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Abstract

The roombots are modular robots being developed by the BIRG team, as the
succession of many worldwide attempts to build robots that humans will be
using in their tomorrow’s house. The new possibilities that they are offering,
such as these 6 degrees of freedom when combined in pairs make them good
candidates to fulfill the promises that we are expecting from such domestic
robots.

Self-reconfiguration is one of the main keywords for these robots. And ro-
bustness as well. But for the roombot modules, we still lacked a way to under-
stand their moves good enough so that we would be able to give them complex
and automatized tasks.

In this project, we will present the clarification of concepts such as the possi-
ble moves in space of the roombot modules, the resolution of inverse kinematics
for a lot of potential configurations, and some experiments where we coordi-
nate all previous results and interface them with Webots, a robot-simulation
environment.
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Chapter 1

State of the art

1.1 Context of the project

1.1.1 Biologically inspired robotics

When one considers for example the self-repair mechanism of the human body,
they have no choice but to marvel at the complexity which makes this functional-
ity feasible. Looking into the details, one sees the great amount of needed work
: coagulating cells for blood injuries, the white blood cells to defend against
external agents, stem cells to regenerate all kind of tissues . . .

Such examples are part of the reason why in our biologically inspired robotic
group [1] we want to reproduce as far as possible the best of the capabilities
of the living beings for our robots. Such capabilities are “neural mechanisms
underlying movement control” [1], “learning” [1], adaptability, self-repairability,
sociability, and much more.

In general, existing robots are often specialized, so it becomes easy to ob-
serve, to model and to reproduce movements, to launch some learning capabil-
ities – which in fact often means optimization in a multi-dimensional space of
capabilities –, and to even explore some concepts of sociability like in competi-
tive and cooperative games.

Robots are meant to help humans, like an extension of our capabilities. To
check if a particular robot is working well, the basic choice is to design other
independent robots able to cope with the problems of the previous robot, to
solve them or to notify them to humans. But what if these last robots are not
working well either ? We could create a chain of robots supervising on each
other, but this is not “scalable”.

1.1.2 The modular approach

The problem is not only a matter of reliability. If a robot has only one arm,
whatever is the force of each module, it might not be able to lift up a cube
which is on a slippery surface if the arms are too small (see Figure 1.1). In
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Figure 1.1: This one-arm robot cannot visibly lift the cube.

order to reach such a goal, it should itself put some of its degrees of freedom
into another arm (see Figure 1.2). It means that it should be self-reconfigurable,
i.e. each part of the robot should be able to change its position, in others words
the robot should be modular.

Properties of the modular approach

The characteristic of what can be called a modular robot is the following. It
is build out of modules, which all share identical characteristics – like the set
of spheres plus the forearms in the example of Figure 1.2 –, which are able to
either work together or to act in totally independant ways.

The advantages provided by such modules are robustness against failure as
each module is replaceable, adaptability to new situations, self-reconfiguration,
multi-tasking and much more [22].

History of modular robots

The first modular robot is believed to be CEBOT (CEllular roBOT), created by
Toshio Fukuda in 1989 [8]. It freed the concept of the possibility of such modular
robots. It was thus followed by no less than 30 different kind of modular robots
in between. One can cite such robots as M-TRAN [18], the Dof box [5], and
the YaMoR [17, 27], developed here by the BIRG.

All of these modular robots are somewhat unique, because they have differ-
ents shapes, different reconfiguration types, not necessarily the same number of
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Figure 1.2: This reconfigurated two-arms robot can solve this problem.

degrees of freedom, weight, size, functionalities, etc. It shows that the research
is still very active in this domain. In 20 years, it is likely that modular robots
will have been commercialized, with applications such as Catoms to reproduce
color and forms of given objects[3], space-exploration robots or even domestic
modular “roombots”, the type of modular robots which we are developing here.

1.1.3 Why roombots?

Roombots are being designed by the BIRG team [7]. Sample of the original idea
are presended on figures 1.3 and 1.4. The name of roombot was first applied to
the YaMoR modules and then the DOF-BOX, because their usage were meant
to be in a domestic room.

But now the name fully applies to the module presented on Figure 2.1. One
module is the reunion of two shapes, each one looking like the intersection of a
sphere of 14cm diameter and a cube of 11cm side, with a separating plane along
the median plan of the greatest diagonal of the cube.

It already looks promising, when one looks at the following expected behav-
iors:

• The edges of the module are soft, so it is harmless and solid.

• There are 3 continuous rotating degrees of freedom (DOF) per module, so
with only two modules, we are reaching 6 DOF, the minimum number of
DOF to make arbitrary positions possible [4].
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Figure 1.3: The original sketch of the roombots [7].

Figure 1.4: The roombots create a chair [7].
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• No connectors are appearent, they are retractable, and on the 10 faces.

• One module can lift itself plus one other, because of their good torque.

• The position is controlled by position in order to be precise.

1.1.4 Complementary approaches to the roombots

Roombot reconfiguration is currently being handled by simplifying the space
of roombots motions to 90◦ motions, to have better heuristics to resolve this
NP-hard problem [13].

Early this year there has been some work on the locomotion of the roombots,
by exploring the multi-dimensional space of roombots periodic movements and
maximizing the average speed of given structures.[14]. The continuation of this
highly bio-mimetic approach is about central pattern generators (CPG) [20], an
approach which already showed good results [16, 15].

For the moment these approaches do not have a real kinematic model. It
means that we are not fully using all their DOF (degrees of freedom) so we do
not exactly know what are their power and their limitations.

Two roombot modules have together up to 6 DOF. This was exactly de-
signed so that two roombot modules together could reach arbitrary positions
and orientations. This is what motivated this project.

1.1.5 The initial goals of our project

Here are the objectives.

“Aim of this project is to establish a forward kinematics representa-
tion for the RB modules, and to find appropriate solving strategies
for the inverse kinematics. The kinematics framework can then be
applied to several situations both in simulation using Webots [21] or
the real modules. Task list:

1. An extensive literature research about Modular Robots, Self-
Reconfiguration Modular Robots, and kinematics models. Spe-
cial focus are the existing projects and publications of the RB
modules.

2. Establish a forward kinematics model for the Roombots mod-
ules. Find ways to solve the inverse kinematics. Dynamics can
be neglected for the beginning, however can be included.

3. Check for the reachable space of the RB modules, e.g. regarding
two RB modules in series.

4. Discretize the search space by discretizing the joint angles of
the RB modules. Check for simplification, possible configura-
tions. . .
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Figure 1.5: The timetable describing the objectives and the due dates.

5. Show a proof of concept of RB meta-module locomotion (2 RB
modules in series) over a specifically selected passive structure.

6. Handling of passive elements with 2 sets of RB meta-modules
(a “closed-loop-example”)”

We will go through all these objectives, except the “handling of passive
elements with 2 sets of RB meta-modules”, the “closed-loop-example”. Indeed,
we discovered that we did not have the time to implement such great feature,
but we worked in a way so that our successors would have a chance to do it.

Working methods

First we designed a timeline in which we put deadlines for each of our objectives.
After one revision, it gave the result on figure 1.5, which has been followed
without problems.

Second we were writing a daily report for ourselves, in order to keep refer-
ences to everything that we discovered and for further use.

And third we wrote weekly reports to state the progresses done on the
project, so that we could have an objective view of it.

1.2 Theoretical background

1.2.1 Kinematics models

Let us simplify the notion of kinematic models to only rotations and transla-
tions, without taking into account velocities, forces, accelerations or dynamic
properties. Let us keep translational joints aside as well. A kinematic model of
a set of objects linked by some joints has then the following properties:

• First, for each independent moving object, we define a “frame”, or refer-
ential, composed of an orientation and a position which are stuck to this
moving part (see Figure 1.6).

• Second, for each joint between two moving objects, we define a parameter
(which can also be a vector), and we define a “frame” within each moving
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Figure 1.6: Referentials stuck to objects

Figure 1.7: The joint frames coincides for a default parameter, and else only
differ by a rotation.

part, so that they coincide for the default value of the parameter – typically
zero – and else only differ by an orientation (see Figure 1.7)).

But these two properties are not sufficient to have a good model, because
there are too many possibilities. Fortunately, people already worked in this do-
main and found some models in which all those referentials (frame of references)
are described by a small number of parameters and are easy to locate and to
guess.

Instead of considering our kinematic problem as a “graph” or a “tree” where
the objects are the nodes and the links are the edges, we simplify it to a chain of
“bones” linked by rotational joints around Z-axis, and we choose to take the D-
H convention (Denavit and Hartenberg) [4] to place the referentials. Figure 1.8
explains the main idea and presents the four parameters used in the convention :
ai, αi, di, and θi, as long with the corresponding referentials. In these notations,
R0 would be the first referential, and Rn the last one.

If the same chain is considered in reverse order, we call it the inverted chain.
If we use a library such as KDL [19], there already exists some functions that

take those parameters in argument and are building the corresponding chains.
Given these parameters, we can either compute the general form of the

matrix [4], or give a factorized form (Figure 1.9). In fact, we can totally
separate the static transformation given by the parameters ai−1, αi−1, di and
the real rotation given by the parameter θi.
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Figure 1.8: DH parameters (Denavit and Hartenberg)

As we wanted to have a complete control of the structure, we decided to use
the factorized form in our implementation.

1.2.2 Forward and inverse kinematics

Forward kinematics

Computing forward kinematics means that given all the joint angles θ0, . . . θn−1

and the first referential R0, we want to calculate the final position and orienta-
tion the frame Rn.

The solution is to multiply the matrices : Rn = R0×0
1T . . .×n−1

n T (see Figure
1.9 for the definition of T). We also only have to provide the θi at computation-
time, all other parameters are already predefined if the configuration does not
change, which is the case most of the time.

Inverse kinematics

Computing inverse kinematics means typically that given a desired final position
R′n and the first referential R0, we want to calculate the joint angles θ0, . . . θn−1

that minimizes the error between the actual final position Rn and the desired
final position R′n.

There are as well several methods to solve these problems, but most of them
works iteratively, because it generalizes well to bigger problems.
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i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθisαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθicαi−1 cαi−1 cosαi−1di

0 0 0 1


= ScrewX(ai−1, αi−1)× ScrewZ(di, θi)

=


1 0 0 ai−1

0 cαi−1 −sαi−1 0
0 sαi−1 cαi−1 0
0 0 0 1

×

cθi −sθi 0 0
sθi cθi 0 0
0 0 1 di

0 0 0 1


Figure 1.9: General form of the matrix obtained by DH parameters. sX =
sin(X) and cX = cos(X)

The basic algorithm used to solve IK for position is the Newton-Raphson
algorithm [11], and proceeds as in algorithm 1.2.2.

Algorithm 1 Computes the angles θ0, . . . θn−1 to reach the final position.
1: R0 ← first referential
2: θ0, . . . θn−1 ← initial angles
3: R′n ← desired final position
4: Rn ← result from forward kinematics
5: while |R′n −Rn| < ε do
6: JF ← Jacobian of Rn(θ0, . . . θn−1) at position θ0, . . . θn−1 .
7: JF 1← J−1

F // Inverse of the jacobian
8: T ← R′n ×R−1

n // The twist between the two referentials
9: ∆ ← JF 1 × T // The difference in the angles which locally makes Rn

going towards R′n
10: θ0, . . . θn−1 ← θ0, . . . θn−1 + max ∆, η // η is a small parameter because

the displacement is not linear else.
11: end while
12: return θ0, . . . θn−1

As we could also see this problem like a minimization of the error function
in multi-dimensional space, one could use also such methods to compute the
IK. However, we did not have time to explore them, so we just mention some
points about that in appendix A.



Chapter 2

Our approach

After this theoretical background, time has come to show that all these ap-
proaches can be used together on the roombots.

2.1 Designing the roombot kinematic model

The roombot module is presented on Figure 2.1. As said before, it has 3 ro-
tation axis, and 10 connectors. As each connector of a roombot module can
be connected to any connector of other roombot modules, we would need more
than a simple kinematic chain. But we will first concentrate on the end-to-end
main kinematic chain of a roombot module.

2.1.1 Model for submodules.

A roombot module is made of 4 submodules, each one having, to simplify but
not that much, the shape of the half of an intersection between a cube and a
sphere. So the main shape is in fact the cube.

We can then specify at least 5 different referentials for each submodule (Fig.
2.2). One is the “middle referential”, named Mi with i ∈ 0, 1, 2, 3, it is placed ex-
actly at the center of the imaginary including cube. and its orientation depends
on the following connector referential convention. The connectors’ referentials
are defined by CiX,CiY,CiZ. Fig. 2.2 present those connectors for the first
submodule of the chain.

The connector referential convention used is the following:

• All Z axis of the connectors referentials are pointing outwards the sub-
module.

• The connector referential name comes from the axis of Mi which points
to them

• The connector referential orientation is so that the X axis of each refer-
ential is pointing to the next connector in an anticlockwise manner when
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Figure 2.1: The roombot module.

looking at the three connectors at the same time. The Y axis of each
connector referential is pointing to the previous connector.

Last but not least, there is a “base referential” for each one of the four
submodules, named Bi. As the 4 submodules are connected by 3 motors, the
Z axis of B1, B2 and B3 are the respective rotation axis of these motors. The
sequence of referentials B0, B1, B2, B3 are defining the main kinematic chain of
the roombot, on which the DH parameters and convention are going to be used.

2.1.2 Model for the submodules chain.

Once we have this convention for submodules, we can use the convention men-
tionned on page 11 to orientate the base referentials from one module to the
other.

First, if there is no rotation, the first two referentials B0 and B1 are the
same, except that the first one is still “virtually linked” to the first submodule
and the second one to the second submodule (Figure 2.3).

The X axis of B0 is oriented so that it is perpendicular to this rotation axis
and to the next one (see Figure 1.8 page 11), and the Z axis of both referentials
are pointed at the same direction as their respective rotation axis.

We can do the same work for the connection between the second submodule
and the third submodule (Figure 2.4). One can remark that with this model,
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Figure 2.2: The roombot submodule and its referentials.
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Figure 2.3: Connection from the first submodule to the second.

there is only one translation between the four base referentials, which is between
B1 and B2.

As you can see, C1X and C2X do not exist, because there is a rotation joint
at the same point.

Last we design the transformations from the third referential to the fourth
and last one (Figure 2.5).

2.1.3 Connecting roombot modules together

One last convention that we had to develop was to describe the four types of
connections when we have two roombot modules together. We designed four
keywords: Parallel, Perpendicular, Shear Z and Shear S. They all correspond to
some realities described in figure 2.6.

The existence of such convention make it very easy to not only name a
configuration, just by looking at the closest point between the two “circles”, but
also to build a particular configuration given the keyword and the connectors.
As all these situations are symmetric for both roombots, the keyword is also
unique.

To name the configuration, this visual algorithm can be followed:

1. Look at the two circles of the servos in diagonal.

2. If the two circles are parallel, the connection type is parallel

3. If the two circles are “touching” each other, or in other words, their re-
spective plans are orthogonal, the connection type is perpendicular

4. Else, put in front of your eyes the two points, one of each circle, which
define the distance between the two circles.

5. If following the curve that you see, you see a ’Z’, then it is Shear Z.
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Figure 2.4: Connection from the second submodule to the third.

Figure 2.5: Connection from the third submodule to the fourth (last).
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Figure 2.6: The four connection types of the roombot modules
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6. Else you see a ’S’ and it is Shear S.



Chapter 3

Implementation

We implemented all our models in C++, because it is object-oriented, compil-
able in assembly and thus powerful. We describe in this chapter how we dealt
with the computation of kinematics, with the graph of connectors and associ-
ated transformation matrices, and also with the message class used by roombot
controllers to talk to each other.

3.1 Forward and inverse kinematics

To implement forward and inverse kinematics, we first needed a way to represent
transformations.

3.1.1 Implementation of referentials

At the beginning and for simplicity reasons, we design our own transformation
class based on a representation containing a quaternion [24] plus a vector.

The advantages of quaternions are that the corresponding rotation is aways
normalized, there is no gimbal lock effect[26] because of the continuous repre-
sentation, and the multiplication cost less.

The counter-part is that we have to compute the corresponding rotation
matrix[25] when we have to multiply it by a vector.

KDL and boost

KDL [19] also provides Frames, Rotations and Vectors, which are provided by
boost. We later managed to integrate KDL to our code, which was difficult due
to a lack of documentation.

We mainly used KDL capacities to solve the inverse kinematics. Forward
kinematics were solved by both KDL and our quaternion representation.
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3.2 Implementing the kinematic model of the
roombot

Thanks to the Figure 3.1, we are able to see what the kinematic chain is from
one connector to the other, like C0X to C3Y, or from any known referential in
the roombot to any other inside the same roombot.

To efficiently recover the succession of referentials, we designed two 2D ar-
rays.

1. Successor[REF1][REF2] is the neighbour referential to REF1 that en-
ables to get closer to REF2 in the graph. It is defined everywhere, except
if REF1 = REF2

2. Between[REF1][REF2] is the transformation between two adjacent refer-
entials in the graph, else it is null.

For example, the initialization might look like this:

stat ic REFERENTIAL Succes sor [REF COUNT ] [ REF COUNT ] ;
stat ic Transformation ∗ Between [REF COUNT ] [ REF COUNT ] ;

Between [C0X ] [ M0] = CiX Mi ;
Between [M2 ] [ C2Z ] = Mi CiZ ;
Between [M0 ] [ B0 ] = M0 B0 ;
Between [ B0 ] [ B1 ] = NULL;
. . .

We remark that the transformation between B0 and B1 for example cannot
be computed statically because it depends on angles provided at the run-time.

3.3 Useful C++ design pattern

We got some problems due to the C++ language itself. Contrary to java, if
we want to manipulate abstract types, we have to use pointers with all the
pain that it represents : Calling new, delete, forgetting to destroy objects,
etc. But whatever we might do, abstract types cannot be set without pointers.
And memory management is really not a good solution, not scalable, hardly
extensible.

So we present here a model of a design pattern which provides the user all
the power of manipulating abstract classes, but without the pointers. Here are
the specifications.

• One abstract class m models an interface, like a “model”, a “type of”,
or a “sort of”. Imagine, for example, a model of message, which already
contains the ID of the sender and the receiver, but still needs a type and
serialization function.
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Figure 3.1: The graph of the transformations between referentials
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• One class M containing a pointer to this abstract class m, and having the
same public methods. It is a also “friend” of this abstract class.

• Each child class c has to register a static m* create() function of itself
into the abstract class, with its corresponding type given by int type()

• Each child class c has a default C cast(M) function which takes an object
of class M and if possible casts or converts it into its own type.

• Each child class c has a default m* clone() function which clones itself,
and is called by the copy constructor of class M, so that two different
objects of class M would never share the same internal class m.

Of course, this design pattern has its own pros and cons.
Pro:

• To design a new child class, one has to implement the pure virtual meth-
ods, so something cannot be forgotten nor hidden at run time.

• All non-abstract children can be created on the stack, without “new”
pointers, so they can automatically be deleted by the compiler at the end
of their scope.

• If there is at least one registered child, the class M can create a default
object by looking at the registration array. If there are some good set-
ters and getters, this can be a good solution to create an object without
knowing what the implementation would even be.

Cons:

• The registration: If a child class does not register itself, they might be
blocking functions to prevent the use of this child class.

• Depending on the compiler, the copy constructor might be used too much,
so this might slow down the whole program. But this is usually optimized
and not that harmful.

3.3.1 Example in communication : Class Message

We exactly used this design pattern in the Message class, as we needed a way
such that the Message class does not depend on anything, the customized mes-
sages easily implement the missing methods, and receiving/sending messages is
done in few lines of code.

class Message {
protected :

Interna lMessage ∗ m;
public :

/// . . .
Message& operator=(const Message &message ) {
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i f (m) delete m;
m = message .m−>c lone ( ) ;
return ∗ this ;

}

unsigned char type ( ) {
i f (m) return m−>type ( ) ;
return −1;

}

int g e t i d s e n d e r ( ) {
i f (m) return m−>g e t i d s e n d e r ( ) ;
return −1;

}
} ;

class Interna lMessage {
private :

int i d s end ;

public :
int g e t i d s e n d e r ( ) {

return i d s end ;
}

virtual S e r i a l i z e r& s e r i a l i z e ( S e r i a l i z e r& s ) = 0 ;
} ;

And this is how we would implement a message which sends 42 to everyone
by using the command MessageInteger::send(my_id, 42);

class MessageInteger : public Interna lMessage {
private :

int my integer ;

MessagePos i t ions ( int id send , int my integer ) ;
public :

stat ic Interna lMessage ∗ c r e a t e ( ) {
return new MessageInteger ( ) ;

}
stat ic void send ( int id send , int my integer ) ;

Interna lMessage ∗ c lone ( ) ;
int type ( ) { return 1 ; }

virtual void s e r i a l i z e ( S e r i a l i z e r& s ) {
s<<my integer ;
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}
} ;

More documentation is available in the source code of the project, with a
complete example from scratch, and a lot of message examples developed for
the roombots and for Webots.

One good point about the Message class is that we can specify how we emit
and receive the messages, so we were able to inject one emitter/receiver for
Webots and one for the Physic plugin, as they have two different interfaces.

3.3.2 Working with KDL

We had to get information about KDL[19] in order to integrate it to my existing
kinematic structure.

KDL does not work with trees for the moment, but with chains. So for a
given configuration, we had to build the corresponding chain.

Fortunately, my model authorizes inverted chains with the same angles as if
the chain was not inverted, this is useful when the roombot moves by reaching
a position locks one part, unlocks the other and then continue but in a reverse
configuration. See the chair problem (page 41) for an example of such moves.



Chapter 4

Working with Webots

It is now time to present how the integration of these algorithms has been
made in Webots [21], which is a real-time simulator of robots in a 3D graphical
environment.

Most of the experiment have been done on a meta-module, which is com-
posed of two roombot modules linked together on connectors C3X and C0X
(see figure 4.1).

4.1 The roombot controllers

We consider two types of controllers that we used in Webots. The pure roombot
controller, which the real roombots should have in the future, and the supervisor
controller, which acts like a centralized coordination.

For the moment all the forward and inverse kinematic code has been put
in the supervisor controller, because it was experimental. But a lot of the
functionalities provided by the supervisor should finally appear in the roombots
as soon as they would become autonomous.

The plan used to do all experiments was the following:

• The supervisor computes everything and sends orders to the roombots

• The roombots execute the orders and send back notifications.

This plan does not exclude the fact to have several supervisors, each one
controlling different sets of modules, as you can see in the chair problem (page
41).

4.1.1 The reactive roombot controller

This controller is the one developed during this project. Its purpose is only to
react to orders in a clever way.

So first, let us have a look at the list of tasks that our roombot controller
should be able to do:
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Figure 4.1: The roombot meta-module, composed of two roombot modules.
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• Gives the servos positions to anyone who asks for it.

• Set up the positions given by anyone.

• Sends a message to tell that the move is finished.

• Locks or unlocks a connector.

One sees that these tasks arise some problems.

Problems while locking and unlocking connectors

First, what if we are asked to lock a connector but there is nothing to lock on?
Or even worse, if we have to unlock one side of a roombot chain without being
sure to be connected on the other side?

For this reactive controller, we decided not to cope with this problem, so it
was the role of the supervisor to be sure of the orders it would send.

Problems while moving

The other problem is the set-up of servos positions, i.e. to move the roombot.
The roombot can easily get stuck if it encounters an obstacle, and without
internal expensive collision detection the supervisor cannot anticipate that.

As the roombot have this fantastic ability to make continuous 360◦ rotations
around any servos, we decided to implement an bounding-trial algorithm. If one
of the servos detects three times a change towards a bad direction (marked as
red stars on the graph of Figure 4.2) or no movement at all without having
reached the goal, it changes the goal modulo 2π to overcome the problem.

If it still does not work while changing once the goal, the roombot controller
will change it up to three times, moving first forward, then backward, then
forward.

If it still does not work, the roombot sends back a message with its current
positions telling that it got stuck.

If it manages to reach the position, it sends back a message telling that it
succeed.

4.1.2 The supervisor controller

The supervisor controller went through a lot of modifications over time, resulting
in the current controller which sums up all possibilities that the supervisor is
able to do.

Thus, the current supervisor has the following behaviour:

• It receives in argument the ID of two roombots making a meta-module.

• It receives in argument the way the roombots are assembled.

• It receives in argument a file containing instructions to execute.
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Figure 4.2: Movement of a roombot servo during time if it gets stuck while
reaching a goal.

• It sends the orders following the instruction file.

• It may stops, following instructions, to wait for more instructions on the
command line.

One sees that the most important step here is the set of instructions that
the supervisor can parse and execute.

Supervisor capacities

The supervisor can first ask the meta-module to move, either with forward
kinematics, giving explicitly the angles, or with inverse kinematics, giving the
position to reach. It can ask them to detach or reattach, as we discussed in
the previous section. For debugging purposes, it can draw a cube with axis
at the extremes of the meta-module (if the kine-controller-plugin is activated),
on-the-fly read commands on the command line, and it can wait some time.

One sees that a lot more could be done in this field, giving more high-level
and/or implicit commands such as “assume that you are moving on a grid and
move to this absolute position”. For future projects, it is easily extensible or
reimplementable.

See Appendix B for more details about the implementation of the commands.



Chapter 5

Experimentation and
results

Now it is time to show up some of our main results that we obtained thanks to
our work.

5.1 Moving and locking messages

First, we tested our class Message with a small example of reconfiguration, see
Figure 5.1 for the screenshots of the video.

Some remarks about this video. In the initial position, the meta-module is
somehow stuck, because the two roombots are connected from C2Y (first) to
C0X(second), so it looses one degree of freedom over its six. The purpose of
the reconfiguration is to connect C3X of the first roombot module to C0X of
the second.

At some point, we added a small movement of the second roombot module
to allow the middle servo of the first roombot module to turn, because there
would be some collisions else in reality.

5.2 Testing forward and inverse kinematics

5.2.1 Solving forward kinematics

On of our first results and proof that it was working was what we called the
“consciousness” of the robot’s position. The supervisor computes the position
that the roombot meta-module should reach given some random angles, set-up
a red-green-blue referential at this point, and then sends a message to set up
the angles like it decided.

The coincidence of the last referential with the axis system showed that it
was perfectly working in this case (see Figure 5.2)
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Figure 5.1: The test of move and lock messages.
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Figure 5.2: Computing internal and external forward kinematics.

Figure 5.3: Blocked while solving forward kinematics.

However, for some angles, we got some internal collision (see Figure 5.3). It
meant that it had the consciousness of the kinematic chain, but not of the shape
of the roombots.

It looks hard to integrate an internal collision detector into the controller,
but it could be treated in a possible future work.

5.2.2 Solving inverse kinematics

Once the kinematic model was working, and the integration with KDL done, we
were able to specify absolute referentials to reach and the meta-module would
align the last connector of the kinematic chain C3X to this referential. See
Figure 5.4 for an example.

We encountered some problems with the KDL inverse kinematic solver, be-
cause the default algorithm was first not even able to get the best approximation
of the inverse kinematics when there was no solution, and worse, it could find
solution very different from the expected approximate solution (see Figure 5.5),
which is sometimes very bad, especially when we take collision into account.

Of course, there has been some problems because of singularities, which are
quite common in the domain of inverse kinematics [28].

The best method was to get some knowledge about how inverse kinematics
was working [23, 6, 12], in order to manipulate the internal coefficients to make
resolution smoother. Section 5.3.1 presents some methods used to improve the
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Figure 5.4: The roombot reaches an arbitrary referential.
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Figure 5.5: KDL default IK algorithm was not able to direct the roombot toward
the unreachable goal.
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algorithm.

5.3 Direct application of IK

Once we have the inverse kinematic algorithm, we were able to do most of
the proof of concepts, like moving on the diagonals of a grid or compute the
reachable space.

5.3.1 Reachable space and plan

First, we reached the most far points from the base of the roombot in all direc-
tions, locally oriented to Z. This result is displayed in figure 5.6.

Second, we reached the referentials on a discrete plan, as if the roombot
meta-module wanted to move on it. For each position, we displayed a blue box
if the position has been reached, with the corresponding X axis as a red stick.
We tested four possible rotations per position, so we could have one to four red
sticks on each blue box.

We modified the existing inverse kinematics algorithm in order to try to let
it solve everything “more smoothly”, by different ways, and we compared it to
the solutions of the original algorithm (Figure 5.7) The point was that some
solutions were too far away from the original position, so while trying to reach
positions in a plan, the solution computed by KDL would collide the plan.

One big artifact of existing KDL algorithm, was the fact that the angles could
diverge, and it was very common to get values such as 1204.18 radians, which was
very bad and resulted to some solutions like in figure 5.5. So we tested following
modifications, sometimes independently and other times merging them.

• Recomputing all angles modulo 2π and between -π and π at each iteration
step.

• Reducing the greatest angle step.

• Applying only the biggest angle step (direction by direction)

• Applying different weights on the angles, decreasing, increasing.

• Discretizing difference angles to multiples of π/6 (⇒ rounding angle steps.)

• If the max is greater than a certain threshold (0.05), normalizing the angle
step so that the max is less than a given value. (Figure 5.8)

• Increasing the tolerance of the final position from 0.01 to 0.05 (Figure 5.9)

We displayed the result of such changes on figures 5.8 and 5.9. In the final
algorithm, we just kept the last two modifications, let us explain why.

One can remark that increasing the tolerance of the final position did not re-
ally increase the number of inverse kinematics solved (56 to 57), but it increased
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Figure 5.6: The reachable space solved by KDl, without checking self-
intersections
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Figure 5.7: Reachable plan solved by KDL. 32 reached over 56 solved.
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Figure 5.8: Reachable plan solved by our model. 37 reached over 56 solved.
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Figure 5.9: Reachable plan solved by our model with higher tolerance. 40
reached over 57 solved.
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Figure 5.10: Description of all the referentials located on the faces of a grid.

the number of inverse kinematic reached in the simulation (32 to 40). However
this is not an amelioration of the initial algorithm, it is only a parameter.

One can also remark that the main difference between our changes and the
original algorithm is not in the number of positions reached – between 30 and
40 for all modifications mentioned above, but rather the set of positions. There
are some positions that can be reached in some models and not in others.

So it looks like we should solve the IK with several different models and
algorithms to be sure to have better chances to get at least one solution. This
could be a future improvement.

Moving inside a 3D grid

The figure 5.10 presents how we did to specify goals when we were moving on
a grid.

So if the M0 referential of figure 5.10 coincides with the M0 referential of
the first roombot module of a meta-module, the command

reachfw 0 1 0 1 0 0 3

will make the meta-module place the connector C3X of the second roombot
module to coincide with the referential described by (0, 1, 0, C0X, 3) on figure
5.10. See Appendix B page 48 for the listing of all the commands.

We designed a static method GridPosition::getTransformationTo(0, 1, 0,
1, 0, 0, 3) to compute the corresponding transformations. It could also be
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called by GridPosition::getTransformationTo(0, 1, 0, GridPosition::DIR P X,
3) because this is the connector referential computed from M0 by moving toward
X (Plus X).

The purpose of a grid is to quickly be able to describe a position to reach
with the minimum of parameters, knowing that the whole world is located on
that grid.

5.3.2 The acrobat roombot

We also tested our kinematic chain models with three roombots, and we arti-
ficially increased the torque for the simulation, because the roombots are not
able else to handle that many modules.

So the screenshots of the movie are displayed on figure 5.11, and let us give
some comments on that.

One sees that once there is one roombot on one side and two roombots on
the other side, the easiest way to reconnect them together is to give them back
the angles when it first solved the inverse kinematics. This can be generalized
if we ever wanted to make roombots help each other to move.

In the real video, there are two times in which one chain turns in the other
direction, thanks to our controller. Else, it would have get stuck, because the
closest goal is not always reachable (see section 4.1.1).

5.4 The chair problem

Our main goal (see section 1.1.5) was to make a proof of concept of the loco-
motion of a meta-module over a passive roombot structure.

Now that we have implemented all the required concepts, we combined them
to make the video of the chair, which is quite complex even if it is short.

So let us recall the video : Two meta-modules start on the ground, on a grid
of connectors. Both move toward the back of the stool (see figure 5.12) to form
the back of the chair (see figure 5.13)

To achieve this result, we set up two command files containing line by lines
the commands to achieve. A lot of the previously explained concepts have been
re-used :

• Move on a grid: We used some commands to tell a position to the meta-
module to solve the inverse kinematics.

• Move with angles: Sometimes and to optimize the movement, we gave
instructions to move to absolute angles

• Move forward or backwards: Sometimes we have to compute the IK from
C0X of the first to C3X of the second, sometimes it is reversed, and it
does not cause any problem.

• Locking/unlocking: Once over two, we connected C0X of the first and
disconnected C3X of the second
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Figure 5.11: The acrobats, reconfiguring and exchanging modules.
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Figure 5.12: Locomotion of the meta-modules to make the back of the chair.

• Reactive roombot controller: Sometimes it changes direction because it
cannot reach its goals in the direction it is moving to.

The results that we can see are as follow:

• The roombot meta-module is able to go through concave (beginning of
the movie) as well as convex angles (when it reach a position in the back
of the chair)

• If the position to reach is “easy” in a sense that one could turn the room-
bots by 90◦ rotations to reach the position, then it is often more adapted.
In the future, a database with such precomputed movement would be
good.

• Finally, it would be quite easy to give a goal position to a roombot meta-
module, and knowing its environment, it could choose a best path.

Now that the infrastructure is working well, we think that they can be a lot
of experiences that could be made on roombot meta-modules, like distributed
goal-based dynamic reconfiguration.
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Figure 5.13: The resulting chair. The two meta-modules form the back.



Conclusion

This project clarified the move possibilities of the roombots by establishing a
kinematic model that can also be re-used for completely different future projects.
It also presented some of the solutions to implement this model in an object-
oriented way and to simulate it properly on Webots. Last we demonstrated the
pertinence of this model by generating relevant examples such as the locomotion
over the chair (see section 5.4).

We know that a perfect model does not exists, else we would not call it a
model. Thus, even if the previous model has proven to be good, it still can
be improved, e.g. by replacing chain structures by tree or graph structures, by
distributing the kinematic computation along the roombot modules, or even by
setting up autonomous agents inside each roombot, so that intelligent behaviors
could emerge.

This work has been a step towards the goal of the main roombots projects,
to create intelligent furniture which would be able to reconfigure by themselves.



Appendix A

Future improvements

During my project, I have found some problems or questions and I give here
some way of thinking about them.

A.1 Webots

What we are really missing in Webots, is an API to be able to dynamically
modify the tree of a scene, with functions such as:

#include <webots/fictive_webots_api.hpp>

// Let’s add two roombots from the webots scene.
int main() {
Scene s;
s.importFromWebotsFile("my_webot_scene.wbt");
CustomRobotNode crn1("name_bubby");
CustomRobotNode crn2("name_foo");
crn1.setChild(crn2);
crn1.setMaxForce(12);
crn1.setRotation(0, 1, 0, 3.14);
s.addNodeAtEnd(crn1);
s.exportToWebotsFile("two_robots_more.wbt");

}

In our worldMaker, we are currently parsing the text file by hand and re-
placing the values with those that we need, which is not very extensible nor
robust, because Webots does not store fields which have the default values.

In the same direction, it would be good if the existing function Supervi-
sor::importNode would not crash the entire simulation – I mean, not unlock all
the connectors –, because it is still buggy for the moment. This is the same when
we sometimes want to modify some values in the tree while the simulation is run-
ning, for the simulation itself. Supervisor::deleteNode, Supervisor::modifyNode
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could also be useful to have a total control on the simulation. But it might not
be in the spirit of Webots.

It would also not be too difficult (something like 100 working hours) to be
able to modify the initial parameters in the tree for the next simulation. It would
mean to have a separate tree for the simulation and for the initial parameters,
and as well not to restart the whole program when we are doing a reset.

A.2 Multi-dimensional space exploring

Exploring a multi-dimensional space to find minimum could be rewritten as a
problem of finding a global minimum on a space-filling curve. There has been
plenty of mathematical work on them [10, 2], which could give a new approach.

Space-filling curves could also be a good straightforward way to explore a
representative sample of space, if we quantize the curve, for example to compute
reachable space.
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Commands that the
supervisor can parse

movefw | movebw s11 m11 s21 s12 m12 s22

where sij are the desired angles divided by 2pi/3 (e.g. to have an angle s12 of
4π/3 put 2 in the field) and m1j are the desired angles divided by π/2 (e.g. to
have an angle m11 of −3π/2 put -3 in the field) if we use movebw, the angles
are inverted.

lock n_module CONNECTOR
where n_module is either 0 or 1, depending on the module we want the connector
to be locked, and CONNECTOR one of (C0X, C0Y, C0Z, C1Y, C1Z, C2Y, C2Z,
C3X, C3Y, C3Z)

unlock n_module CONNECTOR
same commands as lock but unlocks the corresponding connector

step TIME
waits TIME milliseconds before continuing.

reachfw Dx Dy Dz dirX dirY dirZ Orientation
’Reaches a referential on the grid. See figure 5.10 page 40 for more explanations.
If we add the first fields Dx Dy Dz, the referential will be translated by a vector
Dx Dy Dz in the referential M0 If we add an Orientation (last field), the final
referential will be turned by an angle of Orientation ∗ π/2 around the Z-axis.

reachbw Dx Dy Dz dirX dirY dirZ Orientation
same as reachfw but starting from the M3 referential of the second module, thus
reaches C3X, C3Y, C3Z, ’C2X’, C2Y, C2Z. ’C2X’ and ’C1X’ do not really exist
but they can be computed.

dropBoxFw (resp. dropBoxBw)
If the kine controller physics plugin is activated, puts a small box at the end of
the 2nd module (resp at the beginning of the 1st module).

cmd
Enables the user to enter these commands at the command line, for testing
purposes. Webots must have been run at the command line on linux or the
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controller should have a command window on Windows (not tested.)
file

Re-enables the file parsing after testing on the command line.
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