
Master Project

Robotics applications of
vision-based action selection

Author:
Matteo De Giacomi

Supervisor:
Prof. Auke Ijspeert

26th July 2007

Acknowledgements
First I would like to thank Elia Palme for realizing the stereo algorithm and
for helping me. We had a very enjoyable and motivating collaboration, and
got along extremely well.

Alessandro Crespi, for realizing the two robots I worked on, and for being
able to repair every circut, fix any bug and cheer everybody up with his nev-
erending good mood and his sometimes crazy creations.

Professor Auke Ijspeert, for giving me the opportunity of working on such
an interesting project.

Professor Jean-Marie Cabelguen for an interesting discussion about real sala-
manders. It will take a while before Salamandra will be able to do the same
things, but I did my best.

All the lab members for their great team spirit and friendly attitude. Good
luck to you, guys!

Last, but definitely not least, I would like to thank family for supporting me
from primary school until now, and in particular my beloved grandmother.
She always supported me in every moment of my life, and has always been
proud of me as I was proud of her. Grazie nonna.

1

Contents

1 Project Objectives 4

2 Amphibot II and Salamandra Robotica 5
2.1 The Robots . 5
2.2 CPG controller . 6
2.3 Control of speed and direction 8

3 High Level Behavior 10
3.1 Control Architecture . 12
3.2 Obstacle avoidance . 13

3.2.1 Relation Between Robot’s Gait and Drive Signal 13
3.2.2 Relation between Drive Signal and Obstacle Distance . 15
3.2.3 The Obstacle Avoidance Controller 17

3.3 Predator Avoidance and Prey Chasing 19

4 Visual System 21
4.1 Camera Field and Visual Field 22

4.1.1 Introduction . 22
4.1.2 Head Angle and Angular Velocity Estimation 23

4.2 Obstacle Detection . 25
4.3 Prey and Predator Detection 26

5 Implementation 29
5.1 3D Simulation . 30

5.1.1 Environment . 30
5.1.2 Robot Locomotion . 31
5.1.3 Robot Behavior . 32

5.2 Prey Tracker Calibration . 35

2

5.3 Amphibot II . 35
5.3.1 Implementation . 35
5.3.2 Drive Signal and Visual Field Size 38
5.3.3 Angular Speed estimation 39
5.3.4 Obstacle avoidance . 41

6 Conclusion 43

Bibliography 45

A Amphibot II used Parameters 48

B Data CD Organisation 49

3

Chapter 1
Project Objectives

The conception of an autonomous robot is a challenge involving the applica-
tion of knowledges provided by various research fields.
Bio-inspired robotics is a relatively recent paradigm according to which bi-
ology and robotics can be mutually helpful.

In the scope of bio-inspired robotics, the modular robots Amphibot II and
Salamandra Robotica have recently been developed. Their look and locomo-
tion system are concieved to mimick the ones of a snake and a salamander
respectively. Results show that complex behaviors needing tight synchroni-
sation and adaptability to the everchanging environmental conditions can be
easily obtained by inspiring the control system to the way an animal Brain
Stem generates the various locomotion patterns.

This project aims at the development of a reactive terrestrial navigation sys-
tem for such robots.
In detail, we want our system to control the locomotion system already im-
plemented such that the robot is able to perform several simple behaviors
(obstacle avoidance, fleeing from a predator, prey hunting) and manage cor-
rectely the priorities between them.
Inputs are provided by two cameras generating a stereo information and by
motor feedback.

The implementation phase of our control system went through several steps.
Initially it has been tested in simulation, afterwards it has been implemented
on the two modular robots cited above.

4

Chapter 2
Amphibot II and Salamandra Robotica

Through evolution, the physical structure of vertebrates is being modified,
though locomotion still relies on the same principle: a synchoronous muscle
activation is produced by signals generated in the brain stem and propa-
gated to the CPG along the spinal chord. No high level cognitive processes
are needed to trigger this muscular activity, though they can influence it to
produce an high level behavior.
One of the most simple representants of vertebrates still living on earth is
the lamprey. This animal is able to produce an efficient aquatic locomotion
by activating in a synchronized way the muscles along its back so that a
travelling weave is produced.
Another interesting case study for understanding the evolution of vertebrates
is represented by salamanders. In the last 150 millions of years their physical
structure has been practically unchanged, thus providing us with a good ex-
ample of how the look of an ancient sensory-motor system was. If we couple
this information to the fact that about 10% of the Batracians are salaman-
ders 1, we can conclude that this animal is both extremely simple but also
extremely effective.

2.1 The Robots
Amphibot II and Salamandra Robotica are amphibious modular robots de-
veloped in the scope of the Phd Thesis of Alessandro Crespi [10], and are
concieved to mimick both the body structure and the brain stem of a lamprey
and salamander respectively. Both Amphibot and Salamandra are realized

1from a discussion with prof. J-M. Cabelguen

5

with similar building blocks: the first is composed of 8 blocks called body
elements, whereas the latter is composed of 6 body elements and 2 legs ele-
ments. Body elements contain a motor allowing a lateral oscillation, whereas
body elements present 2 rotating legs connected to its sides.

Figure 2.1: The Salamadra Robotica robot.

Elements are connected together and controlled by a set of coupled differ-
ential equations. These equations, similar for both robots, can be easily
controlled through a unique signal called Drive. This system is presented in
chapter 2.2 and 2.3
It has to be pointed out that recently it has been shown that Salamandra
Robotica can actually be compared to a real animal [14]. This clearly shows
the goodness of this architecture in modeling real biological systems.

2.2 CPG controller
We define a perturbed dynamical system as

~̇q = ~F (q) + p (2.1)

Where q is a vector representing the state variables of the dynamical system,
and p a perturbation vector. If the system, with p = 0, generates a stable
set of solutions around a circle, we call the set of solution limit cycle, and
call the dynamical system an oscillator.
Salamandra and Amphibot are controlled by a phase oscillator, which is a
system of non-linear differential equations of the following form:

6

θ̇ = 2πν + pθ

˙̇r = a
(

a
4
(R − ṙ)

)
ẋi = r(1 + cos(θ))

(2.2)

where r and θ are the state variables of the system (polar coordinates), ν is
the desired frequency, R the desired amplitude, a the convergence speed and
pθ is a perturbation vector on the θ state variable.
The introduction of a perturbation in the oscillator may produce different
behaviors; an interesting solution may be obtained by perturbing it with the
state variables of another oscillator.
The coupling of two or more oscillators may produce a phase locked state,
which means that the difference between the phase of the perturbed oscillator
and the phases of the perturbing ones is approximatively constant.
Coupling in a phase oscillator can be easily obtained in this way:

θ̇i = 2πνi +
∑

j rjwijsin(θj − θi − φij)
˙̇ri = ai

(
ai

4
(Ri − ṙi)

)
ẋi = ri(1 + cos(θi))

(2.3)

where the new term φij defines the desired phase between the oscillator i and
the oscillator j, and wij the coupling strength between them.

This architecture allows the realisation of a controller for a robot producing
a serpentine locomotion, such as Amphibot II.
For each servo, two oscillators bidirectionnally coupled with a phase of φij =
π model the behavior of two antagonist muscles in the animal’s back. The
oscillation of a spine servo is defined by the difference between the values of
the two oscillators corresponding to its body element. Oscillators located on
the robot’s spine have been coupled so that a travelling wave, corresponding
to a serpentine locomotion, is spontaneously produced. This can be achieved
by imposing a certain phase in the coupling of the different sets of antagonist
oscillators.

As said in the previous chapter, salamanders may be considered as an evolu-
tion of lampreys. On a spinal chord able to generate a travelling weave four
legs are connected, allowing the generation of a walking gait. To model the
spinal chord of a salamander, the schema shown in Figure 2.2 is used.

Walking locomotion is produced by adding to the previously introduced sys-
tem four oscillators descibing the movement of the four legs, unidirection-
nally coupled to the spine with a wij bigger than the one coupling the spine

7

Figure 2.2: Oscillator’s coupling schema and relation with the robot’s servos
in Salamandra Robotica. Four legs are unidirectionnally coupled to the spinal
chord.

elements. While in swimming locomotion the legs’ servos are motionless
(amplitude and frequency equal to zero), in walking gait they move. Since
their coupling strength to the spine oscillators is greater than the coupling
between the latters, spine oscillators are forced to produce a standing wave.

2.3 Control of speed and direction
The CPG described in Chapter 2.2 is embedded in the robot. Trough a
wireless communication it’s possible to provide legs and body’s amplitude
and frequency, gain and phase difference between head and tail (first and
last body element). These values are sufficient to define precisely the robot’s
speed and direction.

Robot’s speed can be controlled by varying its amplitude and frequency of
oscillation. A good relation between those two parameters allows the robot
to produce a performing locomotion. In other words this means that the
robot is able to advance without slipping on the soil.
To obtain such a relation a Drive signal is introduced. This signal, that

8

can be interpreted as a tonic input in the brain stem, is converted to the
amplitudes and frequencies provided to the motors according to the following
linear equations:

a = k2 · d if dmin < d < dmax

f = k1 · d if dmin < d < dmax

a = f = 0 else
(2.4)

where d is the Drive signal, a the amplitude, f the frequency and dmin and
dmax boudaries where the robot is able to move correctly (values high enough
to produce movement, but not high enough to compromise the motor per-
formance). The values of k1, k2, dmin and dmax are critical and, specially in
Amphibot, they depend on the kind of surface the robot is walking on. Used
values will be introduced in chapter 5.3.2.

Direction is controlled by a Turn signal. Its effect is to impose a difference
between the amplitude of oscillators on the left (aL) and right (aR) side of
the spine:

Turn =
aL − aR

aL + aR

(2.5)

Turn varies therefore between −1 (turn left) and 1 (turn right).

9

Chapter 3
High Level Behavior

Obtaining a high level behavior in a mobile robot is one of the most impor-
tant challenges in robotics. Several approaches have been developed in the
last 20 years, providing different features to the control system.

In planning-based architectures each decision is taken according to a set of
objectives the robot has to satisfy according to a previously built knowledge
base about the environment.
This method is in general not adapted to dynamic environments, for that
reason some architectures (such as THEO [30] or SOAR [18] developed in
the domain of artificial intelligence) are concieved to allow replanning. Given
the large quantity of memory needed and the difficulty of performing replan-
ning in real-time we don’t cosider this approach as useful for a mobile robot
having a limited quantity of memory and computationnal power.

In contrast with these architectures, reactive systems are just concerned by
the next action to take, and tend to be more adapted to react in real-time
to environmental stimuli.
Artificial Neural Networks may be considered as reactive systems. They can
provide quick reactions and take a limited amount of memory. However they
need to be trained with input examples and, in the context of our project,
this phase may become extremely tricky.

The Potential Field approach, originally proposed by Andrews and Hogan
followed by Kathib [19], interpretes robot behavior as a reaction of imaginary
forces coming from the environment. Robot is therefore attracted thoward a
specific goal while repulsed by obstacles and other dangers. This approach
has a good success among roboticists, though few criticisms have been for-

10

mulated [32]. In fact, drawbacks such as trap situations due to local minima,
no passage between closely spaced obstacles and oscillations in presence of
obstacles have been shown.

The steering technique proposed by Craig Reynolds [26] is based on a similar
approach. This architecture relies on the idea that complex behaviors can be
decomposed in a set of simple actions simultaneously producing an output
according to the environmentals conditions, and that emergent behavior may
be obtained by summing up all their contributions. Every behavior produces
a certain force (attraction), and at every instant the direction selected by the
mobile robot is determined by the vectorial sum of all the actions’outputs.
This approach is however more adapted to simulations since it relies on the
quality of sensing, which is a critical issue in real robots.

Arkin proposes a Schema-based approach [5]. A Schema is defined as an
independant process able to activate determined perceptual and motionnal
tasks in order to modify the environment. The system is based on an action-
perception cycle: perception phase modifies an internal representation of the
environment, and activates a set motionnal patterns that will modify the
environment. The various patterns act indepentently one to each other, so
that the final output is obtaind by a simple vectorial sum of all their contri-
butions.
A schema-based architecture supported by ethological observations about
mantis was implemented on the hexapod robot Miguel [2].

Rodney Brooks’s Subsumption Architecture [7] relies on a behavior-based
approach. This system is based on the idea, also accepted by etologists, that
complex behaviors emerge from a set of simple indipendant behaviors, and
that at each instant just one behavior is selected. Unlike the Schema-based
approach, the Subsumption Architecture does not need an internal repre-
sentation of the environment. Behaviors, organized in a layered augmented
finite state machine according to predefined priority, are tightly connected
to actions and hardware. This structure allows a quick reaction time, is ro-
bust to perturbations and may show emergent behavior given a sufficiently
complex structure.

Since we want our control system to be able to face a dynamic unpre-
dictable environment in real-time using just limited sensing capaticities, a
Subsumption-like Architecture seems well adapted. We’ll have however to
accept its drawback: this technique is extremely limited in terms of planning.

11

3.1 Control Architecture
In the scope of this project we are interested in the implementation of three
basic behaviors: Obstacle Avoidance, Predator Fleeing and Prey Hunting.
The process of action selection is summarized in Figure 3.1 and based on a
classic subsumption architecture.
In our architecture, possible actions are sorted according to a fixed priority
level; when a certain action is selected, all the ones having lower priority
are bypassed. Priorities have been selected according to the importance for
robot survival represented by the different actions.

Figure 3.1: At every time step action selection is performed according to this
architecture. Outlined in yellow, the decision tree shows that maximal prece-
dence is given to robot integrity, followed by obstacle avoidance, fleeing from
predator and finally by prey hunting. A short term memory stores data about
robot motion status (direction, turn), prey and predator position (preddist,
predpos, preydist, preypos) and emotional state (fear, persistance, daring see
section 3.3). Action selection takes in account both the environmental inputs
and the memory of the robot.

12

Unlike the "basic" subsumpition architecture, our architecture also takes into
account that the state of low priority action may still influence the output of
an higher priority action. We consider this feature as desirable since it may
allow our robot to produce more performing and realistic behaviors. For in-
stance when an obstacle is detected while hunting a prey, the robot will try
to avoid it in a direction favorable to its hunting (i.e. will try, if possible,
to select the direction selected by the prey). Therefore, in this use case the
hunting performance is increased.
The implementation of this feedback system enriches the robot performances
by still preserving the independance of the different behaviors (in principle
their addition and removal remains easy). This interpretation is related to
cognitive scientist Marvin Minsky’s idea that mental activity is divided in
independant agents, expressing intelligent behaviors of varius complexity by
communicating within each others (Society of Mind [21]).

To avoid continuous switch between an action and another, our action selec-
tion system is set so that a switch from an action to another is allowed only
if a minimal time tr has passed since the last action change. In the following
of this text we will call it Reaction Time tr.

3.2 Obstacle avoidance

3.2.1 Relation Between Robot’s Gait and Drive Signal

Salamandra basic control through a drive signal has been presented in chapter
2.3. We observe that this controller does not include backward locomotion.
This gait can be considered as a desirable feature to help Salamandra to
avoid an obstacle who came too close to be avoided with a simple steering
movement. This may happen in case of a moving object suddently appearing
in front of the robot or in case the salamander enters in a dead-end.

Several studies about backward locomotion have been realized for both biped
and quadrupeds. The conclusion is that the same spinal mechanism controls
both locomotions. In mammals, all the small differences in body posture are
believed to be produced by cortical system [29][17]. In the case of salamander
it seems however that a slightly different motion pattern is used [22].

In our CPG the most effective way to produce a backward locomotion is to
send a negative frequency value to the legs servos.

13

Since amplitude and frequency are related to a drive signal in a remote com-
puter, to provide a negative frequency to the robot we have to extend the
drive signal to negative values.
To increase backward speed we have then to increase legs and spine ampli-
tude exactely as it is done in forward locomotion and use an increasingly
negative value for legs and spine frequency.
We extend then the equation 2.4 describing the relation between drive, fre-
quency and amplitude in the following way:

ai = k2 · d if dmin < d < dmax or − dmax < d < −dmin

fi = k1 · abs(d) if dmin < d < dmax or − dmax < d < −dmin

ai = fi = 0 else
(3.1)

Where d is the drive value, ai the amplitude of the ith oscillator and fi its
frequency (see equation 2.3)
The behavior of oscillators with this extended signal is shown in figure 3.2.1:
to obtain a forward locomotion we now just have to set a positive drive sig-
nal, whereas a negative drive signal produces a backward walk.
The resulting gait is not perfectly consistent with [22] because the phase re-
lationships within the four legs are the same used for forward locomotion,
but is still biologically plausible.

Transition from forward to backward locomotion is performed when an object
is closer than a certain threshold t1, the inverse transitions is done at a
threshold t2 > t1. The use of two different thresholds is necessary to ensure
that the robot does not dither between the two walking directions.
The drawback of the technique presented here is that an abrupt change in the
drive sign produces an abrupt change in salamander movement as well. Since
an abrupt change does not look natural, we program the drive signal so that
it varies smoothly. We introduce then the following differential equation:

ḋ = q(D − d) (3.2)

Where d is the current drive value, D the desired target value and q a con-
vergence coefficient. Figure 3.2.2 shows the behavior of the drive signal using
different values for q while switch from forward to backward walk.

14

Figure 3.2: Relation between the drive signal (in green) and robot’s spine
amplitude and frequency (blue) in walking gait. From 0 to 2 seconds frequency
and amplitude are saturated (set to 0). Between 2 and 6 seconds the robot
walks forward with decreasing speed, then completely stops and starts again
with backward walking at 8 seconds. Backward walking speed increases until
saturation at 12 seconds.

3.2.2 Relation between Drive Signal and Obstacle Dis-
tance

The value of target drive D is affected by the distance of the obstacle. As
said we want it to be negative when the obstacle is closer than t1. Moreover,
we want it to decrease when an obstacle approaches (at a distance bigger
than t1). Far obstacles should have little or no relevance, whereas the more
the obstacle an gets close, the more it has to be considered as dangerous.
We decide therefore to use the following sigmoid function to relate the robot
speed with the obstacle distance:

D =
2m

1 + st1−k
− m; (3.3)

where m is the maximal drive value we want to reach (may be interpreted
as robot’s haste), s the steepness of the sigmoid function (the bigger it gets,
the more the sigmoid looks like a step function) and k the measured obstacle
distance.

15

Figure 3.3: Relation between obstacle distance and target drive signal D.
D may vary between −1 (backward locomotion) and 1 forward locomotion,
whereas obstacle distance is measured in centimeters. t1 (equal to 75 cm in the
graph) determines the interception point between the function and the x axis,
and therefore the inversion from forward to backward locomotion, whereas t2
(equal to 125 cm) determines the inversion from backward to forward loco-
motion. Steepness s is set in this graph to 1.1 for both courves to better show
the shape of the function, higher values will be used in implementation.

In conclusion, the parameters controlling the drive signal in our obstacle
avoidance system are t1 (inversion forward/backward), t2 (inversion back-
ward/forward), s (sigmoid steepness), m (max drive) and q (drive conver-
gence). In chapter 5 their value will be defined.

Finally, we have to point out that the original controller for Salamandra pre-
sented in [14] produces a stepping locomotion when the drive signal is small,
whereas over a certain threshold a swimming locomotion is obtained.
Since our system saturates the drive signal to the maximal walking speed
achievable by the robot, one may argue that our new controller is not com-
patible with the original one. In other words, we add a feature by removing
another one.
A simple solution to achieve swimming locomotion with our controller is to

16

add a humidity sensor on the robot itself: when this sensor is activated the
drive signal is increased of a certain value higher that m, thus making it go
over the swimming threshold. In this way, not only both locomotions can be
achieved, but both can be saturated to a maximal speed.
We have to remark that with this technique it would be difficult to obtain
a performing backward swimming. However this can not be considered as a
real problem since real salamanders are just able to walk backward, but not
to do that by swimming.
Being obstacle avoidance while swimming out of the scope of this project,
the solution presented above has not been tested. We believe that this could
be an interesting research topic for further studies.

3.2.3 The Obstacle Avoidance Controller

We divide the robot’s behavior in two subsets corresponding to two distinct
gaits: Forward Walk (FW) and Backward Walk (BW).
As input, robot’s visual field is divided in sectors. For each sector an esti-
mation of obstacle distance and information safety is provided (see Chapter
4.2 for further details).

In Forward Walk robot selects the most obstacle-free direction. Drive signal
is defined according to the distance of the object detected in front of the
robot. Turn signal is defined by selecting the most safe direction within the
visual field sectors in terms of obstacle distance and information safety.
Having selected the desired sector, We can impose an offset to motor’s oscil-
lation corresponding to the designated sector’s angle with Turn = SectorAngle

amplitude
.

Backward Walk is needed to escape dead-ends and avoid moving obstacles
suddently appearing in front of the robot. In both cases, we want Salaman-
dra to go backward until a good option for escaping these situations (using
forward locomotion) is found.
Since we want Salamandra to scan its sides looking for a good escape option,
we set its Turn signal to a constant value.
To define the input for the drive signal in the two escape conditions described
above, we have to observe that:

• when avoiding a moving object the robot has just to establish a suffi-
cient distance between it and the obstacle in order to be able to turn.
In this case the drive signal can be easily controlled by the distance to
the obstacle in front of the robot.

17

• In a dead-end the robot has to go back until an escape is found on
its sides. Therefore in this case the drive signal can not just be con-
trolled by the front distance, because this would produce an oscillating
movement (backward/forward) in front of the dead-end. In this case
controlling the Drive signal with the distance from the furtherst lateral
obstacle seems more adapted: when enough space is detected on the
sides the robot can stop and try to turn.

Those two behaviors can be summarized in the following expression:

drive α min(xcenter, max(X|xcenter)) (3.4)

Where X represents the set of obtained distance measures, and xcenter the
obstacle distance in front of the robot.
Schema 3.2.3 sinthetises the ideas exposed above.

Figure 3.4: The Obstacle Avoidance controller distinguishes two main gaits,
forward and backward locomotion, controlled by different inputs. It has to be
noticed that an active control of the Turn value is only possible when walking
forward.

If the robot is in FW and Turn value is equal to zero we can conclude that
no obstacle is detected. The control can therefore be passed to the predator
detector.

The obstacle avoidance behavior should be triggered once a detected obstacle
is considered as "too close". We define therefore a threshold for obstacle de-
tection T : when the obstacle distance measured in front of the robot becomes
smaller than T , the obstacle avoidance behavior is triggered. The value of

18

T is adapted according to obstacle density. We decided to introduce this
feature having observed that when the environment is almost obstacle-free
one tends to initiate avoidance when an obstacle is still far away. Conversely,
in a clutted environment one tends to approach an obstacle more in order to
be able to move.
A dynamical T can be implemented by adding in our system a decision
buffer, storing the decisions taken in the last decision steps. The following
euristic has been used: if in the last 10 seconds more than 2

3
of the decisions

were about obstacle avoidance, T is decreased, whereas if it’s less than 1
3

t is
increased. T may vary t1 and t2 (see chapter 3.2.1).

3.3 Predator Avoidance and Prey Chasing
Both Predator Avoidance and Prey Chasing behavior are inspired by Reynold’s
Steering Behavior [26]. In case a predator is detected, the robot turns the
opposite way, performing an escape manouver. Drive is set to m, Turn is set
to 1 if predator is detected on the left, whereas it is set to −1 if it’s found
on the right side.
When this is done the predator goes rapidly out of view, which obviously
does not forcely imply that it’s gone away. Since no more information about
predator position can be obtained, the only solution is to force the fleeing
behavior for a certain time. We will call Fear the time the robot continues
escaping before feeling safe. We can refer to this feature as Object Perma-
nence. Humans usually develop this feature around the 9th month.

When a prey is detected the robot turns in such a way that the prey is placed
in front of it, and when it gets sufficiently close its speed scaled until a com-
plete stop in front of the object is performed (Arrival Behavior).
Modulation of the Drive signal necessary to produce such behavior is per-
formed according to the following equation:

drive = m if distance > s1

drive = m · distance
s1

if distance < s1 and distance > s2

drive = 0 if distance < s2

(3.5)

where m is robot’s maximal speed (same value as chapter 3.2.2), s1 is the
distance at which we want to initiate the decrease of robot’s speed, s2 is the
distance from the prey at wich we want the robot to stop.
Turn value is modulated so that the prey is kept as much as possible centered
in front of the robot: Turn = SectorAngle

amplitude
, where Sector Angle is the angle

19

correponding to the sector where the prey center has been located.

If the prey is lost (fast prey, troubles in detection) the robot insists for a
certain time with the turn and drive it was using the last time the prey was
detected. We define this time as perseverance.
We should point out that a prey being too close to the robot may be con-
sidered as an obstacle by the Obstacle Avoidance behavior. This situation
shows the importance of communication between behaviors. The prey posi-
tion detected by the Prey Hunting system are sent to the Obstacle Avoidance
behavior. When evaluating obstacle distance, the latter will skip the distance
measure obtained by the sector containing the prey.

In a situation where both prey and predator are detected, the predator fleeing
behavior should take control given its higher priority. In a case where prey
is very close and predator very far one may however consider an advantage
to "take a risk" and approach the prey instead of simply fleeing. Therefore
we implement a feedback between the Prey Chasing and Predator Fleeing
system, and define as Daring the minimal acceptable distance between a
predator and a prey at which the robot preferes to ignore the danger.

20

Chapter 4
Visual System

A stereo system has been selected for providing input for action selection in
our robots. By running a specific algorithm distance from obstacles can be
estimated, and an appropriate decision can be taken (see chapter 3).

In this context, obstacle avoidance algorithms have been particularly stud-
ied. Algorithms such as [11] (implemented on robot Speedy) and [20] (im-
plemented in Sony’s humanoid robot Qrio) are based on plane extraction.
The advantage of such algorithms is that they can easily determine both
positive (walls) and negative (holes) obstacles. They however perform well
if cameras can be placed ad a certaing height over the ground, and possibly
not perfectly parallel to it. Given our robot’s architecture, our cameras will
be located extremely low, and parallel to the ground. For this reason we
considered this approach not suited to our case.

Zanela and Taraglio propose an application of cellular neural networks (CNN)
to stereo vision [4]. CNN are analog circuits featuring characteristics of both
cellular automata and neural networks, capable of processing signals in real-
time. Interestingly the proposed system is able to produce a sufficiently
precise depth map even in case of discrete camera misaligments, contrast dif-
ferences and noise addition [3]. System seems however extemely sensitive to
light changes. Results have been presented as software simulations, though
this approach is clearly harware-oriented.

Our obstacle avoidance system is inspired by the Borenstein’s Vector Field
Histogram [16][6] (VFH). This algorithm, based on previous work of Carnegie-
Mellon University [12], has been tested on robots endowed with sonar sensors.
Since this algorithm is adapted to interprete noisy sonar input, we consided

21

that it can also be adapted to stereo vision.
Perceived word is divided in a Histogram Grid, every cell containg certainity
information about obstacle presence. Based on this data a polar histogram
(array of cells representing obstacle distance in equally sized sectors of the
visual field) is generated, and its information used to determine where to
steer. Robot tries to always keep the maximal speed, unless an abstacle gets
too close.

The main difference in our algorithm is that a polar information is directly
generated. Also, information certainity value is produced in a radically dif-
ferent way. Finally, as shown in section 3.2, our decision process allows
a smoother control of speed using a non-linear function defining repulsion
from obstacles. This function also permits backward locomotion, which is
not the case in VFH.

Compared to most of the existing robots, Amphibot and Salamandra present
an additionnal difficulty: since locomotion is obtained through body oscilla-
tions, camera position respect to trajectory is not fixed. Moreover, due to
possible body drifting and absence of an external supervisor, robot direction
and speed can not be correctly estimated.
In the following sections we show how to provide our reactive decision making
process with consistent input information. In particular, we will show how
obstacle position can be detected and correctly mapped in the robot visual
field. Finally a way to profit of stereo information to create an effective prey
and predator tracking system will be presented.

4.1 Camera Field and Visual Field

4.1.1 Introduction

As said in chapter 3.1, Our control architecture do not rely on the creation
of a precise map of the environment. Just a minimal representation of the
world (basically just the a knowledge of the prey and predator characteris-
tics is introduced) is needed: action selection relies mostly on a very short
memory of perceived inputs.

Our task in to map the Camera Visual Field into the real Visual Field so
that visual inputs are interprested correctly (see Figure 4.1.1).
First, we decompose both the Camera Field and the visual field is sectors
of equal size. Visual Field data consists in a polar representation of the

22

environment in front of the robot, and is constantly updated by readings
from Camera Field spanning over it.
Information safety is identified by adding an information age field AgeMax
to the Visual Field. When a sector is not updated for a certain time, its
value is declared as not valid.

Figure 4.1: Because of head movement, robot visual field is bigger than the
field covered by its cameras. The cell highlighted in rose is the one corre-
sponding to the robot trajectory.

To map correctily cameras position in the real vision field we decompose the
robot movement in two components: the sinusoidal oscillation of the body
and the angular speed caused by a Turn value different from zero.

4.1.2 Head Angle and Angular Velocity Estimation

The effect of a Turn value different from zero is to introduce an angular
velocity component on the robot. By fixing the referential on the robot, the
effect of a turn in one direction is is to "rotate the world" of the same amout
in the opposite direction. This corresponds to a shift in the array represent-
ing the sectors of the Visual Field.
As a result the cell containing data about ostacles located exactely in front of
the robot is always in the same position in the array (rose cell in Figure 4.1.1).

23

Estimation of head angle is not trival: to do it we should know which part
of its robot’s spine is parallel to its trajectory. If the robot is producing a
standing weave (such as Salamandra walking on the ground), such positions
are located at 1/4 and 3/4 body length. Ideally we should sum the infinites-
imal angles from head to 1/4 of body length to obtain a perfect evaluation,
but since just two motors are available, we will take them as a good approx-
imation of head angle.
For a robot producing a travelling weave (such as Amphibot and Salaman-
dra while swimming) of exactely one body length, such position is variable,
and located between the head and 1/4 of body length. For Amphibot this
corresponds to one of the first four motors. The better approximation is ob-
tained by summing the angles of all the motors until the following stopping
condition is verified:

abs(xn−1) − abs(xn) < abs(xn−2) − abs(xn−1) (4.1)

where xn are the motor angles and n = 1..4.

Finally, we should consider that the measured motor positions include the
effect of the Turn parameter (which imposes a certain offset to the motors).
Since turning effect is already taken into account in the World Rotation
phase, we have to substract it from the setpoint positions of all the motors
we take into account. Head oscillation effect is therefore calculated according
to the following equation:

HeadAngle =
n∑

i=0

xi − n · 2 · Turn · a (4.2)

Where xi is i-th motor angle, a is robot’s amplitude and n respects the stop-
ping condition above.

Field Angle size can be estimated by finding the maxima of Head Angle, and
adding the Camera Angle to it.

FieldAngle = max(
3∑

i=0

xi(t)) + CameraAngle (4.3)

with 0 < t < π and xi(t) the i-th oscillator’s value at time t.

A correct representation of the world is therefore obtained by shifting the
array representing the Visual Field according to the Drive and Turn value
(rotating the world), and then updating part of it according to Head Angle.

24

4.2 Obstacle Detection
Robot Stereo System hardware and Software for Measurement of Obstacle
distance have been developed by Elia Palme [23].

Stereo Vision is based on the concept of disparity : an object filmed by two
different point of views will be located in two slightly different positions on
the x-axis of the two obtained images (see Figure 4.2). Disparity provides
and evaluation of object distance, since the more its value is high, the more
the object is close to the stereo system and viceversa.
Our stereo system is based on two Firefly cameras, using lenses with an
opening of about 60◦ (that’s the value we will use for the variable Camera
Field presented in previous chapter).

Figure 4.2: Stereo Vision allows to determine the distance of a specific object
by evaluating its disparity on the cameras. Disparity x1 − x2 is the position
difference of the same object on the x-axis of the two input image. The higher
the disparity, the closer the object. For further insides about the stereo vision
system of our robots, see [23].

To determine its value one has however to be able to define a correspondence
between the pixels on the two images.
This problem is not trivial, and goes through several steps. First both input
images are undistorted (to remove fish-eye effects) and rectified (to align scan
lines).

25

Assuming that cameras are perfectly aligned, one should be able to find the
correspondence to a pixel on a specific line in an image on the same line in
the other image.
Unfortunately the only criteria for finding a possible match is a similarity in
pixel intensity. Since usually more than one pixel may match a certain in-
tensity, a technique based on sliding windows is applied. A fixed window size
has been set, and thanks to a correlation function it is possible to compute
the correspondence between two windows in the two images.

Algorithm outputs a distance map obtained by converting disparity values
in centimeters. Input is divided in a nxm grid, and for cell a distance esti-
mation is provided.

4.3 Prey and Predator Detection
Prey and Predator Detection on Amphibot II was already explored by Benoit
Rat [25], where tracking was based on color detection. Robot was able to
track and follow a rose sphere. Our project can not unfortunately reproduce
the same results, since colors are poorly reproduced by our cameras. We
decided therefore to track shape instead of color.
Prey an Predator will be represented with two spheres of different sizes, and
tracked using information provided by a Circular Hough Transform run on
a stereo input [28]

Circular Hough Transform is an algorithm concieved to identify circles into
an grayscale image. To do this, pixels being part of an object edge have first
to be identified by running a Canny edge detector [8]. Edges are recognis-
able since their intensity gradient is high, therefore by fixing an appropriate
threshold is possible to identify most of them. Canny edge detector sets all
edge pixels to white, whereas the others are set to black.

Afterwards, white pixels udergo the voting phase into a parameter space. For
circles, parameters space is three-dimentionnal, since circle equation is:

(x − xi)
2 + (y − yi)

2 = r2
i (4.4)

Where (xi, yi) is the coordinate of the circle’s center, and ri its radius.
Every white pixel gives a vote (increase a counter) to all coordinate in the
paramenter space representing a circle it may belong to. Points in the pa-
rameter space receiving a high quantity of votes are more likely to represents

26

the (xi, yi, ri) values of a circle into the image. Thus another threshold is
necessary to define the minimal quantity of votes needed to consider a given
coordinate in the paramenter space as a circle.
The output of Circular Hough Transform is a list of the parameters of all the
circles found into the image.
We have to point out that this techninque is applicable to every sort of shape
one can parametrize. Circles have been selected over other shapes since just
three parameter are sufficient to describe a circle, whereas more complicated
shapes would need a higher number of parameters, thus making the voting
phase more computationnally expensive.
Circular Hough Transform is run on both camera inputs. Since aliases may
be detected, a left-right check is performed. Circle found on both cameras
are coupled if their measured radius and vertical position (y-axis) are similar.
As Figure 4.2 shows, this removes most of the aliases.

The disparity (difference of position on the x-axis) of the position of the
circle center in the two images gives us an indication of its distance from
the cameras. Knowing the relation between circle distance and its apparent
radius, it’s therefore possible to recognize a circle of a specific size.
To accept a determined circle as being a prey or predator, it’s sufficient to
compare the expected circle radius according to disparity value with the ra-
dius found through the Hough Transform.
This supposes that a knowledge about the designated targed is introduced in
the system. In section 5.2 measures relating object distance with apparent
radius for three targets of different size are shown.

Further optimisations may include a color check in the neighborhood of the
center of a circle identified as a target by the algorithm presented above.
Color reproduction of our cameras is indeed poor and can not be used as
main feature for prey selection, but may be used for confirming a selection,
using for instance color uniformity information. Also, it may be possible to
distinguish two speres of same size according to their color, provided that
their respective intensity is extremely different (e.g. black and white).

Once a prey or predator are recognised, estimated distance is stored and their
x position relative to camera is converted in absolute position (mapping in
robot’s Visual Field) in the same way obstacles are mapped.

27

(a) All circles found by the Circular Hough
Transform. Aliases are also detected.

(b) Circles detected after left-right size and
vertical position check. Aliases are removed.

(c) Prey detected after consistency check
with data about prey’s disparity-radius re-
lation.

Figure 4.3: Phases of the prey and predator tracking algorithm. Being insen-
sitive to perspective effects, the algorithm is able to detect the target having
the correct size.

28

Chapter 5
Implementation

Initially our algorithm has been implemented on a virtual robot in a 3D en-
vironment using the Webots [31] software. The use of such an environment
has been precious to observe the behavior of the robot in an ideal condition
(i.e. in an environment where obstacles, predators and preys can be easily
detected).

Afterwards, implementation on the real robot has been tested using the robot
Amphibot II. The choice of this robot for a first implementation, though
forced since Salamandra was broken, has been precious since in allowed us to
test our algorithm on a robot presenting less computer-vision-related prob-
lems (mainly, the robot’s cameras do not oscillate sidewise). Implementation
on Salamandra was also performed, but tests were mainly performed on Am-
phibot.
In collaboration with Elia Palme a unique software endowed with a graphic
interface able to control both robots has been developed.

Tests on real robots were performed in a uniform closed 2.5 x 4 meters arena.
A 1.7 meters turning arm has been placed in the middle of the arena’s long
side, and is used to suspend all the cables and the trigger over the robot.
Since friction during arm rotation is extremely low, the robot was able to
drag it by itself aroud the arena, minimizing human intervention.
Finally, since the vision algorithm recognises obstacle distance only if the
obstacle itself is covered by a texture, we covered arena’s walls with black
and white wood pictures.

29

Figure 5.1: The testing Arena.

5.1 3D Simulation

5.1.1 Environment

The controller presented in chapter 3 has been implemented on a Webots 3D
model of Salamandra adapted from a previous version developed by Yvan
Burquin.
This model respects the constraints of the real robot in term of servo move-
ment, and allows the user to exploit the input provided by two virtual cam-
eras having an opening of 60◦ each.
Since the objective of this project is to study the robot’s behavior and not
to develop its stereo vision algorithm, we tailored a virtual environment in
which obstacles, predators and preys could be easily detected (see Figure
5.1.1).
Ground and sky have been set to a white color whereas obstacles, represented
by several cubes of identical sizes, have been defined as black. In this way
the obstacle distance at a certain turning angle could be easily estimated by
calculating the average intensity of pixel in a determined sector of the image
produces by the merging of the inputs of the two virtual cameras.
A predator and a prey randomy moving in the environment have also been
introduced. Predator was represented by a red spot, whereas a green spot
represented a prey. Detection of those objects could be obtained by simply

30

Figure 5.2: Screenshot of the Webots environment. In black an obtacle repre-
senting a dead-end. The green spot represents a prey, the red spot a predator.

looking for red or green pixels in the input image.

Through this environment an potential problem of our architecture could be
avoided: if a prey comes too close to Salamandra, it should be considered as
an obstacle, thus triggering the action.

5.1.2 Robot Locomotion

Relation between Drive signal, amplitude and frequency was defined accord-
ing to [14].
According to the following biological observations, head motion was however
modified compared to the original model.
In general, animals always turn the the head in the direction of the most
interesting object, before the rest of the body eventually realignes itself to it.
Experiments on humans and rats [24] [27] [13] have pointed out that a turn-
ing movement is actually always preceded by head rotation. This seem to be
a general feature for all animals.
We therefore try to stabilize the head so that it looks always in the desired
direction. To counterbalance the oscillations of a body producing a standing
wave we must take into account that the head angle is shifted by the com-
bined action of all motors between the head and the half length of the robot

31

(true only if a phase of 2π is defined between head and tail). The head will
have to move in the opposed way with an angle corresponding to the sum of
all motor positions. With this solution the robot head moves laterally, but
always looks forward.

To obtain a head reacting faster than the body during turn initiation, we in-
crease the convergence speed a0 of the oscillators controlling the head. This
ensures that when a turn is imposed to the salamander, the head will be the
first to converge to the new desired axis of oscillation.
Empyrical observations lead us to the conclusion that a0 = 4 ∗ a1..6 produces
the most realistic behavior.

5.1.3 Robot Behavior

Our simulated robot’s position has been tracked in several simple situations
of obstacle avoidance, prey chasing and predator fleeing in order to show the
effect and relevance of the parameters controlling it.
Figure 5.1.3 shows robot’s behavior in a situation where both a prey and a
predator are detected, with different values of Fear and Daring (see section
3.3). Behavior may vary from completely ignoring the predator to fleeing
from it as fast as possible.
Interstingly a value of Fear too high may lead to a panicking-like behavior:
once a predator is detected a sharp turn is performed, but since Fear is high
this turning status may continue until about a 360◦ turn is completed. At
that moment predator is detected again, causing the Predator Fleeing be-
havior to be triggerend again.

Figure 5.1.3 show how Obstacle Avoidance behavior is affected by the value
of Reactivity (i.e. the minimal time between the selection of two different
behaviors).
If reactivity is set to zero robot reacts instantaneously to every sort of input.
While this may be considered as positive in case of sudden obstacles appear-
ing in front of the robot, this causes the robot to move in a very irregular
way.
We can see that low values of Reactivity still allow obstacle avoidance, but
behavior does not look natural since the Obstacle Avoidance controller is con-
tinuosly triggered. This phenomena is due to robot’s body oscillations: when
cameras are pointing forward obstacle is detected and a turning manouver
is launched, but as soon that cameras point sidewise, free space is detected
and Obstacle Avoidance behavior is turned off.

32

Figure 5.3: Top view of trajectories performed by the our simulated salaman-
dra (referential fixed on its center of gravity). In position (3, 2.5) a prey is
located (cross symbol), whereas in position (6, 2.5) (out of the plot) a predator
has been placed. Both entities are motionless. With high Daring (in red) the
robot decides to ignore the predator and approaches the prey. With low Dar-
ing and low Fear (in green), prey is ignored and a discrete predator avoidance
manouver is performed. Finally, with low Daring and high Fear (in blue) a
complete fleeing manouver is performed as soon as predator is detected.

Conversely, if reactivity is set to a too high value, sudden obstacles can’t be
detected on time. Also, the robot tends to turn away excessively from static
obstacles as the one presented in Figure 5.1.3.

33

(a) Top view of robot’s trajectory

(b) selected Turn value along time

Figure 5.4: Obstacle avoidance behavior using different values for Reactivity
(0, 1.5 and 3 seconds). Without reactivity (set to 0 seconds) the robot is still
able to avoid the obstacle, but as subfigure (b) shows, the obstacle avoidance
behavior is switched on and off continuously, producing an hesitating and un-
natural gait. With values bigger than zero turning behavior is more constant.
The more Reactivity gets big, the more the robot will go far from obstacle.

34

5.2 Prey Tracker Calibration
We selected as prey a 6 cm sphere, painted with a fluorecent yellow paint.
To evaluate the relation of its size with the disparity and apparent radius
obtained through the Circular Hough Transform (see chapter ref), we mea-
sured those values between 20 and 110 cm in from of the stereo system.
In figure 5.2 we show the results for our prey (in green) and for two other
targets, one bigger (10 cm, in red) and one smaller (4.5 cm, in blue).
It turns out that, in an ideal case, our system is supposed to be able to
recognise two different balls having a difference of 1.5 cm in size at one meter
of distance.

Measure for our designated target are hard-coded in the robot controller.
Figure 5.2 shows us how the difference between apparent radiuses becomes
significant, the more the target gets close to the cameras.
This difference will allow the robot to distinguish the prey within other cir-
cles in other positions, according to its size.

Arrival behavior parameter (see chapter 3.3) s1 is set to the maximal distance
the prey is detetected. Depending to illumination condition this distance
varies between about 80 and 110 centimenters for the smallest target (the
biggest one can be detected until abot 3 meters), we set therefore s1 = 80.
s2 is set to the closest distance the Tracker is able to detect the prey. Once
again, depending on illumination, this distance may vary between 10 and 20
cm (for all targets). We set therefore s2 = 20.

5.3 Amphibot II

5.3.1 Implementation

Amphibot II is a snake robot realized with 8 body elements mounted on two
passive wheels each, and is concieved to move producing a traveling wave
along its body (lamprey-like locomotion).

Our control algorithm has been implemented on a computer communicating
with the robot trough a wireless signal. The only values which can be pro-
vided to the robot are amplitude and frequency of oscillation, turning radius
(those values are identical for all body elements), oscillation gain and number
of travelling waves per body length.
We decided to fix the values of the last two parameters. Gain is a parameter

35

(a) Target Distance vs. Disparity

(b) Target Distance vs. Target apparent Radius

Figure 5.5: In Blue the measures performed with a 4.5 cm ball, in red mea-
sures with a 10 cm one. Being disparity measure (obviously) about the same
for the three targets, we should have measured it just once. We decided to
measure it for every object anyway to detect eventual systematic error.

36

Figure 5.6: Amphibot II equipped with the stereo system.

relevant during serpentine swimming (higher speeds can be reached by am-
plifying the oscillation of the robot’s tail) but on terrestrial locomotion has
almost no influence. Therefore we set the Gain to 1 for all body elements.
Amplitude, Frequency, Gain (related to the Drive signal) and Turn are pa-
rameters were defined by our controller.

To increase the quality of captured images we decided to reduce the ampli-
tude of oscillation of the first element, reducing therefore the motion blur
effect. To do this we multiplied the calculated values for this block by a
gain of 0.5. This reduces the amplitude by half, therefore reducing motion
blur and producing better representation of the represent more precisely the
enviroment present in the front of the robot. This solution becomes precious
to increase image analysis performance by adding redundancy.

In preliminary tests it turned out that an optimal relation between ampli-
tude and frequency through a drive signal was essential to allow Amphibot
to produce a smooth serpentine locomotion. In fact, it turned out that a
"bad" Drive tended to produce lateral drifting in robot’s tail. We performed
therefore a set of systematic tests. Setup and results are presented in chapter
??.

37

5.3.2 Drive Signal and Visual Field Size

To assess the performance of the robot give different values of frequency and
amplitude we performed a systematic test. Such a test was already per-
formed by Alessandro Crespi [9]. The need to perform it is due to the fact
that robot’s wheels have been changed, thus making its friction with the lab’s
soil different and thus its original drive signal no more optimal.

We made the robot move on a straight line during 5 seconds and measured
the covered distance by varying its amplitude and frequency. Each measure
was obtained by averaging three indipendent measures. We decided to vary
amplitude value between 20 and 60 degrees with a step of 5 degrees. This
range was selected after observing that with angles smaller than 20 degrees
the robot never moves, whereas angles above 60 may compromise motor’s
integrity. Frequency was varied between 0 and 1.2 Hz with a step of 0.2 Hz.
Once again, the upper bound was fixed after observing that higher frequen-
cies may be dangerous for Amphibot ’s motors.

Figure 5.7: Robot’s speed in terms of amplitude and frequency, with phase and
gain fixed to 1. A total of 63 measures have been performed (9 amplitudes, 7
frequencies).

38

We have to point out that the space covered in the three measures performed
for each set of parameters never differed of more than 0.05 m. We can
conclude that robot’s locomotion is extremely robust.
According to the measured data the following relation between drive signal
and amplitude and frequency has been extracted:

a = abs(30 · drive + 20) if 0.1 < d < 1 or − 1 < d < −0.1
f = d if 0.1 < d < 1 or − 1 < d < −0.1
a = f = 0 else

(5.1)

Drive d varies between −1 and 1, representing the maximal achievable speeds
in forward and backward locomotion respectively.
Amplitude a and frequency f are forced to 0 for a drive between −0.1 and
0.1 since during measures we observed that, in any case, the robot is unable
to move with such a small drive. The obtained locomotion is very effective,
though small drifting on the tail elements is still noticeable when Amphibot
performs sharp turns at low speeds.

It turns out that the maximal amplitude achievable by the robot is 60 de-
grees. Knowing that used cameras have an opening (Camera Field) of 60
degrees, using equation 4.3 we obtain Visual Field= 216.78.

5.3.3 Angular Speed estimation

To assess the angular speed of the robot we performed some systematic test
by varying the Drive and Turn signals. Unfortunately it turned out that an-
gular speed is greatly affected by the charge status of the batteries connected
to each motor.

Figure 5.3.3 shows this effect. We loaded completely Amphibot ’s batteries,
then let it move with Drive = 0.6 and Turn = 0.5 and assessed its angular
speed approximatively every 2 minutes. Angular speed assessment was per-
formed by measuring the time needed to complete a loop. Values obtained
are shown in figure 5.3.3.

Since battery charge directely affects the motor torque, we observe that a
drifting on tail elements emerges after about 18 seconds of running time.
This means that after about 18 minutes the values selected for the Drive
signal are no more optimal.
Given the importance of battery charge on robot performance, we should

39

Figure 5.8: Amphibot’s angular speed with drive = 0.6 and turn = 0.5.
Battery charge status clearly influences motor performance. After about 50
minutes of uninterrupted work performance suddently decays. Just one mea-
sure after this time exists (at 3180 seconds), since afterwards robot was just
unable to turn in the designates space.

include its value into the parameters controlling the drive signal. Unfortu-
nately at the moment there is no way to evaluate the Amphibot batteries’s
charge status, thus a correct assessment of angular speed is not possible.

The second phase of the system mapping Camera and Visual Field (world ro-
tation) can not therefore be entirely implemented. The first phase is however
sufficient to produce a consistent field of view, since its values are constantly
updated by head oscillation, and old values are removed.
For all our experiments we will assume that the relation between drive signal,
amplitude and frequency is based on a set of measures taken with sufficiently
charged batteries.

40

5.3.4 Obstacle avoidance

As said in chapter 4.2, the stereo vision algorithm is able to detect obstacle
at a maximum of 1.5 meters. This represents therefore an upper bound for
obstacle detection T . From [15] we know moreover that the minimal turning
radius for Amphibot is 0.25 meters, which represents a lower bound for ob-
stacle detection. Obstacles closer than this distance should be avoided using
backward locomotion.
Finally we know from chapter that the dynamic threshold for obstacle avoid-
ance T should be smaller than t1 (switch from forward to backward loco-
motion) and bigger than t2 (switch from backward to forward locomotion).
Therefore, the values selected for the obstacle avoidance behavior have been
t1 = 0.3, t2 = 1.25 and 0.5 < T < 1.
Figure 5.3.4 shows two obstacle avoidance situations.

41

(a) Avoding a wall (b) Avoidance using backward loco-
motion

Figure 5.9: From top to bottom, Amphibot II avoiding obstacles. In figure
(a) simple wall avoidance is shown (one image per second). Image (b) shows
a special case in wich the robot is too close to an obstacle to avoid it (dis-
tance smaller than threshold t1, see chapter 3.2.1). Backward locomotion is
performend until an escape is detected (one image every two seconds).

42

Chapter 6
Conclusion

We have shown how a simple control system based on a subsumption archi-
tecture is able to control in real-time a robot using visual inputs.

In particular we have tackeled the problem of how to perform obstacle avoid-
ance in an upredictable environment through minimal path planning provided
possibly noisy stereo information (chapter 3).

What distinguishes Amphibot II and Salamandra Robotica from most of the
other existing robots is that their locomotion is based on body oscillation.
We overcame the problem of correctly mapping the stereo vision input into
the real field of view by computing an approximation of cameras’ angle. Fur-
ther improvements in the hardware may improve the quality of our algorithm,
in particular allowing the implementation of the world rotation phase pro-
posed in section 4.1.2.

Concerning the prey and predator detection, we proposed a fast and effec-
tive technique to track different types of circular targets and distinguish them
according to their size and color. Performed tests were limited to size distinc-
tion, we believe that the addition of a color distinction phase may improve
the quality of the algorithm.

Finally, as already shown in previous works, we have confirmed that an opti-
mal relation between amplitude and frequency of oscillation in Amphibot is
essential to produce an effective locomotion (section 5.3.2).
Furthermore we have proved how the robot performance may be largely af-
fected by its battery charge (section 5.3.3). Scanning battery charge status
is at the moment non possible on the robots. Adding this feature may lead

43

to an improvement in their locomotion. An even better solution would be
however to add a step up to motor controller, so that performance of the
latter could become independent to battery charge.

Implementation part of this project revealed to be particularly tricky due to
several physical constraints represented by the robot and by the neecessity of
sharing resources with other studends. On this point, I would like to thank
again Elia Palme for sharing his stereo system with me.

Documentation and movies about this project can be found in [1].

44

Bibliography

[1] http://birg.epfl.ch/page63116.html.

[2] K. Ali and R. Arkin. Implementing schema-theoretic models of animal
behavior in robotic systems, 1998.

[3] Sergio Taraglio Andrea Zanela. A robustness study of a cnn based stereo
vision algorithm. Fifth IEEE International Workshop on Cellular Neural
Networks and their Applications, pages 145–168, april 1998.

[4] Sergio Taraglio Andrea Zanela. Sensing the third dimention in stereo
vision systems: a cellular neural networks approach. Engineering Appli-
cations of Artificial Intelligence, (11), 1998.

[5] Ronald C. Arkin. Motor schema-based mobile robot navigation. Proceed-
ings of the IEEE International Conference on Robotics and Automation,
April 1987.

[6] J. Borenstein and Y. Koren. The vector field histogram - fast obsta-
cle avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, 7(3):278–288, 1991.

[7] Rodney A. Brooks. How to build complete creatures rather than isolated
cognitive simulators. Architectures for Intelligence, 1991.

[8] John F. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(1),
november 1986.

[9] A. Crespi and A.J. Ijspeert. AmphiBot II: An amphibious snake robot
that crawls and swims using a central pattern generator. In Proceedings
of the 9th International Conference on Climbing and Walking Robots
(CLAWAR 2006), pages 19–27, 2006.

45

[10] Alessandro Crespi. Design and control of amphibious robots with mul-
tiple degrees of freedom. EPFL, Phd Thesis, 2007.

[11] Gregory Hager Darius Burschka, Stephen Lee. Stereo-based obstacle
avoidance in indoor environments with active sensor re-calibration. may
2002.

[12] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal
of Robotics and Automation, RA-3(3), 1987.

[13] Giuseppe Amato Giuseppe Crescimanno, Adriana Emmi. Effects of in-
traaccumbens microinjections of quinpirole on head turning and circling
movement in the rat. Pharmacology Biochemistry and Behavior, 60(4),
1998.

[14] A. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen. From swim-
ming to walking with a salamander robot driven by a spinal cord model.
Science, 315(5817):1416–1420, 2007.

[15] A.J. Ijspeert and A. Crespi. Online trajectory generation in an amphibi-
ous snake robot using a lamprey-like central pattern generator model.
In Proceedings of the 2007 IEEE International Conference on Robotics
and Automation (ICRA 2007), pages 262–268, 2007.

[16] Y. Koren J. Borenstein. Real-time obstacle avoidance for fast mobile
robots in cluttered environments. may 1990.

[17] Jennifer A. Cook Joel A. Vilensky. Do quadrupeds require a change in
trunk posture to walk backward? Journal of Biomechanics, (33), 2000.

[18] Allen Newell John Laird and Paul Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence, (33), 1987.

[19] O. Kathib. Real-time obstacle avoidance for manipulators and mobile
robots. IEEE International Conference on Robotics and Automation,
pages 145–168, may 1985.

[20] Jens-Steffen Gutmann Takeshi Ohashi Kenta Kawamoto
Takayuki Yoshigahara Kohtaro Sabe, Masaki Fukuchi. Obstacle
avoidance and path planning for humanoid robots using stereo vision.
april 2004.

[21] Marvin L. Minsky. Society of Mind. Simon & Schuster, March 1986.

46

[22] George V. Lauder Miriam A. Ashley-Ross. Motor patterns and kinemat-
ics during backward walking in the pacific giant salamander: Evidence
for novel motor output. (78), 1997.

[23] Elia Palme. Stereo vision library for obstacle avoidance applications.
University of Fribourg, Master Project, 2007.

[24] Diega Russo Giuseppe Crescimanno Arcangelo Benigno Pier Vin-
cenzo Piazza, Michele Ferdico and Giuseppe Amato. Circling behavior:
ethological analysis and functional considerations. (31), 1989.

[25] Benoit Rat. Adding vision to a salamander/snake-robot. EPFL,
Semester Project, 2007.

[26] Craig W. Reynolds. Steering behaviors for autonomous characters.
Games Developers Conference, 2002.

[27] Brian L. Day Richard C. Fitzpatrick, Jane E. Butler. Resolving head
rotation for human bipedalism. Current Biology, (16), August 2006.

[28] Peter E. Hart Richard O. Duda. Use of the hough transformation to
detect lines and courves in pictures. Comm.ACM, 15(1), january 1972.

[29] Jean M. McCrory Erez Morag Robert W.M. van Deursen, Timothy
W. Flynn. Does a single control mechanism exist for both forward and
backward walking? Gait & Posture, (7), 1998.

[30] P. Chalasani J. Cheng O. Etzioni M. Ringuette T.M. Mitchell, J. Allen
and J.C. Schlimmer. Theo: A framework for self-improving systems.
Architectures for Intelligence, 1991.

[31] Webots. http://www.cyberbotics.com. Commercial Mobile Robot Sim-
ulation Software.

[32] J. Borenstein Y. Koren. Potential field methods and their inherent limi-
tations for mobile robot navigation. Proceedings of the IEEE Conference
on Robotics and Automation, pages 1398–1404, April 1991.

47

Appendix A
Amphibot II used Parameters

name value description
t1 0.3 m inversion forward/backward
t2 1.25 m inversion backward/forward
T [0.5, 1] Threshold for obstacle avoidance (caution)
q 1 drive convergence
s e sigmoid steepness
m 0.75 max drive value (haste)
tr 1 s reactivity

persistence 3 time before considering a prey as lost (in seconds)
fear 3 time before considering a predator sufficiently far (in seconds)

daring 1 min distance from a predator when a prey is also detected
n x m 5x5 Disparity map grid size

maxAge 3 time before considering a distance measure too old (in seconds)
s1 0.8 m distance from prey where deceleration is initiates
s2 0.2 m halting distance inf front of a prey

48

Appendix B
Data CD Organisation

Controller : C++ source codes. Most recent controller is contained in Robot
Controller. CircularHoughTest contains a demonstration of the
Prey tracker. snakeOptimisation and salamanderOptimisation con-
tains controllers for Amphibot and Salamandra respectively.

Data : performed measures in .csv format. Can be provided to Matlab for
visual output.

Matlab : Scripts used to produce the images presented in the report or to
demonstrate some features of our controlelr

Movies : videos about Amphibot, the prey tracker and the Webots simulation

Papers : cited papers

Presentations : mid-term and final presentation

Report : this report LATEX source code

Webots : Webots worlds used for simulations

49

	Project Objectives
	Amphibot II and Salamandra Robotica
	The Robots
	CPG controller
	Control of speed and direction

	High Level Behavior
	Control Architecture
	Obstacle avoidance
	Relation Between Robot's Gait and Drive Signal
	Relation between Drive Signal and Obstacle Distance
	The Obstacle Avoidance Controller

	Predator Avoidance and Prey Chasing

	Visual System
	Camera Field and Visual Field
	Introduction
	Head Angle and Angular Velocity Estimation

	Obstacle Detection
	Prey and Predator Detection

	Implementation
	3D Simulation
	Environment
	Robot Locomotion
	Robot Behavior

	Prey Tracker Calibration
	Amphibot II
	Implementation
	Drive Signal and Visual Field Size
	Angular Speed estimation
	Obstacle avoidance

	Conclusion
	Bibliography
	Amphibot II used Parameters
	Data CD Organisation

