Adaptive Locomotion Controller for a Quadruped Robot Sensory-Feedback

SEMESTER PROJECT PRESENTATION
6.11.2007

Supervisors
Auke Ijspeert
Sarah Degallier
Ludovic Righetti

Simon Ruffieux
Summary

- Goals
- Biological sensory feedback
 - Resume
 - Main sensory paths
 - Integration
- Existing models
 - Introduction
 - Matsuoka oscillators
 - Kimura model
 - Righetti model
- Model development
 - Some possibilities
 - Model of vestibular integration
- Webots implementation
 - Introduction
 - Some graphs
- Future work
Goals

Goals of the project

- Design a model integrating sensory feedback for quadruped locomotion
- Implement this model for the AIBO
- Test the model with Webots
- Test the model with the Real AIBO
- Test the model with other(s) robot model(s) (Icub/Ghostdog)
Biological S-F – Resume

- Sensory feedback
 - Important component of locomotion
 - Steady-state locomotion can be achieved without SF
 - Sensory feedback is needed to face unpredicted terrain
Biological S-F – Main sensory paths

- Main sensory pathways
 - From higher brain
 - Visual
 - Auditory
 - Vestibular
 - Proprioceptive afferents
 - Golgi tendon organ
 - Muscles spindles
 - Cutaneous afferents
 - Any stimuli on the skin (heat, contact)
Biological S-F – Integration

- Spinal cord
 - From higher brain
 - Preprocessed information
 - Proprioceptive afferents
 - Integrating response in spinal cord
 - Cutaneous afferents
 - Often results in quick reflexes
Existing models - Introduction

- Various models exist
 - For hexapod locomotion
 - For biped locomotion (walking)
 - For quadruped locomotion

- Two types of sensory feedback integration
 - Reflexes: directly modify joint torque
 - Responses: modify the CPG output
Existing models – Matsuoka oscillators

- Biologically-inspired neural oscillator
 - Two mutually inhibiting neurons
 - Simulate flexor and extensor muscles
 - Very interesting from a biological point of view
 - A bit complex
Existing models – Kimura-Fukuoka

- Quadruped walking on natural ground
 - Various reflexes and responses implemented
 - Flexor reflex (stumbling corrective response)
 - Vestibular reflex/response
 - Vestibulospinal response
 - Tonic labyrinthine response
 - Sideways stepping reflex
 - Corrective stepping reflex
 - Crossed flexor reflex
Existing models - Righetti

- Stance/swing transition control
 - Simpler but « well thought » use of Hopf oscillators

- Allows to force or stop transitions
 - According to phase and contact sensors

- Generic model
 - Easily transposable to various robot models
Model development – Some possibilities

• Vestibular feedback
 o Pitch
 o Roll

• Cutaneous feedback
 o Paw contact sensors
 o Stumbling contact sensors

• Proprioception
 o Forces on muscles
Model development – Vestibular integration

- Modification of the limit cycle
 - Increasing/diminishing amplitude
Model development – Vestibular integration

- Schema of the model
Webots implementation – Introduction

- Addition of a GPS to AIBO model
 - Euler angles
 - Strange values

- Retrieving pitch & roll
 - Local body coordinates → global coordinates
 - Pitch & roll calculations
Webots implementation – Introduction

- Design of test worlds
 - Various slopes
 - Uneven ground

- Test benches
 - Vestibular plots
 - Phase plots (amplitude)
Webots implementation – Some graphs

- Vestibular output
 - Ground contact
 - Implemented by Righetti
Webots implementation – Some graphs

- Vestibular output
 - Vestibular feedback
Upcoming work

- Further tests of the model with Webots
 - Possibility to mix with Righetti feedback
 - Various terrain

- Test with real AIBO
 - GPS → accelerometer

- Test the model on different robots with Webots
 - Icub / Ghostdog
Your turn!

Any questions?