability + -
Behavior plasticity ++ +

Limit-cycle capabilities + +
Phase definition - ++

Mapping to robot inputs - ++

Table 4.1: Comparison between Lorenz and Rössler element

23

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 24

a sinus wave in normal mode, and a sinus wave touching unknown extrema in chaotic mode. On
the other hand, the Lorenz produced a more “sharp-knife” like pattern, switching between up and
down patterns while in chaotic mode. Its normal mode looks like a biased sinus wave, it is not
symmetrical and smooth.

Numerical Stability There is a disturbing problem with the Rössler system: when using too big
couplings or certain parameters ranges, the system diverge toward −∞ or ∞. This is problematic,
but can be worked around if we know what are the possible ranges of parameters.

Behavior plasticity This represent the range of limit-cycles or possible solutions we can create with
the systems. The Lorenz can produce equilibrium points, different chaotic attractors as well as
different limit-cycles. On the other hand, the Rössler is more limited in the shape of its chaotic
attractors and limit-cycles.

Phase definition This is a very important feature, we will present it in more details in Section 4.1.1.
But we can already say that definition of a phase is very easy in the Rössler system, while being
more tricky in the Lorenz.

Mapping to robot inputs This is a pure practical constraint: our robot takes as input servos and
joint positions. If we can easily extract a periodic signal or a phase from the oscillators, this is
easier to implement on the robot. The Rössler is quite good with that, as we have a near-sinus
wave and a simple phase definition.

With respect to all these elements, we choose the Rössler oscillator. The easy mapping to robot
inputs, its simplicity and phase definition are more important than possible behaviors of the Lorenz.

We use its common definition, see Equation (2.4), Section 2.4. We then use directly x as output,
because it is the sinus-like signal in normal mode. We define the phase as the approximation given
in Equation (2.5). This is only an approximation and can give artifacts when the projection onto the
XY -plan isn’t correct, but this is sufficient in our case.

4.1.1 The Phase problem

We already talk a bit about the difficulty of defining a phase in general for dynamical system. In the case
of the Rössler system, on the contrary, this is quite easy. Taking only the projection onto the XY -plan
of the states variables (namely using directly x and y to calculate a phase) gives plausible results, even
in chaotic mode.

But we do get artifacts when we try to define a phase difference between two Rössler elements, as
shown in Figure 4.1(b). These two elements are coupled with a phase difference of π2 . If we check on the
time series, they are indeed very well synchronized (Figure 4.1(a)). But on the phase difference plot we
observe some oscillations around the target value. These oscillations are due to the approximation of the
phase, especially when the oscillator is in the first quadrant (see Figure 2.10). If we subtract two phase,
one being in the first quadrant and the other being elsewhere, we will get a residue corresponding to the
projection approximation. This isn’t that bad, because it is only an artifact and does not penalize the
synchronization of the oscillators. But we have to be aware of it.

We could overcome this artifact by defining a more correct phase, using Hilbert Transform. We will
talk about that in Section 4.2.2.

4.1.2 Modulating the frequency

For now, our Rössler element does not allow to tune the frequency of oscillations. This is an important
feature in our case, because this allows to control the speed of locomotion.

We found a way of introducing frequency control in the Rössler element in [41]. It introduce a
parameter ω to define the frequency, that acts as follows (Eq. 4.1):

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 25

450 455 460 465 470 475 480 485 490 495 500
!5

0

5

Time series

x1

450 455 460 465 470 475 480 485 490 495 500
!5

0

5

Time [s]

x2

(a) Time series, without artifacts

450 455 460 465 470 475 480 485 490 495 500
1.2

1.4

1.6

1.8

Phase difference

Time [s]

Ph
as

e
[ra

d]

(b) Phase difference and its artifacts

Figure 4.1: Two coupled Rössler oscillators, with a phase difference of π
2 . Illustration of phase approxi-

mation artifacts

 ẋ = −ωy − z
ẏ = ωx+ ay
ż = b+ z(x− c)

(4.1)

The problem with this frequency control is that it breaks the balance between the parameters and
the coupling. We had problems to create chaotic behavior, the parameter ranges had changed.

We thus use another way of controlling the frequency, shown in Eq. 4.2: ẋ = ω
(− (y + z)

)
ẏ = ω

(
x+ ay

)
ż = ω

(
b+ z(x− c)) (4.2)

This frequency control preserved better the relation between parameters and couplings, so we decided
to use it.

We are able to define a working frequency in Hertz for the element by using the following relation:

Felem =
2π
ω
⇐⇒ ω = 2π · Felem (4.3)

This comes from the fact that the frequency of an element with ω = 1 is 2π. When multiplying by
ω, we change the whole speed of the element linearly, thus giving this linear relation.

4.1.3 Behavior of Rössler element

See Figure 4.2 for some time series created by the Rössler element.

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 26

30 40 50 60 70 80 90 100 110 120
!2.05

!2

!1.95

!1.9

!1.85

!1.8

!1.75

!1.7

Rossler converging to equilibrium point

Time [s]

X

(a) Convergence to equilibrium
point. b = 10

20 40 60 80 100 120

!5

!4

!3

!2

!1

0

1

2

3

Rossler normal limit!cycle

Time [s]

X

(b) Sin-like limit-cycle. b = 3

320 340 360 380 400 420 440 460

!10

!8

!6

!4

!2

0

2

4

6

X

Time [s]

Rossler chaotic mode

(c) Chaotic mode. b = 0.2

Figure 4.2: Different time series obtained with a Rössler element, while varying parameter b. a = 0.2,
c = 5.7

We already said that we chose b as a behavioral parameter. We use a value of 3 to work in “normal”
mode, and we switch in “chaotic” with a value of 0.2. More complex behavior appears between these two
values, such as 2-periodic, 4-periodic and so one limit cycles. This is easily shown using a Bifurcation
Diagram. Such a graph can be found in Figure 4.3, for a = 0.2, c = 5.7 and while varying b. It shows the
extrema touched by the x state variable. When we reach chaotic mode, there is an infinity of extrema
touched, represented in this diagram as a vertical line. We see that for values of b = 0.2 or b = 0.15, we
have a chaotic behavior, although it is not really a complete line, as the oscillator doesn’t come near the
origin.

0.5 1 1.5 2 2.5 3 3.5
!12

!10

!8

!6

!4

!2

0

2

4

6

8

Bifurcation diagram

parameter b

ex
tre

m
a

of
 x

Figure 4.3: Bifurcation Diagram for Rössler system while varying b. a = 0.2, c = 5.7. Done with a
Matlab script of J. Buchli.

Frequency components

We can also study the frequency components of a Rössler element in limit cycle and in chaotic mode. We
apply a Fast Fourier Transform to a 80 seconds long output of a Rössler element and show its Amplitude
Spectrum (see Figure 4.4). The element has a defined frequency Felem of 1.5Hz, so with (4.3) we have
ω = 3π.

We see that in Limit cycle the frequencies are constrained to a neighborhood of the fundamental
frequency and its harmonics. As desired, the fundamental frequency is around 1.5 Hz. We see that

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 27

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

0.6

0.8

1

1.2
Single−Sided Amplitude Spectrum of x1(t). Frequency maximum of 1.5102Hz

Frequency (Hz)

|x
1(f)

|

(a) Limit-cycle mode

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

Single−Sided Amplitude Spectrum of x1(t). Frequency maximum of 1.617Hz

Frequency (Hz)

|x
1(f)

|

(b) Chaotic mode. b = 3

Figure 4.4: Amplitude Spectrum of a Rössler element. ω = 3π

the amount of different frequencies overall are pretty small, which confirms the fact that our element is
working in limit cycle mode with a fixed frequency.

On the other hand, in Chaotic mode, we observe several differences:

• There are much more frequencies covered by the element. We still see a “preferred” fundamental
frequency, which is a bit higher than the desired 1.5 Hz (it is around 1.6 Hz). But we also see other
frequency components, at 2.2 Hz and 2.6 Hz.

• The overall amount of frequencies is much higher too, which seems to show that the element touch
a lot of different frequencies. This is normal because our component is chaotic.

• It is much more noisy, which again shows that the frequencies aren’t that well defined.

We can conclude that our element in chaotic mode touches indeed more frequencies, which is a good
thing. But it stays in a neighborhood of the desired frequency, which is not a good thing if we want the
element to touch every frequency possible. But we are still visiting a lot of frequencies, and we can force
the element to broaden its range of frequencies manually. A typical example is the addition of a random
stimulation, which will drive the element away from different unstable cycles. But the Rössler element
has a small positive Lyapunov (λ = 0.0714, compared to the one from Lorenz’s system, λ = 0.9056 [45]),
so we can not hope to generate every possible frequency. This discussion will make more sense when we
will present the Observed Chaos Controller.

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 28

4.2 Coupling

Now that we have our element, we need to couple several together to build a CPG.

While looking in the literature, we found several people studying the effects of coupling with Rössler
oscillators ([41] [42] [32] [15] [23] [25] [30] [33] [47]). Most of them wanted to achieve synchronization
while being in chaotic mode. It was either complete synchronization (coupling the amplitude and phase),
phase synchronization (coupling the phase) or lag synchronization (coupling the amplitude with a little
delay between oscillators). Most of the time they try to couple system as different as possible, even to
couple two completely different systems (like a hyperchaotic Rössler with a Lorenz).

This wasn’t exactly what we needed. We needed a simple way to couple completely the Rössler
system in normal limit-cycle mode, as well as the ability to define a specific phase difference between
two oscillators.

4.2.1 Diffusive coupling

The common way of coupling two oscillators to induce a synchronization is to introduce a “difference
coupling” [41]:

coupling(xi, xj) = K(xj − xi) (4.4)

See Eq. (4.6)-(4.11) for an example. Such a coupling will reduce the distance between the two state
variables coupled, converging to a state where they are both equals. In other words, we are trying to
create a Complete Synchronization. The convergence time depends on the coupling factor K. We put
this coupling on the x variable, following [41].

The general definition of a Rössler element with coupling is now: ẋi = ω
(− (yi + zi) + coupling(xi, xj)

)
ẏi = ω

(
xi + ayi

)
żi = ω

(
b+ zi(xi − c)

) (4.5)

Here is a simple example with two oscillators, as described in [41]:

ẋ1 = −(y1 + z1) +K(x2 − x1) (4.6)
ẏ1 = x1 + a1y1 (4.7)
ż1 = b1 + z1(x1 − c1) (4.8)
ẋ2 = −(y2 + z2) (4.9)
ẏ2 = x2 + a2y2 (4.10)
ż2 = b2 + z2(x2 − c2) (4.11)

In the example, the first oscillator will converge to the second one. Such a coupling achieves a
complete synchronization exponentially fast in less than a cycle. Moreover, it is able to completely
synchronize two coupled Rössler in chaotic mode. They are then producing the same chaotic pattern,
with perfect synchrony.

This coupling is thus working well, but is too limited with respect to what we need to create our
CPG: it can only induces phase difference of zero. We need to be able to design any phase difference
possible. We did not find such a coupling in the considered literature, we thus have to create it.

4.2.2 Introducing arbitrary phase locking

We introduce a new coupling to be able to design any phase difference between two Rössler elements.
We first project the states onto the XY -plan, for both elements. We have two referentials, one for each

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 29

x1

y1

x 2

y 2

φ

Figure 4.5: Rotation of the XY -plans, to keep a constant φ phase difference.

elements, which for now are the same. As the projection on the XY -plan looks like a circle, we can
rotate one of the referential by a given angle φ. See Figure 4.5 for an illustration.

We then use a traditional diffusive coupling between the rotated state variables of the first element,
and the original state variables of the second element. See Eq. 4.12. The distance between the rotated
element and the other one will be reduced, thus imposing the defined phase difference. This comes only
from the definition of the states and their projection.[

xφ
yφ

]
=
[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
·
[
x
y

]
(4.12)

coupling(xi, xj) = Kij(xj,φ − xi) (4.13)
coupling(yi, yj) = Kij(yj,φ − yi) (4.14)

Following 4.12, we transform the coupling for the Rössler element as follows:

ẋi = −yi − zi +K

([
cos(φ) −sin(φ)

] · [xj
yj

]
− xi

)
(4.15)

Note that we do not use the coupling on ẏ, as it created instabilities and did not improve the
convergence time. Moreover, as ẏ contains x, the coupling will already be indirectly introduced on y.

Generalization to other elements

Such a phase difference coupling could be generalized to any other oscillator. But for that we need to
define a phase plan fitting the system: that is, find a plan with φ̇ = 0. Such a phase plan is very simple
to define for the Rössler system, but is more tricky to define for other elements. More work is needed to
determine the conditions of applicability of this new coupling scheme, but this could be an interesting
and simple way to impose defined phase difference between coupled oscillators. Moreover, we can directly
apply couplings defined for total synchronization, which are usually well studied.

4.3 Results

With the previous developments, we are now able to define Rössler elements, to couple them and define
arbitrary phase difference locking between them. We are thus able to create arbitrary Rössler networks.
Here are some results of convergence time and quality of phase locking.

4.3.1 Limit cycle mode

We first let the two elements be in Limit cycle mode, that is, a periodic sin-like signal for the variable
x. We put the parameters to a = 0.2, b = 3.0 and c = 5.7. The frequency parameter ω is kept to
1. Every figure has been created by an interactive Matlab script, available in the Matlab directory
(rossler coupled.m).

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 30

Total Synchronization We first try to attain Total Synchronization, that is, convergence to a phase
difference of 0. See Figure 4.6 for the results. The first figure is the time series of the x variable for each
element. At first they are randomly initialized, we indeed see that they are not synchronized. We put
the coupling K = 0.2 at time t = 550s, marked by the red line. The green line mark the time of full
synchronization. You can see on the Phase difference plot the exponential convergence towards Total
Synchronization. The impulsions visible are due to phase slips of the oscillators. This is a characteristic
of forced noisy oscillators, where periodic jumps of 2π can occur ([34], pages 81-83). In term of cycles,
it takes approximately 3 cycles to converge. But this time can be made smaller by putting a coupling of
K = 0.4, i.e. 1 cycle (figure not shown).

We need to be cautious with the coupling strength K. Indeed, we observed that a too big coupling
cause stability problems and can even make one of the two element diverge toward ±∞. An empirical
working range for the coupling strength K seems to be [0, 0.5].

The last figure is a Lissajou plot, plotting one x variable against the other. The circle-like behavior
was the state before putting the coupling on. Then we see the trajectory moving towards the diagonal,
indicating Total Synchronization.

510 520 530 540 550 560 570 580 590 600
−4

−2

0

2

4

Time series

x1

510 520 530 540 550 560 570 580 590 600
−4

−2

0

2

4

Time [s]

x2

(a) Time series

510 520 530 540 550 560 570 580 590 600
0

1

2

3

Phase difference

Time [s]

Ph
as

e
[ra

d]

(b) Phase difference. The oscillations are artifacts, the phase difference is constant.

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5
Lissajous plot

x1

x2

(c) Lissajou plot

Figure 4.6: Synchronization of two Rössler elements to φ = 0. Coupling K = 0.2 turned on at t = 550s.

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 31

Arbitrary phase Synchronization We then try to obtain two specific phase differences: π
2 and π.

Every phase difference is possible, but we chose to illustrate those two. See Figure 4.7 for a phase
difference of π2 . Here we indicated in purple the difference between the two time series. You can see that
the phase difference of π

2 is indeed enforced, with a high stability.
On the phase difference plot, you see that the value of 1.57 is attained. The apparently periodic

pattern around this value is due to the phase approximation we talked about in Section 4.1.1.

Again, the Lissajou plot shows this π
2 synchronization. We can remark that the Lissajou is not a

perfect circle. That means that the output of the Rössler elements are not perfectly sinusoidal, which
is again true because of the elevation on the z-axis (See Figure 4.8 for the 3D representation of one
synchronized Rössler element).

Figure 4.9 shows the synchronization to a phase difference of π. Again the purple lines show the
created difference. It’s worthwhile to stress that this synchronization is harder to create than other
phase differences. The sensibility to the coupling strength K is much higher, the elements can diverge
really quickly if we put K > 0.45. It seems to come from the fact that this phase difference is the
most different possible with the methodology we introduced. Little errors could increase rapidly, as the
elements are not necessary in the same behavioral regions.

4.3.2 Chaotic mode

We then turn to chaotic mode, by changing the b parameter to 0.2. Using the same methodology as
before, we try to produce Total Synchronization. The results are shown on Figure 4.10. Both elements
are initialized randomly. The coupling strength K is set to 0.2 at time t = 750s, as marked by the red
line. The green line shows the onset of perfect convergence. We see that Total Synchronization is indeed
possible even if the elements are in chaotic mode, and while their states were completely different before
the coupling. Before the red line, the time series have indeed nothing in common. Convergence is again
exponential, with the same phase slips impulsions. It takes 5 pseudo-cycles. If you look on the time
series, you can agree that synchronization is visually attained after just 1 cycle, around time 755s.

More importantly, we see that the patterns created are still chaotic, but they are completely synchro-
nized.

We then tried to create other arbitrary phase difference synchronization. But unfortunately it does
not work for too big phase differences. We can only produce phase difference from 0 to something around
1 radian. Bigger phase differences either simply do not work, produce strange behavior or even suppress
chaos in one of the elements.

Still we can achieve synchronization for low values of φ. See Figure 4.11 for a so-called “Lag synchro-
nization” of φ = 0.9 rad. This is a nice feature, because people have proposed fairly complex methods
to induce Lag Synchronization (e.g. [25], [42]), whereas our method is quite simple. Of course we are
limited in the phases we can lock, and we still need to define a phase, which can be tricky depending on
the systems.

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 32

2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150
−4

−2

0

2

4

Time series

x1

2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150
−4

−2

0

2

4

Time [s]

x2

(a) Time series

2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150

1

1.5

2

Phase difference

Time [s]

Ph
as

e
[ra

d]

(b) Phase difference. The oscillations are artifacts, the phase difference is constant.

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Lissajous plot

x1

x2

(c) Lissajou plot

Figure 4.7: Synchronization of two Rössler elements to φ = π
2 .

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 33

−4
−2

0
2

4

−4

−2

0

2

0.5

1

1.5

2

2.5

x1

State space

y1

z1

Figure 4.8: State space of a Rössler element in Limit cycle mode and synchronized with π
2 .

450 455 460 465 470 475 480 485 490 495 500
−4

−2

0

2

4

Time series

x1

450 455 460 465 470 475 480 485 490 495 500
−4

−2

0

2

4

Time [s]

x2

Figure 4.9: Synchronization of two Rössler elements to φ = π.

CHAPTER 4. RÖSSLER OSCILLATORS NETWORKS 34

710 720 730 740 750 760 770 780 790 800

−5

0

5

10

Time series
x1

710 720 730 740 750 760 770 780 790 800

−5

0

5

10

Time [s]

x2

(a) Time series

710 720 730 740 750 760 770 780 790 800
−0.5

0

0.5

1

1.5

2

2.5

3

Phase difference

Time [s]

Ph
as

e
[ra

d]

(b) Phase difference

Figure 4.10: Synchronization of two Rössler elements in chaotic mode to φ = 0. Coupling K = 0.2
turned on at t = 750s.

400 410 420 430 440 450 460 470 480 490

−5

0

5

10
Time series

x1

400 410 420 430 440 450 460 470 480 490

−5

0

5

10

Time [s]

x2

Figure 4.11: Lag Synchronization of two Rössler elements in chaotic mode to φ = 0.9. Coupling turned
on at t = 435s.

Chapter 5

Rössler network CPG for Centipede
robot locomotion

Now that we have a Rössler network capable of creating arbitrary phase difference between Rössler
elements, we can define a CPG for the locomotion of our Centipede robot.

We want to mimic the movement defined by B. Jimenez and presented in Section 3.2.

5.1 Architecture of network

We first need to transform the individual oscillators used by B. Jimenez into a equivalent CPG. This is
easily done by looking at phase relations and possible maps of oscillators.

We use a Rössler element for every output, and couple them to introduce the desired phase differences.
See Figure 5.1 for the obtained CPG in graphical representation. Every node is a Rössler element, and
the arrows define the couplings, the labels corresponds to the phase differences between the elements. If
we have a directed arrow X → Y , it means that Y has a coupling term taking X into account. We chose
to create a “spine-like” graph, to mimic biologic organization of elements. We call each triplet {Body,
Left leg, Right leg} a “Segment”. According to the optimization of B. Jimenez, each Body oscillator has
a phase difference of −π2 with its parent, and the legs should be in anti-phase.

This CPG has a minor difference with the locomotion pattern defined by B. Jimenez: the π − α and
α couplings. In his implementation, he just put α = 0. We want to stay more flexible and try maybe
other values for α, so we leave it as a free parameter.

5.2 Theoretical results

We need to validate the ability of this CPG to synchronize precisely and quickly to the defined phase
difference before being able to use it. The number of couplings is pretty high, so it could behave badly
if the coupling strength is not correctly fixed. We also need to have a transient time (time before locked
limit-cycle behavior) as small as possible.

We implemented this CPG in Matlab, and tested how well he produced synchronized output signals.
We use 8 segments, meaning that we have 24 Rössler elements in total: 8 body element, 8 left legs and
8 right legs. They were all connected according to the mapping of Figure 5.1, with a coupling strength
of K = 0.5.

5.2.1 Stability problems and adaptation

When testing the theoretical behavior of the Rössler CPG, we encountered several new stability problems:

35

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 36

1

2

2n + 1

2n + 2

n + 1

n + 2

−π

2

BodyLeft legs Right legs

3 2n + 3n + 3

−π

2

π − α−α

π − α−α

π − α−α

n 3n2n

π − α−α

Figure 5.1: Rössler network CPG for Centipede locomotion pattern.

• The transient time before convergence was long, with big oscillations around the desired phase
difference. The high number of Rössler elements and their interactions create new interaction
flows, that seems to disturb the convergence.

• During the transient time, the amplitudes were varying a lot, possibly getting much bigger than the
converged amplitudes. This would be very bad when mapping the elements output to the robot,
because we create big oscillations at the beginning.

We thus adapt the CPG, by removing some of the couplings. In fact, we figured out that the coupling
between a segment and its successor is not necessary. We only need to propagate a traveling wave of the
desired phase difference. We don’t need that the first segment should be influenced by its successors. So
instead of bilateral coupling between Body elements, we put unilateral couplings. See Figure 5.2 for the
new Rössler CPG network.

With this new network, we can achieve the same coupling, but interestingly with added advantages:

1. The convergence time is quicker. It seems that the bilateral couplings were introducing pertur-
bations due to the “chain” architecture of the CPG. Groups of desynchronized elements could
compete with other elements, perturbing the whole system. A perturbation introduced in the sys-
tem could travel along the chain of oscillators for a long period of time. With unilateral couplings,
the convergence is propagated from the top segment to the bottom one.

2. We can use bigger coupling strength. We do not have the same divergence problems that we
had before, or at least they come only with bigger coupling strength. The new range of the
coupling strength was found empirically to be near [0, 1]. This is also likely to be a consequence
of interactions between groups of elements, that could make each other diverge. With unilateral
couplings this is not possible anymore, and the only problem comes from a too big forcing that can
make an element diverge.

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 37

1

2

2n + 1

2n + 2

n + 1

n + 2

−π

2

BodyLeft legs Right legs

3 2n + 3n + 3

−π

2

π − α−α

π − α−α

π − α−α

n 3n2n

π − α−α

Figure 5.2: Adapted Rössler CPG network

5.2.2 Results

We will now present and comment some figures of convergence time and quality. Every figure has been
created by an interactive Matlab script, available in the Matlab directory (rossler movement.m).

Again, for Limit cycle behavior we use the classical parameters (a = 0.2, b = 3.0, c = 5.7), starting at
random positions. We simulate the Rössler CPG shown in Figure 5.2, using α = 0 and with a coupling
strength K = 0.5 turned on after a while.

See Figure 5.3 for the time series. You can see all 24 elements, separated between Body (first box),
Left legs (second box) and Right legs (third box). The actual time series are not that important, what
is important is their synchronizations. We put the coupling on at time t = 137s, marked by a red line.
Then the green line shows the time of complete convergence.

We can see that the convergence is very quick, in 3 cycles for the longest. This convergence can
be better seen on Figure 5.4, showing the phase difference between the Body oscillator 1 and the Body
oscillator 2. They should converge to −π2 according to the design. Indeed we see this convergence, in
an exponentially fast time. We also see in the time series that oscillators that are more “down” (that
is, further away from Body oscillator 1) converge a bit later, in a delayed fashion. This is also normal
because of the unilateral coupling we designed.

We also show on the time series the obtained traveling wave along the body, with the purple lines.
It follows the phase difference of π

2 we designed. Moreover, the two other purple lines show the link
between the Body oscillator and the Legs. With the Left we are completely synchronized with a phase
difference of 0, and with the right ones we are in anti-phase (phase difference of π).

The last plot, on Figure 5.5, shows the Lissajou plot between the Body 1 and Body 2 oscillators.
You see that they change from a near-synchronized behavior (near the diagonal on Lissajou plot) before
activating the coupling, to a nicely synchronized state with −π2 phase locking (the circle).

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 38

135 140 145 150 155
−60

−50

−40

−30

−20

−10

0

Time series
Bo

dy

 x
1
−>

 x
8

135 140 145 150 155
−60

−50

−40

−30

−20

−10

0

Le
ft

le
gs

 x

9
−>

 x
16

135 140 145 150 155
−60

−50

−40

−30

−20

−10

0

R
ig

ht
 le

gs

 x
17

 −
>

x2
4

Figure 5.3: Timeseries for Rössler CPG for centipede movement.

135 140 145 150 155

0.5

1

1.5

2

2.5

3

Phase difference !1− !2

Time [s]

Ph
as

e
di

ffe
re

nc
e

[ra
d]

Figure 5.4: Phase difference between Body 1 and Body 2. The oscillations after the time t = 750s are
artifacts, the phase difference is constant.

5.3 Adaptation to robot

We have our theoretical controller, working all well in Matlab, but now we need to use it to move a real
robot. We thus convert it to a Webots controller, using the robot model of a Centipede developed by B.
Jimenez. Several difficulties arose during this conversion, we will present them quickly.

See Figure 5.6 for the mapping between the Rössler CPG and the robot parts. Let’s go over the
difference and difficulties we faced:

1. Our robot has a defined number of Segments of 8. So we have 16 legs in total. But because of its
construction, it only has 7 Body joints. The last one being for the tail if we had one. So we have
one exceeding Body oscillator, which we won’t use. We chose to discard the last Body oscillator
(the number 8). It is still present at the CPG level, because it is need for the last legs, but we
simply don’t map its output to the robot.

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 39

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5
Lissajous plot

x1

x2

Figure 5.5: Lissajou plot between Body 1 and Body 2.

2. The Legs take as input a phase value, that needs to be always incremented. That is, the phase
is not working modulo-2π. We then first have to convert our xyz-states into a modulo-2π phase
variable, and then to convert this to a incremental phase.

3. The Body joints take as input an oscillating signal of a desired amplitude. We can therefore
directly use the x variables of our Rössler elements, but special care has to be done with respect
to its amplitude and mean.

4. The Legs have an initial phase, a bias. We can set it to any desired value. We can actually use this
bias to replace the α parameter we put into our Rössler CPG. It does exactly the same thing, i.e.
controlling at which moment of the cycle the leg is touching the ground. Therefore, we modify once
again the Rössler CPG architecture and forget about this α term (Figure 5.6). This also allows a
simplification of the coupling terms, because we only deal with 0 and π phase differences, which
create nice trigonometric simplifications. So this is good because we need our controller to be as
efficient as possible.

Let’s see what parameters are present and how we took care of them.

Phase difference between body segments (fixed) This was taken from B. Jimenez work [20]. It is
set as −π2 and encompassed into the Rössler CPG.

Phase difference between legs This also comes from the work of B. Jimenez. We use the phase
differences defined in the Rössler CPG architecture.

Body Amplitude (open) This is an open parameter controlling the gain of the Body oscillations. It
needs to apply to a normalized signal, to avoid too big oscillations that could destroy the robot.
The problem is our signals coming from the Rössler elements are not normalized. It is likely to be
linked to the Frequency in its relation to movement speed.

Frequency (open) This is an open parameter controlling the speed of movement of every elements.
This is directly controllable in Hertz, by using the relation with ω in the Rössler elements defined
in Equation (4.3).

Bias of legs (optimized) This is an parameter that we optimize to create the good relation between
the oscillation of the Body and the touching of the legs.

We thus explored the relation between the Body Amplitude and the Frequency, took care of the
normalization and optimized the bias of the legs. All the following optimizations are performed in a flat
empty world. We compute the distance travelled between the start position and the end position and
use this as a metric. The simulation is run for 20 seconds. The number of runs averaged will be marked
for every optimization.

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 40

1

2

17

18

9

10

−π

2

BodyLeft legs Right legs

3 1911

−π

2

π0

π0

π0

8 2416
π0

7 2315
π0

−π

2

−π

2

Figure 5.6: Mapping of the Rössler CPG architecture on the Centipede robot, dropping the α term

5.3.1 Normalization of outputs

A problem that we encountered while using directly the x variable of the Rössler elements to create the
Body oscillation was that it was not normalized. The Body joints can take values in a restrained range,
if we go outside the robot will be destroyed.

But the x variable amplitude is variable and actually depend on the parameters a, b and c used in the
element. Moreover, we found out that during the transient time to convergence, this amplitude could
increase temporarily to a bigger value than the converged amplitude. This is indeed a problem because
we can’t compute such transient amplitudes, as our initial points are random. Another thing is that the
x value is not centered around the origin, but around a mean value that again depends on the Rössler
parameters.

We decided to take care of these problems by dynamically normalizing the outputs of the Rössler
elements before using them to control the robot.

This dynamic normalization works as follows, independently for every Rössler element:

1. We calculate a moving average on the x variable. This is done with this iterative moving average:
xavg(t) = β · xavg(t− 1) + (1− β) · x(t). This β parameter controls the smoothness of the average.
It was set to 0.95.

2. We calculate a moving max of the x variable. For that we keep a windows of W values, and calculate
the maximum on this window. We actually do it in a more optimized manner (by checking the
new value toward the max, and going through the window only when the actual max gets out of
the window), see the code if you’re interested. This W controls how much of the signal we consider
when calculating the maximum. We need it to be big enough to capture one cycle, but not too big

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 41

if we want to adapt quickly to changes in the signal. For all our experiments, we use a window of
size W = 50.

3. The moving max is initialized to a quite big value, to make sure that the robot doesn’t oscillate
too much at the beginning. This initialization was set to 12 in all our experiments.

4. Finally, we get a normalized value of the x-variable by using the following modified variable:

x̃(t) =
x(t)− xavg(t)

xmax(t)

The output of the Body joints is then directly:

ybody(t) = Ak · x̃(t)

5.3.2 Optimization of touch of legs

At first, we ran our controller with an arbitrary bias for the legs of biasleg = −π2 . This value was
taken from B. Jimenez work[20] and then adapted visually because it gave a good locomotion pattern.
We performed a systematic search of this parameter, setting the body amplitude to Ak = 0.8 and the
frequency to F = 2Hz. Those values were chosen because they were quite safe in the locomotion pattern
created. We average over 10 different runs, the Rössler elements are set to random initial conditions,
using Limit Cycle parameters (a = 0.2, b = 3.0, c = 5.7).

See Figure 5.7 for the obtained optimization curve. We have a maximum at biasleg = 2.93, which is
just before π. The difference with our arbitrary bias is quite flagrant, we nearly double the performance!

0 1 2 3 4 5 6
2

3

4

5

6

7

8

9
Optimization of touch bias

Di
st

an
ce

 tr
av

el
le

d
[m

]

Touch bias [rad]

Figure 5.7: Optimization of Bias for the touch of the legs

This bias will be used later in the comparison, for what we call the Optimized Limit Cycle controller.
We will also use the first non-optimal bias, for the Bad Limit Cycle controller.

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 42

5.3.3 Effect of amplitude of body and frequency

As those two parameters are the most open parameters we have to modulate the movement, we need to
know how they are related to each other. Therefore, we perform a systematic search on the following
range:

• Body amplitude, going from 0 to 1.8 rad.

• Frequency, going from 1.5 to 3.5 Hz.

• The Bias for the leg is set to the optimal value biasleg = 2.93.

• Rössler parameters for Limit cycle.

We perform this simulation on 20 different runs and average the results. See Figure 5.8 for the results.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.5

2

2.5

3

3.5
Optimization of performance for body amplitude and frequency

Body amplitude [rad]

Fr
eq

ue
nc

y
[H

z]

6

8

10

12

14

16

Figure 5.8: Dependance of performance on Body amplitude and Frequency

We see that the parameters are highly linked. There is a critical region for the Frequency above 3 Hz,
where the performance drops dramatically. But everywhere else, there is a linear relation between the
Body Amplitude, the Frequency and the distance travelled by the robot. There is a maximum value at
F = 3 Hz, Ak = 1.4 rad, after which the performance degrades slowly. This is good news, because this
means that we can use nearly every Body amplitude between 0 and 1.6, combined with any Frequency
between 1.5 and 3 Hz, while ensuring good and reliable performances. At least this is the case on flat
terrain.

5.3.4 Obtained movement discussion

We define two sets of parameters for the Rössler CPG working in Limit cycle mode, see Table 5.1.
We chose to keep an Optimized Limit Cycle working at 2 Hz, because this is the reference frequency we

will use for our benchmark. For each Frequency, we take the optimal Body Amplitude at this frequency,
according to Figure 5.8.

You can see the resulting movement in two different videos, one for the Optimized Limit Cycle, one
for the Bad Limit Cycle. See in Additional Material.

The difference in attained speed is quite impressive, 0.9m/s versus 0.35m/s. The movement from
the Optimized Limit Cycle seems more natural too, more smooth. This is most likely due to the fact

CHAPTER 5. RÖSSLER NETWORK CPG FOR CENTIPEDE ROBOT LOCOMOTION 43

Optimized Limit Cycle Optimized Limit Cycle 2Hz Bad Limit Cycle
Body amplitude Ak 1.4 1.6 0.8

Frequency F 3.0 2.0 2.0
Bias leg biasleg 2.93 2.93 −π2

Table 5.1: Parameter sets for the Rössler CPG in Limit cycle mode

that, because the Bias of the legs is correct, every Leg helps in the movement. It means that every Leg
touching the ground actually push the body forward, one after the other. That is not the case for the
Bad Limit Cycle, where some legs have a bad timing with respect to body oscillations.

Chapter 6

Sensory Feedback

We now want to study what can Sensory Feedback bring to our controllers. More precisely, if we act in
Chaotic mode, the Sensory Feedback will be the only possibility for the elements to interact indirectly.
But first we need to find out what kind of Sensory Feedback we have at our disposition, and what we
want to use it for.

6.1 Sensory feedback for the centipede robot

Our robot has no Sensory Feedback for now, so we will add it. We have the following feedback available:

1. Joint angles. We can know the actual angle of every joint. But as we are doing position control for
our joints, this won’t add any useful information. Indeed, we can assume that the actual position
will be the one asked or very near them. Moreover, the current robot of the Laboratory that we
plan to use does not dispose of this information. Therefore, we will not use that feedback.

2. Touch sensors. It is possible to get touch information for every feet of the robot. In this manner,
we know when the legs actually hit the ground, and the applied pressure on everyone of them.

Therefore, we modify our Webots model to include Touch sensor on every feet of the robot. Then we
can get a weight measure in kg at every timestep. See Figure 6.1 for an example of the kind of Sensory
Feedback we get when we have a robot moving in Limit Cycle mode with a Frequency of F = 1.5Hz.

30 31 32 33 34 35 36 37 38 39 40

2

4

6

8

10

12

14

time (milliseconds)

Sensory feedback for one leg

Fe
ed

ba
ck

 a
m

pl
itu

de

Figure 6.1: Sensory feedback given by the Touch Sensor of one leg when moving.

44

CHAPTER 6. SENSORY FEEDBACK 45

You see that we get a train of impulsions, at the frequency of the touching of the legs. This frequency
depends directly on the movement pattern the robot is doing.

6.2 Theoretical implications

The reason we use Sensory Feedback is that we think it will help our controller in some way. The problem
is we need to have some insight into what kind of help it can gives us.

Theoretically, we want to use the Feedback to adapt our controller to its body, or at least to change
it a little bit according to the outside world interactions.

When looking at principles of synchronization, we can use a pulse train of a certain frequency Ω to try
to synchronize the oscillator with this frequency Ω ([34] pages 62-65). This would imply a synchronization
to the frequency of movement that automatically entrain itself, i.e. a resonant movement.

The other way to look at feedbacks is the modification of the dynamics of the system, making it
go toward different attractors and region of its state space. It’s then just a hope to think that these
regions could be more adapted to the movement pattern. For example, if we act in chaotic mode, we
could control the chaos, to make the oscillator work in a limit cycle mode, which is only defined by the
feedback dynamics acting on it. Such chaos controls were studied by many people, but most of them use
directly a time-delayed signal of the dynamical systems as feedback (see for example [9], which introduce
a very nice way of controlling the chaos in the Rössler oscillators. Some of its conclusions are even
generalizable to other uses than just chaos control). Other uses of feedback to control chaos can be seen
in [39] (using an external oscillator or a delayed signals), [29] (time-delayed feedback), [47] (feedback and
state observers) and a nice overview is done in [2]).

But we still need to know if the Sensory feedback we use can act as such time-delayed feedback.
Considering the kind of signal that we have from our Touch sensor, it is unlikely that it encompass
enough information to act as a time-delayed feedback. Therefore, we need to design more the action of
our feedback, or simply use it to synchronize the controller to the frequency of its body, in a limited
fashion.

6.3 Sensory feedback in the Rössler CPG

We need to use the Sensory feedback obtained from the Touch sensors into the controllers. We do this
by modifying the Rössler elements, namely by adding a term to its system definition (Eq. (6.1)) ẋi = ω

(− (yi + zi) + coupling(xi, xj) + feedbacki
)

ẏi = ω
(
xi + ayi

)
żi = ω

(
b+ zi(xi − c)

) (6.1)

We tested several feedbacks:

1. For the legs, we use two different feedback at the same time.

(a) One depending on the touch signal of leg itself, its “ipsilateral” component, touchipsilateral.

(b) Another one depending on the touch signal of the other leg on the same segment, its “con-
tralateral” component, touchcontralateral.

We combine them in the following way:

feedbacki = Kfip · touchipsilateral +Kfco · touchcontralateral (6.2)

The gain parameters Kfip and Kfco control the weight of the Sensory feedback desired. Note that
they can be negative too. Then depending on the signs of those parameters, we create different
behaviors, see Table 6.1 for their interpretation. But note that the last two don’t make much sense
from a locomotion point of view, so we just consider the first two ones. Furthermore, we put both
parameters to same values, so we have Kfip = −Kfco = Kf .

CHAPTER 6. SENSORY FEEDBACK 46

sign of Kfip sign of Kfco Effect on current leg
+ - Increase the stance time, with Kfip (slows down the

leg when it touches the ground). Accelerate the leg
when the contralateral leg touches the ground, thus
shortening the swing time.

- + Shortens the stance time with Kfip. Slows down the
leg when the contralateral leg touches the ground,
increasing the swing time.

+ + Increase the stance time, increase the swing time.
- - Shortens the stance time and shortens the swing

time.

Table 6.1: Effect of Sensory Feedback on legs.

2. We also create a feedback that promotes the synchronization of the legs to a phase difference of
π between them. This is already present in the Limit Cycle controller, but doesn’t exist in the
Chaotic mode. This did not produce interesting behavior, so we dropped it. The idea was to move
the phase if the current touch feedback did not correspond to the predicted one from the current
state space.

3. For the body, we tried to use several combinations of the ipsilateral and contralateral touch signals:

feedbacki = Kf
touchipsilateral − touchcontralateral

2

feedbacki = Kf (touchipsilateral + touchcontralateral −max(touchipsilateral, touchcontralateral))

But neither of them were satisfactory, so we don’t use them for now.

We end up using the simple feedbacks for the legs defined in Eq.(6.2).

6.3.1 Pre-processing of touch sensor signal

We pre-process the touch signals by using the following modified signal:

touchi,processed(t) = touchi(t) +
touchi,processed(t− 1)

2
(6.3)

This pre-processing creates exponentially decreasing tails to the coupling signal. If you look back on
Figure 6.1, you can see the raw touch signals. You see that it is quite impulsive and quick. Moreover, it
has “holes” inside a region of high touch feedback, due to the bumping of legs. Such a signal can hardly
do any effect on systems working at lower time-scale, so the addition of tails gives more time to the
feedback to influence the system. See Figure 6.2 for the processed feedback signal.

6.4 Effect of feedback on performance

We performed a systematic search on the effect of this Sensory Feedback on flat terrain. We tested this
feedback on two parameters set for the Rössler CPG in Limit cycle mode: the Bad Limit Cycle and the
Optimized Limit Cycle 2 Hz. We use the defined parameter sets, and we perform this experiment on flat
ground. We run 120 experiments per feedback value, each with random initializations for the Rössler
CPG controller. Our metric is the distance travelled in 20 seconds. The coupling strength is varied from
−0.5 to 0.5, testing the two first cases we discussed in Table 6.1. See Figure 6.5 for the optimization of
the Bad Limit Cycle with Feedback, and Figure 6.3 for the optimization of Optimized Limit Cycle 2Hz
with Feedback.

Interestingly, the results are quite different depending on the parameter set.

CHAPTER 6. SENSORY FEEDBACK 47

1 2 3 4 5 6 7 8
0

5

10

15

time (milliseconds)

Processed sensory feedback

Se
ns

or
y

am
pl

itu
de

Figure 6.2: Sensory feedback processed to add tails.

6.4.1 Optimized Limit Cycle 2 Hz

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14
Optimization of Kf for Optimized Limit Cycle

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Kf

Figure 6.3: Effect of feedback parameter Kf on Optimized Limit Cycle 2Hz.

For the optimized parameter set, nearly every possible Sensory feedback strength decreases the per-
formances. The only increasing feedback comes with Kf = 0.1, but the increase is nearly negligible with
respect to the performance ratio (1.6% of increase).

This is understandable, as we already were at the optimal. This means that the sensory feedback
can’t adapt more the controller to the body that what we did with a systematic search. It either shows
that we optimized a perfect controller for this robot, or that our feedback signal is not powerful enough.
Maybe our feedback doesn’t carry enough information about the actual body interactions to optimize
the controller more.

Another nice way to look at this optimization is to plot the arrival positions of the different runs.
We can then show what the parameter does on the trajectory, at least on a global point of view. See
Figure 6.4 for this plot. Every parameter Kf is shown as a different color or marker style. The robot
starts at position (0, 0), and should move along the y axis. The graph is a bit messy, which shows

CHAPTER 6. SENSORY FEEDBACK 48

that the different parameter set don’t change a lot the performance. We also see that the robot has a
tendency to go toward the right, which could be due to the initial transient phase at the beginning, or
because of the movement pattern. For a given parameter, there is quite a lot of dispersion in the arrival
positions, but remember that the robot already travelled around to 12 meters, which is quite big. We
see that the high positive Kf , which gave the worst results, are indeed stopped before the rest of the
data points (light blue cross), and their dispersion is quite high. On the other hand, the points for no
feedback (yellow-green circles) are confined to the top of the graph, with little dispersion.

So it seems that, indeed, using Sensory Feedback doesn’t add a good thing for the already optimized
parameter set.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8

9

10

11

12

13

14

Kf optimization for Optimized Limit Cycle
 ending positions

X

Y

Kf = −0.5
Kf = −0.4
Kf = −0.3
Kf = −0.2
Kf = −0.1
Kf = 0
Kf = 0.1
Kf = 0.2
Kf = 0.3
Kf = 0.4
Kf = 0.5

Figure 6.4: Final positions for different Sensory Feedback strength Kf for the Optimized Limit Cycle.

6.4.2 Bad Limit Cycle

For this parameter set, which is known to be sub-optimal, the Feedback actually increases the perfor-
mance.

We performed a Kruskal-Wallis non-parametric test on these results, to detect if there really was
an increase of performance. We obtained a P-value for the rejection of the Null-hypothesis that they
were all generated by the same distribution with a confidence interval of 95% of 0. So there is an
increase of performance. We also performed pairwise Kruskal-Wallis tests, using Matlab built-in function
(“multcompare”). It allows to test the Null-hypothesis, with a confidence interval of 95%. See Figure 6.6
for the obtained confidence intervals for every Feedback strength.

The feedbacks go from −0.5 to 0.5, from left to right on the figure. You can see that the results are
not statistically different for Kf that differ only by 0.1 (the intervals overlaps). But there is a statistical
increase depending on the coupling strength. If we take the optimal strength of Kf = 0.5, we have a
27% increase of performance, which is significantly good.

Let’s look again at the distribution of the final positions. See Figure 6.7 for the results, again with
different colors for the different parameters. Here the picture is quite different than for the Optimized
Limit Cycle. We clearly see “layers” of points, which correspond nicely to the arrival position for different
Sensory feedback strength. Without any feedback (yellow-green circle), the performance is quite average,

CHAPTER 6. SENSORY FEEDBACK 49

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
Optimization of Kf for Bad Limit Cycle

Di
st

an
ce

 tr
av

el
le

d
[m

]

Kf

Figure 6.5: Effect of feedback parameter Kf on Bad Limit Cycle

arriving at y = 6m. These points show very small deviation in both direction. For growing Sensory
Feedback strength (cross marker), we see a real increase in the distance travelled, but with an increase
of the dispersion. It seems that the balance between both sides of legs is a bit modified when using a
positive feedback, explaining the dispersion, but this promotes a bigger traveling speed, which is what
we want. The case of Kf = 0.1 is quite interesting, as it increases only a little bit the performance
but stabilize the movement a lot. For Sensory strength smaller than 0, we see a big decrease of the
performance, as well as an increase in the dispersion. But this dispersion is nearly on a circle, so they
could be due to change of direction at the beginning of the experiment. This feedback increase thus this
initial dispersion, as well as slowing down the motion. This negative feedback shortens the stance time,
and it seems that is a bad decision with the Limit Cycle.

So we can conclude that our Feedback indeed does something good for the robot movement. If we
refer to Table 6.1, we see that it increases the Stance duration and decreases the Swing duration. It
seems that letting the leg more time on the ground actually helps driving the robot forward. This was
confirmed by a discussion with Prof. A. Ijspeert, who told us that increasing the Stance duration is a
common way of increasing performances for this kind of robot.

But we also see that, even if it increases the performance, we don’t get values in the order of the
optimized controller. We are still far from that. Our feedback is therefore not powerful enough to fully
optimize the motion pattern. We think this is because of the actual limitations in influence time available
to the feedback. We already told that the Feedback consists more of impulsions, of short bursts. The
feedback only act during those bursts, therefore they can’t affect completely the controller as they should.
Another way would be to link this feedback to the controller in another way. Maybe, as it seems to be a
very important parameter for the Limit Cycle, we could link it to the bias of touch of legs explicitly. Or
we could link it to the Body oscillators, trying to adapt them instead of the legs. This remains an open
question.

CHAPTER 6. SENSORY FEEDBACK 50

−100 0 100 200 300 400 500 600 700

11

10

9

8

7

6

5

4

3

2

1

Kruskal Wallis confidence intervals, Optimization of Kf for Bad Limit Cycle

8 groups have mean ranks significantly different from Group 11

Figure 6.6: Confidence intervals for the different values of Sensory Feedback strength Kf on Bad Limit
Cycle

−1.5 −1 −0.5 0 0.5 1 1.5

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Kf optimization for Bad Limit Cycle
 ending positions

X

Y

Kf = −0.5
Kf = −0.4
Kf = −0.3
Kf = −0.2
Kf = −0.1
Kf = 0
Kf = 0.1
Kf = 0.2
Kf = 0.3
Kf = 0.4
Kf = 0.5

Figure 6.7: Final positions for different Sensory feedback strength Kf for the Bad Limit Cycle.

Chapter 7

Chaotic controller

We now turn ourself towards the actual use of Chaos to control our robot. We developed a Rössler CPG
capable of generating a good locomotion pattern while acting in Limit cycle mode. But now we can
make it chaotic just by changing one parameter.

We want to turn the controller into chaotic mode, while cutting away all couplings designed before-
hand. We will now have independents Rössler elements working in chaotic regime. We then provide
Sensory Feedback to those elements. We hope this feedback will take the role of the couplings, meaning
that it will indirectly reflect the dependancy between elements by their interactions with the environment.
This is one of the main ideas of Y. Kuniyoshi, which we think is interesting to study.

What is yet to investigate is:

1. Can those chaotic elements create a good locomotion pattern?

2. Is this locomotion pattern more robust on uneven terrain than a designed locomotion pattern?

As it is quite hard to really understand what relations exists between the Sensory Feedback, the
elements and the chaotic behavior of the elements, we restrict our questioning to this simple question:

• Is a chaotic controller doing more than a random controller ?

We will thoroughly test this in the next chapter. For now we present the Chaotic Controller we
developed, which is a modification of our Rössler CPG controller.

We then present a new theoretical conceptualization for a Chaotic controller: the Observed Chaos
controller. This is a rethinking of the actual process taking place during movement, and an analysis of
what chaos could actually offer us for locomotion creation.

7.1 Simple Chaotic controller

7.1.1 Behavior and parameters

We first construct a Simple Chaotic controller. That is, we simply modify the Rössler CPG controller
to make it work in chaotic mode. This is simply done by setting b = 0.2 instead of b = 3 in Rössler
elements. We also need to cut all the coupling(xi, xj) terms we added to create the motion pattern. We
want the controller to be completely free to explore its movement space.

We do use the Sensory feedback introduced in Chapter 6, in the exact same way as before. We hope
that it will help the chaotic controller in some way to adapt itself to the body dynamics. This has been
one of the things presented by Y. Kuniyoshi that seemed to work without having a real explanation. We
found a possible explanation, using the new conceptualization presented later, see Section 7.3.

In summary, the Rössler elements are now controlled by the system defined in Eq.(7.1) ẋi = ω
(− (yi + zi) + feedbacki

)
ẏi = ω

(
xi + ayi

)
żi = ω

(
b+ zi(xi − c)

) (7.1)

51

CHAPTER 7. CHAOTIC CONTROLLER 52

With:

feedbacki =
{
Kf · touchipsilateral −Kf · touchcontralateral If i is a leg
0 If i is not a leg

There exist no connection, even indirect, between different Segments. This is something that could
be added for further investigation.

We then map the Rössler elements to the robot in the same way as the Rössler CPG, look in
Section 5.3.

Therefore, we have the following parameters:

Body Amplitude (open) The same parameter as the Rössler CPG, controlling the gain of the Body
oscillations.

Frequency (open) Again, same as the Rössler CPG. We can control it in the same way using ω and
Equation (4.3).

Sensory feedback strength (open) This controls the strength and the behavior of the Sensory feed-
back. We need to optimize it.

We use the following parameters for the Rössler elements: a = 0.2, b = 0.2, c = 5.7. This creates a
chaotic signal, as discussed in the first Chapters. Note that we had several problems actually creating
chaos in Webots. This was due to numerical precision and integration steps. If we use an integration
step that is too big, the chaotic behavior is destroyed and a periodic solution replaces it. We had to use
a very small integration step to create chaos similar to the mathematical simulations.

7.1.2 Dependance on parameters

While performing the first tests of this Simple Chaotic controller, we found out that the Body Amplitude
is very important. Putting a high Body Amplitude would break every effort of the controller to move.
This parameter is very sensitive.

This is due to the fact that, if the robot doesn’t oscillate, the legs tends to create a forward movement.
This is just a consequence that the Rössler Elements can’t create a decrease of the phase (see Section 8.3).
So, even if we do stupid movements with the legs, if the body stays still, the robot will tend to go forward.
But keeping the robot straight is obviously a bad strategy when we are on an uneven terrain, so we enforce
the choice of a non-zero Body Amplitude Ak.

Dependance on Body Amplitude and Frequency

We perform again the same kind of systematic exploration of the Body Amplitude and the Frequency
as we did for the Rössler CPG controller. We run 20 experiments, all with random initial conditions for
the Rössler CPG. We use the travelled distance on a flat terrain as metric. We fix the Sensory feedback
strength to Kf = 0 and put the Rössler elements into chaotic mode. See Figure 7.1 for the results.

We see that, as discussed just before, the Body Amplitude should be kept small. In fact, the optimal
speed is attained with a Body Amplitude of Ak = 0 and a Frequency of F = 3Hz. But we already
discussed the fact that we want to keep some Body mobility, to be able to get out of uneven terrain
more easily. But we can find another point in the neighborhood of Ak = 0 that still gives good results,
because the performance function is quite smooth. The Frequency is important too, and closely related
to the movement speed. We find again a nearly linear relation between the speed, the Frequency and
the Body Amplitude.

For further simulations, we choose a Body Amplitude of Ak = 0.4, to keep a balance between body
mobility and performance. The Frequency will be kept to F = 2Hz, as it is our common benchmarking
frequency.

CHAPTER 7. CHAOTIC CONTROLLER 53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.5

2

2.5

3

3.5
Optimization of performance for body amplitude and frequency

Body amplitude [rad]

F
re

qu
en

cy
 [H

z]

2

3

4

5

6

7

8

Distance [m]

Figure 7.1: Relation between Body Amplitude and Frequency for the Chaotic controller

Optimization of sensory feedback strength

We performed a systematic search of the effect of the Sensory Feedback strength on a Simple Chaotic
controller. We run 20 experiments, all with random initial conditions for the Rössler CPG, as usual.
All these runs are done on a flat terrain, and we use the travelled distance as metric. We use the
classical parameters of the Rössler CPG in chaotic mode, we fix the Body Amplitude to Ak = 0.4 and
the Frequency to F = 2Hz. See Figure 7.2 for the results.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Optimization of Kf for Chaotic controller

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Kf

Figure 7.2: Effect of Sensory Feedback strength on performance of Chaotic controller on flat terrain.

We see that the two possibilities to include the Sensory Feedback, represented by the sign of the
strength Kf differ completely in their effect. For positive Kf , we actually disrupt the movement pattern

CHAPTER 7. CHAOTIC CONTROLLER 54

created without feedback. This is therefore a bad choice of parameter.
For negative Sensory Feedback strength Kf , we increase the performance significantly, by around

29% with Kf = −0.5. So this behavior of feedback works well for the controller. If we refer to Table 6.1,
we are decreasing the Stance duration and increasing a little bit the Swing duration. It means that once
we touch down, we accelerate the leg. It seems that what is important here is the Frequency of the legs.
But the feedback from the contralateral leg, i.e. slowing down the leg when the contralateral one touches
the ground, works again this acceleration.

The plot of final positions add again good insight in the actual distribution of trajectories. See
Figure 7.3 for the final positions. Again the robot starts at (0, 0) and should travel the further away,
along the y-axis for a stable movement. We can clearly see the two different effects of the Sensory
feedback depending on the sign of Kf , symmetrically around Kf = 0. The dispersion is very high for
most of the parameters, especially along the x-axis. It means that the robot doesn’t have a tendency to
go straight forward, but rather deviate on the left or on the right. It’s interesting to see that without
feedback, we have a very high dispersion, showing that without any feedback the Chaotic controller
moves fairly randomly, but with a quasi constant forward speed. A very good surprise is that good
feedbacks actually promotes a quite straight movement, along the y-axis. This adds a argument to the
fact that the negative sign feedback actually promotes a synchronization between legs, balancing the
robot.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Kf optimization for Chaotic controller
 ending positions

X

Y

Kf = −0.5
Kf = −0.4
Kf = −0.3
Kf = −0.2
Kf = −0.1
Kf = 0
Kf = 0.1
Kf = 0.2
Kf = 0.3
Kf = 0.4
Kf = 0.5

Figure 7.3: Final positions for different Sensory Feedback strength Kf for the Chaotic controller

CHAPTER 7. CHAOTIC CONTROLLER 55

7.2 Movement obtained and discussion

The obtained movement is less smooth than the one from the Rössler CPG in Limit Cycle mode, obvi-
ously. The Chaotic controller moves more by impulses, mainly because of the body oscillations. The legs
move nearly randomly, but the Sensory Feedback tries to loosely synchronize the legs of each segment.
In general the motion created is much slower than the designed locomotion pattern in Limit Cycle mode.
But this is a comparison on even ground, whereas we are interested in the behavior on an uneven terrain.

A very interesting feature is the synchronization between legs created by the Sensory Feedback. The
interplay between the ipsilateral and the contralateral feedback seems to create two stable phase relations
between the legs:

1. They hit the ground alternatively. They thus have a phase difference close to π.

2. They hit the ground at the same time. They have a phase difference close to 0.

These two relative positions of legs were observed frequently, even if they did not stay forever. The
legs would oscillate chaotically for some time, but again they synchronize again for a while to one of these
two states. This is something really interesting, because this is automatically promoted by the Sensory
Feedback. Before we actually hard-coded a difference of π between the legs, but now this difference arise
from interactions with the environment. We will study this phenomenon in more details at the end of
the benchmarking.

You can see a video of a robot with the Simple Chaotic controller working, see in the Additional
Material.

7.3 Observed Chaos controller

When trying to understand the actual benefits that chaos could offer us for moving a robot, we actually
came up with a new way of linking chaos with movement.

7.3.1 Theoretical concept

If we go back to a really abstract level, we can give the following statement about movement (see
Eq.(7.2)):

movement ⇐⇒ [rhythm⇒ speed] (7.2)

In other words, if we have a rhythmic process, say a circular movement, or the motion of legs, and
if this rhythmic process creates a displacement, we just moved. This is very crude, but can actually be
used directly as a general way of creating movement.

Imagine that we can explore the space of all rhythms. Then if we find a rhythm that creates speed,
then we just need to keep doing that rhythm. If the rhythm does not produce speed, just explore again
the space of all rhythms. This very general way of creating movement can be thought at every timescale,
even the smallest ones. If you imagine that you are on a very hard terrain, then the rhythm that produces
a movement can change completely in a very short period of time.

But then we can actually transfer this simple algorithm into a real Control methodology. Imagine that
we have a source of rhythmic patterns. We just send these rhythmic patterns to the robot, and then if
speed is created you continue using the same rhythmic pattern. The only problem now is how to create
rhythmic patterns. We think that you can use any source of randomness able to produce rhythms usable
by the robot, but the search space is obviously pretty high.

CHAPTER 7. CHAOTIC CONTROLLER 56

We think that Chaos could be used for this purpose. We know that Chaos can generate a lot of
different frequencies. Actually one definition for chaos is that is a signal which consists of an infinity of
frequencies. We could use this power to generate easily different rhythmics patterns for the robot.

But then, we add another process to this framework: an Observer. This process has a knowledge
about the state of the Chaos generator, but also from the robot. The robot could send him feedback
about his sensors, but also a measure a speed. We then use this Observer to force the Chaos to redo
the rhythmic pattern if it did create movement. See Figure 7.4 for the block diagram of the theoretical
controller.

Chaotic
oscillator Robot

Observer

rythms

Sensory Feedback

Sensory Feedback
& FitnessState space

Forcing

Figure 7.4: Observed Chaos controller block diagram.

The big addition here is mainly the Observer. Because before, we could actually already use the
principle of generating different rhythms, but there was not any control on that. The Observer allows
us to tell to the Chaos when something was good. It also allows us to keep a memory of good rhythmic
patterns, and thus to actually do learning.

The good thing about using Chaos as a random generator, instead of other sources, comes from its
deterministic component. If we have an autonomous dynamical system working in chaotic regime, we
will always get the same output from a defined state. Even if the output seems random, it is not, and
we can redo the same exact pattern just by making the chaos “start over” in a specific previous state.
Note that we also connected the Robot to the Chaotic oscillators using the Sensory Feedback. This is
because we think it may actually help the Chaos search the rhythmic space in a good way. This is pure
speculations, but if that is the case we would have a very nice way to observe the rhythmic space.

We could also model the forcing by the Observer in a nicer way, like a coupling between dynamical
systems. We could smoothly make the chaos move toward a previously good rhythmic pattern instead
of just forcing it to specific state values, which seems pretty elegant.

A lot of unknowns stays with this approach. For example, is Chaos good enough at generating very
different rhythms ? We saw that the Rössler system was pretty limited, so maybe it is not the best
candidate. Another issue is the measure of the speed, or more generically, the definition of our metric
of “good movement”. If we need to change of locomotion pattern really quickly, if we are on a very hard
terrain for example, then we need a metric that is a quick as possible. The Observer should also be
able to determine the start and end of a rhythmic pattern, which can be tricky especially when we don’t
know which part of the pattern was useful (this is a credit assignment problem with agents as small as
any finite interval of time).

But we think that further work in this direction could be very interesting, because it is a very general
way of seeing movement generation, that could have a lot of applications.

CHAPTER 7. CHAOTIC CONTROLLER 57

7.3.2 Relations with other works

When seeing the block diagram of the Observed Chaos, we saw a direct relation with the work of Y.
Kuniyoshi. In his work, he used chaos as a way to generate movement, which received back information
from the body. By some unknown means, the chaotic elements were able to promote good locomotion
patterns, just with this information.

We actually think that this can be explained using our conceptualization. If you remove the Observer
in our model, then you are left with the model of Y. Kuniyoshi. In some way, they were using the same
idea: let the chaos explore, and hope that it will create movement. They give sensory feedback to the
chaos, hoping that it may direct it in its search of movement pattern. But the big problem with that
is that we know nothing about the interplay between the sensory feedback and the chaotic generator.
Moreover, the chaotic generate has no knowledge about the metric that we are trying to optimize. So by
adding the Observer on top of that, we are just adding a level of control. We are adding the process that
can control the behavior of the chaotic generator, to really make it do things that we decided were useful.
Moreover, we have a total control on the metric we use, and on the way to direct the chaotic generator
in his search of rhythmic patterns. This explains the fact that we felt like something was missing to the
work of Y. Kuniyoshi, we think this Observer process is a possible way to fill the hole.

We think that another behavior of the chaotic elements of Y. Kuniyoshi fits perfectly into our frame-
work: with his chaotic controller, he was able to promote locomotion pattern for different robots. But
the locomotion patterns were not stable. They would occur for some time, but then change completely.
The robot would for example change direction, go backward, stays, without any control on the different
behaviors. If you think in term of generation of rhythms, this is a direct consequence of the re exploration
of the rhythmic space. For some reason, the chaotic generator was locked on a specific rhythm, but then
it went away from it (because of a bifurcation, or because it was not a stable attractor) and created
another rhythm. It would then move from rhythm to rhythm, without any real control on that because
there was no Observer to make it continue for defined period of time.

Further work on this has to be done, but we think that applying the Observed Chaos pattern could
give the control over the emergence of movement that Y. Kuniyoshi managed to create.

Chapter 8

Benchmarking on uneven terrain

We now have all we need to answer the actual question that motivated this work:

• How does a Chaotic controller stand compared to a completely design Limit Cycle controller and
a completely free Random controller ?

Limit cycle controller

High performance
Not robust against unknown conditions

Random controller

Poor performance
Insensitive to unknown conditions

Chaotic controller

?

Figure 8.1: Is a Chaotic controller standing between a Random controller and a Limit cycle controller ?

See Figure 8.1 for a graphical interpretation. We make here the assumption that there are two
“extrema” of controllers:

1. You can build a controller in order to execute a precise desired movement pattern. Usually, you
want this movement pattern to be effective, very well adapted to your robot and therefore easy to
predict. You can get high performance using this approach, but as soon as the environment differs
from what you assumed when building the movement pattern, the performances are destroyed.

2. The controller is not designed at all, it is doing something totally random. Or the design is very
crude and lets a lot of random do the work instead. Obviously you will not get high performances
out of this. But you don’t need assumptions on the environment. It corresponds to some kind of
minimal bound of performance for a controller.

Our hypothesis is that the Chaotic controller lies somewhere between those two extrema: it is not
very designed, and because of its chaoticity behave nearly randomly, but by some kind of interplay, a
design emerges automatically. We want to assess experimentally this hypothesis, and we will develop a
test bench for that.

8.1 Goal and description

As our assumption on the Limit Cycle controller states that the controller drops in performance when
the environment becomes unknown or difficult, we will systematically quantify this drop by creating

58

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 59

different environments of growing difficulty. We create an environment which consists of a Test area of
a defined difficulty. This difficulty corresponds to the degree of variation of the ground. Consider for
example a terrain with holes or bumps. Its difficulty could be the density or height of such holes and
bumps. We want to see how the controllers behave on these different terrains.

The goal for the controllers is to move as far as possible, while being on this Test area.

8.2 Random uneven terrain generator

We chose to generate these uneven terrain randomly, to avoid as much as possible undesirables side-effect
of manual engineering of terrains (e.g. symmetries). We developed a program to create automatically
Webots’ worlds containing a random Test area, called tergen. It is available in the Additional Material.
See Figure 8.2 for a schema of the worlds we are creating.

Test area

Start zone

3
m

2
m

0.
6

m

Figure 8.2: Experiment area schema.

The Test area can be defined in any way. We chose to create a mesh of triangles with random
heights. The difficulty is defined as the percentage of the maximum derivative possible between two
adjacent vertices :

zi = rnd() · heightmax
with:

|zi − zk| < difficulty · derivatemax ∀k adjacent to i

We have 10 different degree of difficulty, difficulty ∈ [0.1, 1.0]. A set of world consists of 10 worlds
of all possible difficulties. The terrain created model accurately growing levels of difficulties for the
movement of a robot. But we need to precise that most of the terrain with difficulties higher than 0.5
are far too complicated for any real robot to move upon. Here we are working with a physical simulator

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 60

and a model of a robot. This model is quite permissive, we could not do the same in reality. But the
principle behind it is correct and applicable in real world too. See Figure 8.3 for an example of a mid-level
difficulty terrain (0.5).

(a) General view of the Experiment area. (b) Close view of the uneven terrain.

Figure 8.3: View of the Webots simulation of the Experiment area. World of difficulty 0.5.

8.3 Building a fair random controller

In order to find out if a Chaotic controller is more than just a random controller, we need to build a
Random controller. There are several ways of constructing a Random controller, especially knowing the
number of degrees of freedom we have on our robot.

But the main problem was to build a “fair” random controller. That is, build a random controller that
has the same capabilities than the Limit cycle Controller and the Chaotic controller. There is indeed a
major advantage given to those two controllers:

• The legs never go backward.

This is due to the behavior of the Rössler system, and the way we defined the phase. The trajectory
is indeed always turning in the same direction (to its left), because the chaoticity only introduce jumps
out of the XY -plan, without breaking the cyclic behavior of the attractor. The Rössler system is too
simplistic in this way, it produces a very simple behavior.

This means that, if we let our robot straight (no body oscillations) and let the legs oscillators move,
even with very bad parameter settings, the robot will tend to go forward. The legs will always turn in
the right direction and push the robot forward.

So we need to take that into account when building a Random controller, because we want to have
a fair comparison.

8.4 Forward random controller

Since our robot takes only cyclic inputs, it is plausible to create signals out of a circular motion. That
is, we simply go along a circle, but the speed we go along it is random. See Figure 8.4 for an illustration.
This is simply modeled as a phase Θk variable.

As we want to create a random movement that has the same advantage as the Rössler elements, we
only allow the movement in on direction along the circle. That is, the phase Θk can only be increased.

We update Θk in the following way:

dΘk

dt
= 2π · ω · U(0, 1) (8.1)

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 61

Θk

Figure 8.4: Random movement along a circle

Where:

• U(0, 1) is a random variable following an uniform distribution between 0 and 1.

• ω is a parameter controlling the average frequency of movement.

We performed several tests and analyzed the frequencies using a FFT as done in Section 4.1.3. We found
out the following relation between ω and Felem, the average frequency of one of the Θk variables, see
Eq. (8.2).

Felem =
w

2
(8.2)

We simply integrate just like before these new Θk variables.
Finally, the mapping to the robot’s input is done in the following way:

Legs Use the phases directly, this is exactly the input of a leg. ylegk
= Θk.

Body segment Put the phases in a sinus and control its amplitude, just like in the case of Rössler
CPG, or the previous work of B. Jimenez. The mapping function between the state and the robot
output is then: ysegmentk = Ak sin(Θk).

The obtained controller has a tendency to go forward, at a speed controlled by the parameter ω.

8.5 Pure Random controller

To show if the Rössler really had an intrinsic advantage, we also build a controller which doesn’t have
the tendency to go forward.

We use the same idea as before, for the Forward Random, but we change the update rule for Θk in
the following manner:

dΘk

dt
= 2π · ω · (2 · U(0, 1)− 1) (8.3)

The random component is now symmetric around 0, which allows backward movements too. The
ω parameter doesn’t control the frequency in the same way as before. The symmetry induce a mean
frequency of 0, so the only way to make it move is to put a big ω, which will act like a gain. Values
around ω = 15 give satisfactory movements of legs and body.

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 62

Trivially, this controller has very little chances of producing a good movement. More precisely it has
very little chance to produce any movement at all. But we want to know where the Chaotic controller
is located among possible controllers.

8.6 Benchmarking parameters

We test every controller with different parameters sets, on every terrain, for a given experiment time
of 20 seconds. This time has been chosen because it was the time needed to go across a Test area of
difficulty 1 using a Limit cycle controller.

We perform 120 runs for each of the controllers and each of the worlds. For each run, we choose
random initial conditions for the controllers. Moreover, we generate 8 different random sets of worlds, on
which we will carry the experiments. Generating multiple random worlds ensures to neglect topological
problems, and helps to actually observe the behavior of the controllers with respect to difficulty levels.

We will perform those tests at two different frequencies, F = 2Hz and F = 3Hz. The frequency has
a major role in the performance, so we chose not to mix results from different frequencies.

Here are the different controllers tested and their parameter sets (Table 8.1 and Table 8.2):

Limit Cycle We use the three parameter sets defined in Table 5.1.

Random Forward and Pure We choose a Body Amplitude of Ak = 0.4, to fit with the Chaotic
controller amplitude. The ω parameter is chosen to produce either F = 2Hz or F = 3Hz

Chaos Optimized This has been chosen to reflect the optimizations done before, while still using a
Body amplitude bigger than 0 to keep some mobility on the high difficulties worlds. This was
an a-priori choice, we confirm it by doing a systematic search on the Body Amplitude on every
difficulty level of worlds. We use the Chaos Optimized controller for that, and perform 60 runs for
each world and each body amplitude, see Figure 8.5. It confirms our hypothesis, in high difficulty
worlds an Amplitude of Ak = 0.3 is the optimal choice, while keeping good results on flat worlds.

Chaos Bad We also use a Chaotic controller without feedback to see its effect in the emergence of
coherent behavior.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparison of Limit Cycle for different Body Amplitudes

World difficulty

B
od

y
A

m
pl

itu
de

0.5

1

1.5

2

2.5

3

3.5

4

Figure 8.5: Optimization of Body Amplitude for Chaotic controller on different worlds

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 63

Optimized Limit Cycle Bad Limit Cycle Bad Limit Cycle Sensory
Body ampl. Ak 1.6 0.8 0.8

ω 6π 6π 6π
Bias leg biasleg 2.93 −π2 −π2

Sensory feedback Kf 0 0 0.5
Random Forward Random Pure

Body ampl. Ak 0.4 0.4
ω 4.0 4.0

Chaos Bad Chaos Optimized
Body ampl. Ak 0.3 0.3

ω 6π 6π
Sensory feedback Kf 0.0 -0.5

Table 8.1: Parameter sets for frequency F = 2Hz

Optimized Limit Cycle Bad Limit Cycle Bad Limit Cycle Sensory
Body ampl. Ak 1.4 0.8 0.8

ω 9π 9π 9π
Bias leg biasleg 2.93 −π2 −π2

Sensory feedback Kf 0 0 0.5
Random Forward Random Pure

Body ampl. Ak 0.4 0.4
ω 6.0 6.0

Chaos Bad Chaos Optimized
Body ampl. Ak 0.3 0.3

ω 9π 9π
Sensory feedback Kf 0.0 -0.5

Table 8.2: Parameter sets for frequency F = 3Hz

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 64

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Performance comparison at 2Hz

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Difficulty level

Random Forward
Random Pure
Chaos Bad
Chaos Optimized
Optimized Limit Cycle
Bad Limit Cycle
Bad Limit Cycle Sensory

Figure 8.6: Benchmark results for all controllers with F = 2Hz. Distance travelled on Test Area on the
y-axis, different difficulty levels on the x-axis.

8.7 Benchmark result for Frequency F = 2Hz

See the results on Figure 8.6 for every parameter set and every world. We can observe several phenomena
happening, we are going to present them precisely.

8.7.1 Performance of Limit Cycle

As expected, the Optimized Limit Cycle is the best performer when the terrain is easy. It is nearly 2
times more successful than its competitors. But we see, as hypothesized, that its performances drop
dramatically as soon as the difficulty increases. It nearly doesn’t move when the difficulty is maximal,
which is very extreme.

On the other hand, the Bad Limit Cycle behave poorly on easy terrain, being sub-optimal, but stays
quite good when the difficulty increases. It is only when the difficulty grows above 8 that its performances
become really bad. Then at difficulty 10 it does not move anymore, like the Optimized Limit Cycle. We
think that this difference for higher difficulties comes from the Body Amplitude. The Bad Limit Cycle
has a smaller Body amplitude, and it seems that this is a very important parameter for high difficulty
worlds. A robot with a high amplitude has more chances to get stuck in small holes, and this seems to
decrease a lot the performances.

We see something very interesting with the Bad Limit Cycle Sensory: It is always better than the
Bad Limit Cycle. We can also see that the increase in performance is nearly constant along difficulty
levels. The Sensory feedback thus seems to help moving the robot, even when the terrain is uneven. It
is even more useful when the terrain is really difficult (difficulty 10): in that case, it allows the robot
to move despite the terrain, which wasn’t possible before. It means that our Sensory feedback indeed
help when the terrain is difficult, which is a good thing because we did not design it specially for that

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 65

purpose.

8.7.2 Random controllers

The absolute non-movement of the Random Pure controller confirms what we thought: The Rössler
CPG has an intrinsic advantage over pure random movements. Using pure random movement does not
produce any coherent behavior.

On the other hand, the Random Forward is performing quite well. We see that on a easy terrain, it
actually moves quite nicely. It stays the least effective in its task, but we think this is coherent with the
assumptions we made. We also see that the Random Forward controller sees its performance decrease
when the difficulty increases. This was not expected, as we thought that random movement should
not be influenced by the difficulty of the terrain. But it is the case, which shows again that the other
controllers do a good job at moving correctly on these terrains. We think again that the Body amplitude
could play a role here, maybe it is still too big on the high difficulty terrains.

We tried to add Sensory feedback to the Random Forward controller, in a similar way than for the
Rössler CPG. We thought it may improve the performance of the Random Forward to something more
closer to the Chaotic controllers. But we were wrong, there was absolutely no significative difference
between the Random with or without Feedback. Therefore we don’t show it on the figure. We think it
may be due to the way we incorporate the Sensory feedback, maybe it was not working the same than
for the Rössler CPG.

8.7.3 Chaotic controllers

We get at least to the results that we were searching for all this project. They are quite surprising in
fact: the chaotic controllers behave better than we would have thought.

The Chaos Bad, which is just a chaotic controller without any feedback and links between its elements,
performs quite well. It actually outperforms the Random Forward by a large amount, despite the fact
that they have a very similar pattern. If the chaos is used here as a source of unknown noise, it seems
that this noise is pretty effective for making forward movements. Moreover, the Chaos Bad keeps good
performances even when the difficulty increases. This controller corresponds to the random controller
we made the assumption upon in the beginning of the Chapter, in the contrary of the designed Random
Forward. But we see also that, for the highest difficulty, the Chaos Bad doesn’t move at all, just like the
previous controllers without Feedback.

The Chaos Optimized is really surprising. It manages to get performances above the Bad Limit Cycle,
even on flat terrain. It lays between the Bad Limit Cycle and the Bad Limit Cycle Sensory. Remember
that we did not design any motion pattern for this controller, we just put the Sensory Feedback. Even
so, the controller manages a fairly good performance, which becomes pretty amazing for high difficulty
worlds.

For a difficulty of 0.5, the Optimized Limit Cycle gets pretty bad results, and actually does the
same performance as the Chaotic Optimized and the two other Limit Cycle. The Optimized Limit Cycle
continues to drop for higher difficulties, while the Chaotic Optimized stays fairly constant. This is exactly
what we wanted to assess: The Chaos Optimized performs better than a optimized movement pattern
in unknown terrain, and at the same time is better than just random.

The Chaos Optimized continues to stay quite constant for difficulties of 0.9 and 1.0, and in fact
actually gets higher performances than all other controllers for those two really difficult terrains. This
is way beyond our expectations, so we really want to assess this theoretically.

8.7.4 Kruskal-Wallis tests

To statistically assess the performances of the controllers, we perform a non-parametric Kruskal-Wallis
test on the results for the terrains of difficulty 0.1 and 1.0. See Figure 8.7 for a recapitulation of the
performances of different controllers on the easiest world, and Figure 8.8 for the same on the hardest
world.

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 66

Random Forward Random Pure Chaos Bad Chaos Optimized Optimized Limit Cycle Bad Limit CycleBad Limit Cycle Sensory

0

2

4

6

8

10

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Performance on World of difficulty 10, F=2Hz

Figure 8.7: Performances of controllers on terrain of difficulty 0.1.

Random Forward Random Pure Chaos Bad Chaos OptimizedOptimized Limit CycleBad Limit CycleBad Limit Cycle Sensory

0

0.5

1

1.5

2

2.5

3

3.5

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Performance on World of difficulty 10, F=2Hz

Figure 8.8: Performances of controllers on terrain of difficulty 1.0.

We then perform a Kruskal-Wallis test, for individual independence of the controllers. The test is
done for a 95% confidence interval. The results are shown on Figure 8.9 for the world of difficulty 1.

We see that the controllers can be distinguished, at the exception of the Chaos Optimized and the Bad
Limit Cycle. What interests us the independance of the Chaos Optimized with respect to the Optimized
Limit Cycle and the Random Forward. We are clearly performing between these two controllers on an

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 67

0 50 100 150 200 250 300 350 400 450

7

6

5

4

3

2

1

Kruskal Wallis confidence intervals, World 1, F=2Hz

5 groups have mean ranks significantly different from Group 4

Random Forward

Random Pure

Chaos Bad

Chaos Optimized

Optimized Limit Cycle

Bad Limit Cycle

Bad Limit Cycle Optimized

Figure 8.9: Kruskal-Wallis confidence intervals for World 1. Intervals that don’t overlap are independant
with 95% confidence.

140 160 180 200 220 240 260 280 300 320

7

6

5

4

3

2

1

Kruskal Wallis confidence intervals for World 10, all controllers at F=2Hz

5 groups have mean ranks significantly different from Group 4

Random Pure

Random Forward

Chaos Bad

Chaos Optimized

Optimized Limit Cycle

Bad Limit Cycle

Bad Limit Cycle Sensory

Figure 8.10: Kruskal-Wallis confidence intervals for World 10. Intervals that don’t overlap are indepen-
dant with 95% confidence.

easy terrain.
Then see Figure 8.10 for the world of difficulty 10.
Again here there is a significative difference between the Chaos Optimized and the other controllers.

We see that almost all the controllers behave really bad. In fact, only the two controllers which have
Sensory Feedback on actually get a significative performance. This is really interesting, and again shows
that our Sensory feedback is useful.

For the Chaos Optimized, we see that it is statistically better than the Optimized Limit Cycle and
the Random Forward. This is a really good thing, and wasn’t assessed before doing this experiment.
What is also interesting is the fact that the Sensory Feedback is needed for the Chaotic controller to
perform well. The good performance of the Chaotic controller comes then from the added information

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 68

of the feedback, and most likely from the indirect coupling that it offers.
We performed a systematic search on the effect of different Sensory Feedback strength for all Worlds,

to check if the optimization we did before is still valuable with uneven terrain. See Figure 8.11 for the
results. We see that the landscape is indeed the same, and that a negative Sensory feedback is the good
choice for the Chaotic controller.

0

0.5

1
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 Performance of Chaotic controller for different Sensory feedback strength

KfWorld difficulty

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Figure 8.11: Performance of Chaotic controller depending on the Sensory feedback strength

8.8 Benchmark results for Frequency F = 3Hz

In order to confirm those results, we performed the same experiment but with a Frequency of F = 3Hz.
By doing this we avoid the situation where the outcome was created by rhythmic relations between the
robots and the controller, without real explanations from the controller behavior.

See Figure 8.12 for the results at F = 3Hz.
Most of the observations are still the same at 3Hz, but let’s see the differences:

• The Random Forward is working better at that Frequency. It is nearly equal to the Bad Limit
Cycles, and we can’t distinguish it from Chaos Optimized up to World 0.5. It keeps a fairly constant
performance independently of the difficulty. This looks much more like what we assumed about
a random controller. This is most likely due to the higher frequency, which decreases the Body
amplitude obtained, and promotes the forward movement easier.

• The Optimized Limit Cycle drops in performance, but stays good a little longer. This is both
because its Amplitude is smaller than at 3Hz and because its movement pattern allows it to move
really quickly if it manages to move on the uneven terrain.

• The Bad Limit Cycle does not really profit from the Sensory feedback now. We think this is
because the speed of the legs is too big to allow the Feedback to influence the controller effectively.
Again its seems that the small body Amplitude is better to move on uneven terrain compared to
the Optimized Limit Cycle.

• The Chaos Optimized is indistinguishable from the Random Forward at first, which is a bad thing
because we exactly want to prove the inverse. But this state of fact is only true for easy worlds,
and when the terrain become more complicated, the Chaos Optimized starts to stand out. It again
becomes better than the Optimized Limit Cycle, but now at the difficulty level 0.7. Again the
Chaos Optimized is the better controller on the hardest worlds, which confirm the observations of
F = 2Hz.

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 69

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
Performance comparison at 3Hz

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Difficulty level

Random Forward
Random Pure
Chaos Bad
Chaos Optimized
Optimized Limit Cycle
Bad Limit Cycle Sensory
Bad Limit Cycle

Figure 8.12: Performance comparison, at F = 3Hz

We perform statistical Kruskal-Wallis tests again, on the World 10 results. See Figure 8.13 for the
recapitulation of the performances on this world, and Figure 8.14 for the confidences intervals. Again
these are 95% confidence intervals, if they don’t overlap then the controllers that created them are
independent.

The results from the Kruskal-Wallis test are less definitive than for F = 2Hz. For this higher
frequency, the Chaos Optimized is not statistically different than Chaos Pure or Bad Limit Cycles.
But you see that there seems to be an effect for the Sensory Feedback, even if it is not that visible.
What still stays very good is the difference between the Chaos Optimized, the Random Forward and the
Optimized Limit Cycle. They are independent, meaning that the Chaos Optimized is really better than
both Random Forward and Optimized Limit Cycle.

This confirms then the results from frequency F = 2Hz. We can therefore assume that the Chaos
brings something that does not simplifies itself to a Random controller.

8.9 Is Chaos more than just a Random movement ?

We arrive to the final point of this work, we are now in position to answer to the question that motivated
this work.

From the systematic tests that we performed, and considering their statistical relevance, but also
from a visual point of view of the movement pattern created by the Chaos Optimized controller, we can
say that: Yes, Chaos is more than just a Random movement.

The overall performance of the Chaotic controller lies between a random controller and a fully designed
locomotion pattern, the Optimized Limit Cycle in our case. Moreover, it is one of the most performing
controller on uneven terrain, which is also a good point for its usefulness.

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 70

Random Forward Random Pure Chaos Bad Chaos Optimized Optimized Limit CycleBad Limit Cycle Sensory Bad Limit Cycle

0

1

2

3

4

5

6

7

D
is

ta
nc

e
tr

av
el

le
d

[m
]

Performance on World of difficulty 10, F=3Hz

Figure 8.13: Performances of all controllers on World 10, at Frequency F = 3Hz

50 100 150 200 250 300 350

7

6

5

4

3

2

1

Kruskal Wallis confidence intervals, World 10, F=3Hz

3 groups have mean ranks significantly different from Group 4

Chaos Pure

Random Pure

Random Forward

Chaos Optimized

Optimized Limit Cycle

Bad Limit Cycle

Bad Limit Cycle Sensory

Figure 8.14: Kruskal-Wallis confidence intervals for World 10, at Frequency F = 3Hz. Intervals that
don’t overlap are independant with 95% confidence.

But now we still have a problem: we can’t give real theoretical insight in the reasons why this is so.
We have several ideas:

• The Sensory Feedback adapts the frequency to the body, and increases it a little bit when it is
small.

• The Body amplitude is kept small because of the chaotic dynamics, with short bursts of high
amplitudes from time to time. This allows the robot to get out of bad terrain, while still allowing

CHAPTER 8. BENCHMARKING ON UNEVEN TERRAIN 71

a movement that tends to go forwards.

• The Sensory Feedback we used tends to create two stable legs movement patterns: in-phase syn-
chronized or anti-phase synchronized. These two kind of movement patterns are often distributed
over the whole body, with for example alternations between in-phase and anti-phase legs. The
anti-phase pattern creates a constant forward movement, at a low rate but that works well on flat
terrain. The in-phase pattern creates bursts of movements. When the two legs touch the ground, it
is likely to make the robot move, even if the terrain is very difficult. But this is not optimal on flat
ground between the time between two pushes is high. While alternating these two patterns, the
Chaos Optimized controller manages to keep a good movement speed, independently of the terrain.
This is not yet understood why the Sensory Feedback we used promotes those two patterns, and if
they are stable for long periods of time.

Chapter 9

Conclusion and Outlook

9.1 Conclusion

During this project, we wanted to assess the relevance of using Chaos to control a Centipede robot.
We started by developing a new CPG, composed of dynamical elements that could bifurcate between

a limit cycle behavior or chaotic behavior depending on a parameter value. We chose to use a Rössler
oscillator as our basic element. We studied its capabilities and explored its parameters range. We then
had to develop a coupling scheme that would allow us to create arbitrary phase locking relations between
elements. We successfully adapted Diffusive coupling, by rotation terms for this purpose. Our coupling
scheme allowed to define arbitrary phase synchronization, as well as complete synchronization. Complete
synchronization was also possible while the element was in chaotic regime. Phase synchronization in
chaotic regime is not possible for every phase, but only for values from 0 to 0.9 radians. Afterwards, we
designed a locomotion pattern adapted to a Centipede robot, built on the previous work of B. Jimenez
[20]. We created this locomotion pattern with our Rössler CPG working in Limit cycle mode. Its
mathematical stability was assessed.

We implemented this Rössler CPG on a controller for the Centipede robot, and thoroughly tested the
parameters controlling its movement. We optimized most of them, and managed to create a controller
that performed an optimal movement pattern (to the best of our knowledge). We then added Sensory
feedback on this robot model and tried several ways to use it into our controller. We then optimized its
coupling scheme. We found out that the Sensory feedback is not needed on flat terrain for an optimal
controller, but it did increase significantly the performance of a non-optimal controller, by around 30%.

After that, we modified our Rössler CPG to make it work in Chaotic regime. We remove all the
design we used in Limit Cycle mode, and every Rössler element is now independent. We incorporate
Sensory Feedback to these elements, hypothesizing that it is the feedback that actually creates the
relations between the elements. We think these links would emerge from interactions with the outside
world. We then optimized the feedback strength and its direction. We also introduced a new theoretical
conceptualization for the use of Chaos in a controller. This conceptualization can actually help to explain
why the feedback is needed and how it can help to promote good locomotion patterns.

Finally, we developed a whole Test bench to systematically assess the performance of the different
controllers on unknown terrain. These terrains were parametrized by a difficulty level. We also developed
a fair Random controller, to see where the Chaotic controller would fit in between a completely random
controller and a completely designed controller. Our results were surprising, and confirmed the fact
that the Chaotic controller indeed performed well. The Chaotic controller performed best when acting
on difficult terrain. This observation was verified using non-parametric Kruskal-Wallis variance tests.
The Chaotic controller got a medium performance on flat terrain, where a totally designed controller

72

CHAPTER 9. CONCLUSION AND OUTLOOK 73

performed best. But as soon as the difficulty increased, the designed controller dropped dramatically in
performance, while the Chaotic controller stayed good.

This bring us a direct use of our Rössler CPG to build a new controller: Combine the two behavior
and switch between Limit Cycle mode and Chaotic mode depending on the actual terrain type. Such a
change is really easy to do and completely built-in in our controller. We also need to define a way to
detect the difficulty of the current terrain. Then we would get a controller that is able to move optimally
on flat terrain, and could change to a very robust chaotic controller on uneven terrain. Such a “Hybrid
controller” could be very interesting to study.

9.2 Outlook

Further work may include the following ideas:

1. We could develop this “Hybrid controller” and assess its capabilities experimentally.

2. The Sensory feedback that we use doesn’t project onto the Body segments, we could try to add
this.

3. For now, the real relation between the Sensory Feedback and the Chaotic behavior on a math-
ematical level is completely unknown. Better mathematical insight in the synchronization and
coupling processes taking place could be very useful to try to answer to the real question that is
still completely unknown: Why does the chaos perform that well ? If we think that the chaos is
just used as a source of noise, we could try to recreate the exact same noise, and then see if we
obtain the same behavior. If we don’t, it means that the dynamical system does something more
and actually uses the feedback in a way that promotes the movement.

There is still a lot of work to be done, we just did the first steps, which confirmed that Chaos is
interesting to control robots. This is a very interesting answer, because there is for now nearly nobody
trying to use Chaos for Robot Control. If we manage to understand the processes taking place between
the Feedback and the Chaos dynamics, we could actually use this power as a new way to solve Control
problems. We hope that this project opened a door in this direction.

Chapter 10

Bibliography and Additional
Material

10.1 Videos

rossler lc bad.mpeg Shows the movement obtained with the Bad Limit Cycle parameter set for the
Rössler CPG in Limit cycle mode.

rossler lc optimized.mpeg Shows the movement obtained with the Optimized Limit Cycle parameter
set for the Rössler CPG in Limit cycle mode.

chaotic controller.mpeg Shows the movement obtained with the Simple Chaotic controller.

rossler lc uneven diff1.mpeg Shows the movement of the Optimized Limit Cycle on uneven terrain
of difficulty 1. Difficulties 3, 5 and 10 are also shown on similar videos.

10.2 Acknowledgement

I would like to especially thanks and acknowledge:
Ludovic Righetti for all help, his understanding and the great discussions about obscure mathematical
notions.
Prof. Auke Jan Ijspeert for his simple advices that always solve complex problems.
Yvan Bourquin and Alessandro Crespi for all the technical support and the room full of unused computers.
and all the crazy people working in the students’ Lab for making every day of work so special.

74

Bibliography

[1] B. Anderson, J. Shultz, and B. Jayne. Axial kinematics and muscle activity during terrestrial
locomotion of the centipede scolopendra heros. J Exp Biol, 198(Pt 5):1185–95, Jan 1995.

[2] B. R. Andrievskii and A. L. Fradkov. Control of chaos: Methods and applications. i. methods, Jan
2003.

[3] P. Arena, L. Fortuna, M. Frasca, G. L. Turco, L. Patané, and R. Russo. Perception-based navigation
through weak chaos control. 2005.

[4] M. Biehl. Semester project : Study of coupled chaotic systems for dynamic emergence of locomotion.
Master’s thesis, Jul 2006.

[5] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. Zhou. The synchronization of chaotic
systems. Physics Reports, 366:1–2, 2002.

[6] V. E. Bondarenko. ’anticontrol’ of chaos in an analog neural network by external low-dimensional
chaotic force. 1998.

[7] J. Buchli, F. Iida, and A. J. Ijspeert. Finding resonance: Adaptive frequency oscillators for dynamic
legged locomotion. Proceedings of the 2006 IEEE/RSJ international conference on . . . , Jan 2006.

[8] J. Buchli, L. Righetti, and A. J. Ijspeert. Adaptive frequency oscillators applied to dynamic walking:
Ii. adapting to resonant body dynamics. Proceedings of Dynamic Walking 2006 (this volume), Jan
2006.

[9] G. Chen and X. Yu. On time-delayed feedback control of chaotic systems. Circuits and Systems I:
Fundamental Theory and Applications, Jan 1999.

[10] B. Duran, G. Metta, and G. Sandini. Emergence of smooth pursuit using chaos. 2007.

[11] France5. France 5 education.

[12] J. Freeman. Mass action in the nervous systemexamination of the neurophysiological basis ... Book,
2004.

[13] R. Ghanea-Hercock and D. P. Barnes. Mobile robot dynamics: Chaos in reactive control architec-
tures. 1995.

[14] J. M. Hausdorff, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walking a random walk?
evidence for long-range correlations in stride interval of human gait. J Appl Physiol, 78(1):349–58,
Jan 1995.

[15] A. Hramov and A. Koronovskii. An approach to chaotic synchronization. Arxiv preprint nlin.CD,
Jan 2005.

[16] A. Ijspeert. A connectionist central pattern generator for the aquatic and terrestrial gaits of a
simulated Biological Cybernetics, Jan 2001.

75

BIBLIOGRAPHY 76

[17] A. J. Ijspeert. Dynamical principles in neuronal systems and robotics. Biological cybernetics,
95(6):517–8, Dec 2006.

[18] A. J. Ijspeert, A. Crespi, and J.-M. Cabelguen. Simulation and robotics studies of salamander
locomotion: Applying neurobiological principles to the Neuroinformatics, Jan 2005.

[19] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From swimming to walking with a
salamander robot driven by a spinal cord model. Science, 315(5817):1416–20, Mar 2007.

[20] B. Jimenez. Centipede robot locomotion. 2007.

[21] Y. Kuniyoshi and S. Sangawa. Early motor development from partially ordered neural-body dy-
namics: experiments with a cortico- Biological cybernetics, Jan 2006.

[22] Y. Kuniyoshi and S. Suzuki. Dynamic emergence and adaptation of behavior through embodiment
as coupled chaotic field. Intelligent Robots and Systems, 2004.

[23] J. Kurths and C. Zhou. Noise-enhanced phase synchronization of weakly coupled chaotic oscillators.
Physics and Control, Jan 2003.

[24] T. P. Leung and H.-S. Qin. Advanced Topics in Nonlinear Control Systems. 2001.

[25] C. Li and X. Liao. Lag synchronization of rossler system and chua circuit via a scalar signal. Physics
Letters A, Jan 2004.

[26] M. Lungarella, K. Ishiguro, N. Otsu, and Y. Kuniyoshi. Methods for quantifying the causal structure
of bivariate time series. IJBC, 17:1–19, 2007.

[27] D. Orrell and L. Smith. Visualising bifurcations in high dimensional systems: The spectral bifurca-
tion diagram. Int. J. Bifurcation and Chaos, Jan 2003.

[28] E. Ott. Chaos in Dynamical Systems. 1993.

[29] E. Ott, C. Grebogi, and J. Yorke. Controlling chaos. Physical Review Letters, Jan 1990.

[30] K. Park, Y. Lai, S. Krishnamoorthy, and A. Kandangath. Effect of common noise on phase synchro-
nization in coupled chaotic oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science,
Jan 2007.

[31] L. Pecora and T. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., 64(8):821–824, Feb
1990.

[32] L. Pecora, T. Carroll, G. Johnson, and D. Mar. Fundamentals of synchronization in chaotic systems,
concepts, and applications. Chaos: An Interdisciplinary Journal of Nonlinear Science, Jan 1997.

[33] A. Pikovsky, M. Rosenblum, and J. Kurths. Phase synchronization in regular and chaotic systems.
International Journal of Bifurcation and Chaos, Jan 2000.

[34] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization a universal concept in nonlinear
sciences. 2001.

[35] C. Pinto and M. Golubitsky. Central pattern generators for bipedal locomotion. Journal of
Mathematical Biology, Jan 2006.

[36] A. Pisarchik, R. Jaimes-Reátegui, and J. Garćıa-López. Synchronization of coupled bistable chaotic
systems: experimental study. Philos Transact A Math Phys Eng Sci, Aug 2007.

[37] A. Pitti, M. Lungarella, and Y. Kuniyoshi. Quantification of emergent behaviors induced by feedback
resonance of chaos. Recent Advances in Artificial Life: Advances in Natural . . . , Jan 2005.

[38] A. Pitti, M. Lungarella, and Y. Kuniyoshi. Exploration of natural dynamics through resonance and
chaos. pages 558–565, 2006.

BIBLIOGRAPHY 77

[39] K. Pyragas. Continuous control of chaos by self-controlling feedback. Physics Letters A, Jan 1992.

[40] L. Righetti, J. Buchli, and A. J. Ijspeert. Adaptive frequency oscillators applied to dynamic walking
i. programmable central pattern generators. Proceedings of Dynamic Walking 2006 (this volume),
Jan 2006.

[41] M. Rosenblum, A. Pikovsky, and J. Kurths. Phase synchronization of chaotic oscillators. Physical
Review Letters, Jan 1996.

[42] M. Rosenblum, A. Pikovsky, and J. Kurths. From phase to lag synchronization in coupled chaotic
oscillators. Physical Review Letters, Jan 1997.

[43] L. Smith. Chaos : a very short introduction. 2007.

[44] R. V. Solé, J. G. Gamarra, M. Ginovart, and D. López. Controlling chaos in ecology: from deter-
ministic to individual-based models. Bull Math Biol, 61(6):1187–207, Nov 1999.

[45] J. C. Sprott. Chaos and time-series analysis. page 400, Jan 2003.

[46] S. H. Strogatz. Nonlinear Dynamics and Chaos. 2000.

[47] A. A. Zaher. Design of model-based controllers for a class of nonlinear chaotic systems using
a single output feedback and state observers. Physical review E, Statistical, nonlinear, and soft
matter physics, 75(5 Pt 2):056203, May 2007.

[48] C. Zhou, J. Kurths, E. Allaria, S. Boccaletti, R. Meucci, and F. T. Arecchi. Constructive effects
of noise in homoclinic chaotic systems. Physical review E, Statistical, nonlinear, and soft matter
physics, 67(6 Pt 2):066220, Jun 2003.

