
Visual location of a mark by the robot Aibo

Semester Project

Jennifer Meinen

Supervision: Prof. Auke Jan Ijspeert & Sarah Degallier
Biologically Inspired Robotics Group (BIRG)

School of Computer and Communication Science - EPFL

January 12, 2008

Contents

1 Introduction 1

2 Solving the problem 2

3 Looking for the red mark 3

3.1 Middle of the mark . 3

4 Mapping from 2D point in an image to 3D coordinates 4

4.1 Coordinates in each referential frame . 4
4.1.1 Degrees of freedom . 4
4.1.2 Transformation matrices . 5

4.2 Distance and orientation of the ground viewed from the body referential 6
4.2.1 Initial position . 6
4.2.2 Recomputing body position . 7

4.3 Mapping from a pixel to a 2d coordinate . 8
4.4 Projection on a plane . 8

4.4.1 The pinhole camera model . 8
4.4.2 Intersection between a plane and a line . 9

4.5 Focal length and angle of view . 10
4.5.1 Speci�cation of the camera . 10
4.5.2 Camera calibration . 10

4.6 Using distance sensor . 11

5 Inverse kinematics 12

6 Implementation in simulation 13

6.1 Test knowing the plane . 14
6.2 Test using supervisor . 17
6.3 Test with inverse kinematics . 24

7 Implementation on the real robot 26

8 Conclusion 29

i

List of Figures

1 RBG cube . 3
2 Mark turned . 3
3 Aibo's body dimensions �gure taken from Model Information for Ers7 [2] 5
4 Aibo's head dimensions �gure taken from Model Information for Ers7 [2] 5
5 Aibo's legs dimensions [2] . 6
6 Aibo's body position . 7
7 Image plane : How to convert a pixel to distances . 9
8 Projection using the pinhole camera model . 9
9 Angles and distances needed for inverse and direct kinematics taken from Uwe Du�ert[7] 12
10 Schema of the application . 13
11 Mapping 3D to 2D point from Robot Modeling and Control[5] 14
12 Incertitude on x in position -1.2, 0, 0.2 . 18
13 Incertitude on y in position -1.2, 0, 0.2 . 18
14 Incertitude on z in position -1.2, 0, 0.2 . 19
15 Incertitude in the following position : an angle of -0.8 rad on Tilt1, -1 on Pan rotation,

0.1 on Tilt2 . 23
16 Photo of the mark taken by Aibo . 28

ii

List of Tables

1 Transformation of the referential frame . 6
2 Initial position . 8
3 Changing size of the mark . 15
4 Modifying only x coordinate . 15
5 Modifying only z coordinate . 16
6 Modifying only y coordinate . 16
7 Modifying α without changing mark position . 16
8 First �gure shows the distances x,y,z in the referential of Tilt1, second �gure shows a

printscreen during the simulation . 17
9 a) Incertitude on x : x− xc b) Incertitude on y : y − yc c) Incertitude on z : z − zc . . 19
10 Incertitude between the position calculated and the real position of the mark for quali-

tative analysis . 21
11 Incertitude between the position calculated and the real position of the mark for quan-

titative analysis . 22
12 Sample of incertitude values given for each position . 22
13 Incertitude looking far away . 23
14 Aibo simulation . 25
15 Real Aibo moving . 28

iii

1 Introduction

The goal of this project is to locate a mark using a camera, and then use this information to de�ne a
special action. More precisely I will work on Aibo which is a robotic pet produced by Sony, and use
its camera to identify and locate a mark. Then if Aibo sees a mark it must move one of its paws onto
the mark.

The solution developed must be tested and validated in simulation. Finally it also needs to be
implemented on the real robot Aibo.

The project issues are to develop a general method that a robot can use to analyse an image and to
use this image to adopt a particular behaviour. For example a robot could use the vision part for its
locomotion, or to avoid obstacles. Another example could be a robot on an assembly line which needs
advance information from the camera about the position of objects to be able to manipulate them.

1

2 Solving the problem

Aibo moves its head until it recognizes the mark and then it will stop moving. To make the mark
easier to detect, we use a color di�erent from its environment - for exemple red. When it �nds a group
of pixels with a higher threshold of red we know that there is a strong probability that it is in fact the
mark.

The most di�cult part will be to �nd the 3D coordinates corresponding to the mark, as the head
and the camera will be moving. Section 4 will detail each step and the di�culties encountered to
perform this task. Aibo must be able to calculate the coordinates of the mark whatever the position
of its head. We therefore have to do some referential transformations and modelize the concept of the
camera. The robot's legs can be in any position but have to remain immobile during the calculation
of the coordinates of the mark. The reason for this is that the plane in which the mark is situated is
determined by the position of the legs.

Finally, Aibo will move its paw onto the mark using inverse kinematics.
Although Aibo has a distance sensor, we wanted to be able to use the solution on other robots

that do not have such sensors. Therefore it was decided to use only the camera to locate the mark.
However, section 4.6 will present how the information from the distance sensor could be used to solve
our problem.

2

3 Looking for the red mark

First of all we must de�ne what constitutes a red mark: it is determined by values within the limits
of red, green and blue. Figure 1 shows the 3D representation of the rgb color system with a red
cube limited by r1,r2,g1,g2,b1,b2. So we can say that a pixel whose rgb values are r,g,b is red if the
conditions : r1<r<r2, g1<g<g2, b1<b<b2 are satis�ed.

To locate the mark Aibo turns its head and takes a picture. It then scans the image : for each
position x,y of a pixel it knows the rgb values r,g,b and compares these values with the predetermined
values r1,r2,g1,g2,b1,b2. If a pixel is recognized as being red we know its position. We need a group
of pixels to enable the recognition of the mark.

After recognizing a group of pixels as red it will determine the middle of this group (see section 3.1)
which will be a point in 2D in the plane of the formation of the image inside the camera. Section 4
will describe how this point can be mapped to a 3D point. If Aibo cannot �nd a group of pixels which
�ll the conditions it will again turn its head and scan.

Figure 1: RBG cube

3.1 Middle of the mark

We want to reduce the mark to a single point at which Aibo will aim its paw. This point is logically in
the middle of the mark. As the mark can be turned in any position we need to develop an algorithm
to calculate this point. Figure 2 illustrates the mark turned obliquely and to determine the middle we
must do the following steps :

• Count the number of pixels of each line.

• Determine the zone in which there is the largest number of pixels.

• Take the two lines that limit the zone : we now have A,B,C,D as on Figure 2.

• Determine the middle of the parallelogram formed by those two lines.

Figure 2: Mark turned

3

More precisely the solution used counts the number of pixels of the mark as it goes through the
image and so the points A, B, C, D can be determined : A and B are the �rst points where the number
of pixels are maximum, along the line between A and C the maximum number will not change. C and
D are the last points before the number of pixels decrement.

4 Mapping from 2D point in an image to 3D coordinates

To tackle the problem we have to convert a pixel of an image to a 3D coordinate in the frame reference
of Aibo's body. First we have to limit the problem : we suppose that Aibo and the mark lay on the
same plane. Let us decompose this problem :

� We must �x the referential on Aibo's body and we must know how to convert any point of the
body referential frame into a coordinate in the camera referential frame and inversely.

� We must also express the �oor in the referential frame of the body, and every time the body
moves the frame has to be updated.

� We have to determine the angle of view and the focal of the camera (horizontal and vertical angle
view).

� We must know how to convert a pixel into a 2D coordinate.

Knowing the referential on Aibo's body the �oor (orientation and distance) can be determined in the
camera referential frame. As the camera angle of view and focal length are known, the problem is
reduced to a geometric transformation. Finally, we convert the coordinates into the referential frame
of the body.

4.1 Coordinates in each referential frame

We are going to �x the referential frame of Aibo's body on the Tilt1 Center (Fig. 3), we will use the
following notation for this referential frame : Body Ref. frame.

The referential frame of the camera is in the center of the camera (Fig. 4). The distances are
important to de�ne each translation matrix. Given a point P(Px , Py ,Pz) expressed in the Body
Ref. frame which we want to express in the camera referential frame, we have to know the degrees of
freedom of the head and all the distances between each axe. Then we can calculate a matrix which is
the multiplication of all transformations necessary for a change of referential frame. In any geometry
book we can �nd the well known matrices which represent translation and rotation of a referential :

Trans(x, y, z) =


1 0 0 −x
0 1 0 −y
0 0 1 −z
0 0 0 1

 Rot(x, θ) =


1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1


Rot(y, θ) =


cos(θ) 0 sin(θ) 0

0 1 0 0
−sin(θ) 0 cos(θ) 0

0 0 0 1

 Rot(z, θ) =


cos(θ) sin(θ) 0 0
−sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1


Note that if θ is between 0 and π it will be a counter-clockwise rotation in a usual x,y,z referential.

4.1.1 Degrees of freedom

According to the Model Information for ERS7[2], the head can do the following movements :

� rotation around the Tilt1 Center

� rotation around the Tilt2 Center

� rotation of the head around the neck axis

4

Figure 3: Aibo's body dimensions �gure taken from Model Information for Ers7 [2]

Figure 4: Aibo's head dimensions �gure taken from Model Information for Ers7 [2]

4.1.2 Transformation matrices

We can now express the point P in the camera referential frame by doing the following transformations
(see Fig. 3 and 4 for distances and to see how the axis x,y,z are oriented). Table 1 summarizes the
position of the current referential frame, its orientation and the following geometric transformation.
So the point C(cx,cy,cz), which is P expressed in the camera referential frame, will be : cx

cy

cz

 = M ∗

 px

py

pz


M = Trans(a1, a2, a3)Rot(x, γ)Trans(b1, b2, b3)Rot(z, β)Rot(x, α)

If we had C(cx,cy,cz) and we were looking for P(px,py,pz) we could do: px

py

pz

 = M−1 ∗

 cx

cy

cz


From the Model Information for ERS7[2] we know the distances in mm : (a1,a2,a3)=(0,81.06,-14.6)

and (b1,b2,b3)=(0,0,80).

5

Referential frame x,y,z Transformation on x,y,z
The current referential frame x,y,z is oriented as on
�gure 3 and is centered on Tilt1.

A rotation Rot(x,α) with α being in the plane yz
and representing the angle between z and the neck.
Negative angle for head going down.

The current referential frame x,y,z is still centered
on Tilt1 but is oriented with z being along the neck
axis.

A rotation Rot(z, β) with β being in the plane xy
and representing the angle y and the new position of
the head once turned. Positive angle for head turning
to the right.

The current referential frame x,y,z is still centered
on Tilt1 but is oriented with z being along the neck
axis and y being parallel to the head.

A translation along the z axis of b3 mm :
Trans(b1,b2,b3)

The current referential frame x,y,z is now centered
on Tilt2.

A rotation Rot(x,γ) with γ being in the plane yz
and representing the angle between y and the neck.
Positive angle for head going up.

The current referential frame x,y,z is still centered on
Tilt2 but y is along the head.

A translation Trans(a1,a2,a3) to bring the current
referential frame into the referential frame of the
camera

Table 1: Transformation of the referential frame

4.2 Distance and orientation of the ground viewed from the body referen-

tial

A plane is de�ned by only three di�erent points. So the idea is to express three points on the �oor
in the Body Ref. Frame and then as we know how to convert these points into the camera referential
frame we will be able to know the distance and the orientation of the �oor in the camera referential
frame. We assume that after having set Aibo in one speci�c position and calculated the three points
needed, its body referential frame will not change again - it means that after having calculated the
points P0, P1, P2 which represent the �oor the articulations of the legs should not move anymore
otherwise the result of the three points will no longer be valid. In any case the head could still move
because the referential is on the body.

4.2.1 Initial position

Figure 5: Aibo's legs dimensions [2]

6

Figure 6: Aibo's body position

The initial position is chosen so that the two front paws are in the same positon as well as the two
back paws. We want to determine the coordinates of the �oor in the body referential frame placed on
the Tilt1 center (cf Fig. 5). See Fig. 6 p. 7 and Table 2 p. 8 for all the variables and explanations.

Given that w4 is the distance between the two front paws and is also the distance between the two
back paws, we can now express the points P0 ,P1 , P2 in the body ref. frame:

P0 =(w4/2,−w2 − sin(α) · L1 − sin(α + β) · L2,−w1 − cos(α) · L1 − cos(α + β) · L2)

P1 =(−w4/2,−w2 − sin(α) · L1 − sin(α + β) · L2,−w1 − cos(α) · L1 − cos(α + β) · L2)

P2 =(w4/2,−w3 + sin(θ) · L1 − sin(α + σ) · L3,−w1 − cos(θ) · L1 − cos(θ + σ) · L3)

We can now compute the equation of the plane using these points. The parametric equation is
P0 + (P1 − P0)u + (P2 − P0)v as in section 4.4.2.

4.2.2 Recomputing body position

Each time Aibo moves its legs we update the values of α, β, θ, σ which are the only values needed
to calculate P0, P1, P2. After having calculated these three points Aibo must not move anymore
otherwise it should recalculate the points. The calculation of the position of the mark can be done in
any body position. However the only condition is that the angles of the articulations of both front legs
must be identical - similarly for the hind legs. However, to avoid Aibo collapsing or being in a position
which does not allow it to move a paw : we are going to �x the angles α, β, θ, σ in advance. When it
sees the mark, it will move its paws in the desired position and then it will be ready to calculate P0,
P1, P2 and determine the position of the mark, and �nally move its paw onto the mark (during all the
operation it must not move its body).

7

Variables and constants in Fig. 6 Signi�cation and initial value
α Placed between the perpendicular of the line ab and L1. Also

includes the angle between the upper arm and the lower joint as
they are out of axis (cf Fig 5). This initial angle can be calculated
and measures −arctan(9/19.5).

L1 Length between the two axis of rotation for the front paws - which
is the same for the back paws. It measures

√
19.52 + 92.

L2 Distance between the L2 rotation axis and the �oor contact point.
It measures

√
28.32 + 71.52.

L3 Distance between the L2 rotation axis and the �oor contact point.
It measures

√
21.32 + 76.52.

β Angle between L1 and L2.
θ Similar calculation to α but for back paws.
σ Angle between L1 and L3.
w1 Distance along z between Tilt1 and line ab.
w2 Distance along y between Tilt1 and line a.
w3 Distance along y between Tilt1 and line b.

Table 2: Initial position

4.3 Mapping from a pixel to a 2d coordinate

Initially we have an image with n x m pixels. Suppose we know the focal length F, the horizontal
(α) and vertical angle of view, we want to know how to convert a particular pixel (u,k) in a 2D
coordinate that we can use later for the projection (see Section 4.4.1 on the pinhole camera model).
In Fig 7 the image plane is represented : h is half the number of pixels on the horizontal line, u is the
number of pixels from the middle of the image to the point (u,k) on the vertical line. The problem
is: how to convert a number of pixels into a physical distance? We know that h pixels correspond to

dh = F · tan(α) and so we can deduce that u pixels correspond to du = u · (F ·tan(α))
(h) . Same reasoning

can be done for k but using the vertical angle of view.

4.4 Projection on a plane

We know the focal length, a 2D coordinate on the image plane and the equation of the �oor plane so
we can therefore calculate the 3D coordinate.

4.4.1 The pinhole camera model

We will use the pinhole camera model which is a simple way of representing a camera as a small hole
through which light enters to form an image. The distance between the image formed and the camera
referential frame is the focal length. In our case we know that any point on the image plane is on
a particular plane (the �oor plane of which we know the equation in the camera referential frame).
Fig. 8 illustrates a coordinate system which is placed just onto the camera - y being along the optical
axis, the �oor plane and the image plane. P' is the projection of P on the image plane. The problem
is to �nd the coordinates of P knowing the coordinates of P'. We must do as the camera does : a
projection on a plane but in our case the plane is the �oor plane of which we know the equation. The
3D coordinates of P' are known (focal length on y see Section 4.3 for x and z), the equation of the
�oor plane is also known from the 3 points �xed in Section 4.2.1 and converted in the camera frame
reference. Let us call D the line going through (0,0,0) and P'. The intersection between this line and
the �oor plane completely determines P.

8

Figure 7: Image plane : How to convert a pixel to distances

Figure 8: Projection using the pinhole camera model

4.4.2 Intersection between a plane and a line

Supposing we have P0,P1,P2 three points linearly independent which are on the �oor, and two other
points LA, LB representing the line through the middle of the mark and through the center of the
camera. As said in the article [4] on intersection between line and plane in wikipedia, the intersection

9

between the plane P0 + (P1 − P0)u + (P2 − P0)v and the line LA + (LB − LA)t can be expressed by :

R = LA + (LB − LA) · t

With t beeing calculated with : t
u
v

 =

 LAx − LBx P1x − P0x P2x − P0x

LAy − LBy P1y − P0y P2y − P0y

LAz − LBz P1z − P0z P2z − P0z


We have to take into account that there is no solution if the straight line is parallel to the �oor

which corresponds to Aibo looking far away, its head parallel to the �oor. This case should not be
a problem because if Aibo is looking far away it is not looking at the mark on the �oor, and the
calculation of the 3D point is done only if we have detected a point. The case of the straight line
being inside the �oor plane is physically impossible (head cannot go inside the �oor). Finally we can
conclude that the intersection between the plane and the line will always be a point and that this point
is R.

4.5 Focal length and angle of view

To complete our task we must know the following about Aibo's camera : the focal length and the angle
of view. They never change and are speci�c to the camera. We can either �nd them in the Model
Information for ERS7[2] or calculate them.

4.5.1 Speci�cation of the camera

According to the Model Information for ERS7[2], the color camera has the following speci�cations :

The number of picture elements :416(H) x 320(V), 30 FPS
Lens :F 2.8, f = 3.27mm
Angle of view :Horizontal angle 56.9 degrees Vertical angle 45.2 degrees
Default :White balance 5000K �xed, Shutter speed 1/100 sec �xed, Gain 0dB �xed
CMOS part :1/4 inch

The most interesting point is the angle of view and the focal length, both are necessary for our
calculations.

4.5.2 Camera calibration

If we want to verify that these parameters are correct we can calibrate the camera. For exemple we
could do the following steps:

• place on the �oor a mark whose exact position we know;

• place Aibo's head in such a way that the camera reference frame is parallel to the �oor - to
simplify the problem;

• use the intercept theorem to �nd the focal length;

• determine the horizontal and vertical angle of view by placing two other marks whose exact
positions are known.

10

4.6 Using distance sensor

Aibo also has a distance sensor in its head which has not been used in resolving our problem, because
we wanted to use a solution only with the camera. However, here are some ideas on how we could
have used its distance sensor :

• We could use it to determine the �oor plane instead of the articulations of Aibo as explained
in section 4.2.1. For example if we put a referential on neck Tilt2 (cf Fig. 3) and then take one
measure of the distance to the �oor, afterwards we could rotate around Tilt2 by an angle α to
take another measure of the distance and �nally rotate β to take the last measure of distance.
The three measures construct a pyramid which helps us to calculate the plane in Tilt2 referential
frame.

• Another utilization could have been to use the camera to move the head until the middle of the
mark is on the line of the distance sensor. Then we know the distance to the mark from the
head, the angles of the head thus we can calculate the position of the mark. The advantage of
this solution would be that it will work even with a �oor which is not �at as supposed in our
solution.

11

5 Inverse kinematics

Knowing the position of the mark in the body referential, we �rst adapt the coordinates of the mark
in the referential of the shoulder. Then we can move the paw using the inverse kinematics. From Uwe
Dü�ert's thesis [7] we know how to obtain the direct and inverse kinematics :

First the direct kinematics, which allows us to �nd the position of the paw in the coordinate system
of its shoulder, knowing the angle of each joint. See Fig. 9 for the reference of each angle and distance:

x = l2cos(θ1)sin(θ3) + l2sin(θ1)cos(θ2)cos(θ3) + l1sin(θ1)cos(θ2)
y = l1sin(θ2) + l2sin(θ2)cos(θ3)

z = l2sin(θ1)sin(θ3)− l2cos(θ1)cos(θ2)cos(θ3)− l1cos(θ1)cos(θ2)

The inverse kinematics is the problem of �nding the angle θ1, θ2, θ3 knowing the position x,y,z
of the paw. We use the three equations of the direct kinematics and the cosinus theorem : a2 =
b2 + c2 − 2bccos(α). In fact this over-determines our problem, we have four equations and only three
unknowns. Finally we �nd the position of each shoulder θ1, θ2, θ3 (still from Uwe Dü�ert[7]) :

θ1 = arctan(z
x + arctan((l1+l2cos(θ3))cos(θ2)

l2sin(θ3
))

θ2 = arcsin(y
l1+l2cos(θ3)

)

θ3 = arccos((x2+y2+z2)−l21−l22
2l1l2

)

Figure 9: Angles and distances needed for inverse and direct kinematics taken from Uwe Du�ert[7]

12

6 Implementation in simulation

The running application which will be put on the real robot functions as shown in the schema (Fig 10).
The implementation was done in a few steps. First tests were done placing the mark anywhere in space,
in a plane known to be parallel to the head. Then afterwards the plane became the �oor and the mark
was moved on the �oor: a supervisor was done to test systematically a great number of positions of
the mark. A few positions with di�erent angles of the head were also tested. The last step was to
make it work on the real robot. The following sections will detail each step.

Move head down

Pixel red found Limit reachedno

Turn head

no

Stop moving head

Turn head in the
opposite way

yes

Pixel in the horizontal
middle of the image

or
Hardware bounds reached

yes

Turn headno

Stop moving

yes

Calculate the position of
the floor using the
position of the legs

Calculate the position of
the mark knowing that the

mark is on the floor

Mark reachable by a
paw

yes

no

Move the nearest paw
on the mark using inverse

kinematics

Do not move

Figure 10: Schema of the application

13

6.1 Test knowing the plane

In this section we give ourselves the three points P0, P1, P2 which we know are in the same plane as our
mark. The mark will be placed arti�cially in the position using the scene tree of webots - we create
a node children of tilt1 and so its coordinate will be in the same referential as the referential used
in our calculations. Then we proceed with some tests to check the correctness of the position of the
mark. Observing the tests has helped us to improve the precision of the mark position. For example
the following formula from cyberbotics[3] verticalFOV = fieldOfV iew∗height

width which I was using was
discovered to be unapplicable because the result found is not the same as in the camera speci�cations.
In fact doing the tests showed me that the incertitude was growing towards the side of the picture but
only on the vertical axe and not on the horizontal axe. It could have been normal for a phenomenon
of distortion but in this case it would not have been only on one axe.

In Table 3 we place a mark at position (0,800,65.4)mm expressed in the body ref. frame - this
position is chosen to center the mark in the middle of the image, we then make a few mesures changing
the size of the mark. We want to verify that the position does not change because if it does it would
mean that there is a problem calculating the middle of the mark.

For the next tests we are going to �x a size of the mark at : 0.01 x 0.01 m.
In table 4 we modify only the coordinate on x axis. We want to verify that the imprecision does not

grow too much as the mark approaches the side of the image to see if we are victims of a phenomenon
of distortion. Table 5 is also done for the same reason. We change the coordinate z. We can observe
in both cases that the imprecision does not grow far away from the center of the image.

In table 6 we modify the distance between the camera and the plane in which lays the mark,
coordinates x and z remain unchanged. As the plane is de�ned precisely the coordinates of y will
always be precise but we can see as the distance increases the incertitude on x and z grows. The
reason is the approximation that we use with our camera model. A pixel is a unit which cannot be
divided into smaller elements therefore the precision of our calculation depends on the resolution of
the camera. When the mark is further away the number of pixels that will be used to represent the
mark will be less than if it is near. Therefore, a more distant pixel will be mapped to a 3D coordinate
with a bigger imprecision.

To see if this assertion is correct we will try another approach : suppose we know the position of
the mark and that we want to determine to which pixel it corresponds. This problem is much more
simple : mapping 3D coordinates to a 2D coordinate in an image. In the book Robot Modeling and
Control[5] they describe the mapping from a 3D world ccordinate to a pixel in the image. Knowing
that x,y,z is the position of the 3D point(see Fig 11), λ is the focal length, sx is the horizontal size

of a pixel : tan(horizontal angle of view/2)∗focal
width of image/2 . Similarly sy is the vertical size of a pixel. We calculate c

and r the pixel positions (from the center of the image) Using this equation from Robot Modeling and
Control[5]:

r = λ
sx

x
z c = λ

sy

y
z

For example if we take the position in mm (2,800,2) and we calculate r=0.47 and c=0.48 we can

Figure 11: Mapping 3D to 2D point from Robot Modeling and Control[5]

see that the result is fractional and so as a pixel cannot be divided we see that we have anyway an
approximation, so the positions (0,800,0),(1,800,1) and (2,800,2) map to the same (0,0) pixel, in other
words a pixel at position (0,0) could map to each of them, hence the imprecision. We then calculate

14

with a nearer position : the position (2,100,2) gives us r=3.83 and c=3.84 which is di�erent from the
result from (1,100,1) and (0,100,0) so we can distinguish them, hence nearer the mark more precise
will be the result. We can also say that more the mark is distant more it means that an imprecision
as to which pixel is the center of the mark leads to an imprecision much bigger in the real world.

We �nally want to check with a di�erent angle of the head, to see if rotating the head brings an
incertitude. Table 7 modi�es the angle around Tilt1, the mark stays in the same position (0,200,80).
The two other tables modifying the angle around Tilt2 and the other angle around Tilt1 will not
be reported here because they still have the same imprecision 1-2mm as in the other tables and are
therefore not interesting. The imprecision that we still have for these tests is around 2mm. The reason
is the imprecision that is introduced each time we change referential; matrice calculations introduce
imprecison.

Mark size Mark position calculated
0.01 x 0.01 (-1.87279,800,67.2704)
0.1 x 0.1 (-1.87279,800,67.2704)
0.2 x 0.2 (-1.87279,800,67.2704)

Table 3: Changing size of the mark

Mark position Mark position calculated
(0,500,80) (-1.09131,500,80.1247)
(100,500,80) (98.218,500,80.1247)
(150,500,80) (148.418,500,80.1247)
(200,500,80) (198.619,500,80.1247)
(220,500,80) (218.262,500,80.1247)

Table 4: Modifying only x coordinate

15

Mark position Mark position calculated
(0,500,80) (-1.09131,500,80.6589)
(0,500,100) (-1.09131,500,101.368)
(0,500,200) (-1.09131,500,195.819)
(0,500,220) (-1.09131,500,220.169)
(0,500,-100) (-1.09131,500,-99.1786)

Table 5: Modifying only z coordinate

Mark position Mark position calculated
(0,200,80) (-0.309831,200,80.253)
(0,300,80) (-0.570324,300,80.2096)
(0,600,80) (-1.3518,600,81.601)
(0,1000,80) (-2.39378,1000,82.1352)

Table 6: Modifying only y coordinate

α Mark position calculated
0 (-1.09131,500,80.6589)
-0.1 (-1.06409,500,79.6456)
-0.2 (-1.02387,500,80.1457)
-0.25 (-1.99863,500,79.9168)
-0.28 (-0.983289,500,79.592)

Table 7: Modifying α without changing mark position

16

6.2 Test using supervisor

To achieve systematic tests I have done a supervisor that moves a mark on the �oor. The mark is
placed in the initialization of the program and moved in each iteration. As the �oor is not parallel a
lot of tests have been done to see how the mark on the �oor can be moved (not too high, not too low
as it will not be visible).

The three points P0, P1, P2 are now calculated using the position of each servo and the dimensions
of Aibo's leg. For each position known x,y,z of the mark we calculate the position xc, yc, zc using
the camera and the algorithm described in previous sections which calculates the position of the mark
using the image of the camera and knowing the articulations of the head.

In table 8 we can see a printscreen of the simulation : we clearly see the zone visible by the
camera (the purple lines) and the window "Aibo(don't hide)" represents the vison of the camera. To
see the evolution of the mark we will do some plots using the coordinates x and y of the mark as
the horizontal and vertical axis, and each point at coordinate (x,y) on the plot will represent the
corresponding incertitude : the surface of the point equals the corresponding incertitude.

Table 8: First �gure shows the distances x,y,z in the referential of Tilt1, second �gure shows a
printscreen during the simulation

We will start by placing the head of Aibo in a position looking down on the �oor. For this reasons
we choose the following angles around tilt1 and tilt2 respectivly : -1.2,0.2 radian and we will not use
the pan rotation (head is rotated only around x). Figure 12 shows the incertitude on x : |x − xc|
�gure 13 shows incertitude on y and �gure 14 shows incertitude on z.

17

Figure 12: Incertitude on x in position -1.2, 0, 0.2

Figure 13: Incertitude on y in position -1.2, 0, 0.2

18

Figure 14: Incertitude on z in position -1.2, 0, 0.2

For a more quantitative analysis Table 9 shows the �rst quartile , the median and third quartile of
the values of the previous plots (in the same order x,y,z).

Table 9: a) Incertitude on x : x− xc b) Incertitude on y : y − yc c) Incertitude on z : z − zc

19

In �gure 12 we can see that the incertitude on x is small. As we can see in table 9 the average
value is of 0.6 mm which is very good. The "extreme" outliers values that we have are still less than
4.5 mm and are situated in the border of the image. The reason why it is bigger in the border is that
the mark is only half visible and so the middle of the mark is calculated only on the visible part of the
mark.

In �gure 13 the mean incertitude on y is of 1.7mm. It is bigger than the incertitude on x. We think
that the reason for this little di�erence is the resolution of the camera which is not the same horizontally
as vertically. We can also notice that sometimes incertitude seems bigger but not uniformly. This is
due to the fact that the shape of the mark is never the same and so because the middle of the mark
depends on the shape of the mark this can give irregular incertitudes. Anyway we can see that these
incertitudes, which are about 3 mm (not too big : the size of the mark for these tests is of 1 cm), are
not signi�cative.

In �gure 14 we can see that the incertitude is about 1.6 mm and looks uniform. The di�erence
between the �rst quartile and third quartile is of 0.4 mm and so we can see that globally the incertitude
stays uniform. This incertitude is only introduced by the calculation of the distance and orientation of
the �oor. The calculation of P0 , P1, P2 are based on the geometry of the robot but cannot be exact:
for exemple, do we calculate the distance to the �oor with the touch sensor pressed ? And where
exactly is the contact point (the end of the paw is round)? Anyway the incertitude stays reasonable.
In practice the incertitude of z is less important because Aibo will anyway advance its paw until it
touches the �oor.

From now on we will interest ourselves in the incertitude on each axis calculated using :

i =
√
|x− xc|2 + |y − yc|2 + |z − zc|2

We want to see how this incertitude evolves in other positions of the head. We �rst start studying the
incertitude in the same position as already done then we will turn the head left, up and �nally up and
left, to get a square.

Table 10 shows the evolution of the incertitude for (from top left to down right):

• an angle of -0.8 rad on Tilt1, 0 on Pan rotation, 0.1 on Tilt2

• an angle of -0.8 rad on Tilt1, -1 on Pan rotation, 0.1 on Tilt2

• an angle of -1.2 rad on Tilt1, 0 on Pan rotation, 0.2 on Tilt2

• an angle of -1.2 rad on Tilt1, -1 on Pan rotation, 0.2 on Tilt2

Table 10 is useful for a qualitative analysis but to see the corresponding values we also plot the
�rst quartile, the median and third quartile as done previously in table 11. Table 12 also gives us a
small sample of the values used for the plots to give us an idea for a position(x,y) which is represented
by the corresponding super�cies of the points in table 10.

We can see that the incertitude grows as the mark is further away. We think this is mainly due
to the limitations imposed by the camera (as explained in section 6.1). In addition, the further away
the mark, the error as to which pixel is in the center of the mark will have a greater e�ect on the real
coordinates. Some other causes of incertitude can be :

1. The imprecision of the calculation of the three points P0, P1, P2. As the �oor is not parallel to
the referential an imprecison on these points will be more noticeable as the distance to the mark
increases.

2. The imprecision on the placement of the mark - is it e�ectively on the �oor? The method used
in the supervisor was to move the mark on the �oor (the mark being in the referential of tilt1)
and as the �oor was not parallel in tilt1 referential we had to �nd manually which increment was
needed at each iteration to be able to lay the mark on the �oor.

3. The imprecision of matrice calculation for each transformation of referential.

20

4. Imprecisions inside the scene tree: the initial placement of the mark.

Incertitude is sometimes bigger at the end of the scanning line, because the mark is only half visible
- so why is it not always the case? We think it is because the size of the zone visible for the camera
is not a square (because of the orientation of the head) and so sometimes the mark can be entirely
inside or outside and sometimes partially inside and outside. In fact it depends on the shape of the
mark which is visible.

Incertitude does not seem to be a�ected a lot by the rotation of the head, but more by the distance
of the mark. Figure 15 (top left in table 14 is particularly interesting because we see that imprecision
increases clearly on the left and on the top of the �gure.

To see another extreme example for far away values we will put Aibo's head nearly parallel to the
�oor (but enough inclined so that it can see the ground) : (tilt1=-0.2 pan=0 tilt2=0.1). In table 13
we see clearly the evolution of the incertitude growing bigger as distance increases, anyway even with
a distance of 80 centimeters the incertitude remains less than 3cm which can give Aibo the good
direction to the mark. If the mark has to be calculated from far away, the position can be calculated
again when nearer. The only problem is the size of the mark: from far away if the mark is too small
it could be impossible to see it. So if our solution has to be used from far away the mark has to be
bigger. In fact these measures have been done to see the evolution but will not be needed in our case,
because they are completely unreachable when Aibo does not move.

Table 10: Incertitude between the position calculated and the real position of the mark for qualitative
analysis

21

Table 11: Incertitude between the position calculated and the real position of the mark for quantitative
analysis

Mark position Incertitude at position -1.2, 0, 0.2
x= 25.00 , y= 140.00 3.9463
x= 0.00 , y= 140.00 1.6872
x= 95.00 , y= 260.00 3.4477
Mark position Incertitude at position -1.2, -1, 0.2
x=259.99 , y=100.00 1.24
x=489.99 , y=100.00 2.52
x=894.99 , y=300.00 7.96
Mark position Incertitude at position -0.8,0,0.1
x=35.00 , y=200.00 1.77
x=40.00 , y=220.00 2.43
x=199.99 , y=540.00 13.86
Mark position Incertitude at position -0.8,-1,0.1
x=369.99 , y= 120.00 1.45
x=339.99 , y= 160.00 2.70
x=399.99 , y= 600.00 11.05

Table 12: Sample of incertitude values given for each position

22

Figure 15: Incertitude in the following position : an angle of -0.8 rad on Tilt1, -1 on Pan rotation, 0.1
on Tilt2

Table 13: Incertitude looking far away

23

6.3 Test with inverse kinematics

Finally after having done all the tests to be sure that the location of the mark using the camera was
correct, the inverse kinematics - as presented in section 5 was added. The main problem using the
inverse kinematics was that all positions of the mark that the camera could see were in fact not reachable

by a leg. Reachability is determined by the fact that the value of the equation | (x
2+y2+z2)−l21−l22

2l1l2
| must

be less than one.
In the position in which all the tests have been done the distance from the �oor is 140.5 mm, so

we calculate the circle x2 + y2 reachable knowing that z=140.5 and l1 = 70.1, l2 = 76.9 :

(x2+y2+z2)−l21−l22
2l1l2

≤ 1
x2 + y2 ≤ 2l1l2 + l21 + l22 − z2

So the radius of the reachable circle is 43 mm and the nearest the camera can see is in fact about
140 mm. The solution would be to change the position but the risk is that P0, P1, P2 would be inexact
because of the assumption of the contact point between the paw and the �oor: the touch sensor is
round and if we change the position the contact point must not be too far away from the one supposed.
The actual position was chosen because it is the same position as in the Model Information for ERS7[2]
and so it was easy to check the position of the �oor.

The solution was to assume that the leg was bigger than it was, and to �x the angle θ3 to zero
(in fact 30 degrees because of the shape of the leg). So by this arti�ce, Aibo falls down almost on the
mark. It is not exact because when it falls down the angles of each servo calculated by the inverse
kinematics do not consider the last move : the fall.

Table 14 shows Aibo looking for the mark, when it sees it : moving its leg, and falling on the mark
and in the last picture we clearly see that the rear paw is no longer touching the �oor.

24

Table 14: Aibo simulation

25

7 Implementation on the real robot

The last step was to make it work on the real robot. To achieve this the controller has to be cross-
compiled using openr and a project previously done by Lukas Hohl[9] - called RCServer which trans-
lates some functions written for simulation in webots into openr functions, camera remote control
and translation between camera webots functions and openr functions were already done by Raphaël
Haberer-Proust[8] but some little modi�cations had to be done to make it work (see Annex A for
details).

The test on the real robot have been done in 3 steps (testing the camera, testing the program that
works in simulation, debugging and improving knowing the results) :

First to be sure the mark was di�erent from its environment we printed an 'r' when the function
which checks if the pixel is red returns 1. We tested the environment without the mark and with the
mark. Sometimes red pixels were detected when the mark was not present (so this has to be taken
into account for the future tests).

Then we tried the same application as done in simulation : Aibo bends its head down, turns left
and right and if it sees the red mark it advances its paw on the mark. First it was not moving at all
because I was trying to put Aibo in a speci�c position : and the calculation of the mark could start
only when we were sure that it was in this position : this could not work because the value returned
by the servos were never the same as wanted and sometimes the di�erence was even up to 7 degrees
on one leg. So the tests to check that it was in the "correct" position were removed. In fact there is
no correct position but they were there to be sure that Aibo would not start calculating the position
of the mark and then moves its leg while doing the calculations. The other problem was that Aibo
moved its leg even with no mark. This was due to the fact that there is some noise in the image taken
by the camera and there is sometimes a pixel detected as red depending on the light around the aibo.
So to summarize the problems :

• Some noise in the picture is always there so to be sure that it really is the red mark and not a
noise a minimal number of pixels must be counted

• The application depends too much on ambiant light.

Finally some modi�cations have been done on the controller. When Aibo seeks the mark if it sees
a number of pixel less than 5 in the picture it does not consider it as the mark - to avoid considering
the noise as being the mark. In fact another modi�cation has been done to try to improve the result
when Aibo sees something that it considers would be the mark, it continues turning its head to center
the hypothetical mark in the center of the image : when it is centered or that it has reached some
hardware bounds it will stop moving and then calculate the center of the mark.

Quantitative tests can be made but to obtain more interesting results the problem of Aibo "falling
down on the mark" has to be solved �rst. Because we currently see not only the incertitude between
the real position of the mark and the one calculated but also the incertitude of the inverse kinematics
as explained in section 6.3. Anyway some videos have been done and can be visualised to see the
results :

• http://birg.ep�.ch/webdav/site/birg/users/161024/public/aibo1.avi

• http://birg.ep�.ch/webdav/site/birg/users/161024/public/aibo2.avi

We can see that depending on which experiment Aibo moves its paw near the mark or too far away.
We can compare these videos with the ones done with exactly the same controllor but in simulation :

• http://birg.ep�.ch/webdav/site/birg/users/161024/public/aibo_sim1.mpeg

• http://birg.ep�.ch/webdav/site/birg/users/161024/public/aibo_sim2.mpeg

• http://birg.ep�.ch/webdav/site/birg/users/161024/public/aibo_sim3.mpeg

26

We can see that in simulation results are better than in reality (but more the mark is far away
and more the problem with the inverse kinematic is important). To achieve tests on the real robot
without this problem we could sit Aibo and make it touch marks in front of it putting the mark on a
plane that we could determine using the distance sensors (for example). The tests that we can see in
the video have been done one after the other on a black �oor. Some other tests have been done on a
white surface and with a redder mark. We can see that the di�erence between the paw and the mark
can be up to 3 centimeters which is quite big in comparaison with the results in simulation. In fact
some of the tests with mark placed approximately in the same position never gave exactly the same
movement. We think that the principle reason for the di�erence between simulation and the real world
is the "falling down on the mark" which is more important in the real world but we can suppose some
other reasons :

• The shape of the mark will be more uncertain than in simulation.

• The ruggedness of the �oor : does Aibo slip on the �oor?

• When Aibo falls on the mark is the angle of the articulation modi�ed by the acceleration of the
fall? The resistance of the �oor and the moments of the resulting forces could they change the
position of the servo?

• Are the values of the servos exact ? Or could it be possible that Aibo has an incertitude on the
real position of its articulations hence a bad calculation of the �oor?

• There may be other reasons related to the real world.

To test the vision part we can draw on the �oor the position of the legs and then place Aibo on
these marks and look at the values calculated of the mark returned by telnet. The problem with
these tests are that they are really imprecise and cannot validate or unvalidate our results. They are
imprecise because we have to estimate the middle of the paws and to place Aibo on the mark done for
its paws : this is too experimental to give good results. We also estimate the distance to the referential
tilt1 which depends in fact if we have correctly placed Aibo on the marks. Five mesures have been
done they have an imprecision of 1 to 2.5 centimeters and are anyway better than the point on which
Aibo falls. Some more precise and reliable tests could be done if we could precisely compare the values
returned by the application with the values of the mark placed in the real world.

To improve the application and to make it less dependent on its environment a change can be
done in the color system : at present the color detection is done using rgb but it could be replaced
by another color system. For example the system color YCrCb could be better because there are only
two chroma components for three in the rgb system. In fact Aibo already returns values in YCrCb
which are converted in rgb by the controller of RCServer, so the only thing to do is to implement a
function that returns directly these values instead of converting them in rgb. Fig 7 shows how light
can in�uence the color of the mark, the picture has been taken with the remote control of RCServer
and two spotlights in front of Aibo. Another idea is to make Aibo independent of the light, and even
independent of the color of the mark, would be a phase of initialization : we could show to Aibo the
color that it has to look for and then it could know exactly what are the values it is looking for in the
second phase.

Table 15 shows the robot Aibo in di�erent steps : seeking the mark, and then after having found
it : moving its paw near the mark, we can also see the rear leg as on the simulation being lifted up.
These images have been taken from the videos of the real Aibo.

27

Figure 16: Photo of the mark taken by Aibo

Table 15: Real Aibo moving

28

8 Conclusion

In this project a solution for the problem of localization of the mark has been implemented using the
color of the mark and the position of each articulation of Aibo. The solution uses transformations of
referentials, trigonometry, the measures of the real Aibo, geometric transformation and the charac-
teristics of the camera. The camera is considered as being a pinhole camera model, we use the focal
length, the �eld of view and the fact that the mark is on the �oor to �nd the 3D position of the mark.

After having developed the theory the solution has been implemented and tested in simulation.
Some systematic tests in a few positions of the head have been done to validate the results. The
solution developed is independent of the position of the head. However the position of the articulations
of Aibo's legs must be the same for right and left legs and the distance between the paws is �xed (see
section 4.2.1) so there is 4 degrees of freedom in the placement of Aibo's body. Another limitation
is that Aibo must have a contact point with the �oor on each of its paws, and not too far from the
contact point given in the Model Information for Ers7 [2], I mean that Aibo must not touch the �oor
with its knee in place of its paw (for example). All systematic tests have been done in one position
of Aibo's body but the solution developed should be applicable in other positions of the articulations
(for more degrees of freedom direct kinematics could be used). Finally the solution has been adapted
and tested on the real robot.

The solution chosen is e�cient but only in certain conditions of the environment : light, absence
of any other red object near Aibo during the experiment. In simulation results are quite good but
to validate these results with the real robot some more precise tests have to be done. However, the
supervisor developed to see the imprecision proves that this solution can be used to localize a mark
using only the camera. The imprecisions in localizing the mark are essentially introduced by the
limitations of the camera and the di�erent calculations that have been done to obtain the position.

To continue the project the localization can be used for a mark further away, and displacement of
Aibo can be added, the calculation has to be done again as it walks towards the mark. The tolerance of
the color to the light could be compensented by adjustment before starting the experiment; one could
adjust the white balance of the camera for example. To make the solution even more independent of
the light and the colors, one can imagine that the mark could be with a very speci�c drawing that could
be recognized in any position, hence we would be sure that it is not an element of the environment.

29

References

[1] Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision Second Edition,
Cambridge University Press, 2003

[2] Sony, OPEN-R SDK Model Information for ERS-7,Sony Corporation,2004

[3] Webots, http://www.cyberbotics.com, Cyberbotics Ltd.

[4] Wikipedia, http://en.wikipedia.org/wiki/Line-plane_intersection

[5] Mark W. Spong, Robot Modeling and Control

[6] Alessandro Rovetto, Francesco Scandelli thesis: Semi-Autonomous Navigation of a Legged Robot using
Monocular Vision, 2005, http://www.sais.se/mthprize/2005/rovetto_scandelli2005.pdf

[7] Uwe Dü�ert Diploma Thesis, Quadruped Walking modeling and Optimization of Robot Movements, 2003,
http://uwe-due�ert.de/publication/due�ert04_diploma.pdf

[8] Raphaël Haberer-Proust, Semester project, 2005-2006, Remote control of AIBO camera from Webots,
http://birg.ep�.ch/page59430.html

[9] Lukas Hohl summer, Semester project, Aibo Simulation in Webots and Controller Transfer to Aibo Robot,
http://birg.ep�.ch/Jahia/site/birg/op/edit/pid/43234

[10] Sony, OPEN-R SDK Programmer's Guide,Sony Corporation,2004

30

Annex A

Suppose we have an Aibo model Ers7 what should be done to program it using webots?

1. Download webots from http://www.cyberbotics.com/products/webots/download_linux.html , create an
environment variable called WEBOTS_HOME pointing on the directory where webots is installed.

2. Download openr from http://www.cs.cmu.edu/ tekkotsu/openr-install.html , unfortunately Sony has
closed its download and support page for openr - so this page is not the o�cial one. Follow the instructions
on the web page. Do not forget to create an environment variable called OPENRSDK_ROOT if your
installation is not in /usr/local/OPEN_R_SDK.

3. Download source �les of the project called RCServer from http://www.cyberbotics.com/cdrom/common/devel/webots-
openr-0.3.1.tar.bz2 , then follow the instructions inside the readme: copy the folder src from the pack-
age to the webots installation folder to have the following architecture : /webots/src/lib/openr/,
also copy the folder transfer to the installation folder of webots. To compile RCServer go to /we-
bots/src/lib/openr/rcserver/ directory and type make. After the compilation the folder transfer/openr/OPEN-
R/MW/OBJS contains the executables that are needed to copy onto the memory stick in the folder
open-r/mw/objs. This is needed only the �rst time and if modi�cations of the controller of RCServer
have been done.

4. Check if the memory stick contains the architecture described on page 24 of the Programmer's Guide[10]

After having developed a controller that works under simulation of webots we want to compile it for Aibo :

• Take the make�le called Make�le.openr given with webots in the folder projects/robots/aibo/controllers/ers210
copy it to the folder which contains our controller.

• Compile it using the command make -f Make�le.openr, a folder named OPENR is created, take the
CONTROLL.BIN inside the OPEN-R/MW/OBJS built and copy it onto the memory stick in the folder
open-r/mw/objs

• Insert the memory stick into Aibo

To make the wireless lan work adapt the �le wlanconf.txt which is inside the memory stick in the open-
r/system/conf folder. To use telnet : type telnet lslaibo1 59000 (replace lslaibo1 with ip and 59000 with the
port). To use distance control from the webots simulation, a double click on the robot Aibo opens a window
and then go under the tab "Con�guration" enter ip of Aibo and connect.

Here are the modi�cations done to make the camera work :
In the folder /webots/src/lib/openr/rcserver/RCServer in the �le robot_data.h under model Ers7 substi-

tute the line :
"PRM:/r1/c1/c2/c3/il-FbkImageSensor:F1", // COLOR CAMERA
by :
"PRM:/r1/c1/c2/c3/i1-FbkImageSensor:F1", // COLOR CAMERA
In /webots/src/lib/openr/rcserver/Controller in the folder stub.cfg (in this �le the inputs and outputs of

each openr object are described) the following line has to be added :
Service : "Controller.Image.OFbkImageVectorData.O", null, NotifyImage()

Verify that the �le con�g.cfg onto the memory stick in the folder open-r/mw/conf contains the 2 following
lines:

OVirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S RCServer.Image.OFbkImageVectorData.O

OVirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S Controller.Image.OFbkImageVectorData.O

31

