Adaptive Locomotion Controller for a Quadruped Robot Sensory-Feedback

SEMESTER PROJECT PRESENTATION
16.01.2008

Supervisors
Auke Ijspeert
Sarah Degallier
Ludovic Righetti

Simon Ruffieux
Summary

- Goals
- Theory
 - Short sensory-feedback review
 - Existing Controllers
- Models development
 - Introduction
 - Vestibular integration
 - Schema
- Webots implementation
 - Introduction
 - Results
 - Videos
- Real Aibo
 - Introduction
 - Results
- Conclusion
Goals

- Goals of the project
 - Study the sensory feedback and some of its implementations
 - Design a model integrating feedback
 - Test and analyze this model in simulation (Webots)
 - Test the model in reality (Sony Aibo)
Theory – Biological review

• Sensory feedback
 ○ Important component of locomotion
 ○ Sensory feedback mainly required on uneven terrain

• Main pathways
 ○ From higher brain
 ○ Proprioceptive afferents
 ○ Cutaneous afferents

Spinal cord
Theory - Existing controllers

• Various models exist
 o For hexapod locomotion
 o For biped locomotion (walking)
 o For quadruped locomotion

• Two types of sensory feedback integration
 o Reflexes: directly modify joint torque
 o Responses: modify the CPGs
Models development – Introduction

- Extension of the Righetti model
 - Good basis model
 - One proprioceptive feedback (stance/swing control)

- Possibilities
 - Vestibular feedback
 - Cutaneous feedback
 - Proprioception
Models development – Vestibular integration

- Vestibular clues
 - Roll & pitch influence
 - Hips amplitude
 - Knees flexion
 - First model

\[
\dot{x}_i = \alpha ((\mu + vest_{feed(i)}) - r_i^2)x_i - \omega y_i
\]
\[
\dot{y}_i = \beta ((\mu + vest_{feed(i)}) - r_i^2)y_i + \omega x_i + \sum k_{ij} y_j + u_i
\]

\[vest_{feed(i)} = s(\text{roll}) \ast \text{right}(i) + s(\text{pitch}) \ast \text{front}(i)\]
Models development – Vestibular integration

- Vestibular clues
 - Roll & pitch influence
 - Hips amplitude
 - Knees flexion
 - Second model

\[\text{leg}_i = \text{out}_{CPG(i)} \times (1 + \text{vest}_{\text{feed}(i)}) \times \text{leg}_{\text{fact}(i)} \]

\[\text{vest}_{\text{feed}(i)} = s(\text{roll}) \times \text{right}(i) + s(\text{pitch}) \times \text{front}(i) \]
Models development – Schema

- Schema of the **vestibular response model**
Models development – Schema

- Schema of the **vestibular reflex model**

[Diagram showing the vestibular reflex model with components labeled as Higher brain, CPG’s, Vestibular, Pitch, Roll, Body Dynamics, Contact receptors, and Environment.]
Wide Stability Margin (WSM)
- Measure to quantify the stability of the robot

<table>
<thead>
<tr>
<th>Laterally inclined (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>8.6°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frontally inclined (1 & 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>5.8°</td>
</tr>
</tbody>
</table>
Webots implementation – Results

- Results Flat ground

Feedback enabled after 10 sec.

<table>
<thead>
<tr>
<th>Mode</th>
<th>WSM average</th>
</tr>
</thead>
<tbody>
<tr>
<td>No feedback</td>
<td>45.891</td>
</tr>
<tr>
<td>Righetti feedback</td>
<td>51.003</td>
</tr>
<tr>
<td>Vestibular reflex</td>
<td>49.312</td>
</tr>
<tr>
<td>Vestibular response</td>
<td>49.072</td>
</tr>
<tr>
<td>Vest. reflex – Righetti</td>
<td>49.603</td>
</tr>
<tr>
<td>Vest. resp. – Righetti</td>
<td>52.612</td>
</tr>
</tbody>
</table>
Webots implementation – Results

- Vestibular response problems
 - Uncoupling of the CPGs with a **strong feedback**
 - Losing the walking pattern
Webots implementation – Results

- Vestibular response problems
 - Uncoupling of the CPGs with a strong feedback
 - Losing the walking pattern
Webots implementation – Results

- Frontally and laterally inclined slopes
Webots implementation – Frontal slope
Real Aibo – Introduction

- Hard to obtain a good walk
 - Different values than in simulation
 - Offsets
 - Legs amplitude
 - Knees flexion
 - Different vestibular clues
 - Accelerometer values
Real Aibo – Results
Conclusion

- Vestibular feedback improves locomotion
 - Good results in simulations
 - Almost 50% better on strong slopes (WSM)
 - Walks more straight on slopes
 - Particularly the vestibular reflex model
 - Limited results in Reality
 - Walk far from perfect
 - Still improves the efficiency on slopes
Your turn!

Any questions?