
Hardware acceleration for image
processing

Semester projectJanuary 2008, EPFL, I&C, BIRGAuthor Lukas BendaSupervisors Pierre-André MudryProf. Auke Ijspeert



ii



iii



Contents

1 Introduction 1
2 Methods 3

2.1 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Material used . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Sliding window architecture . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Three images lines FIFO . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Image border copy . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 5x5 processing window . . . . . . . . . . . . . . . . . . . . . 9

2.4 Communication and memory management . . . . . . . . . . . . . . 10
2.4.1 Register transfers . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 DMA transfers . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Parameters transfer . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Processing primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Implemented primitives . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Gaussian �lter . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Gradient image . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Median/Min/Max �lter . . . . . . . . . . . . . . . . . . . . 21
2.5.5 Canny edge detector . . . . . . . . . . . . . . . . . . . . . . 24

2.6 C Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Communication with the FPGA . . . . . . . . . . . . . . . 29
2.6.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.3 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Results 31
3.1 Global comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Relative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Hardware time analysis . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Conclusion 37
4.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 External RAM memory . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Larger processing window . . . . . . . . . . . . . . . . . . . 37
4.1.3 Processing immediately after reception . . . . . . . . . . . . 38

5 Acknowledgments 41
References 43

iv



List of Figures

2.1 Image representations . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Image processed by a sliding window. The convolution is given here

as an example of processing primitive. . . . . . . . . . . . . . . . . 5
2.3 Global architecture of the system . . . . . . . . . . . . . . . . . . . 6
2.4 A Virtex II FPGA similar to the one used in this project . . . . . 6
2.5 A Logitech QuickCam Web . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Hardware architecture of the sliding window . . . . . . . . . . . . . 8
2.7 Image border copy for di�erent sizes of processing window . . . . . 10
2.8 FPGA usage for the sliding window . . . . . . . . . . . . . . . . . 10
2.9 Architecture including a block RAM memory . . . . . . . . . . . . 11
2.10 Software image division . . . . . . . . . . . . . . . . . . . . . . . . 12
2.11 Operators design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.12 FPGA usage for an Operator unit . . . . . . . . . . . . . . . . . . 14
2.13 FPGA usage for Operator unit (containing four operator unit) . . 14
2.14 Gaussian distribution with mean (0,0) and σ = 1 . . . . . . . . . . 15
2.15 Gaussian discrete kernel . . . . . . . . . . . . . . . . . . . . . . . . 15
2.16 Gaussian �lter convolution . . . . . . . . . . . . . . . . . . . . . . . 16
2.17 Gaussian �lter example . . . . . . . . . . . . . . . . . . . . . . . . 16
2.18 FPGA usage for the Gaussian �lter . . . . . . . . . . . . . . . . . . 17
2.19 Gradient function approximation . . . . . . . . . . . . . . . . . . . 18
2.20 Gaussian discrete kernel . . . . . . . . . . . . . . . . . . . . . . . . 18
2.21 Gaussian �lter convolution . . . . . . . . . . . . . . . . . . . . . . . 19
2.22 Gradient image example . . . . . . . . . . . . . . . . . . . . . . . . 19
2.23 FPGA usage for the Gradient �lter . . . . . . . . . . . . . . . . . . 20
2.24 Architecture for sorting 3 pixels . . . . . . . . . . . . . . . . . . . . 21
2.25 System global architecture . . . . . . . . . . . . . . . . . . . . . . . 22
2.26 Median �lter example . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.27 FPGA usage for C2 (two pixel comparator) . . . . . . . . . . . . . 23
2.28 FPGA usage for C3 (three pixel comparator) . . . . . . . . . . . . 23
2.29 FPGA usage for median �lter . . . . . . . . . . . . . . . . . . . . 23
2.30 Canny edge detector algorithm . . . . . . . . . . . . . . . . . . . . 24
2.31 Possible directions for the gradient phase . . . . . . . . . . . . . . 24
2.32 Simpli�ed phase calculations . . . . . . . . . . . . . . . . . . . . . 25
2.33 Hardware schema computing the phase . . . . . . . . . . . . . . . . 25
2.34 FPGA usage for gradient Magnitude and Phase . . . . . . . . . . . 26
2.35 Example of non-maxima elimination for a particular pixel . . . . . 26
2.36 Hardware schema for non-maxima elimination . . . . . . . . . . . . 27
2.37 FPGA usage for Non-maxima elimination . . . . . . . . . . . . . . 27
2.38 Canny edge detector steps . . . . . . . . . . . . . . . . . . . . . . . 28
2.39 Cone and rodes sensitivities . . . . . . . . . . . . . . . . . . . . . . 30

v



3.1 openCV functions processing time . . . . . . . . . . . . . . . . . . 32
3.2 Hardware processing time . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Processing times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Processing times relatively to a hardware monopass processing time 34
3.5 Subdivision of hardware processing time . . . . . . . . . . . . . . . 35
3.6 Subdivision of hardware processing time . . . . . . . . . . . . . . . 35
3.7 FPGA usage for the whole system . . . . . . . . . . . . . . . . . . 36
4.1 Processing times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



vii



viii



Chapter 1

Introduction

Today images are more and more part of our everyday life. We use cell phones,
webcams and high resolution cameras and we can modify our photos on our com-
puter. In industry this trend is visible as well, very often combined with some sort
of image processing. We can see security systems identifying cars' licence plates,
character recognition systems to recognize addresses on letters as well as medical
imagery we can �nd in hospitals.

The goal of this semester project is to obtain a hardware acceleration system
for image processing. There are essentially two reasons to implement this kind
of processing in a hardware way : speed and implementation in an embedded
system. Speed up image processing can be very useful for real-time processing
images coming form a camera. This way we avoid heavy processing with a generic
microprocessor. Embedding this system can be useful in many �elds, like vision
in robotics or a monitoring system.

The idea here is mainly to obtain a system faster than software image pro-
cessing. The �nal user should be able to process a stream of images coming from
a video camera with a simple call to a set of C functions. The link with hard-
ware has to stay invisible to the user. The framework stays limited to grayscale
images with constant size is going to implement several kinds of �ltering (Gaus-
sian blur, median/min/max �lter, gradient image and a Canny edge detector).
These operators are based on a 3 by 3 pixels wide sliding window similarly to
convolution.

The system is going to run on a Xilinx FPGA communicating with the com-
puter through the PCI port. In order to test and compare the results with soft-
ware image processing, the whole process is going to be compared to openCV
functions [5].
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Chapter 2

Methods

2.1 Image processing

There are di�erent kinds of images and many di�erent processing methods we can
apply to an image. We can distinguish three kind of images.

Binary images
Binary images, where a pixel is black or white. These images are mostly used for
morphology processing, the main operators are dilatation and erosion. �The game
of life� is a well known example of this kind of processing.

Greyscale images
Greyscale images where a pixel is de�ned by an intensity level between black and
white (included). Theses images are used if we are interested in the shape of
objects present in the image. There are many operators that can be applied on
these images, like a simple Gaussian blur, an edge detector or a sophisticated face
recognition system.

Color images
The last kind of image used in image processing are color images, where a pixel is
de�ned as a triplet of intensities of red, green and blue. These images can be seen
as a group of three grey images. The processing applied on these images concerns
essentially colors, like white balancing, color region classi�cation, etc ...

In this project we choose to work only with grey images which is a good com-
plexity compromise between binary and color images. We also needed to choose
the kind or family of operators that we want to apply on our images. Some oper-
ators, like histogram equalization, need global informations about the image, like
the min/max pixel of the whole image. Others operations need only partial or
local information about the image, for example convolution only needs to know
the currently processed pixel's neighborhood. Operators can also be more com-
plex and need several computational steps, for example edge detection discussed
later. We choose to use only operators that use a windowing system, which means
that we only need to know the currently processed pixel and it's neighborhood.
Convolution is a window operation, but there are window operations that are not
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(a) Binary image (b) Grey image (c) Color image

Figure 2.1: Image representations

convolutions. There is the complete list of the operators choose to be implemented
in our project :

• Identity operator
• Gaussian blur
• Gradient image
• Median �lter
• Canny edge detector
All these operators will be discussed later in detail.
The approach of image processing using a processing window is described in

�gure 2.2 :
The processing window (PW) slides on the image and a speci�c processing is

applied to every pixel. The resulting pixel depends on the operator, the processed
pixel and its neighborhood. Of course we need to choose the size of our processing
window. It can be between 0 and the size of our image. We choose a 3 by 3
pixels PW which is simple to handle. Of course a bigger PW is more powerful,
but requires more computation, or more precisely a longer delay as our primitives
are made in a combinatorial way.

We mentioned the neighborhood of the currently processed pixel. We realize
that this neighborhood is not de�ned for pixels on the corners or edges of the
processed image, because the neighborhood is �outside� of the image. Di�erent
approaches are used to solve this problem. We can simply set the unde�ned pixels
to a constant value, for example black. Another way is to imagine the image as a
torus, the top edge linked to the bottom edge and the left side linked to the right
side. The adopted solution was to set the unde�ned neighbor pixel to the same
gray value as the currently processed pixel.

Convolution is a widely used operation based on a PW and we give it in
�gure 2.2 as an example. Each pixel of the current PW is multiplied by the
corresponding �pixel� of the convolution kernel, which is of the same size as the
the PW. The results of these multiplications are summed up to obtain the resulting
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Figure 2.2: Image processed by a sliding window. The convolution is given here
as an example of processing primitive.

pixel. Once the operation is done the PW �slides� on the next pixel. Convolution
can be described by the following formula :

X(m,n) = I(m,n)×H(m,n) =
J−1∑
j=0

K−1∑
k=0

H(j, k)I(m− j, n− k) j, k ∈ {0, 1, 2}

In the �gure above, the current pixel is A11, its neighborhood are the pixels
Axy and the convolution kernel is Hxy.

2.2 Hardware

In the previous section we described the theoretic approach to process an image.
Now we want to implement this system on hardware keeping in mind that our
goal is speed gain. A lot of design choices had to be done. There is also a lot of
limitations linked to hardware that are not present in software image processing.
That is what we are going to discuss now.

The general architecture of the whole system is shown in �gure 2.2.
In order to show our results on a real-time application we choose to use as

input a continuous �ow of images provided by a webcam. Here we had the choice
to connect the webcam directly to the FPGA that contains the image processing
system and sends directly the result to the computer or to connect the camera
to the computer, store the image in the computer memory and only then to
send it to the FPGA. We choose the second approach because we want to make
performance comparisons between hardware and software computational speed.
The whole system is controlled through a C program. This way we can create an
interface that hides the hardware part to the programmer.
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Figure 2.3: Global architecture of the system

2.2.1 Material used

Here we describe the speci�cations of the equipment used in this project.

Computer
The computer used was a Pentium 4 with 1GB of RAM using Linux 2.6.9-
55.0.6.ELsmp as operating system.

To program and test the FPGA, we used Xilinx ISE 9.1i and ModelSim SE
6.3a software.

Fpga
It was important to take into account the limitations of the FPGA used since the
beginning of the project to avoid lack of memory or logical units at the end. The
used FPGA was a Xilinx Virtex II 3000-4�1152 which is similar to the one on in
�gure 2.4.

Figure 2.4: A Virtex II FPGA similar to the one used in this project
Refer to [4] for complete speci�cations.

6



Camera
We used the Logitech QuickCam Web. It provides color images of size 356 by 292
pixels.

Figure 2.5: A Logitech QuickCam Web

Comparative software
Anthony Edward Nelson [1] has done a project similar to ours, the results were
about 100 times slower, but the work was done in 2000 and the architecture used
less hardware. In his work the comparison between hardware and software results
was done using Matlab. Unfortunately, Matlab is not designed for fast real-time
image processing. We choose to use the openCV [5] library. OpenCV not only
allows very fast real-time image processing, but is also written in C, which allows
us to run our processing functions and openCV processing functions in the same
C program and make more precise comparisons.

OpenCV also provides very useful input/output functions that we need in any
cases. We use openCV functions to acquire images from the camera. Plotting
functions are not necessary, but are very useful for tests.
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2.3 Sliding window architecture

The �gure 2.2 shows the theoretical approach of image processing using a sliding
processing window. Now we want to apply this theoretical model to a hardware
architecture.

As we will see later, the communication between the computer and the FPGA
is the speed bottleneck of the whole system. For this reason we want to transfer
the minimum amount of data. In [1] only the nine pixels of the PW were stored in
the FPGA. Using this approach, after each �slide� of the PW, 3 new pixels were
red from the image and three pixels were forgotten. This means that after the
processing of the whole image each pixel was read three times and it represents
a lot or redundant transfers, but the register usage was small. If a 5 by 5 pixels
windows was used each pixel would be read �ve times.

To avoid these redundant transfers we chose to permanently store three lines
of the image. The PW slides from left to right on the central line. When it
comes at the right end, a new line is red and the oldest line is forgotten. These
forgotten pixels will newer be used again and each pixel of the image is red only
once. Of course this approach implies much higher amount of registers on the
FPGA. Figure 2.6 illustrates this approach :

Figure 2.6: Hardware architecture of the sliding window
In order to use a standard word length for the PCI transfers, we wanted to

handle pixels using 32 bits long words. As each pixel has a value between 0 and
255 and is stored on 8 bits, we process pixels by packets of four. Due to this fact
we process always four pixels paralellry. It is why we have four identical processing
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primitives on the previous schema. Due to this fact, we create a constraint on the
size of our input image which has to have a length which is a multiple of four.
There is no constraint on the image height.

2.3.1 Three images lines FIFO

Unlike in the theoretical version, the hardware PW doesn't slide on the pixel
lines, but the pixels are shifted under the PW. After several versions, the simplest
and fastest way to implement the three lines system was to use three large inter-
connected FIFOs. The input pixels are pushed in the �rst FIFO and the popped
pixels are the ones processed by the PW. A state machine separates the processing
into three stages.

First stage : �ll the FIFOs
First we need to wait until all the FIFOs are full. At this stage there is only input.
No output and no processing.

Second stage : main processing
Second we can begin to process the image. At this stage we read one input pixel
unit, we process it and we get an output as result. The whole is done in one clock
cycle. This is another constraint on our processing primitives, each operation has
to be done in one clock cycle. We will see the impact of this constraint later.

Last stage : empty the FIFOs
In the third and last stage, most of the image was already processed and there is
no more input to read, because the whole image was red, but the FIFOs are still
full. In this stage we process and output pixel units until the FIFOs are empty.

2.3.2 Image border copy

As we told above the approach used to manage the unde�ned neighborhood, was
to copy the borders. Here we separate the problem into horizontal and vertical
borders. The corners are taken into account in the horizontal part. To manage
the borders, we use a vertical and a horizontal counter to know which part of the
image we are processing. The horizontal copy is performed if we are processing
the �rst or the last line of the image. In this case we use multiplexers to copy the
�rst or the last line twice as we can see in �gure 2.6.

This way the neighborhood pixels of the �rst and the last line are explicitly
inside the FIFO. Concerning the vertical borders, those are not inside the FIFO,
but they are implicitly computed by the PW depending on the vertical counter.
This is the best approach we found to reduce complexity and memory usage.

2.3.3 5x5 processing window

Even if this functionality wasn't implemented, it is interesting to consider the
changes necessary to use a 5 by 5 PW to show the scalability of our system. We
need three modi�cations. First we need �ve lines of the image instead of three,
which requires more registers, but is still feasible using our FPGA. The second
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(a) 3x3
window

(b) 5x5
window

Figure 2.7: Image border copy for di�erent sizes of processing window

thing to do is the copy of a border of two pixels instead of a border of one pixel
as we can see in �gure 2.7.

The third modi�cation concerns the processing primitives, because we have
an input of 25 pixels instead of 9. All these modi�cations are not di�cult to
implement, but the third one is quite long.

11-bit adder 2
1-bit register 1
11-bit register 2
2848-bit register 3
8-bit register 1
48-bit latch 3
2848-bit 4-to-1 multiplexer 1
Number of 4 input LUTs 1035 out of 28672(3%)
Number used as logic 204
Number used as Shift registers 831
Number of GCLKs 2 out of 16 (12%)
Delay 6.370ns (Levels of Logic = 4)
Clock period 6.370ns (frequency: 156.986MHz)

Figure 2.8: FPGA usage for the sliding window
Table 2.8 shows the FPGA elements needed for the sliding winfow architecture.

2.4 Communication and memory management

Once we de�ned our sliding window system as close to the theoretical one as
possible, we want to integrate it as an entity in a complete system. To do this we
need a way to communicate between the FPGA end the computer. Depending on
the type of communication chosen, we need or not to use RAM memory on the
FPGA.

The communication part is done using the PCI bus. It is the most sensible
part of the architecture, because it represents the speed bottleneck of the whole
system. It is much more time demanding than the processing itself as we will see
in the obtained results.
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We have the choice between using simple register transfers or DMA burst
transfers. Here we implemented both approches to allow comparisons.

2.4.1 Register transfers

This type of transfer is much easier to implement than the DMA transfer, so it was
implemented �rst to allow tests on the whole system. The problem here is that
we can transfer only one 32 bit word at the same time. Each transfer of this kind
needs to open the PCI bus, perform the transfer and then close the PCI bus. All
this has to be done once per a pixel unit, which is 4 pixels. This approach is very
slow because of the numerous openings/closings of the PCI port. On the other
hand, using using this technique, we don't need to use any additional memory. We
only �ll the three lines and the resulting output pixels are directly send the result
back to the computer. We don't need to modify the schema, because the input
and output pixels are directly connected to the PCI bus. Once these transfers
were working we could �nish the processing part of the project and test the whole
system very fast, but the speed results were clearly unsatisfying and we had to
modify our approach.

2.4.2 DMA transfers

As the goal of this project was speed, DMA transfers became necessary. This
way the PCI bus was opened and closed only once per image, and the speed of
transfer became one 32 bit word by clock cycle. The implementation was based
on an example code given by Alpha-Data [3]. Using this approach and unlike the
register transfer, we needed to store the whole image in the FPGA memory before
processing. The memory management is shown in �gure 2.9.

Figure 2.9: Architecture including a block RAM memory
Here the memory used to store the image is again a simple FIFO. Using this

architecture we need three stages. First, during the incoming DMA transfer, the
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FIFO is �lled up with the complete input image. There is no processing at this
stage. Once the image is inside the FIFO the second stage begins. We pop pixels
inside the processing unit, perform processing and we push them back inside the
same FIFO. The multiplexer chooses to push input pixels in the FIFO if we are
in the �rst stage and result pixels if we are in the second stage. Once the whole
image is processed, which means that the FIFO contains only processed pixels
comes the third stage where the content of the FIFO is transferred back to the
computer.

Unfortunately, here we reach the limits of our FPGA. Even if the amount of
RAM memory is just su�cient to contain a 356 by 292 pixels wide image, we are
not allowed to generate a single FIFO large enough for the whole image. A �rst
approach to solve this problem would be to generate a large FIFO by connecting
two smaller ones. We suppose this would be the fastest way to solve the problem,
but here we reach memory space limits of our FPGA. To solve this problem and
at the same time show the scalability of our system, we choose to �cut� the input
image using software and we send two half of the image and process it as two
separated images. If we use a bigger image it's easy to extend this approach to
more image divisions. Once the two images are processed and send back to the
computer, we need to connect them to provide the real output image. To do this
we have to manage borders and process the middle line of the image twice as is
shown in �gure 2.10.

Figure 2.10: Software image division
As we said if we use a bigger image, we can divide it in more than two parts,

but this approach slows the system down.
2.4.3 Parameters transfer

We don't only need to transfer the image to be processed. The hardware also
needs to know which kind of processing we want to apply (Gaussian, median, ...).
To do this we had the choice to use register transfer for the arguments and DMA
transfer for the image. This solution would avoid to attach a header to each image
at the software level. At the other hand if we need to send a lot of arguments, it
would slow down the system. The chosen approach was to attach a header in a
software way, perform a single DMA transfer and then separate the image from
the header inside the FPGA.
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2.5 Processing primitives

This part concerns the image processing itself and describe in detail all the pro-
cessing primitives. First we give elements of image processing theory and then we
explain their hardware implementation. Each primitive is followed by an output
image example and the number of necessary logical units used by the FPGA to
implement the primitive.
2.5.1 Implemented primitives

Identity Returns the input image, used for tests
Gaussian �lter Smooths the image
Median/Min/Max Filter Removes 'Salt and pepper' noise preserving edges
Gradient �lter Returns the gradient image
Canny edge detector Returns thin edges of the image

The whole computational unit �Operators� is compsed of four �Operator� units.
This way we can process four pixels in a parallel way. A single �Operator� unit
contains each of the primitives described above. This is shown in Figure 2.11.

Figure 2.11: Operators design
Tables 2.12 and 2.13 describe the FPGA usage of the �Operator� and �Opera-

tors� modules.
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10-bit adder 11
11-bit adder 8
11-bit subtractor 4
12-bit adder 1
13-bit adder 2
9-bit adder 10
2-bit latch 1
13-bit comparator greater 2
6-bit comparator greatequal 1
6-bit comparator greater 8
8-bit comparator less 18
2-bit 3-to-1 multiplexer 1
Number of 4 input LUTs 806 out of 28672(2%)
Delay 38.088ns (Levels of Logic = 63)

Figure 2.12: FPGA usage for an Operator unit
10-bit adder 44
11-bit adder 32
11-bit subtractor 16
12-bit adder 4
13-bit adder 8
9-bit adder 40
2-bit latch 4
13-bit comparator greater 8
6-bit comparator greatequal 4
6-bit comparator greater 32
8-bit comparator less 72
2-bit 3-to-1 multiplexer 4
Number of 4 input LUTs 3206 out of 28672(11%)
Delay 38.409ns (Levels of Logic = 64)

Figure 2.13: FPGA usage for Operator unit (containing four operator unit)
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2.5.2 Gaussian �lter

The Gaussian �lter is a convolution operator which is used to blur images and
remove noise. In the continuous domain, we can �nd it for a certain σ through :

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

which looks like :

Figure 2.14: Gaussian distribution with mean (0,0) and σ = 1

For our purpose use we will use a discrete version of this kernel with a 3x3
window :

Figure 2.15: Gaussian discrete kernel
Figure 2.16 shows the hardware implementation of the Gaussian �lter we de-

signed:

15



Figure 2.16: Gaussian �lter convolution

Exemple

(a) Input image (b) blurred image with σ = 2

Figure 2.17: Gaussian �lter example
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FPGA usage

10-bit adder 3
11-bit adder 2
12-bit adder 1
9-bit adder 2
Number of 4 input LUTs 64 out of 28672(∼0%)
Delay 19.867ns (Levels of Logic = 20)

Figure 2.18: FPGA usage for the Gaussian �lter
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2.5.3 Gradient image

The gradient of an image is essentially used for edge detection in image processing.
The idea is to �rst �nd the horizontal and vertical derivatives of an image, this
means regions in the image where the di�erence of intensity of close pixels. For
this reason the �lter is very sensitive to noise and we usually apply a Gaussian
blur before using this operator. The �lter is de�ned by the following operation :

5A =
δI

δx
+

δI

δy
= (Hx ×A) + (Hy ×A)

Then we can obtain the gradient magnitude :
|∇A| =

√
(Hx ×A)2 + (Hy ×A)2

And the gradient direction :
θ(∇A) = arctan

(
Hx ×A

Hy ×A

)
The gradient magnitude is often approximated by :

|∇A| = |Hx ×A|+ |Hy ×A|

(a) real function (b) Approximated function

Figure 2.19: Gradient function approximation
We will also use this approximation in our hardware implementation in order

to reduce complexity. The convolution kernel used is the Sobel operator :

Figure 2.20: Gaussian discrete kernel
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The following schema shows the hardware implementation of the gradient im-
age we designed:

Figure 2.21: Gaussian �lter convolution

Exemple

(a) Input image (b) Gradient image

Figure 2.22: Gradient image example
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FPGA usage

10-bit adder 4
11-bit adder 3
12-bit subtractor 2
9-bit adder 4
Number of 4 input LUTs 113 out of 28672(∼0%)
Delay 20.565ns (Levels of Logic = 16)

Figure 2.23: FPGA usage for the Gradient �lter
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2.5.4 Median/Min/Max �lter

This operator is a bit di�erent from Gaussian �lter and gradient image because
it is not a convolution. Here the idea is to sort the pixels of the current window.
There are three possibilities of �ltering with this approach. We can always take
the median value, or always take the minimum value or always take the maximum
value. Depending on this choice, the output image will be the following :

Min Erosion of the features of the image
Max Dilatation of the features of the image
Median Flattening of the image

'Salt and pepper' noise removal

For our purpose we don't need to sort completely the nine pixels of our window.
All we need to know is the min, max and median pixel. It is relatively easy to
sort n2 pixels in a hardware fashion, but here we have 9 pixels. To solve this
problem, we �rst de�ne a comparator C3 that sorts 3 pixels and is assembled of
three binary comparators C2. This architecture is shown in the next �gure :

Figure 2.24: Architecture for sorting 3 pixels
Using only six of these comparators, and a multiplexer to select the min/max/median

value, we are not able to implement a 9 pixel sorter, but it is su�cient for our
needs, because we �nd the min/max and median value. The 'X' represent the
remaining unsorted pixels.
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Figure 2.25: System global architecture

Example

(a) Input image (with
noise)

(b) Median �lter 3x3 (c) Median �lter 5x5

Figure 2.26: Median �lter example
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FPGA usage

8-bit comparator less 1
Number of 4 input LUTs 24 out of 28672(∼0%)
Delay 10.434ns (Levels of Logic = 12)

Figure 2.27: FPGA usage for C2 (two pixel comparator)

8-bit comparator less 3
Number of 4 input LUTs 72 out of 28672(∼0%)
Delay 19.960ns (Levels of Logic = 31)

Figure 2.28: FPGA usage for C3 (three pixel comparator)

8-bit comparator less 18
Number of 4 input LUTs 368 out of 28672(∼1%)
Delay 35.179ns (Levels of Logic = 61)

Figure 2.29: FPGA usage for median �lter

23



2.5.5 Canny edge detector

This operator is here to show the usage of a multi-pass �lter. An detailed expla-
nation of this algorithm can be found in [2]. The popular Canny edge detector
uses the following steps to �nd contours presents in the image.

Figure 2.30: Canny edge detector algorithm
The �rst stage is achieved using our Gaussian smoothing. The resulting image

is send to the PC that sends it back to the gradient �lter, but here we modi�ed our
gradient �lter a bit because this time we don't only need the gradient magnitude
that is given by our previous operator, but we need separately Gx and Gy. We
also need the phase or orientation of our gradient which is obtained using the
following formula :

θ = arctan

(
Gy

Gx

)
As we can see this equation contain an arctan and a division. These operators

are very di�cult to implement using hardware. We also don't need a high preci-
sion. The �nal θ has to give only one of the four following possible directions, as
we can see on Figure 2.31. The fourth direction is the horizontal direction with
zero degrees, not indicated on the �gure.

Figure 2.31: Possible directions for the gradient phase
Arctan and the division can be eliminated by simply comparing Gx and Gyvalues. If they are of similar length, we will obtain a diagonal direction, if one

is at last 2.5 times longer than the other, we will obtain a horizontal or vertical
direction. The �gure 2.32 shows this idea.

24



Figure 2.32: Simpli�ed phase calculations
Here we can see a new problem. For the next stage, non-maxima elimination,

we need two informations, the magnitude and the phase at the same time. Our
system is designed to process only one image at a time. The solution used here
was to store both informations on the same result image. Each possible 8bit pixel
stores one of the four possible directions on two bits and the magnitude on the
6 remaining bits. The price to pay is the lost of two bits of information of the
magnitude. The �gure 2.33 shows the corresponding hardware schema, Table 2.34
presents its FPGA usage.

Figure 2.33: Hardware schema computing the phase
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10-bit adder 4
11-bit adder 3
11-bit subtractor 2
13-bit adder 2
9-bit adder 4
2-bit latch 1
13-bit comparator greater 2
2-bit 3-to-1 multiplexer 1
Number of 4 input LUTs 168 out of 28672(∼0%)
Delay 20.707ns (Levels of Logic = 16)

Figure 2.34: FPGA usage for gradient Magnitude and Phase

Non-maxima elimination
The non-maxima elimination �lter is here to eliminate pixels that are not part of
a continuous line, like isolated pixels even if they have a high gradient magnitude.
This technique allows to get ride of a lot of noise.

Figure 2.35: Example of non-maxima elimination for a particular pixel
The �gure 2.35 shows this principle. The Mx is the magnitude of the current

pixel. Ma and Mb are the magnitudes of the neighbor pixels perpendicular to the
current pixel's phase.

If (Mx > Ma) AND (Mx > Mb) we eliminate the current pixel, else we keep
the pixel. The �gure 2.36 shows the hardware implementation.
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Figure 2.36: Hardware schema for non-maxima elimination
For the last part, the edge detector uses only one threshold instead of the usual

two. But this is not adapted to hardware implementation.
6-bit comparator greatequal 1
6-bit comparator greater 8
Number of 4 input LUTs 59 out of 28672(∼0%)
Delay 11.845ns (Levels of Logic = 12)

Figure 2.37: FPGA usage for Non-maxima elimination
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Example

Figure 2.38: Canny edge detector steps
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2.6 C Program

Three sets of C functions were used through this work. First the functions used
for communication with the FPGA. Theses functions are not supposed to be used
by the �nal user. The image processing functions that are given to the user and
perform calls to the hidden communication functions. Finally we used openCV
functions for speed comparisons.

2.6.1 Communication with the FPGA

The initFPGA() is a modi�ed and modular version of the example program given
by Alpha-Data. It is called only once in the main() function. It allocates block of
memory that will be used to communicate. The closeFPGA() frees the allocated
space. Again it has to be called only once at the end of the main() function.
Unfortunately these two functions are necessary and because of them the hardware
system is not as hidden as we wanted.

2.6.2 Image processing

The process_image(iin, iout, oper) function receives pointers to input/output
images and operator type as arguments. We need to copy the input image in the
space allocated by initFPGA(). This is unfortunately a necessary step because we
can transfer only the block of memory allocated above. To transfer the operator
type (identity, Gaussian, ...) and its parameters (min, max or median for the
median �lter and threshold level for the canny edge detector)we �rst copy this
operator as a header of the image at the beginning of the allocated memory and
then we copy the image itself.

The received resulting image don't need any header when it is transferred back
to the computer.

2.6.3 OpenCV

First tests were not done on real images. We used small still images generated by
hand. This way we could easily plot the resulting integer value of each pixel. In
order to get an input image from the camera, we used cvCaptureFromCAM() and
cvQueryFrame(). These functions �ve us a color image that has to be transformed
into a grey image. This conversion is done by simply taking the green value of
the RGB image. Green is used because human sensitivity to green is very close
to the human sensitivity to light intensity as shows �gure 2.39 found in [7].

This is again a necessary software processing that has to be done once per
acquisition. Fortunately for multipass primitives as Canny edge detector we don't
apply this operation between di�erent passes, but only before the �rst one, because
after the transformation we use the same grey image format.

To obtain an image plot as output we used cvShowImage(...) to test visually
large images.
openCV image processing
We also used the following image processing functions to compare the processing
speed between hardware and software :

• cvSmooth(input, output, CV_GAUSSIAN, windowSize);
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(a) Sensitivity of cones (color sensitiv-
ity)

(b) Sensitivity of rhodes (lumines-
cence sensitivity)

Figure 2.39: Cone and rodes sensitivities

• cvSmooth(input, output, CV_MEDIAN, windowSize);
• cvCanny(...);
A software equivalent of our hardware Identity function makes no sense and

the there is no equivalent openCV function for a Gradient image.
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Chapter 3

Results

It is interesting to note that di�erent openCV functions need more or less pro-
cessing time depending on their complexity. For example median �ltering is more
complex and longer than gradient �ltering. With the FPGA this is not the case.
The processing time is equivalent independently of the type of processing. This
is due to our vhdl implementation constraint which says that any operator has to
process a block of four pixels in one clock cycle. Knowing this we decided to show
processing time for each software operator. For the hardware version we give the
time needed for di�erent parts of the processing: DMA transfer length, processing
length, etc ...

An interesting thing to note is that, if available, the Intel Integrated Perfor-
mance Primitives(IPP) is used for lower-level operations for OpenCV [6]. In the
case tis option was activated, we were not comparing our system to pure software
processing but to a hardware accelerated software. Unfortunately did not manage
to verify if the openCV hardware acceleration was available or activated.
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3.1 Global comparison

In Figure 3.1 we present processing times of the software implementation of our
primitives. The name of the primitive is followed by NxN which is the size of the
processing window. These times are shown in blue in the bar plot of Figure 3.3
and are preceded by the mention �soft_XXX�. On the same graph, the resuls are
of our hardware implementation using DMA transfers are shown in green and
preceded by the mention �hard_XXX�. The exact times are shown in Figure 3.2.

hard_complete time needed for the whole processing
hard_in time needed for incoming DMA transfer
hard_out time needed for out DMA transfer
hard_prcessing time needed for image processing

The red bar on the right, �hard_register� is the performance of our hardware
version implementing register transfers.

Every given time lengths are given in milliseconds[ms].
median 7x7 median 5x5 median 3x3 gauss 7x7 gauss 5x5 gauss 3x3 canny
0.051606 0.040798 0.013219 0.007561 0.004694 0.003877 0.004051

Figure 3.1: openCV functions processing time

processing transfer IN transfer OUT complete using complete using
DMA transfer register transfer

0.000746 0.001206 0.001302 0.003725 0.054165

Figure 3.2: Hardware processing time
The �gure 3.3 gives a global comparison between processing using openCV

software, hardware with DMA transfers and hardware with register transfers.
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Figure 3.3: Processing times
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3.2 Relative comparison

The �gure 3.4 shows the software and register transfer results of Figure 3.3. This
time the vertical axis unit is the time needed for a �hard_complete� processing.
For example a median �lter using a 7x7 wide processing window takes about 14
times more processing time than a hardware primitive using DMA transfers.

Figure 3.4: Processing times relatively to a hardware monopass processing time
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3.3 Hardware time analysis

In order to analyze more deeply the hardware version using DMA transfers, �g-
ure ?? gives time percentage for a full monopass processing. We can see that
the speed bottleneck of our system is the transfer of data. The �software part�
shown here is here because we want to take into account all the software process-
ing needed by our hardware system. This processing includes the arrays copies
discussed above, image header formatting, image division, etc . . .

processing transfer IN transfer OUT software
0.000746 0.001206 0.001302 0.000471

Figure 3.5: Subdivision of hardware processing time

Figure 3.6: Subdivision of hardware processing time
Figure 3.7 shows the �nal usage of the FPGA needed for the whole project.
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10-bit adder 44
11-bit adder 34
11-bit subtractor 16
12-bit adder 4
13-bit adder 8
14-bit adder 1
15-bit addsub 1
30-bit subtractor 2
32-bit adder 1
9-bit adder 40
14-bit up counter 3
32-bit up counter 2
1-bit register 89
11-bit register 2
128-bit register 1
15-bit register 1
2-bit register 1
22-bit register 1
2848-bit register 3
3-bit register 2
32-bit register 3
4-bit register 1
8-bit register 1
2-bit latch 4
48-bit latch 3
13-bit comparator greater 8
17-bit comparator less 1
31-bit comparator greatequal 1
31-bit comparator greater 1
31-bit comparator less 1
31-bit comparator lessequal 1
32-bit comparator less 3
6-bit comparator greatequal 4
6-bit comparator greater 32
8-bit comparator less 72
2-bit 3-to-1 multiplexer 4
2848-bit 4-to-1 multiplexer 1
32-bit 4-to-1 multiplexer 1
1-bit tristate bu�er 2
32-bit tristate bu�er 1
Number of 4 input LUTs 4489 out of 28672(15%)
Number used as logic 3913
Number used as Shift registers 576
Number of BRAMs 32 out of 96 (33%)
Number of GCLKs 2 out of 16 (12%)
Clock period 9.216ns (frequency: 108.502MHz)
Delay 9.216ns (Levels of Logic = 13)

Figure 3.7: FPGA usage for the whole system
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Chapter 4

Conclusion

For monopass image processing primitives, the results obtained using hardware
with DMA transfer are faster than their software implementation. For mutipass
processing this is not always the case, because of numerous transfers that remain
the bottleneck of our system. As the processing is really fast, it would be interest-
ing to use much more complex processing primitives so that the transfers would
be just a small percentage of the whole process.

4.1 Future work

The results obtained using DMA transfers were satisfying because faster than the
software version. Anyway there are several possible ways to get a higher speed
up.

4.1.1 External RAM memory

As we saw above, the speed bottleneck of the project are image transfers. When
we use a multipass primitive like the canny edge detector, the image is transferred
three times from the computer to the FPGA and back again. To reduce the
number of transfers, we could use external RAM memory present on the board.
This way we could store intermediate images directly on the FPGA instead of
transferring large amount of data several times between the computer and the
FPGA. Here we suppose memory transfers are faster than DMA transfers, an
assumption that should be tested.

4.1.2 Larger processing window

For this project we choose 3 by 3 pixel wide processing window. We can extend
this to 5 by 5 or 7 by 7 pixels wide window. Doing this we can apply more complex
processing to our images, but the main advantage is again indirectly the speed up.
As we have seen, the hardware processing time stays constant, this seems to be
true (but should be tested) even if we use a larger window. On the software side,
it is much longer to process a larger window as we saw in the results chapter.
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4.1.3 Processing immediately after reception

Another idea that could be interesting to test is to process pixels immediately
after their reception. This way we would not wait until the FIFO is �lled with
the incoming image before the processing as the actual implementation does. Do-
ing this we could slightly reduce the processing time. Figure 4.1 illustrates this
process.

Figure 4.1: Processing times
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Appendix

The attached �les contain the vhdl and C code of the project as well as this �le.
Vhdl �les
comp2.vhd
comp3.vhd
comp9.vhd
gauss3x3
grad3x3.vhd
gradPM.vhd
nonmax.vhd
operator.vhd
operators.vhd
input1.vhd
ddma-xrc.vhd
image_pack.vhd
C �les
fpga.h
fpga.c
opencv.h
opencv.c
simple.c
Make�le
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