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PROJECT 393:  

Synchronization of Movements of  
a Real Humanoid Robot with Music 
 

 

The goal of this project is to design a controller based on adaptive oscillators in 
order to synchronize the movements of a robot with music.  A first study of 
synchronization of nonlinear oscillators and adaptation of frequency will be done 
and an implementation on the real Hoap2 humanoid robot will conclude the project. 
 
The principal aim of the project is to develop an application of the concept of 
adaptive frequency oscillators. The idea is to use the existing drumming controller 
and to extend it to the synchronization with an external source of music.  
 
 
The three main tasks are: 
 
1. To understand the concepts of synchronization and of adaptive frequency 
oscillators. A theoretical part on those subjects should appear in the project. 
 
2. To understand some of the techniques available for tempo detection, to present 
them and to discuss the feasibility of using adaptive oscillators instead.  
 
3. To develop a controller for detecting the tempo using adaptive oscillators and to 
implement it on the robot Hoap2.  
 
 
Already done: 
 
- Development of tools to do animations with sound in Webots (P.Amstutz) 
- Offline detection of the tempo using standard methods (P.Amstutz) 
 
 
References:  
 
S. H. Strogatz – an introduction to nonlinear systems  
L. Righetti – adaptive oscillators 
S. Degallier – drumming controller 
E. D. Scheirer – an algorithm for tempo detection 
P. Amstutz – semester project (see webpage: http://birg.epfl.ch/page65305.html) 
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How do people synchronize with music? 
When listening to music, people intuitively 
detect a tempo and adapt their movement to 
the rhythm of music. They are then strongly 
influenced by an external signal that is the 
music. This behavior could be imitated using 
oscillators, dynamical systems that have the 
capability to synchronize to an external 
signal. Music could, in fact, be described as 
a periodic signal characterized by its 
frequency and its phase. As the frequency 
represents the tempo, the phase symbolizes 
the beats that are detected by people, when 
tapping along the rhythm of a song. Like 
people, oscillators should then adapt their 
behavior to the music, by modifying their 
frequency and their phase.  

The purpose of this Master project was to 
implement adaptive frequency oscillators, 
dynamical systems which can adapt their 
frequency to the tempo of any music and to 
transmit it to a drumming controller of a 
humanoid robot. This last step helped to 
recreate visually a human-like behavior on a 
robot when listening to music.  

 
Frequency adaptation of the oscillators. 

The advantage of these adaptive frequency 
oscillators is their continuous adaptation. As 
long as there is an external signal applied to 
them, they adapt their frequency. The tempo 

detection can then be implemented in real-
time, at the same time as music plays. It can 
support any changes in tempo and be robust 
to irregular beat, i.e. beats that are divided in 
different spaced meters and which can create 
perturbation. 

The adaptive oscillators method developed 
in this project needed onset detection. An 
envelope extractor which emphasizes the 
sudden changes in sound, i.e. the moment of 
beat pulses, became the basis of the music 
pre-processing. Moreover, the efficiency of 
this method depends on the initializations of 
the parameters and of the initial conditions 
of the oscillators. Thus, if these are well 
fixed, the method allows a tempo detection 
of any kind of music, from simple impulse 
functions to electronic music, or from 
classical music to dance music.  

 
The humanoid robot with its instrument. 

As the study showed, there are many 
different aspects that are linked to tempo 
detection. Coordinated periodic movements 
as intuitively produced by human beings are 
not an easy task to be recreated, even if 
oscillators were good models to be used.  

Some of the simulations done in  
Webots can be found on the website 
http://birg.epfl.ch/page67315.html.  
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Chapter 1 INTRODUCTION

How do people synchronize with music? This question was asked in many
research papers these past few years. When listening to music, people intuitively
detect a certain tempo and move their body to the rhythm of the song. Would
you actually had imagined that beat perception could be about predicting the
future? When thinking about it, at best, people tap a rhythm considering the
past beats and thinking that when they are going to tap the next time, there
will be another beat happening. In [7], this was called “beat prediction”; it
is possible because of the periodicity of beats. Interestingly, even when the
beat stops, people continue to tap hoping that, next time, they would hear
the beat again. After a while, if the beat does not appear when expected,
they try to find another rhythm to tap along at periodic intervals of time.
So people are strongly influenced by an external signal that is the music and
especially its rhythm. People adapt their movement to the tempo of music.
This behavior could then be imitated using oscillators, dynamical systems that
have the capability to synchronize to an external signal. In this case, it is
a periodic music signal characterized by its frequency and its phase. As the
frequency represents the tempo, the phase symbolizes the beats that are detected
by people, when tapping to the rhythm of a song. Like people, oscillators should
then adapt their behavior to the music, by modifying their frequency and their
phase.

The main purpose of this paper is to implement, for the humanoid robot
Hoap2 by “Fujitsu”, a controller based on adaptive frequency oscillators. These
are able to synchronize with music, like people do when listening to music.
Some projects related to this subject have already been done: an off-line tempo
detection using standard methods and animations of the humanoid robot with
music have been successfully implemented in Webots by P. Amstutz [1]. A
drumming controller for the real humanoid robot has also been implemented by
S. Degallier and explained in [4]. Adaptive frequency oscillators were developed
by L. Righetti [14], dynamical systems which can adapt their frequency to an
external input signal. So the goal of this project was to use part of these
three projects to test a new tempo detection method. More specifically, the
purpose was to find the “downbeats” of any song with these adaptive frequency
oscillators and to transmit the music tempo to the drumming controller written
by S. Degallier. This last step helped to visually recreate a robot with human-
like behavior when listening to music.

The initial part of this paper consists in studying oscillators and especially
their synchronization. Music theory was the subject of chapter 3, explaining
tempo detection. Different techniques were analyzed in this chapter and a new
method using oscillators is then presented. After testing the feasibility of using
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the adaptive frequency oscillators for tempo detection, some general results
are described, in chapter 4. An extension of the drumming controller on the
humanoid robot Hoap2 was then considered in simulation. It is implemented in
real-time, at the same time as music is playing. The different steps to obtain
this on-line adaptation are explained in chapter 5, before showing some results
in Webots.

8



Chapter 2 ADAPTIVE FRE-
QUENCY OSCIL-
LATORS

A lot of processes happening in nature are cyclic. The most obvious example is
the day-night cycle. When scientists tried to describe them, they had to develop
some specific models. Oscillators are a mathematical concept that could be used
for such periodical behaviors. These dynamical systems are defined by their
limit cycles and are mainly characterized by their capability to synchronize to
periodical input signal. After a theoretical introduction and explanations of
some specific oscillators behaviors, as frequency entrainment and phase locking,
an example of such a system is described: the Hopf oscillator. The adaptive
frequency oscillators are explained, based on this last system,.

2.1 OSCILLATORS AND THEIR SYNCHRO-
NIZATION

Some of the motion types of dynamical systems give rise to very simple attrac-
tors, such as points and isolated closed curves called limit cycles. This cycle is
a closed trajectory in the phase space and neighboring trajectories converge to
it after a transient time. When they approach the limit cycle as time tends to
infinity, it is considered as asymptotically stable or attractive. An oscillator can
then be equally called as a stable limit cycle system.

The Van der Pol oscillator is an example of such a stable oscillator. Its
dynamic equation, described with one state variable, is as:

ẍ+ ε
(
x2 − 1

)
ẋ+ x = 0 (2.1)

where ε controls the degree of nonlinearity of the system. In figure 2.1, the value
of this parameter was fixed first equal to ε = 0.2, then to ε = 1 and finally to
ε = 3. It can be noticed that all three trajectories tended to a different limit
cycle, when only changing the value of ε. It is a parameter influencing the shape
of the limit cycle.

Modifying the initial conditions of a stable oscillator does not change its
limit cycle. Since the Van der Pol oscillator has a stable limit cycle, this cy-
cle is independent of the initial conditions. It is shown in figure 2.2: when
changing them, all produced trajectories converge to the same limit cycle. The

9
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Figure 2.1: different limit cycles of the Van der Pol oscillator, produced when
changing only the value of the parameter ε.

Figure 2.2: different initial conditions are applied to the Van der Pol oscillator.
Since it is a stable oscillator, all trajectories converge to a unique limit cycle.

implemented initial conditions for this figure are quite different and are defined
as:

ẋ1 = 3 x1 = −3 (2.2)

ẋ2 = −6 x2 = −7 (2.3)

ẋ3 = 8 x3 = 2 (2.4)

Stable limit cycles and so oscillators induce self sustained oscillations. If a
small perturbation is introduced in the oscillator system so to get out of the
limit cycle, it returns back to it after a certain time. In fact, the produced
effects perturb the trajectory of the system for a certain time, but it returns
to its stable limit cycle. This is the oscillator property of structural stability.
In fact, stability theory is concerned about sensitivity of a system to small
perturbations. A system is then said structurally stable if its dynamics do not
change under small perturbation.

2.1.1 PHASE LOCKING AND FREQUENCY ENTRAIN-
MENT

Synchronization can occur when an oscillator is influenced by an external input
or when several oscillators are coupled together. It can be considered as an

10
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adjustment of oscillations due to the oscillator interaction with an external
input. Two different phenomena can describe synchronization: phase locking
or frequency entrainment. Phase locking is reached when the oscillator phase φ
can follow the phase of the external signal:

φ = ωt+ const (2.5)

When an oscillator is phase locked, its phase can also be defined, with its deriva-
tive:

φ̇ = ω = (const) (2.6)

where ω is the external signal frequency. Its evolution in time is then a con-
stant value. Frequency entrainment is reached when the observed frequency
of the oscillator system is equal to the external signal frequency ω. The ob-
served frequency has to be distinguished from the intrinsic frequency that is
the initial frequency of the oscillator or the frequency when the oscillator is not
perturbed. In fact, when an oscillator is influenced by an external signal its
frequency changes to synchronize with the external signal frequency. It changes
to a new frequency, that depends on both the intrinsic frequency and the ex-
ternal signal frequency. It is called the observed or the instantaneous frequency
and represents the momentary rate of phase change. As for the unperturbed
oscillator, the intrinsic frequency is a constant, for the perturbed system, the
observed frequency becomes a function of time and is different from the intrinsic
frequency.[13]

The phase φ is responsible of the oscillator synchronization. This variable de-
scribes motion along the limit cycle. It has the characteristic of being marginally
stable. If an impulse of finite magnitude is added as an input to the system, the
output will always grow. This output is said to be unbounded and no steady-
state can be found. In this case, marginal stability explains the fact that the
phase will always persist and so entrainment will always be possible, as long as
the external signal stays. Some figures are shown later on in this chapter.

When a perturbation with a slightly different period as the oscillator one is
added to this, the oscillator frequency changes and can become the one of the
perturbation depending on the difference between those two frequencies. The
mathematical explanation is given in the next section when presenting oscilla-
tors coupling. Frequency locking is then the moment when both frequencies, the
one of the perturbation and the one of the oscillator, are equal. With another
point of view, frequency entrainment is reached when the difference between
the two phases remains constant. At this moment, the oscillator is entrained
by the perturbation and the oscillations are synchronized with the frequency
of the perturbation input. When both phases are the same so to get a zero
phase difference, the signals oscillations are only distinguished by their am-
plitudes. This phenomenon is only possible when frequency entrainment was
already reached.[13]

Applying a small perturbation, like an external periodic signal or another
oscillating system, can produce large perturbations in the oscillator phase, but
insignificant changes to its amplitude. So when adding an external input, effects
on the phase φ moving along the limit cycle appear and can be analyzed. As
shown in [14], in two dimensions, they can be divided in two main directions
based on the limit cycle: the perpendicular effect that affects the radius of the
limit cycle and that is damped out, and the tangential effect that influences the

11
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phase of the oscillator. The domain where the perpendicular effects of the force
are damped out is dependent of the coupling strength of the phase φ and the
radius r. When the perturbation has disappeared, only the phase φ remains
changed. This is due to its marginal stability, explained before. In contrast
with this, the amplitude of the oscillations has a definite and limited value;
when a perturbation changes the amplitude value, this tries to get its initial
value back, thanks to an “equilibrium of energy influx and losses” as said in
[14]. The phase φ point returns then to the limit cycle, so that the initial radius
r is reached again; but it is time-delayed according to the initial oscillator phase.
The resulting signals can then have very different amplitudes and waveforms,
but they oscillate with the same frequency.

2.1.2 COUPLED OSCILLATORS

Synchronization is shown to be dependent on the frequency difference of the two
systems coupled together. This is mathematically explained, when coupling two
phase oscillators. Some tests were made to visualize their behavior.

The coupling equations are:

φ̇1 = ω1 + k sin (φ2 − φ1) (2.7)
φ̇2 = ω2 (2.8)

where k represents the coupling strength. The initial phases and k were not
changed and fixed at φ1 = 0.1rad, φ2 = 0.5rad and k = 3. When looking at the
two equations, only the second oscillator influences the first one, i.e. the first
oscillator (equation 2.7) should synchronize with the second one (equation 2.8).
But the two frequencies have to be close to each other to get entrained. The
first oscillator, in this case, will have the tendency to decelerate or accelerate
depending on the frequency difference, and so depending on the phase equation:

φdiff = φ2 − φ1 = const (2.9)

φ̇diff = φ̇2 − φ̇1 with φ̇1 = ω1 + k sin (φ2 − φ1) φ̇2 = ω2 (2.10)

φ̇diff = ω2 − ω1 + k sin (φ2 − φ1) (2.11)

When the oscillator is synchronized with the input, their phase difference is
a constant and its derivative null. So the following equalities are obtained:

φ̇diff = 0 = ω2 − ω1 + k sin (φ2 − φ1) (2.12)

The solution that is the possible phase difference becomes:

ω1 − ω2

k
= sin (φ2 − φ1) (2.13)

φdiff = arcsin(
ω1 − ω2

k
) (2.14)

−1 <
ω1 − ω2

k
< 1 (2.15)

It can be noticed that the synchronization depends not only on the frequency
difference, but also on the parameter k, the coupling strength. Moreover, the
frequency ratio must be smaller than 1 in an absolute value to allow convergence.

12
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Figure 2.3: the different phase plots (left) and the phase difference of two coupled
oscillators (right) with different intrinsic frequency: ω1 = 2rad/s and ω2 =
1rad/s. Entrainment is shown on both graphs.

The basin of entrainment of the system is then defined as the maximum
distance possible between the frequency of the oscillator and the frequency of
the input to reach synchronization [14]. Inside of this basin of entrainment,
convergence is guaranteed. Outside the basin, synchronization is no more pos-
sible, but the oscillator is still influenced by the coupled input. The value of the
oscillations frequency should be situated in general between the initial oscillator
frequency and the external input frequency.

The frequencies of the two phase oscillators were changed and some observa-
tions were done on the difference of their phase first and then on the evolution
of their phase difference. For the first experiment, the oscillators frequencies
were fixed at ω1 = 2rad/s and at ω2 = 1rad/s. The frequency synchronization
can be noticed on both plots, in figure 2.3. On the left one, when both lines
are parallel, it can be seen that both phases increase at the same rate and so
that the phase difference is a constant value. On the right of figure 2.3, when
their phase difference becomes a horizontal line and shows a null derivative, syn-
chronization is also reached. In this case, there is a negative phase shift. This
means that the second oscillator is delayed; when referring to equation (2.9), φ1

is bigger than φ2. This can be deduced from figure 2.3, on the left: for a given
time, φ1 is always bigger than φ2.

With the second experiment, in figure 2.4, the oscillators frequencies were
fixed at ω1 = 2rad/s and at ω2 = 5rad/s. The first oscillator again adapts its
frequency to the value of the second one. In this case, there is a positive phase
shift, showing that the first oscillator is delayed. The final value of the phase
difference is higher than for the first experiment, but it is still a constant one.
This is also shown in the left plot, with the two parallel lines.

For the last experiment, the oscillators frequencies were fixed at ω1 = 2rad/s
and at ω2 = 6rad/s. In this case, the frequency adaptation is not possible: the
first oscillator is not able to reach the frequency value of the second oscillator.
In fact, when replacing the initial values into equation (2.15), the following
inequality is obtained:

ω1 − ω2

k
=

2− 6
3

=
−4
3

< −1 (2.16)

and in this case, the frequency ratio is smaller than −1 and so outside of the

13
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Figure 2.4: phase plots (left) and phase difference of two coupled oscillators
(right) with different intrinsic frequency: ω1 = 2rad/s and ω2 = 5rad/s. En-
trainment is also shown on both graphs.

Figure 2.5: phase plots (left) and phase difference of two coupled oscillators
(right) with different intrinsic frequency: ω1 = 2rad/s and ω2 = 6rad/s. En-
trainment is not shown any more, but the right plot shows regularity in the
increase of the phases.

basin of entrainment.
On the right plot of figure 2.5, it can be noticed that the phase difference

always varies, but with a certain regularity, i.e. a certain dependence. In fact,
the phase difference derivative is an almost constant value (∼ 4.6) and so the
evolution of the phases increases regularly. It shows the influence of the second
oscillator on the first one.

2.2 ADAPTIVE FREQUENCY OSCILLATORS

During synchronization, an adaptation of frequency can be done. In fact, the
dynamical system can be modified such as it can slowly adapt its frequency
to the external signal. This is done when using adaptive frequency oscillators:
their frequency is described as a state variable and it changes over time. It
introduces the idea of memory in the behavior of the oscillators [14]. Their
equations are presented after characterizing the Hopf oscillator. Some tests are
then done to illustrate their reaction to an external periodic signal.

14
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2.2.1 THE HOPF OSCILLATORS

The Hopf oscillator is described with a differential equation system represented
by two independent states. In Cartesian coordinates, it is defined as:

ẋ = α
(
µ−

(
x2 + y2

))
x− ωy (2.17)

ẏ = α
(
µ−

(
x2 + y2

))
y + ωx (2.18)

where µ controls the amplitude of the oscillations, α influences the time taken
to reach the limit cycle and ω represents the intrinsic frequency of the Hopf
oscillator. The first part of the equations gives a hint about the stability and the
behavior of the system. In fact, µ is the energy parameter and depending on this
value, two main behaviors of the oscillator can be observed. If µ < 0, the system
has a stable fixed point: the oscillations are damped out till r = 0 and it can be
said that the energy is taken out of the system. If µ > 0, the energy can be said
to be added and self-sustained oscillations arises till reaching a stable limit cycle
[8]. So, in this case, µ is fixed greater than 0 to assure the presence of oscillations.
It represents the stable energy to reach and the term

(
µ−

(
x2 + y2

))
becomes

then positive or negative depending on the instantaneous state of the oscillator.
When writing these same equations with the corresponding polar coordi-

nates:
x = r cos (φ) y = r sin (φ)

the system becomes:

ṙ = α
(
µ− r2

)
r (2.19)

φ̇ = ω (2.20)

The evolutions of r and of φ in time are independent of each other. Moreover
r tends to

√
µ when the limit cycle is reached and when the system is stable.

This radius r becomes then an equilibrium point of the system. The stability is
shown when the partial derivative of the function evaluated at this equilibrium
point is always negative. Mathematically, in a system ẋ = f (x), a fixed point
or an equilibrium point of a system is defined as:

ẋ = f (x) = 0 (2.21)

And the stability of the system is evaluated like:

∂f

∂x

∣∣∣∣
x

 < 0 system is stable
> 0 system is unstable
= 0 system stability is not predictable

(2.22)

In this case, since µ is a positive value so to have oscillations, the stability
is assured:

∂

∂r

(((
µ− r2

)
r
))

=
(
µ− r2

)
− 2 r2 = µ− 3 r2 (2.23)

r =
√
µ → µ− 3 r2 = −2 µ < 0 (2.24)

This stability is important when the oscillator is perturbed as explained in
section 2.1.1.
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Figure 2.6: representation of the Hopf oscillator when changing the initial con-
ditions. The phase state shows a phase difference but a same frequency for all
four trajectories (left) and they all converge to the same limit cycle (right).

Figure 2.7: representation of the Hopf oscillator when changing the parameter
µ. It modifies the amplitude of the oscillations (left) and the size of the limit
cycle (right).

Looking at the Hopf oscillator equations, there are different parameters that
can influence its behavior: the frequency ω, the initial conditions, µ and finally
α. Some experiments are shown now when changing them. First of all, when
referring to equations (2.19) and (2.20), in polar coordinates, it can be noticed
that both the radius r and the angle φ, i.e. the frequency ω, are independent of
each other. So when modifying the intrinsic frequency ω, the limit cycle is not
changed.

In figure 2.6, a simple Hopf oscillator is drawn changing only the initial con-
ditions of x and of y. All oscillations vibrate with the same intrinsic frequency
and all resulting trajectories converge to the same limit cycle of the Hopf os-
cillator. The initial conditions have no effect on either the limit cycle or the
frequency. However it can be noticed that even if the frequency is the same,
there is a phase shift between them.

Then µ is modified and the results are shown in figure 2.7. This parameter
influences the amplitude of the oscillations and the size of the resulting limit
cycle of the oscillator. In fact, the higher the value of this variable, the bigger
the amplitude and the larger the limit cycle of the oscillations.
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Figure 2.8: representation of the Hopf oscillator when changing the parameter
α. It has an influence on the time needed to reach the oscillations amplitudes
(left) and on the time taken to converge to the limit cycle (right).

The last parameter to test is α. For the oscillations, on the left in figure 2.8,
it can be noticed that it has an important influence on the time taken to obtain
their final amplitude; the smaller the parameter, the longer the time. On the
right in figure 2.8, changing α modifies also the time to reach the limit cycle; it
can be seen that the smaller the parameter α, the longer the time spent by the
trajectory to reach the limit cycle.

To sum up the relevant points, it can be said that:

- modifying the frequency ω has no effect on the limit cycle.

- the initial conditions have no effect on either the limit cycle or the fre-
quency. Only the instantaneous phase is influenced.

- the higher the value of the parameter µ, the bigger the amplitude and the
larger the limit cycle of the oscillations.

- the smaller the parameter α, the longer the time to obtain the final am-
plitude of the oscillations and the longer the time spent by the trajectory
to reach the limit cycle.

2.2.2 ADDING ADAPTATION

Adaptation is then added to the Hopf oscillator thanks to a third equation de-
scribing the evolution of the oscillator frequency: it evolves toward the frequency
of the external input signal. For oscillators in general, the synchronization is
lost as soon as the external signal has disappeared. With the frequency adap-
tation, when stopping the influence of the external signal, the oscillators keep
the last frequency value at which they were oscillating with the presence of this
signal. The information introduced through the external input is memorized in
the system thanks to a learning process as explained in [2].

The equation of a classic oscillator perturbed by an external periodic input
F (t) is:

ẋ = f1 (x, y, w) + ε F (t) (2.25)
ẏ = f2 (x, y, w) (2.26)
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where x and y are the state variables of the oscillator, ω characterizes its intrinsic
frequency and ε the coupling strength. When transforming this frequency ω into
a state variable so that it can be included in the oscillator system, the additional
equation becomes:

ω̇ = −ε F (t)
y√

x2 + y2
(2.27)

The oscillator can then adapt its frequency to the frequency of any external
periodic signal F (t). In [14], it was demonstrated that such oscillators could
even adapt their frequencies to pseudo-periodic and noisy signals. Equation
(2.27) can be used with all kind of oscillators, like phase oscillators that consider
only the phase and neglects the radius, the isochronous oscillators, like the Hopf
oscillator, the harmonic oscillators with a harmonic limit cycle, etc. (see [3] for
more details about the different oscillators and their characteristics).

For this project, the Hopf oscillator is used. When adding this frequency
adaptation to the Hopf oscillator equations, the following system is obtained,
with the external signal F (t):

ẋ =
(
µ−

(
x2 + y2

))
x− ωy (2.28)

ẏ =
(
µ−

(
x2 + y2

))
y + ωx (2.29)

ω̇ = −ε F (t)
y√

x2 + y2
(2.30)

Looking at the same system in the polar coordinates, the following equations
are obtained:

ṙ =
(
µ− r2

)
r + ε F (t) cos (φ) (2.31)

φ̇ = ω − ε

r
F (t) sin (φ) (2.32)

ω̇ = −ε F (t) sin (φ) (2.33)

When the input F (t) is zero, the system has an asymptotically stable har-
monic limit cycle, with frequency ω and radius r =

√
µ; the unperturbed Hopf

oscillator is obtained. The structural stability of this oscillator assures that
its qualitative behavior does not change when small perturbations are applied
around its limit cycle. In [14], it was proven that the learning rule of the Hopf
oscillator always converges to the frequency of the external signal. The final
adapted frequency is actually an oscillation around the frequency of the exter-
nal input. It has to be noticed that if the external signal is a complex periodic
signal, the oscillator converges to one of the signal frequencies. The amplitude
of the oscillations is much smaller than the value of ε; actually it is of the order
of ε

4ωF
as demonstrated by the same author. The oscillations pattern can take

various shapes, but for each system, this pattern always becomes a periodic
function after synchronization. It depends on the difference of both frequen-
cies, the oscillator one and the external signal one, and on the amplitude of the
external input.

After testing the Hopf oscillator alone, some other experiments were per-
formed with the frequency adaptation. An adaptive frequency oscillator was
perturbed with an external signal and changes of its parameters were imple-
mented. The oscillator reactions are explained in the next sections, with a
particular attention directed to the effects of ε, the coupling strength.
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2.2.3 THE PARAMETERS OF THE SYSTEM

When looking at the adaptive frequency oscillators equations, the same pa-
rameters as for the Hopf oscillator appear: the frequency ω, the phase φ and
the radius r. Some first tests were made changing these parameters, when the
external signal was initialized as a simple sine wave:

F (t) = sin (ωt) (2.34)

The oscillators parameter were initialized at ε = 10 and at µ = 9. Adding
adaptation does not change the analysis of phase plots; so that, the explanation
given in section 2.1.2, for the phase oscillators are still applicable with adaptive
frequency oscillators. Adaptation is shown on them when the phase evolution
line becomes a periodic function, depending on the initial conditions of the
system. In fact, the moment of adaptation can be defined as the point in time
when the phase evolution pattern becomes constant.

When adaptation is reached, the phase derivative is constant and the fre-
quency becomes a constant value, the one of the external input signal. In fact,
the frequency evolution tends to zero, so that the oscillator frequency becomes
the one of the external signal. Then, the phase evolution tends to the frequency
ω. It is shown with these equations:

ω̇ = −ε F (t) sin (φ) (2.35)

φ̇ = ω − ε

r
F (t) sin (φ) (2.36)

Replacing equation (2.35) into equation (2.36), the following relation is obtained:

φ̇ = ω − ω̇

r
(2.37)

There is a dependence between the phase and the frequency evolutions of the
oscillator, due to the equations of the system. Two different examples are
shown in figure 2.9, where both behaviors, the one of the phase and the one
of the frequency, can be observed. As the frequency monotonically increases or
decreases, the phase shows also a monotonous evolution. On the left of figure
2.9, both the frequency and the phase grow monotonically, for example.

With the same experiments, the radius r as a function of time was plotted.
Knowing that for the chosen oscillator the limit cycle radius was:

r =
√
µ =
√

4 = 2 (2.38)

it can be noticed that in the presence of an external input, the radius is not
constant any more; but it varies around its initial value. This is due to the
structural stability of the Hopf oscillator, a characteristic presented in chapter
2.1. When adaptation is reached, the radius r oscillates, as said before, around
a constant value. As shown in figure 2.10, the oscillations patterns are different,
depending, among other things, on the initialization of the frequencies, i.e. the
difference between the oscillator and the external input frequencies.
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Figure 2.9: the initial frequencies of the left experiment are, for the oscillator,
ω1 = 4rad/s and, for the input, ω2 = 1rad/s. For the right experiment, the
values are ω1 = 1rad/s and ω2 = 4rad/s. The evolution of the phase plot
(bottom) and the frequency plot (top) can be compared: when the phase changes,
the frequency is modified too.

Figure 2.10: the initial frequencies of the left experiment are, ω1 = 4rad/s and
ω2 = 1rad/s, and for the right one, ω1 = 1rad/s and ω2 = 4rad/s. Both
oscillations patterns are obviously different, but the constant value of the radius
r = 2 is the same.
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When removing the influence of the external force on the radius, so that the
equations of the system used are:

ṙ =
(
µ− r2

)
r (2.39)

φ̇ = ω − ε

r
F (t) sin (φ) (2.40)

ω̇ = −ε F (t) sin (φ) (2.41)

there are no more oscillations around the constant radius r. It takes the constant
value of r =

√
µ.

Several experiments were done when changing the external input signal,
described by a sum of two sine and two cosine waves with different amplitudes
for each of them. When applying the same force on the oscillator with or without
the influence on the radius, the final learned frequency of the oscillator was the
same for all experiments. This can be seen with the results of two of them,
where the input forces were:

F1 (t) = cos (200t) + 4 cos (50t) + 7 sin (150t) + 10 sin (30t) (2.42)
F2 (t) = 5 cos (50t) + 10 cos (200t) + sin (70t) + 2 sin (30t) (2.43)

The oscillators parameters were fixed at φ = 1rad, ω = 100rad/sec, ε = 10 and
µ = 9. For the first experiment, on the upper part of figure 2.11, the oscillator
adapts its frequency to the last sine wave frequency (ω = 30rad/s) and for the
second experiment, on the lower part of figure 2.12, it adapts the first cosine
wave frequency (ω = 50rad/s).

Removing the influence of the external input on the radius modifies also the
phase evolution since the radius r influence is now a constant value. This comes
directly from the phase equation of the system:

φ̇ = ω − ε

r
F (t) sin (φ) (2.44)

This change makes the adaptation slower, but the learned frequency of the
oscillator is then more precise, as the radius r is constant. This is demonstrated
in figure 2.12, which is a zoom of the upper experiment shown in figure 2.11.
Since its influence on the system convergence is linked to another parameter,
that is ε, the influence of the external input on the radius can be removed
without modifying the general behavior of the oscillators. This ε is an important
parameter: it appears in both the phase and the frequency evolution. The next
section will give some more details about that.

2.2.4 THE RATIO ε
r

In general, when looking at the equations of the adaptive frequency oscillator,
removing the influence of the external signal on the radius r, some first conclu-
sions can be done:

ṙ =
(
µ− r2

)
r (2.45)

φ̇ = ω − ε

r
F (t) sin (φ) (2.46)

ω̇ = −ε F (t) sin (φ) (2.47)
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Figure 2.11: two experiments differentiated only by the change of the external
input signal are plotted here; one on the upper part and the other one on the
lower part of the figure. In both cases, it can be noticed that with (left) or without
(right) the influence of the input signal on the radius r, the oscillator adapts the
same input signal frequency.

Figure 2.12: the difference of the oscillator adapted frequency can be noticed
when keeping (left) or removing (right) the influence of the external input signal
on the radius r. In fact, without this influence, the adapted frequency becomes
closer to the external input signal frequency.
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Figure 2.13: with the frequencies of ω1 = 2rad/s for the oscillator and ω2 =
4rad/s for the input, the parameter ε is modified: on the left, ε = 1 and on the
right, ε = 4. Since the time interval is kept the same, it can be noticed that the
higher ε, the quicker the adaptation.

Knowing that the implemented function that transforms the music into a vector
of data returns only data amplitude smaller than 1 and that the sine function
is always situated in a range of [ -1, 1], the evolution of the oscillator frequency,
described by equation (2.47) depends on the value of ε. It is actually propor-
tional to it. This parameter should then not be too high, remembering that, to
get adaptation, this last equation should tend to zero.

Some tests were then done when initializing the external force to a simple
sine wave. The value of ε was changed, when fixing µ = 1, to observe its influence
on the adaptation. This parameter ε is actually responsible, for example, of the
learning rate. The plots in figure 2.13 are obtained with ε = 1 and ε = 4. They
show an important point: the higher ε, the quicker the adaptation.

This point is also relevant when perturbing the adaptive frequency oscillators
with a function of impulses at a frequency of 2Hz, in figure 2.14. When µ = 1,
ε is changed several times: ε = 5, ε = 10, ε = 20, ε = 50 and ε = 100. It
can be noticed that, in fact, the higher the parameter, the shorter the time to
converge. At the same time, the adapted value becomes more precise. Thus,
as ε gets higher, the oscillations around the adapted frequency increases. This
is observed when ε = 100. This second relevant point is related in [14]: since ε
controls the adaptation rate of the system, the higher ε, the faster this rate gets
and the higher the error of the adaptation becomes.

The sine wave frequency was then initialized at ω = 100rad/s and the os-
cillator started with a frequency of ω = 20rad/s. Plots in figure 2.15 were
obtained, when modifying again the value ε. It can be noticed that, if this value
is too high, even after convergence, the oscillator frequency can loose track of
the external signal frequency. On the other hand, if it is too small, the time of
convergence become much longer.

For the Hopf oscillator system, the ratio ε
r appears in the phase evolution

equation. Since the influence of the external input is removed for the radius
r, this ratio becomes: ε√

µ . With the experiments shown in figures 2.13, 2.14
and 2.15, it can be concluded that a compromise has to be done, when fixing
the value of ε: a compromise between high speed of convergence and precision
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Figure 2.14: the different adapted frequencies of an input with impulses appear-
ing at a frequency of 2Hz, when changing ε. As this parameter is increased,
the adaptation takes more time and the value of the adapted frequency becomes
closer to the input frequency, but more variable.

Figure 2.15: adaptation of an oscillator with initial parameters µ = 0.01 and
ω = 20rad/s, to an external sine wave of ω = 100rad/s. When fixing the
coupling strength too high, ε = 500 (left), the oscillator frequency can loose
adaptation; when fixing it too small, ε = 10 (right), the time for convergence is
increased.
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and stability for the adapted frequency. This initialization influences then also
the ratio ε

r . The smaller the ratio, the closer the oscillator frequency can get
to the external frequency and the more precise this becomes. The higher the
ratio, the quicker the adaptation and the further the initial oscillators frequency
can be fixed from the external signal frequency. Thus, as the ratio increases,
the average value of the adapted frequency changes and gets higher, like the
amplitude of the oscillations around the adapted frequency. In fact, the ratio
ε
r and its influence on the phase evolution increase. So the precision on the
adapted frequency gets lost. If it has too much influence on the frequency
evolution, this frequency derivative can not be annihilated any more. Since the
phase evolution depends on the frequency, this implies that adaptation can not
be reached any more.

Fixing the values of µ and ε is not an easy task; not knowing the exter-
nal signal makes this task even more difficult. These last comments will be
presented in more details, especially in the chapter about the results of the
adapted frequency oscillators tempo detection; but first the introduction to the
music theory.
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Chapter 3 MUSIC AND ITS
ANALYSIS

When listening to music, humans can tap the rhythm of the music and realize
that they describe a periodic movement. Music could then be considered as a
periodic signal suitable as an external input to the adaptive frequency oscilla-
tors. A periodic music signal is characterized with its frequency and its phase,
when applied to adaptive frequency oscillators. As the frequency represents the
tempo, the phase symbolizes the beats that are detected by human beings when
tapping to the rhythm of a song. The main purpose in this project is to apply
these adaptive oscillators to detect the tempo of any kind of polyphonic music
with a minimum signal processing computation. Thus, this chapter introduces
first the different notions linked to music and then the methods already used
for tempo detection and beat tracking. The next chapter will then explain the
actual implemented algorithm.

3.1 SOME DEFINITIONS

To be able to understand the musical world and then to describe a method to
apply on a piece of music, some notions have first to be defined.1

3.1.1 MUSIC

Music can be considered as a combination of pure sine waves produced from dif-
ferent instruments and sounds. Each sound is characterized with a fundamental
frequency, and some overtones. When producing music, this sound is composed
of combination of these distinct frequencies. The fundamental frequency is then
the lowest one founded. The other ones are called overtones and are either har-
monics or partials. If they are integer multiples of the fundamental frequency,
they are called harmonics. Otherwise, if they are integer fractions, they are
called partials or subharmonics. When listening to many instruments includ-
ing the human voice, signals are more or less periodic and so harmonic sounds
are produced. But some of them like cymbals, tam-tams or bells are naturally
oscillating at partials and so produce inharmonic tones. It is then difficult to
define which of the frequency people consider as the tempo of a song.

1The definitions are mainly taken from the site http://en.wikipedia.org/wiki/Music theory
based on different sources like Chase, Wayne. How Music REALLY Works!, 2nd Ed, Vancou-
ver, Canada, Roedy Black Publishing, 2006. or Sorce, Richard,“Music Theory for the Music
Professional”, Ardsley House, 1995.
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Figure 3.1: example of an audio waveform as a function of time (System of a
down, ‘Bounce’).

The tempo, another musical knowledge, is the speed of a piece and is char-
acterized by the beats among the music. The beat is a pulse that is the basic
time unit of a piece. Music is then characterized by a sequence of strong and
weak beats organized into meter that take part in the time signature, which is
the number of beats in a measure, and gives the speed of the music that is the
tempo. Are you lost? All these different notions of music are developed more
specifically in the following sections. To sum up, the main purpose is actually
to detect the tempo after extracting the beat of any polyphonic music; that is
to find the number of beats per minute of any song.

3.1.2 RHYTHM AND METER

When talking about music, the first term to think about is the rhythm: the
arrangement of sounds depending on time. It has no precise definition, but it
keeps the idea of temporal regularity. A meter represents a certain amount of
regular pulses, called measures or bars. The regularity of the meter defines the
rhythm of a piece.

The time signature or the meter signature specifies the number of beats
needed in each measure. Through increased stress and attack, strong and weak
beats are created and accent can be given to particular tones. As said in [15],
the “experience of rhythm involves movement, regularity, grouping and yet ac-
centuation and differentiation”.

3.1.3 PULSE AND BEAT

In [15], the pulse corresponds to the sense of “equally spaced temporal units”
as said by Handel in 1989. It is defined as the basic time unit for music. When
listening to the metronome, for example, each tick of it corresponds to a beat. So
the beat has a very specific point in time. It represents the time when listeners
will tap their foot on the ground, for example. In general, the counting of beats
can enable some musicians to keep synchronized with music even if the rhythm
of it is not regular.

DeLone et al. defined the pulse in 1975 as “a series of identical, yet distinct
periodic short-duration stimuli perceived as points in time”. It is linked to the
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tempo of the piece when looking how fast the pulse is running. The beat is
considered as a point that reappears regularly in time.

3.1.4 TEMPO

Tempo defines the speed of a piece. It is indicated in beats per minute (BPM).
A rate of 60BPM means that one beat will occur every second and a tempo of
100BPM represents a period of 600ms. To get a great tempo, a large number
of beats have to be played in a minute and the piece is then being said to be
fast. The actual number of beats per minute for a specified piece will depend
on the music itself so that it is difficult to get a precise tempo. It depends on
the notes used since some of them can be played more quickly in terms of beats
per minute.

The tempo is not constant for a same piece of music. In fact, when playing a
song, its tempo can change. It can be done gradually or immediately depending
on the musicians’ choice. Changing tempo implies a modification in the peri-
odicity of the beat pulses and also on the rhythm of the song. When tapping
then the rhythm of such a song, people adapt their movement to this change of
tempo, as long as it behaves as a periodic function.

3.2 RELATED WORK ON MUSIC ANALYSIS

A lot of articles were written about beat tracking and tempo detection. They
describe methods that have to be differentiated depending on the input signal
and its causality; first, if the used data are acoustic and directly implemented
from the music or symbolic and already treated, and secondly, if the method
can be implemented in real-time or not. For the first differentiation, MIDI
(Musical Instrument Digital Interface) is an electronic protocol which transmits
only digital data like pitch or intensity of notes: it does not send an audio signal.
It can also control the volume or the parameters that fixes the tempo. When
using the MIDI protocol, music has already been treated and the data become
symbolic.

In this project, MIDI can not be used. In fact, the data should be acoustic
with a sound of any polyphonic music, and the method should be causal, so
applicable in real-time. Three different methods are summarized and explained
in this chapter. All of them implemented oscillators, but in a different way.

3.2.1 SCHEIRER’S METHOD

Scheirer in [15] developed an algorithm based on these two important points:
causality and audio signals. He was able to find the tempo of a piece by splitting
it first in different subbands which were pre-processed with filterbanks. He then
analyzed them separately and convolved them to get the one with the highest
energy and so finding the frequency of the tempo. Scheirer could show that
a listener could not find the rhythm of a piece when either only one of the
subbands is kept or when the subband envelopes are linearly dependant. In
consequence, the analysis has to be done on the whole spectrum of the piece of
music; no simplification can be done and in his method, the subband envelopes
are kept and analyzed separately to maintain the musical rhythm.
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In addition, Scheirer claimed that transcription is not needed to find the
tempo of a piece. A lot of articles describe methods that segment first the mu-
sic into notes, onsets and time intervals, separate then the streams of sound, and
classify the timbres of the components. All these elements were then grouped,
analyzed and post-processed so to get the beats, the tempo and finally the
rhythm. This is a laborious work for monophonic music, so what about poly-
phonic pieces? Scheirer proposed in [15] a simple and basic analysis of music
with a minimum of understanding of the piece. He could prove that its method
worked for any type of music; actually he could show that the information con-
tained in the amplitude envelopes of the filterbank outputs of its method was
sufficient to detect the tempo. So he claimed that notes were not necessary to
find the pulse, i.e. the rhythm of a piece of music.

For the onset detection, Scheirer uses 6 frequency divisions which should
correspond best to human perception of sound. In fact, he tries to find the
tempo which people should tap the most naturally. For each of these divisions,
he applies a certain number of comb-filters. These are basically a periodic
function with three impulses. The energy of these periodic functions are really
high if their period is close to the one of the external signal. The comb-filter
with the highest energy is then chosen and its period corresponds to the tempo
of the music. The disadvantage of using these comb-filters is the fact that the
possible tempo values has to be assign in advance, when fixing the period of a
comb-filter. Furthermore, the number of comb-filter should be limited, because
of the computation time. In fact, each subband has the same number of comb-
filters and for each of them, the summation of the comb-filters energy of each
frequency is computed. This limits, at the same time, the resolution of the
possible tempo: it is the value of the comb-filter period that is the closest to
the actual tempo of the music.

In addition, the beat has then to be found too, so to know at which mo-
ment people would tap the rhythm of the music. Scheirer uses then the phase
information of the chosen comb-filter. In fact, he said that phase could predict
the next impulse and this next beat is computed in its method all 25ms. This
becomes an additional computation.

To sum up, Scheirer uses a lot of memory due to its comb-filters and the preci-
sion of the detected tempo depends on the number of comb-filters implemented.
His method has also parameters that should be tuned, like the frequency filter-
bank, the amount of comb-filters and their period, the envelope sampling rate,
etc. That makes the method not very intuitive, and the different notions and
parameters of the comb-filters have to be understood before using them.

3.2.2 SHIU’S METHOD

In [6], another method for on-line beat tracking is implemented and it is divided
in two blocks: the onset detection and the phase-locked-loop. This algorithm
detects the music tempo in real-time and finds the beat pulses. For this second
purpose, a prediction is computed based on past positions of beats. In [6], the
song is compared to “a quasi-periodic function whose frequency is about equal
to the music tempo while the position of the individual pulse can be viewed as
the phase information of a period”. The phase-locked-loop is then used to track
this phase, that becomes a measure of the difference between the expected beat
and the beat that was performed.
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The music signal is the input of the onset detection and a sequence of pulse
becomes its output. The function used for the beat observation uses a filter to
observe a previous and a current time window and to keep track of the beat.
This enters then a phase-locked-loop system that is based on three different
parts: a phase detector, a low-pass filter and a digital-controlled oscillator. The
first step, the phase detector, calculates the time difference between the observed
beat coming from the sequence of pulse and the estimated beat from the phase-
locked-loop output. The error between these two pulses influences then an
external clock that synthesizes the output signal. For example, if the error is
positive, this clock must be accelerated. This allows the algorithm to accept
changes in tempo, thanks to the last step, the digital-controlled oscillator. It
adapts the difference computed during the loop to obtain the new estimation of
the position of the beat pulse. The interval between two consecutive estimated
beats gives then the period of the music piece and the corresponding music
tempo.

Shiu does not explained in details how its digital-controlled oscillator works
and only one song is tested in [6]. The onset detection algorithm is not presented
either. This makes it hard to evaluate his method, but his results will be used
for comparison, later on in chapter 4.7.

3.2.3 LARGE’S METHOD

Large developed an algorithm based on the same two points, like Scheirer and
Shiu: causality and audio signals. Beat tracking was the main purpose of this
model and Large tried to match as good as possible the tempo of human beat
perception as Scheirer did. His method uses a network of oscillators which phase
represented the beat of a music input signal and which frequency corresponded
to its pulse. This phase and frequency are continuously updated, so that the
beat tracking could be implemented in real-time.

In [7], Large explained its method and the main difficulties that he tried
to solve, when implementing its oscillators network. The first one was rubato,
defined also as the “systematic timing deviation” [7] that appears in a song
and perturbs the periodicity of its signal. The second difficulty developed by
Large was based on the transcription of a song, the subject that was omitted in
Scheirer’s method. In fact, Large tried to solve the problem, for example, when
only one beat pulse misses in a song. With his method, he was able to handle
these changes in tempo without influencing the general tempo detection.

Large applied oscillators to an external music signal and obtained their syn-
chronization. In [7], it is written: “the intrinsic dynamic system of the internal
oscillator are assumed to adapt to the external rhythm, accounting for the ro-
bustness of beat perception to systematic timing deviations and rhythmic com-
plexities found in naturally produced rhythms”. The external signal influences
the phase and the frequency of the oscillators and changes their behavior. The
oscillators were reduced to a simple dynamical system described by a phase,
the momentary point of the oscillator on its limit cycle. The phase is then en-
trained by the external impulses signal and an expectation function is used to
describe a region around φ = 0. When an event falls outside of this region, the
oscillator phase and frequency are not influenced. This implementation solves,
for instance, the second difficulty Large described. An adjustment of the phase
can be done as long as the impulse is inside the region: if φ < 0, the oscillator
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phase is too early and if φ > 0, its phase is too late. Knowing the difference
of the expected and the actual phase, adjustment is done depending on the
expectation region.

Large implemented the music signal the same way as Scheirer did. In fact,
as explained in [8], first he divides this signal into several frequency channels.
As Scheirer uses only 6 different bands, Large uses 20 channels to get the whole
frequency range of human perception. The range determines four different oc-
taves and 24 oscillators are needed for each octave to be totally represented.
Then full-wave rectification, envelope extraction and half-wave rectification are
applied respectively to the samples of each channel; these are presented in chap-
ter 4.3. Large added a last step to his onset detection: the normalization of the
amplitude of the signal. This final external signal is then sent to the network
of Hopf oscillators to model the different perception of beats that can appear
when listen to a complex music signal. The period and phase vary for each of
the oscillators, to describe the whole possible perceptible beats. It is similar
to Scheirer’s method when initializing the comb-filters period and it represents
again a lot of computation time when using them. To find the most accurate
oscillator, these dynamical systems “compete with one another” as explained
in [8], to reduce the number of active oscillators. In fact, each oscillator can be
deactivated by another one which has a higher energy, i.e. which is closer to the
tempo of the external music signal.

Large’s method uses again a lot of memory when implementing the oscillators
network. Since a term adds energy to those oscillators whose activity correlates
with the rhythmic input signal and with the competition, computation time can
be strongly reduced. The method could then be running in real-time. Large
tested it only with piano melodies, which are already very complex signals to
be analyzed as he said; but unfortunately, there are no titles for a possible
comparison.

3.3 METHOD USING OSCILLATORS

Using oscillators to detect tempo has some advantages: oscillators synchroniza-
tion to an external unknown signal and their temporal stability to perturbations.
It allows also to deal with tempo modulation. For example, small deviations
from the periodic music input signal can be allowed and can be followed by an
oscillator, without perturbing the detection.

Large tested its method only with piano melodies, so to simplify the external
music signal to a function of discrete impulses. Moreover, its method has also
some parameters to be fixed: during his tests, Large initialized the phases and
the periods with the expected values. He had to know them before using its
method. Another problem of Large’s method is when the music signal effectively
changes its tempo. In fact, with the implemented expectation function for the
phase, bigger tempo changes are not detected, because they are considered as
outside of the region.

Scheirer’s method implies also a lot of parameters tuning. It has an addi-
tional difficulty: it has a lot of computation and finding the comb-filter with
the period that is the closest to the music within all band frequencies is not an
easy and obvious task. Furthermore, it is not clear if this method could really
be implemented in real-time, due to its high computation time.
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In all three cases, the implementations started with an onset detection: the
music signal had to be transformed or sampled before it could be used by the
oscillators. Large and Scheirer used the same detection, for their methods:
amplitude envelopes. Shiu’s method implemented a sequence of discrete pulse.
Oscillators were then applied: Scheirer used a network of linear oscillators, Large
a network of nonlinear oscillators and Shiu a digital-controlled oscillator. The
oscillators of the two networks were implemented quite differently, but both
implied a lot of memory and computational time.

A method that detects the tempo of any music signal using oscillators will
be implemented. It should be insensitive to small changes in tempo, but still
react to larger changes. It should also reduce the computation time, so to be
used in real-time. In fact, it should be possible to play the music signal at the
same time as analyzing it. This will be the objectives of the adaptive frequency
oscillators method. Its different steps will be presented in the next chapter.

32



Chapter 4 TEMPO DETEC-
TION

The implementation of the tempo detection using the adaptive frequency oscil-
lator is explained in this chapter. First of all, an introduction about the music
sampling is done, based on the application of the oscillators. Then adapting
the frequency oscillators directly on the music input was tested. The oscillators
converged, but with a really high frequency value, so that the results were not
satisfying. Some explanations are given before finding another method, using
pre-processing of the music input signal, when applying some of the steps of
Scheirer’s onset detection.

4.1 MUSIC AS AN EXTERNAL PERIODIC
INPUT

As the sound is shown to be a combination of complex periodic signals and so to
become a potential external periodic input for oscillators, the idea is now to find
a way to use the adaptive frequency oscillators and especially their frequency
adaptation capability to detect this tempo. Some explanations are given about
the music sampling for the implementation. MPG123 was the chosen program:
it is a real time MPEG audio player and decoder. In this case, it is used to play
.mp3 files as an input for the frequency adaptation of the oscillators and as an
output to listen to the music once the adaptation is computed.

4.1.1 MONO- AND STEREOPHONIC SOUND

Sounds of a monophonic signal come from a common signal path and produce a
single channel of samples. It contrasts with stereophonic sounds that use several
independent audio channels. The difference of path numbers comes from the
song recording. In fact, when producing a two-channel stereophonic sound, two
microphones record the sound source from two different places. This results then
in two signals with a slightly time difference, depending on the distance between
the microphone and the sound source. When listening to stereophonic signal
through one channel, some interferences can be created and a loss of fidelity
can appear. Thus, in this project, when using the MPG123 program with the
monophonic processing option, this loss is not significant and so, stereophonic as
well as monophonic sounds can be analyzed and played back after adaptation.
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4.1.2 DOWNSAMPLING

In signal processing, sampling reduces a continuous signal to a discrete signal;
that is, in this project, sampling is the conversion from a sound signal to a
sequence of samples, that represents a value at a certain moment in time. If
a continuous signal is sampled, the resulting signal measures the value of this
continuous signal every T seconds:

x[n] = x(nT ) (4.1)

where n represents a positive integer and T the sampling period or sampling
interval, which is the time between two consecutive samples. The sampling
frequency is then evaluated as the inverse of the sampling period: fs = 1

T and
defines the number of samples obtained for one second.

Human hearing has a frequency range of 18−20kHz. To respect the Nyquist-
Shannon theorem, the audio signals have typically a sampling frequency of
44.1kHz. In fact, the Nyquist theorem guarantees a perfect reconstruction
of a sampled signal, if the sampling rate is more than twice the maximum fre-
quency. In this case, the minimum sampling frequency would be 40kHz. From
another point of view, the frequency that is half the size of the sampling fre-
quency, represents the highest frequency possible to get a perfect continuous
signal. Mathematically, it is the Nyquist frequency.1

Since the oscillators have to adapt their frequency to one of the music, their
signals have to get the same time step. It is important that all data from the
music are considered, so that the timing of oscillators has to match the one
of the music. Downsampling allows to reduce the data rate and so the size of
the data, and thus also the time between each sample. When sampling the
music in this project, the downsampling factor was fixed equal to 4, so that the
sampling rate decreases from 44.1kHz to 11.025kHz. The Nyquist frequency is
then 5512.5Hz. Since the rhythm is often indicated by the drum patterns that
are situated in the lowest frequency bands, that is a range of 1 − 200Hz, the
tempo can largely be detected, when using this downsampling factor of 4. Goto
in [5], for example, analyzed audio signals in real-time, when extracting only
these drum patterns.

The time interval between two consecutive samples music becomes equiva-
lent to the time step of the oscillators adaptation equations. In fact, Euler’s
method is used for the oscillators adaptation computation, and the following
implementation is obtained:

ṙ(i) = (m− r(i)2) r(i) (4.2)

φ̇(i) = ω(i)− ε

r(i)
sin(φ(i)) song(i) (4.3)

ω̇(i) = −ε sin(φ(i)) song(i) (4.4)

r(i+ 1) = r(i) + ṙ(i) dt (4.5)
φ(i+ 1) = φ(i) + φ̇(i) dt (4.6)
ω(i+ 1) = ω(i) + ω̇(i) dt (4.7)

1The explanations from this section are mainly taken from the site
http://graphics.stanford.edu/ mmp/chapters/pbrt chapter7.pdf, a chapter of M. Pharr
and G. Humphreys, Physically Based Rendering: From Theory to Implementation, Morgan
Kaufmann, July 2004.
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When increasing the sampling rate, the number of adaptation computation in-
creases too: these two notions are related.

Mathematically, the time between each step of the adaptive oscillators equa-
tions can be defined by dividing the total time of the song with its total number
of data, considering its sampling rate. Or much simpler, this time is the inverse
of the sampling frequency fs:

dt = 1/fs (4.8)

It becomes equivalent to the sampling period, introduced in equation (4.1).
This way, the time step ensures that each music sample is considered for each
adaptation computation; the timing of the oscillators is then matched to the
music data. This time step was then tested, so to avoid potential numerical
errors of the program independently from the implementation.

4.1.3 THE FIVE TESTED SONGS

Five different songs were chosen randomly. They are performed by four different
groups: one by “System of a down”, one by “Madonna”, one by “Dido” and
two by “Moby”. Their tempo was tested with Scheirer’s method, explained in
chapter 4.3, to get a first idea of the frequency value that had to be obtained
with the adaptive frequency oscillators method. The values were respectively
178BPM , 196BPM , 206BPM , 208BPM and 218BPM for the five songs;
that means a frequency of 18.64rad/s, 20.52rad/s, 21.57rad/s, 21.78rad/s and
24.92rad/s has to be reached by the adaptive frequency oscillators to get the
same results.

Examples of these songs are shown in figure 4.1. The time of sampling was
fixed at 100 seconds and it started at the beginning of the songs.

4.1.4 REPETITION

Repetition is needed, for example, when extracting only a few seconds of a song
or simply when the adaptation asks more time to converge. This is done by
reproducing the external signal a specific number of times. Unfortunately, this
increases also the total time of computation and has to be used with moderation.
In fact, the number of times the signal has to be repeated has to be fixed con-
sidering also the parameters of the oscillators, µ and especially ε. As explained
in chapter 2.2.4, for example, the smaller ε, the longer is the adaptation, i.e.
the more repetition of the song is needed.

Moreover, passing from the end of the extracted song part to its beginning
can induce errors during the adaptation step. In fact, the adaptation is done
continuously on the music samples and putting the end and the beginning of
the song together can shift the next strong beat and so the right tempo can be
lost. That is why, repetition was only used when testing the different steps of
Scheirer’s method off-line. As soon as the adaptive frequency oscillators method
was implemented on-line, this repetition was not used any more, and the songs
were played from the beginning till the end.
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Figure 4.1: representation of the 100 first seconds of the five implemented songs,
in the time domain: ‘Bounce’ by System of a down, ‘American life’ by Madonna,
‘White flag’ by Dido, ‘Alive’ by Moby and ‘All that I need is to be loved’ by Moby.
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4.2 ADAPTATION APPLIED DIRECTLY ON
MUSIC

Implementing the adaptive oscillators directly on music was the first idea. In
fact, having no music pre-processing would be the best application possible in
real-time: there would be no time delay between the music sampling and the
oscillators adaptation. Unfortunately, the first results were a bit disappointing.

Six oscillators were chosen to be adapted to an external music signal input.
Their parameters were all identical, except their initial frequency. The idea was
to test if all oscillators were adapting the same frequency of the music or if there
would be different possible solutions. At the same time, the values of the initial
frequencies were fixed to be as different as possible, so to find the most suitable
frequency.

Even if there was convergence, the results of applying the oscillators di-
rectly on music were not satisfying. In fact, the learned frequencies were much
higher as the expected values. For example, for the song by “Madonna”, os-
cillations between frequencies of 309 and 330rad/s were obtained. For the one
by “Dido”, they were between 613 and 625rad/s and for the one by “System of
a down”, they were between 632 and 651rad/s. The expected values given by
Scheirer’s method were respectively, 20.52rad/s, 21.57rad/s and 18.64rad/s. In
fact, when applying the oscillators directly on the music, all notes are considered
and not only the changes in sound that represents the tempo. All notes have
the same importance and so the beat and, at the same time, the tempo are not
distinguished.

Applying a filter on the music samples could reduce these high frequencies.
Thus, in [15], it was demonstrated that only keeping part of the music can
induce error, during tempo detection. Moreover, a cutoff frequency should be
fixed for a low-pass FIR filter. The signal amplitudes for the frequencies higher
than this cutoff frequency are then reduced. For this project, the drum patterns
could be a suitable limitation: that would fix the cutoff frequency around 4Hz
(240BPM). In [5], tempo detection was done only on drum patterns, extracted
from an audio signal. Goto conclude that its method could detect the beat
of songs even without drums, but it needed additional musical knowledge, like
beat structure or onset times. Some tests were done, at this point: for several
cutoff frequencies, either the oscillators could not reach convergence, or they
automatically tended to a 0 frequency. In figure 4.2, a filter with a cutoff
frequency of 4Hz is implemented. For the song by “Dido”, the two oscillators,
initialized at ω1 = 20rad/sec and at ω2 = 30rad/sec, for example, could not
converge. The parameters were fixed at ε = 100 and µ = 1.

Changing either the oscillators or the cutoff frequencies could not give better
results. Moreover, the parameters of the oscillators needed high values to start
adaptation and not all of the six adaptive frequency oscillators converged sys-
tematically. That is why, the whole frequency ranges of the tested songs were
kept when implementing the adaptive frequency oscillators.

To conclude, adaptation of oscillators to a music input signal needed, in
this case, onset detection. Envelope extraction will be used to emphasize the
change of rhythm in the music. Before that, Scheirer’s method is explained: in
fact, some of its steps will become a basis of the pre-processing used with the
adaptive frequency oscillators method.
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Figure 4.2: adapted frequencies of oscillators with initial frequencies of ω1 =
20rad/sec and of ω2 = 30rad/sec, when filtering the music with a cutoff fre-
quency of 4Hz. Adaptation could not be reached and the general results were
not satisfying.

4.3 THE STEPS OF SCHEIRER’S METHOD

Scheirer’s method implemented here2 assumes that the tempo found is associ-
ated with the entire piece of music: no tempo changes in a song can be detected.
It extracts 2.2 seconds of music, the minimal amount of information to have, at
least, two beats for the slowest assumed tempo, that is 60BPM . As briefly ex-
plained in section 3.2.1, it basically emphasizes the sudden impulses of sound in
the song and finds the fundamental period at which these impulses appear. The
four steps describing Scheirer’s method are detailed in the following sections.

4.3.1 STEP1: FILTERBANK

The first step breaks the initial music signal into six frequency bands. The
six different ranges of frequency are: 0 − 200Hz, 200 − 400Hz, 400 − 800Hz,
800 − 1600Hz, 1600 − 3200Hz, 3200Hz and more. This separation is done to
avoid conflicts in “downbeats” of the different used instruments.

From the original signal in the time domain shown in figure 4.3, on the left, an
FFT is applied to divide the music into the six frequency bands. These different
bands are then defined and the inverse FFT of each of them are computed and
plotted in figure 4.4, in the time domain. These six signals are then sent to the
next step: the smoothing function.

4.3.2 STEP2: ENVELOPE EXTRACTOR

Extracting the envelope of the frequency bands signals allows considering only
sudden changes in sound. This is possible since the main purpose is to find the
tempo of the music signal. First, full-wave rectifiers are applied to each of the
six bands to decrease high-frequency influence in the music; only the positive
side of the envelope is used. This is done, in the time domain, by putting all

2The main code of this method was found on the website
[http://www.owlnet.rice.edu/ elec301/Projects01/beat-sync].
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Figure 4.3: the original music signal in the time domain (left) and in the fre-
quency domain (right).

Figure 4.4: the same music signal as in figure 4.3, in the time domain, after the
separation into the six frequency bands.

Figure 4.5: the signal after full-wave rectification of the six frequency bands
signals. After a first filtering in the time domain, only the positive side of the
signal remains.
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Figure 4.6: the six frequency signals after their respective envelope extraction
represented in the time domain.

the song data of the different bands to positive values. Figure 4.5 shows the
results, in the time domain, after the full-wave rectification.

Each of the six signals is then convolved with the right half of a Hanning
window. It is computed with the square of a cosine:

f (a) =
(

cos
(

a π

2 length

))2

(4.9)

with length the total length of the Hanning window. In this case, it is fixed
at 0.4sec. The window has then a length of 200ms; this means that the signal
is smoothly brought down to zero at 200ms. The rapid changes in slopes are
kept as the slow ones are delayed and so neglected. Only the sudden changes
are represented with the obtained signal that is defined as the signal envelope.
This signal is shown in figure 4.6, in the time domain.

The multiplication between the full-wave rectified bands signals and the
Hanning window is done in the frequency domain to reduce the operation time:
a FFT is computed. The signals are then sent to the next step after being
transformed back into the time domain.

4.3.3 STEP3: DIFFERENTIATOR AND HALF-WAVE
RECTIFIER

Differentiating two consecutive samples of all six frequency banded signals ac-
centuates sudden changes in sound. Only the positive differences are then re-
tained in the time domain: this is the half-wave rectifier. The other values are
equal to zero. This computation allows recognizing the emphasis of sound that
represents a beat and the result is plotted in figure 4.7. The signal is finally
sent to the last step to detect the tempo of the music signal.

4.3.4 STEP4: COMB-FILTERS

The signals are finally convolved with comb-filters to determine the tempo that
has the highest energy. A comb-filter is a series of three impulses appearing
at a defined and constant period. If this period is close to a multiple of the
period of the music signal, the resulting output signal has a really high energy.
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Figure 4.7: the six frequency bands signals represented, in the time domain,
before implementing the comb-filters for tempo detection.

Figure 4.8: the total energy computed when convolving the frequency bands with
defined comb-filters. The fundamental tempo is found when looking for the high-
est value of energy given a range of expected frequencies: in this case, the tempo
is 76BPM .

For this method, different comb-filters were defined with tempo included in a
specific range of frequencies: from 60BPM to 240BPM , with a resolution of 1.
The convolution was computed in the frequency domain and the energy of each
applied comb-filter, i.e. for each chosen tempo, is represented in figure 4.8. The
maximum value is found and in this case, the fundamental tempo is 76BPM .

4.4 ADAPTATION AFTER PRE-PROCESSING

Using Scheirer’s method, different implementations with the adaptive oscillators
were tested. Adding them at the end of the method, for example, was from the
beginning considered as a bad solution. In fact, it would only increase the
time duration of the method and not really help the computation. Since the
filterbank step, separating the signal into different frequency band, was said to
be necessary to avoid “downbeats” conflicts between instrument groups [15],
this step was first kept. The envelope extractor needed to detect the sudden
changes in sound became necessary too. As the external input of the used
oscillators should have small amplitudes, the resulting signal of the envelope
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Figure 4.9: adapted frequencies when using or not the filtering step of Scheirer’s
method. It can be seen that, in both cases, the adapted frequencies are exactly
the same: the graphes are superposed.

extractor was transformed to get a periodic complex signal able to be adapted.
And the oscillators could be applied.

After comparing the first results of the adaptation, it can be noticed that
the filtering step of the song pre-processing was actually not necessary. For
the five tested songs, the adaptation was implemented with and without this
steps: the results were the same in both cases. The difference of their adapted
frequencies was 0. This is shown in figure 4.9, for the oscillator initialized at
ω = 16rad/sec, coupled once to the original and once to the filtered song by
“Dido”: both graphs are superposed.

As explained in 4.3.1, this step was computed in the frequency domain and
needed a FFT and its inverse for each of the 6 frequency bands. This can take
some significant time and deleting this step shortens the computation time.
Furthermore, in [8], it was said that low-frequency onsets had more often higher
amplitudes than high-frequencies onsets. The final signal that is sent to the
oscillators adaptation is reduced to a difference of amplitudes and the highest
values are due to the biggest change in amplitude. So this would explain that
the adaptive frequency oscillators adapt automatically to the lower frequencies,
since they should have the biggest amplitudes.

The full-wave rectification, that translates all the samples to the upper part
of the time axis, the envelope extraction, that is the multiplication of the Han-
ning window in the frequency domain, and finally the reduction of the signal
amplitude, that is the differentiation of two consecutive envelope data, are the
three pre-processing steps. These steps are implemented between the song sam-
pling and the oscillators adaptation computation.

Based on Scheirer’s method and first of all tested off-line, these steps are
explained in more details with the song by “Dido”. After the first 40 seconds,
the song sampling started and lasted 30 seconds. Some more general results
are then presented, with other tested songs. The duration of song sampling,
in the last experiments, was also changed to compare the different obtained
frequencies.
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Figure 4.10: on the left, the original input signal of the song by “Dido” is shown
in the time domain and, on the right, its full-wave rectified signal. All negative
values are replaced by their opposite value, to reduce the high-frequency content
of the signal.

Figure 4.11: the envelope extraction of the full-wave rectified signal. This is
done when convolving this signal with the Hanning window.

4.4.1 THE THREE PRE-PROCESSING STEPS

As the filterbank step of Scheirer’s method was removed, full-wave rectification
is first computed. The resulting signal is shown in figure 4.10: on the left, the
original music signal and on the right, its full-wave rectified signal.

The envelope is then taken from this last signal when convolving it with the
right half Hanning window of Scheirer’s method; only the sudden changes are
represented with the envelope. Its result is shown in figure 4.11, in the time
domain.

Finally, the last pre-processing step is the differentiator of Scheirer’s method,
which reduces the high amplitudes of the envelope extracted signal. Retaining
only the difference allows then to obtain an external input signal for the adaptive
frequency oscillators. It is shown in figure 4.12: a signal with small amplitudes
that still represents the significant changes in sound, i.e. the tempo to be
detected.

To sum up, neither the filterbank nor the comb-filters steps were imple-
mented for the onset detection of the adaptive frequency oscillators. Moreover,
even the half-wave rectification of step 3 could be removed. The final pre-
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Figure 4.12: representation of the rectified signal after the envelope extraction
(left). The resulting signal emphasizes now the change in sound. On the right,
this signal is then repeated 5 times and sent to the oscillators for the adaptation.

processing is computed with the full-wave rectification, the envelope extraction
and the differentiator. This already implies less computational time and the
results are now presented.

4.4.2 FIRST RESULTS

After the third step of pre-processing, repetition and adaptation can be imple-
mented. The results are now satisfying; they are, in fact, much closer to the
results of Scheirer’s method. The adapted frequencies for the different songs
changed slightly when modifying the size of the song extract. This is mostly
due to the warning about the repetition, warning explained in section 4.1.4 of
this paper. For the song by “System of a down”, the oscillators converged to
19.93rad/s for 10 seconds of the song, to 19.01rad/s for 5 seconds of the song
and to 19.65rad/s for 20 seconds. Scheirer’s method gave an expected frequency
of 18.64rad/s. When looking at the results of the first song by “Moby”, the
oscillators converged to 21.39rad/s for 10 seconds of the song, to 21.59rad/s
for 5 seconds and to 21.36rad/s for 20 seconds (in figure 4.13). In this case,
Scheirer’s method gave an expected frequency of 21.78rad/s.

Figure 4.13 relates the problem of the values of the adapted frequencies.
In fact, it can happen that some of the oscillators converge to a ratio of the
frequency of others, i.e. to a harmonic of the song. In [13], it is said that the
oscillators have “rationally linked frequencies”. That is the case here, for the
song by “Moby”. As three of the oscillators converge to 21.36rad/s, another
oscillator converge to 10.69rad/s, almost half of the previous value. This can
happen if ε is fixed to high or if the oscillators initial frequencies are to far from
the expected tempo value. These issues are explained after some additional
experiments, in chapter 4.6.

It has to be added that in the implemented case, the resulting frequency is
only an average of the last 500 plotted data. The value is actually computed to
get a first idea of the learned frequencies; it is only an approximation of the ac-
tual adapted frequency. Furthermore, the adaptation was done only for a small
song extraction and repetition was used. An adaptation with the whole song
should give more precise frequencies. Some general results for the adaptive fre-
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Figure 4.13: plot of the oscillators with initial frequencies ω = 10rad/s, ω =
20rad/s, ω = 25rad/s and ω = 30rad/s. The last three of them adapted the
frequency value of 21.36rad/s as the first oscillator converge to 10.69rad/s,
almost half of the previous value.
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quency oscillators method are explained in the next sections, before comparing
them with the results of the existing methods introduced in chapter 3.2.

4.5 ADAPTATION TIME

For these implementations, the choice of the music song can be done through
the prompt, when executing the program. Every type of music could actually
be tested. To be able to compare the method performances, the songs presented
in section 4.1.3 were again the chosen ones for the different experiments.

All songs converged to a frequency during the sampling process. For each
test, the time of adaptation and the value of the frequency were registered. In
table 4.1, the initial frequencies of the three oscillators of the adaptation are
changed, keeping the values of ε = 10 and of µ = 0.01. It can be noticed that
the time taken till adaptation has been modified and so has also the value of the
first adapted frequency. This change is still coherent with the general behavior
of the frequency. In fact, it is actually predictable, since the adaptive frequency
oscillators method presented in this paper returns a different frequency value
each time the adaptation is computed. Looking at the adaptation time, it can
be conclude: the closer the initial frequencies are from the tempo frequency,
the quicker is the adaptation. The difference between the initial frequencies can
also affect the time of adaptation, but never the value of adaptation. In fact,
the adapted frequency, in this case the tempo of the music, is always the same
value, independent of the initial conditions of the oscillators. When looking, for
example, at the first adapted value for the song by “Dido”, all three values are
equal after the same time of adaptation.

It should also be added that for the song by “Dido”, the time of adaptation
is significantly higher as for the other songs. This is due to the fact that the
song has a long introduction and, the instruments and the voice take a long
time before appearing in the song: this has then nothing to do with the time
of the oscillators convergence. That is why, this time depends not only on the
oscillators initial frequencies, but also on the composition of the song itself.

The parameter µ was fixed at µ = 1 instead of µ = 0.01. The ratio ε
r is then

modified from ε
r = 100 to ε

r = 10 in the second equation of the system:

φ̇ = ω − ε

r
F (t) sin (φ) (4.10)

This changes also the time of adaptation. Depending on the song, this time is
either reduced as for the second song by “Moby” (from 8sec to 6sec) or arisen as
for the first song by “Moby” (from 17sec to 28sec) or for the song by “Madonna”
(from 8sec to 23sec). What is more, the oscillators converge to a value for each
song when keeping the same initial frequencies, that is ω1 = 7rad/s, ω2 =
9rad/s and ω3 = 11rad/s; except for the one by “System of a down”. There
was actually no convergence at all, for this song. The song was not long enough
for the oscillators to reach a common adapted frequency. When increasing then
the initial frequencies of the oscillators, adaptation could be reached again. This
is due to the fact that this song has a higher detected tempo: as all other songs
converge to a tempo around 100BPM , this song has a detected tempo around
190BPM . The closer the initial frequencies are from the tempo, the quicker is
the adaptation. In table 4.2, some different adaptation times can be observed.
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Oscillators Oscillators Oscillators
freq(rad/s): freq(rad/s): freq(rad/s):

ADAPTATION TIME 7, 11, 13 5, 15, 25 18, 21, 24

System of a down 8 sec 20 sec 7 sec
Madonna 8 sec 24 sec 24 sec

Dido 41 sec 41 sec 41 sec
Moby (alive) 17 sec 28 sec 26 sec
Moby (love) 8 sec 10 sec 10 sec

1st ADAPTED FREQ

System of a down 168 BPM 193 BPM 190 BPM
Madonna 97 BPM 104 BPM 104 BPM

Dido 86 BPM 86 BPM 86 BPM
Moby (alive) 74 BPM 143 BPM 142 BPM
Moby (love) 135 BPM 137 BPM 137 BPM

Table 4.1: the first table shows the different time taken by the oscillators to
reach adaptation: it is the moment when all oscillators have the same adapted
frequency. The second table shows the frequency first value in BPM, when the
adaptation is reached.

Oscillators Oscillators Oscillators
freq(rad/s): freq(rad/s): freq(rad/s):

ADAPTATION TIME 9, 11, 13 13, 15, 17 17, 19, 21

System of a down no adaptation 37 sec 10 sec

Table 4.2: this table shows the changes in adaptation time for the song by “Sys-
tem of a down” when modifying µ = 0.01 to µ = 1. It can be noticed that, for
the first example of initial frequencies, the song was not long enough for the
oscillators to adapt.
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Unfortunately, all these results imply that knowing the expected tempo of
the song makes the adaptive frequency oscillators method more efficient. This
has also another conclusion: the performance of tempo detection depends not
only on the song and its length, but also on the parameters and the initial
conditions of the adaptive frequency oscillators.

4.6 ADAPTATION RESULTS

When looking at figure 4.14, the difference of adapted frequencies can be ob-
served, when changing the parameter µ. The adapted frequencies become more
stable and changes in tempo are done more smoothly. The oscillators are less
sensitive to a small change in tempo. This is presented the most significantly
with the first song by “Moby”. As the tempo varies a lot when µ = 0.01,
it became almost constant with µ = 1. When looking at the second song by
“Moby”, it can be noticed that a change of µ does not influence the value of
the adapted frequency. In fact, both tempos are equal. When increasing the
value of µ, so to reduce the effect of the external signal on the phase derivative
(equation 4.10) of the system, it implies more precision. It assure a smoother
frequency adaptation. In fact, search of the tempo is done more systematically,
with smaller steps.

Two different inputs were then coupled to the adaptive frequency oscillators
to test the value of the adapted frequencies. The first one was composed with
two different impulses which had both a 1Hz frequency, but with a time delay of
0.75 seconds between them. This input was used to understand how the adaptive
frequency oscillators are influenced when an irregular rhythm drives them. The
second input was composed with an impulse function whose frequency changed
all 30 seconds: first a 1Hz frequency, then a 2Hz frequency, and finally a 1.5Hz
frequency. This input was used to see how the adaptive frequency oscillators
behave with a change in tempo.

When testing the method with the first input, the results were as hoped.
The oscillators adapted a tempo around 1Hz. This was actually the only peri-
odic signal possible for this input. The oscillators were not influenced by both
impulses at the same time; only one of the impulses drove them. This means
that, if a second rhythm appears in the middle of a song, delayed with the tempo
of the song, the adaptive frequency oscillators should not be perturbed. They
should only adapt to periodic signals.

When testing the method with the second input, the results showed that the
adaptive oscillators could follow a change in tempo. In fact, after a transient
state, the oscillators converge to the changed tempo again. The adaptation
time depends on the parameters of the oscillators, as explained in the previous
section. Different experiments were done changing the value of ε. The value of
the adapted frequency became closer to the music tempo and the adaptation
time was shortened, when the value of the ratio ε

r was increased. However it
became also more variable. In figure 4.15, the second input function was used as
the external input signal of the adaptive frequency oscillators. ε was initialized
at ε = 5, ε = 10, ε = 20, ε = 50 and finally at ε = 100.

The adaptive frequency oscillators method can be implemented with external
inputs that are composed either with irregular tempos or with changing tempos.
In both cases, the oscillators converge to the expected tempo, depending on
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Figure 4.14: the adapted frequencies obtained during the adaptation for the five
songs, in the time domain: ‘Bounce’ by System of a down, ‘American life’ by
Madonna, ‘White flag’ by Dido, ‘Alive’ by Moby and ‘All that I need is to be
loved’ by Moby. Each plot shows the difference of tempo when changing the
parameter µ = 0.01 to µ = 1.
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Figure 4.15: the different adapted frequencies of an input that changes frequency
all 30 seconds, when changing ε. As this parameter is increased, the adaptation
is reached more quickly and the value of the adapted frequency becomes closer
to the input frequency, but it is also more variable.

Figure 4.16: adaptation of the oscillators frequency to a changing tempo of an
impulse function, when different initial frequencies are implemented. The tempo
starts at 1Hz, then accelerates to 2Hz after 30 seconds and finally decelerates
to 1.5Hz after 30 seconds.

their parameters, especially µ and ε, and their initial conditions. To show this
last point, another experiment was done with the second input. The initial
oscillators frequencies were fixed first at ω1 = 5rad/s, ω2 = 6rad/s and ω3 =
7rad/s, close to 1Hz, and then at ω1 = 11rad/s, ω2 = 12rad/s and ω3 =
13rad/s close to 2Hz. The adapted frequency, in the first case, oscillated around
1Hz, as the frequency of the input. In the second case, it oscillated around 2Hz:
that is twice the tempo of the input. It adapted then a partial or a subharmonic,
a integer multiple of the music tempo, as explained in chapter 3.1. This is shown
in figure 4.16.

Again the same conclusion as before can be given: fixing the parameters
of the adaptive frequency oscillators as close as possible to the expected tempo
makes the adaptive frequency oscillators method more efficient and more precise.
In addition, the adapted frequency can represent an integer fraction or an integer
multiple of the effective music tempo. It is then not an easy task to define which
tempo should be considered as the one of the input.
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4.7 EXISTING METHODS

A comparison of results is then done, between the adaptive frequency oscillators
method and the other ones presented in the third chapter of this paper. As the
implemented algorithm of Scheirer’s method could be found, comparison with
his method was possible, but with some restrictions. In [6], a song was also
analyzed and its results explained; so a second comparison was possible. Un-
fortunately, for Large’s method, there were no concrete results to be compared
with. In fact, Large used piano melodies, implemented as impulse functions
that he considered as the input music signals for his oscillators. He added then
variation on these melodies, but no results on music songs were presented.

4.7.1 COMPARED TO SCHEIRER’S METHOD

When comparing Scheirer’s results and the one obtained with the adaptive fre-
quency oscillators, there was relatively good matching. For the song by “System
of a down”, Scheirer’s value is the original value; for all other songs, this value
was divided by 2. This means that Scheirer’s method returned a faster tempo
than the adaptive frequency oscillators method, a tempo that is too quick for a
human being to be considered as a natural beat perception. This problem was
also relevant in Large’s method [8]. The results are plotted in figure 5.1 where
the stars represent the tempo of Scheirer’s method.

Only one song has a significant different tempo value as the one indicated
by Scheirer’s method: the second song by “Moby”. Curiously, it is the song
that has the most stable tempo detected by the adaptive frequency oscillators
method. The difference between both tempos is about 25BPM (0.4Hz). For
the first song by “Moby” and the song by “System of a down”, the results are
closer. Once Scheirer’s method gave a higher value and once a smaller one,
respectively. For the song by “Dido”, the comparison is more difficult. In fact,
the adaptive frequency oscillators method shows tempo changes that can not be
detected by Scheirer’s method implemented for this paper. Further experiments
should be done, to show the performance of the adaptive frequency oscillators
method.

4.7.2 COMPARED TO SHIU’S METHOD

When comparing the results of the only song that Shiu tested in his paper [6],
it can be noticed that it is close too. In fact, Shiu applied a song by “Oasis”
(Don’t look back in anger) to its beat tracking method, for the first 60sec of the
song. He found a mean period of 728msec that corresponds to a tempo varying
around 82.4BPM . Shiu calculated a mean period because the music period
changes over time. The same song was then tested with the adaptive frequency
oscillators method and the result is plotted in figure 4.17, when dividing the
tempo by two. In fact, the obtained tempo was this time twice as big as the
tempo found by Shiu. The frequencies are registered all seconds for the first 60
seconds. Adaptation lasted in this case 20sec.

Shiu found tempo values between 700msec and 750msec. This corresponds
to 79.2BPM and 84.9BPM . It can be noticed that with the method use in
this paper, the tempo is pretty close to Shiu’s one, when divided by two, as said
before; it is around 85BPM . But only comparing one song is not significant for
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Figure 4.17: comparison of results of the adaptive frequency oscillators method,
with both the results of Shiu’s method (left) and of Scheirer’s method (right).
For the left one, only the 60 first seconds of the song was implemented as in
Shiu’s test. For the right plot, the whole song is shown with the original tempo
values.

a good comparison. Unfortunately, no other song was used in [6] and so, this
result can not be valued correctly.

Moreover, in figure 4.17, on the right, the original values found with the
adaptive frequency oscillators are plotted. The value returned by Scheirer’s
method is added to it and compared: once more, both tempos are pretty close.
As the first ones are around 170BPM , Scheirer’s method returned a value of
168BPM for the same first 60sec. This was the best result of all experiments
with songs.
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Chapter 5 SIMULATION

Knowing that a method using adaptive frequency oscillators could give compa-
rable results to the existing methods, the implementation of an adaptation in
real-time is considered and explained in this chapter. To see what the adapted
frequencies really represented, some simulations were performed. The drum-
ming task of the humanoid robot is explained. The difficulty of matching the
movement of the robot arms with the beat pulses becomes relevant. What is
more, the adapted frequency should be limited to 2Hz (120BPM) to be de-
scribed as naturally as possible, since a range of 1 to 2Hz represents the most
likely frequencies people perceive as the rhythm of music [8]. This will lead to
the implementation of the frequency limitation.

5.1 ADAPTATION IN REAL-TIME

The advantage of the adaptive frequency oscillators is their continuous adapta-
tion. As long as there is an external signal applied to them, they adapt their
frequency. One of the purposes to do the detection on-line is the change in
tempo that can happen in a song. In fact, the rhythm of a song can accelerate
or decelerate and so does the tempo. If the signal is modified, the oscillators
adapt their frequencies to the new external input changes. As the oscillators in
Large’s method [15] can deal with small tempo deviations, they can not synchro-
nize to large tempo changes. With the adaptive frequency oscillators method,
it should still be possible for the oscillators to detect these tempo changes.

The challenge of the on-line adaptation applied in real-time is the fact that
music, its onset detection and the movements of the robot arms are all functions
that have to run simultaneously and continuously. The music is then sampled
with MPG123 as explained before, in section 4.1: it can be implemented in real-
time. The tempo detection and its adaptation are then done as quick as possible
to keep this real-time. The last function, the movement of the robot arms, is
then added too. To run these functions all simultaneously, parallel computing
is introduced and threads are implemented. These notions are first explained,
before introducing the implementation of the drumming task.

5.1.1 PARALLEL COMPUTING

There are different models available to implement parallel programming and a
combination of some of them is often used. There is for example shared memory,
threads or message passing.

The main idea of parallel computing is to divide a whole program in dif-
ferent parts that can be solved simultaneously using separated resources. Each
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part has its own instructions that are executed separately from the other parts,
so that different computations and operations are done at the same time in-
dependently. Since they have to solve a common problem, communication is
then needed to exchange data between these different parts. Synchronization
becomes an important point that has to be controlled. In fact, when commu-
nication is required, synchronization between tasks can be necessary to avoid
loose of information. It coordinates the different parts of the whole program, so
that the general behavior of it is respected. The disadvantage of synchronization
is the resulting time spent by the parts in waiting for communication instead
of completing their instructions. In fact, it is often implemented by fixing a
point where a part is blocked till another part has reached a specific defined
instruction or variable. This involves then waiting and increases the execution
time of the different parts of the whole program.

Furthermore, synchronization has to be explicitly defined by the program-
mer, so that the general implementation is totally controlled. When one of the
parts wants to access a data from another part, the programmer is responsible
of the correct behavior and the result of the access.[10]

5.1.2 THREADS

The threads are one of the parallel computing model that was chosen in this
project. The main program creates and starts multiple and concurrent paths,
similar to subroutines, and called threads. These are procedures that run in-
dependently from the main program and also from each other. The main is
responsible of loading all required resources for the threads. It remains as long
as threads are used, so to be sure that the shared resources are accessible. Each
thread has then local data, local instructions and local operations. It shares also
all the resources of the main program and benefits from a global memory view
since it is initialized in the main program, as all of the threads. They can then
all access the same global variables, and this access is controlled through syn-
chronization when communication is needed. Communication is, in fact, done
through global memory: the threads update the address location of a global
variable. Synchronization, as explained before, insures that only one thread can
modify this global variable at any time. To block and consequently to protect
the access to global data, semaphores or locks are used. The first thread that
acquires the lock can then safely read a data or write into it. When another
thread ask to lock the same data, it has to wait till the data is unlocked by
the thread that owns its semaphore. This creates time delay that can become
significantly high. The modifications done by one thread are then visible to
all other threads as long as the changes are done on the shared memory. It is
important to keep the number of threads as small as possible, because difficulty
in designing shared memory processes increases with the number of threads[11].

“POSIX Threads” or “Pthreads” is the library used in this project. The idea
of shared memory is implemented and the semaphore is in this case managed
with “mutex”, abbreviation for “mutual exclusion”. It deals with synchroniza-
tion and has the effect of protecting access to a shared data resource, that is,
in general, a global variable initialized in the main program. Only one thread
can lock it at any time and so the security of data is ensured. Since a thread
has to wait to lock a mutex, synchronization can be implement by controlling
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thread access to data.1 For example, in this project, synchronization has to be
ensured for the music samples: so the music sampling thread has to wait till
the adaptation thread has read the samples to make sure that all the data are
considered. The whole implementation is explained in more details in the next
section.

5.1.3 IMPLEMENTATION

The main program initializes the threads. First of all, three threads were im-
plemented: the music sampling, the frequency adaptation and the robot arm
movements. The music thread begins with the song, as the adaptation starts
after 3 seconds, so that the whole table of the external signal samples fixed at
almost 3 seconds is totally initialized. In fact, when considering the frequency of
1Hz or 60BPM as the slowest tempo possible, based on human beat perception,
a minimum of 2 seconds is needed to be sure to have 2 beats during this interval
of time. Thus, at least, one whole tempo period is observed. Furthermore, only
a small amount of music samples should be sent to the oscillators. This allows
to listen to the music at the same time as adaptation is computed. Since this
amount of new added samples is less than the “3 seconds” table sent to the
oscillators, each new sample has to be added at the end of this table, so that
the song is respected. In this implementation, the size of the song data given to
the oscillators is 32678 samples per seconds and the length of data taken from
the song at each step is 2048 samples per seconds.

The last thread, that is the implementation of the robot arm movements
explained in the following section, is started when all adaptive frequency os-
cillators have found the same frequency value. The number of oscillators was
reduced to 3, since the tests done in real-time shown that all six oscillators al-
ways converged to the same frequency. Their initial frequencies were then fixed
at ω1 = 7rad/s, ω2 = 9rad/s and ω3 = 11rad/s. These correspond to a tempo
around 1.5Hz or 90BPM and describes the middle of the drum patterns, that
are actually in a range of 60BPM to 185BPM , as said in [5]. These patterns
generally represent a good basis of the song tempo. It has to be added that the
adapted frequency should not be greater than 2Hz due to the limitations of the
robot; this corresponds to a value of 120BPM . If this happens, the frequency
sent to the robot has to be reduced. This is explained in the following section.

All three threads were then running simultaneously till the end of the song.
In fact, when the song ends, the music thread stops the two other threads and
the main program closes. The communication between the threads are done
trough two mutexes: the music mutex between the music and the adaptation
threads, and the frequency mutex between the adaptation and the robot threads.
The second one is asynchronous, so that their is no waiting between the two
threads; the adaptation thread saves the obtained frequency value in the global
variable which is read by the robot thread only when needed. In contrary, for
the music mutex, synchronization is needed: all music samples should be safely
transmitted to the adaptation thread. This transfer creates a time delay and
makes it difficult to have a real-time music sampling. Moreover after some tests
on the time taken by both programs, the sampling and the adaptation, it could

1The explanations from this section are mainly taken from the website
https://computing.llnl.gov/tutorials/pthreads/
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THREAD 1 MUSIC-ADAPTATION

Read 2048 song samples, saved
at the end of the 32678 data

After 32678 samples, adaptation - high frequency content reduction
- envelope extraction
- amplitude reduction
- oscillators adaptation
- test oscillators frequency

If oscillators have the same frequency start the robot thread (done once)
save the adapted omega

Play the 2048 samples to hear the song
Repeat till the end of song

If the end is reached stop the robot thread

MUTEX communication between the music/
adaptation and the robot threads

global variable: “adapted omega”

THREAD 2 ROBOT MOVEMENT

Move the robot arms read adapted omega when needed
Stop when reaching the end of song

Table 5.1: schema of the implementation, showing the two different threads
running in parallel and the mutex that is needed for the communication between
them.

be noticed that it was pretty close. In fact, the adaptation took almost the
same time as the music sampling. This is also shown when sending the music
samples to the sound output when adapting the tempo: the song is playing
without perturbation or delay.

These two threads were then put together; only one mutex was left, the one
between the adaptation and the robot arm movement. In fact, the synchro-
nization for the communication between the music and the adaptation was not
needed any more. The music sampling and the frequency adaptation are done in
the same thread and there is no delay any more. To sum up, table 5.1 shows the
different instructions done by each thread and how they communicate together.

5.2 THE DRUMMING TASK

S. Degallier implemented a controller in [4] for a humanoid robot, so that it
plays drums at a specified tempo. This controller uses nonlinear dynamical
systems to compute trajectories of the robot arms in real-time.

As explained in [4], two different systems are implemented simultaneously:
“a discrete system with a single point attractor which generates discrete trajec-
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Figure 5.1: the discrete system of the drumming controller generates discrete
trajectories computed to move the robot arms to the correct instrument.

tories towards a goal and a rhythmic system which generates periodic movements
of controlled amplitude and frequency around the discrete trajectories”. The
arms trajectories are then divided in two different motion: the first one moves
the robot arm upon the instrument to be hit and the second one produces an
up-and-down movement of the arm to hit the instrument. The discrete system
is then needed at the beginning of the drumming task and each time the robot
should hit another instrument. In this project, only the middle drum is used,
so that its generated trajectories are only used once, when starting the robot
arms movement. This is shown in figure 5.1, when implementing the drumming
controller in Webots.

In contrary, the rhythmic system is the most important one and is considered
now. It implements a Hopf oscillator, as described in chapter 2.2.1, with the
equations in Cartesian coordinates:

ẋ = α
(
µ−

(
x2 + y2

))
x− ωy (5.1)

ẏ = α
(
µ−

(
x2 + y2

))
y + ωx (5.2)

where µ controls the amplitude of the oscillations and so the movement of the
robot arms, α influences the time taken to reach the limit cycle and ω represents
the frequency of the Hopf oscillator and so the tempo of the music. More details
about the generation of the trajectories can be found in [4].

Four degrees of freedom for each arm are used for the drumming task: three
degrees for the shoulder and one degree for the elbow. The rhythmic part influ-
ences only one of the shoulders degree. It produces the up-and-down movement
of the arm, so to recreate the beat upon the instrument. This is explained in
the next section.
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5.2.1 HITTING THE DRUM

The importance of phase locking, and especially of zero phase difference, be-
comes relevant at this point. In fact, a periodic music signal is characterized
with its frequency and its phase, when applied to adaptive frequency oscilla-
tors, as said in chapter 4.1. The phase represents the beat pulses and becomes
a function in time. Thanks to its periodicity, it can estimate when the next
beat will occur in future. Moreover, when the adaptive frequency oscillators is
adapted to the external input signal, their phase difference oscillates automati-
cally around 0. These oscillators have then the same phase as the music signal.
No additional computations are needed to detect the position of “downbeats”,
as it is the case for Large’s and Scheirer’s methods.

Since the arms movements are implemented with oscillators, these have also
to get zero phase difference with the adaptive frequency oscillators, i.e the mu-
sic signal. At the beginning of the drumming task and each time the intrinsic
frequency of the arms oscillators is changed, the phase delay between the os-
cillators of the drumming task and the ones of the tempo detection must be
equal to 0. Knowing the phase evolution of the adapted frequency oscillators
and saving the value of the momentary phase position at the tempo change, al-
low synchronization between the two types of oscillators. When the zero phase
difference is reached, the robot hits the drum when the “downbeats” appear.

Keeping the arms at a fixed position till zero phase difference is reached
between the arms and the adaptive frequency oscillators allows a control on
the motors and their encoder. In fact, this avoids arms movements that could
imply sudden acceleration in the motors. It is actually the only moment when
the robot arms could be unpredictable. When a change in tempo happens,
during an up-and-down movement of an arm, this movement is finished keeping
the intrinsic frequency of the arms oscillators. The drumming task is stop till
the phases of both oscillators, the adaptive frequency and the arms oscillators,
are equivalent. Knowing the arms positions, i.e. the arms oscillators phase, and
the phase at the tempo change, the time when starting the next up-and-down
movement can be computed. The robot can then accomplish its drumming task
again and it should hit the drum at every beat pulse, with the new tempo value.
So, controlling2 the change in tempo makes the arms movements and thus, their
motors behavior, safe.

The partition to be played is transformed “into time-varying parameters
controlling the dynamical systems”, as said in [4]. In this project, the partition
switches the robot arms for each beat pulse: once the left arm hits the middle
drum, once the right arm does. This is shown in figure 5.2. The reading of
the partition is also dependent on the music tempo. It should be modified,
at the same time as the intrinsic frequency of the Hopf oscillator. A change in
tempo influences then both the reading of the partition and the frequency of the
oscillations. Thus, small changes should be controlled, so to avoid unnecessary
perturbations. (For more details about the reading of the partition, i.e. its
parametrization, see [4].)

When using a function based on discrete impulses happening at a constant
frequency of 1Hz as the external input signal, the movement of the robot arms
can be plotted. As said before, the arms are implemented to be used one after
the other. Before hitting the drum, the arm lifts in the air; this is shown in

2This last part could unfortunately not be implemented, for lack of time.

58



IC–BIRG Ecole Polytechnique Fédérale de Lausanne

Figure 5.2: drumming task, done by the humanoid robot, when implemented in
Webots. It switches its arms for each beat pulse: once the left arm hits the
middle drum, once the right arm does.
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Figure 5.3: behavior of the oscillators of both robot shoulders, when a 1Hz
frequency tempo is applied for tempo detection. A switch between the movements
of the left and the right arms is then shown and the hitting of the drum is
represented in the second plot, with the truncated picks.

figure 5.3, when a pick appears with values that decreases first. When comparing
both the target and the real trajectories, it can be noticed that the pick with
values that increases first happens only in the first trajectories. In fact, it is
represented in the second one by a truncated pick, i.e. a horizontal line: that
is the moment when the robot hits the drum. A longer horizontal line is then
observed. It represents the moment when the arm is stationary. Since figure
5.3 shows both arms trajectories, it can be noticed that as the left arm hits the
drum, the right arm is, in fact, stationary.

5.2.2 FREQUENCY LIMITATION

People have a preferred range of frequencies for the tempo. In general, they tap
the rhythm of a song for values between 1Hz and 2Hz. When implementing
the tempo detection to move the robot, the frequency sent to compute the
trajectories of its arms is limited at 2Hz: first, because of the limitations of the
motors and their encoders, but also to make the movements of the robot more
human-like. The implementation when limiting frequencies higher than 2Hz is
explained.

When the adapted frequency approaches the 2Hz, it could have two different
behaviors: either the frequencies were already oscillating around 2Hz and so the
frequency only occasionally exceeds 2Hz, or the frequency increases to exceed
the limitation and so, the frequency has to be controlled. In the first case,
the previous frequency, that was less than 2Hz is sent to the robot. If the
adapted frequency is then still higher than 2Hz, it is considered as the second
behavior. The sent frequency is then divided by two; that means it will oscillate
around 1Hz. Since there is a big gap between 1Hz and 2Hz, this transition
is done in three steps. First, the previous value is sent to the robot. Then, an
intermediate frequency is sent to the robot, and finally, half of the actual value
of the frequency is given to its oscillators. The first step is needed to be sure
that the frequency is going to stay higher than 2Hz. The other two steps create
a smooth transition of the frequencies to be adapted by the arms oscillators.

Since the oscillators adapt their frequency to the tempo of the music, dividing
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Figure 5.4: frequency limitation for the song by “System of a down” (right) and
a function where the tempo changes from 1Hz to 2Hz and from 2Hz to 1.5Hz
all 30 seconds (left). All frequencies higher than 2Hz are reduced to half of their
values.

their adapted frequency by two would only create a perturbation and adaptation
would be lost. In fact, the oscillators would adapted again this tempo of 2Hz,
since it has stronger beat pulses as the tempo of 1Hz. That is why, only
the frequency sent to the robot arms oscillators are divided by two. Their
movements are then totally controlled. The oscillators of the tempo adaptation
are kept the same, to avoid unnecessary perturbation.

A danger appears then when the adapted frequency, after being higher than
2Hz, decreases again. For the robot, this means that the frequency would
increase from oscillations around 1Hz to oscillations a bit less than 2Hz. In
this case, the difference of the previous sent frequency and the actual one is
computed. The three same steps as before are implemented. If the difference is
higher than 0.8Hz, first, half of the actual frequency is sent to the robot. Then,
an intermediate value is computed: a value between the previous sent value and
the actual adapted value. And finally the actual value of the adapted frequency
is sent to the robot oscillators.

The results are shown, in figure 5.4, on the left, with a function where
the tempo is changed from 1Hz to 2Hz after 30 seconds and then, from 2Hz
to 1.5Hz. For the first tempo change, the sent frequency should be half of
its value: it should oscillate around 1Hz. For the second tempo change, the
adapted frequency decreases from 2Hz to 1.5Hz. The sent frequency should
then increase from 1Hz, that is half of the adapted frequency, to 1.5Hz. In
figure 5.4, on the right, the same limitation is done on the song by “System of
a down”. It can be noticed that the sent frequencies kept the same variations
as the adapted frequencies.

5.3 RESULTS ON THE ROBOT

To see what these adapted frequencies really represented, some simulations were
performed3. The results on the drumming task for a fixed tempo was already

3Some of the simulations done in Webots can be found on the website
http://birg.epfl.ch/page67315.html
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Figure 5.5: behavior of the arm oscillators when a change of tempo happens five
seconds after the beginning of the plots time scale. After a transient time, they
converge again to the new music tempo.

presented, in the previous section. Some another experiment is done here with
the function that changes tempo. The difficulty of matching the arms movement
with the beat pulses is shown, when watching the final results of the simulations.

5.3.1 OSCILLATORS BEHAVIOR

The behavior of the oscillators can be observed when a change in tempo appears.
In figure 5.5, this happens after the fifth second of the plots. These are a zoom
of the transition of the presented function whose impulses change from 1Hz
to 2Hz for the first change and from 2Hz to 1.5Hz for the second change.
Because the frequency limitation is implemented when using the robot, the first
change will actually be from 1Hz to half of 2Hz. It can be noticed that it took
obviously more time for the first transition to get convergence. As the oscillators
needed only 1 second to pass from half of 2Hz to 1.5Hz, the first tempo change
needed more time. In fact, the oscillators increased their frequency from 1Hz
to 2Hz, but with the frequency limitation, the robot oscillators had to converge
to a frequency of 1Hz. These changes explain the longer time taken to get
convergence.

After both transitions, the robot hits the middle drum when the impulses
were heard. These were then the concrete results for tempo detection, when
implementing adaptive frequency oscillators. Some other simulations with songs
followed and validated the human-like behavior of the robot, when listening to
music.
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Chapter 6 CONCLUSION

After a theoretical part on the oscillators and on music, a study was done on
the feasibility of applying adaptive frequency oscillators for tempo detection of
any song. More specifically, a tempo detection method using oscillators, which
can adapt their frequency to an external input signal, was tested: it could be
implemented in real-time, adapt to any changes in tempo and be robust to beat
pulses that create perturbation and thus, an irregular tempo.

The advantage of using oscillators when detecting the rhythm of a song is
their capability to synchronize. Their frequency becomes the tempo and their
phase the moment of the “downbeat”. Furthermore, the adaptive frequencies
phase oscillates automatically around the external input signal phase, when
adaptation is reached. This implies less computational time and it is more
accurate for an implementation in real-time.

Unfortunately, like Scheirer’s and Large’s methods, the adaptive oscillators
method developed in this project needed an onset detection. Its pre-processing
steps are some of Scheirer’s method. The computational time of the adaptive
frequency oscillators method can be shortened by taking only part of Scheirer’s
steps. Moreover, like Scheirer’s and Large’s methods, the efficiency of this
method depends on the initializations of the parameters and the initial condi-
tions of the oscillators. Thus, if these are well fixed, the method allows a tempo
detection of any kind of music, from simple impulse functions to classical, dance
or electronic music: as long as they have periodic beat pulses.

Comparing the achieved results with the ones of the existing methods, it can
be noticed that no exact tempo could be found for one specific song. Further-
more, integer multiple or integer fraction of the music tempo can be adapted.
So which method is the most accurate? Which tempo is the most precise?
Which are the most important parameters to be controlled when reproducing
a “downbeat”? All these points lead to one question: what about the real per-
ception of tempo? As written in [15], “there is no “ground truth” for rhythm
to be found in simple measurements of an acoustic signal. So a method can
not guarantee perfect detection and can not perfectly correspond to the intu-
itive sensitivity of a human listener.” In the simplest case, a single periodicity
is used when tapping along the rhythm of a song. But, people often move to
much more complicated patterns as a simple periodic beat. Thus, it is hard to
find a precise tempo. That is also an important point related in [8]: “except in
the case of rhythmically simple music, it is rarely clear from a straightforward
analysis of the acoustic signal where the beat is located, even though it may
be quiet obvious upon auditory presentation of the musical material”. As the
study showed here, there are many different aspects that are linked to tempo
detection of a song. Coordinated periodic movements as intuitively produced by
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human beings are not an easy task to be recreated, even if dynamical systems
used either in tempo detection or in the arm movements of a drumming task
are well suited for such periodic behavior.
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