
Self-reconfiguration for Adaptive Furniture

Jocelyne Lotfi

January 14, 2009

Contents

1 Introduction 2
1.1 Background and literature review 3

2 Previous Work of Masoud Asadpour 6
2.1 Configuration . 7
2.2 Signature . 7
2.3 Distance metric . 11
2.4 Search strategy . 11
2.5 Full algorithm . 12

3 Improvements 14
3.1 Adaptation for Roombots . 14
3.2 Move Action . 15

4 Implementation issues 19
4.1 Architecture . 19
4.2 Webots . 24

5 Results 25
5.1 What was done . 25
5.2 Generalities . 26

5.2.1 Difference between first and best solution 27
5.2.2 Difference between solutions in the same run 27
5.2.3 Time to reach a solution 32
5.2.4 Quality of the solutions 32
5.2.5 Randomness . 32
5.2.6 Running time . 33

5.3 Comparison to Asadpour’s algorithm 34

1

6 Future Works 35
6.1 Improvement of Collision Detection 35
6.2 Division of structure . 37
6.3 Improvement of search strategy 37

7 Conclusion 40

8 Acknowledgements 41

2

Abstract

Roombots are modular robots developed at the BIRG in EPFL. These
robots have a much wider possibility of movement due to their three degrees
of freedom than previous YaMoR[3] modules, a former modular robot previ-
ously used at the BIRG, and can be used for different tasks. One of these
task is to be able to reconfigure themselves into different shapes of furniture.

This project presents an algorithm for self-reconfiguration for roombots.
It is based on the work of Masoud Asadpour[1] that builds an algorithm
capable to define a list of actions that will reconfigure a group of YaMoR
modules. His algorithm represents spacial configuration as graphs and uses
graph edit distance and graph signature.

This master project presents an adaptation of Asadpour’s algorithm for
the roombot modules. It also extends Asadpour’s algorithm by changing the
definition of a configuration.

Chapter 1

Introduction

Modular robotic is a growing field constantly improving as to give answer to
some of the main issues of the future of robotics, like locomotion in unpleasant
environment (uneven ground, forest, snow, etc.) or quick reconfiguration
(change of shape to be able to use certain tools or do specific actions).

This field faces many challenges among which we have the capacity to
determine the best suitable shape that is needed to be taken to accomplish a
task. Another issue is general robustness of the robotic systems. Being able
to deal with a large amount of units and with eventual failures is a future
task to solve. Having a good communication system between units is also an
issue.

This project concentrates on one of these challenges: the optimal recon-
figuration of a structure using self-reconfigurable modular robots as basic
building blocks. It is part of a bigger project developed at the BIRG (Bi-
ologically Inspired Robotic Group)[24] at the Swiss Institute of Technology
(EPFL) that aims at developing adaptive furniture called roomware[20]. This
idea of having robots hidden in our environment was already proposed by
M.Weiser[2] and is one of the field in which modular robotic can be applied.

2

1.1 Background and literature review

Modular robots are robots made of a lot of simple small and identical modules
that can attach and detach themselves from the whole structure. The main
idea is to get a robot that can change its shape depending on the task to be
solved. One of the task in which these robots could be useful is in creation
of adaptive furniture, that is, pieces of furniture that change their shape
depending on the need of the users. An example could be to have a table
that is able to move and change itself into a chair if necessary and, once it is
no more needed, puts itself in a corner taking the form of a block.

This is only one specific example, but modular robots are expected to be
useful in many areas of human activities like space exploration, helping to
search for survivals in case of catastrophe or even mining under sea.

The main advantages expected from modular robots are:

• Robustness: as robots are made of many small identical modules, any
part can be replaced easily; this could lead to self-repairable robots.

• Versatility: The capacity of adaptation of such robots allows them
to create new morphologies better suited to execute multiple different
tasks.

• Low Cost: Such small identical modules are well suited for mass pro-
duction, which will inevitably reduce the overall cost of building mod-
ular robots. Moreover, such a modular robot has a general design to
accomplish multiple tasks, other than a monolithic robot design, where
many different robots are used each for a specific task.

Modular robots are generally divided into two categories, lattice and chain
type. Lattice type use cluster-flow reconfiguration and movement. It means
that it uses attachment and detachment over a lattice of other modules to
progress, it “flows” over them. Some examples could be the Cristal robot[5]
and the ATRON[7]. The chain type uses its own force to move and reconfig-
ures itself only to adapt to a new task or environment. This category includes
YaMoR[3], M-Tran[4] and Polybot[19].

Another way to classify modular robots concerns the way they reconfigure.
They can use a deterministic or stochastic reconfiguration. In a deterministic

3

Figure 1.1: a roombot module

reconfiguration, the position of all modules are always known and movements
are directly controlled. On the other hand, stochastic reconfiguration ensures
only statistical probabilities on time needed to reconfigure or the position of
different modules.

This project was done with a new type of robot called roombot[13]. This
robot looks like two dices attached one to the other and having three degrees
of freedom, one between the dices and two other that go through the biggest
diagonal of each dice, its design was inspired from the molecube module[18].
Figure 1.1 presents a picture of such a module. It can be considered as an
hybrid between lattice and chain type robots. Roombot modules can both
move themselves on a lattice respecting a 3D grid or behave like chain robots
to locomote with legs for example. It is not the first attempt to mix both
types, Superbot is another example of such an hybrid modular robot[12].

The specific problem studied here is the problem of Self-Reconfiguration
Planning. The reconfiguration problem consists of determining the different
actions that should be undertaken by a group of attached robots so as to
pass from a certain configuration in space to another.

This problem represents a challenge as the configuration space grows ex-
ponentially when new roombots are added. So, heuristic methods need to
be used to obtain some solutions. The goal is to be able to find a viable

4

solution, as optimal as possible, in a reasonable computation time.

Different methods were used to tackle this problem. P. Brat and al.[17]
propose a hierarchy of sub-structures. Their approach consists of a base
planner that computes an optimal solution for a few numbers of modules,
composed of a group of units, and a hierarchical planner that calls this base
planner or reuses pre-computed plans at each level of the hierarchy.

A more generic solutions for what is called “meta-modules”, groups of
modules in identical specific configurations, is presented in [14]. A “meta-
modules” can do a set basic moves which are pre-computed and the planning
is done entirely on “meta-modules” instead on units composing it.

These approaches tend to reduce the computation load by repeating at
different level the same structure. But a first step is needed before applying
these methods: the computation of a specific reconfiguration of a small group
of modules.

On this smaller scale, reconfigurations often use stochastic method, like
Genetic Algorithm or Simulated Annealing, combined with some heuristic
to search more efficiently the space of solutions. Murata et al.[9] uses, for
example, weighted probabilities based on potential fields to guide the search
procedure.

The notion of metric distance was also introduced the first time by Pamecha
et al.[10]. Metrics are useful tools to build efficient heuristics used to guide
search. [15] introduces several of them.

In this project, we will adapt and improve the reconfiguration algorithm
done by the team of Masoud Asadpour[1], who worked with YaMoR[3] and
M-Tran[4] modules and presented a deterministic centralized reconfiguration
algorithm and a specific metric based on graph theory to guide search. The
algorithm of M. Asadpour is able to handle up to 8 YaMoR modules in
reasonable time.

This report will first present a summary of the work of M. Asadpour
in chapter 2; chapter 3 explains the different changes and improvements
done to the original algorithm and the reason of them; chapter 4 contains a
more detailed description of the implementation; chapter 5 includes results
obtained with the new algorithm and a comparison to the previous one and
finally chapter 6 presents some future works on the subject.

5

Chapter 2

Previous Work of Masoud
Asadpour

This master project is based on the work of Masoud Asadpour. He creates an
application that calculates the attachment and detachment necessary for a
group of modular robots to pass from a certain configuration to another. His
work was tested with YaMoR modular robots, so all pictures in this section
will have figures with YaMoR modules.

Asadpour’s algorithm can be decomposed in five main parts:

1. The representation of the configuration, meaning how we define a con-
figuration and what it is representing in the real world. Section 2.1.

2. The comparison method, that is how do we compare two configurations
and when they are considered the same or not. Section 2.2.

3. Distance metric, which represents the distance to the goal, how it is
computed and how close it is to the real distance observed. Section 2.3.

4. The search strategy, which explains the way we choose the path in the
configuration search tree. Section 2.4.

5. And finally, how all these components are assembled together to give
a full algorithm. Section 2.5.

6

2.1 Configuration

This first question we have to answer is what is a configuration. It is defined
here as a particular arrangement between independent modules. A configura-
tion can be represented by a graph where each node represents a module and
each edge a connection between them, meaning where they are attached one
to the other. Fig. 2.1 shows both the robots and the graph representation
of their configuration. In addition, each edge has a label that expresses how
both modules are attached. This label is computed using connector number-
ing and orientation between modules. This means that each connector has a
certain number, and a label is determined by the source connector, the target
connector and the rotation between them, Fig. 2.2 represents the labelling
of connectors used on YaMoR module. We can see that the module behind
is connected by the connector 0 to the connector 4 of the front module with
no rotation.

It is to be noticed that this way of labelling doesn’t take into account
the servo’s position of the modules. Figure 2.3 shows an example where the
same graph has different representations in space due to servo moves.

2.2 Signature

The next step is to explain the comparison tool used. The idea was to
use a string representing the graph. This string is called a signature. It
is via this signature that we can know if two graphs are identical or not.
From a signature a graph can be reconstructed, but it is not a bijective
application, more than one graph can have the same signature. The goal of
the signature is to recognize that two graphs are the same and so represent
a similar configuration of connectivity.

The graph isomorphism problem is an NP-hard problem[16], but for some
special type of graphs polynomial algorithms permit to determine if two
graphs are isomorphic or not. Among them Jiang and Bunke[22] proposed a
quadratic-time isomorphism test for ordered graphs. This test was used to
calculate a signature for the graph. First, configuration graphs were trans-
formed into ordered graphs which was done by sorting the edge by their label
values.

7

Figure 2.1: graph representation of a configuration, taken from Asadpour’s[1]

Figure 2.2: labelling of an YaMoR module, taken from Asadpour’s[1]

8

Figure 2.3: different configuration in space for the same graph, taken from
Asadpour’s[1]

9

Figure 2.4: a graph and its signature, taken from Asadpour’s[1]

Therefore, the calculation of the signature is done as followed: considering
that we have an oriented weighted graph, the signature process is started from
every single node and a depth first search is done on the nodes following the
order of the edges. The signature will be a sequance of items containing
the start node, the target node and the label. If the search process has to
go through an edge in the reverse direction (in-edges), a minus sign will be
added. From all computed signatures, the biggest possible one is kept as the
signature of the graph.

If the module has symmetry axes and can be reversed without change in
the configuration, it is the biggest possible label that is taken into account.
Fig. 2.4 shows a graph and its signature. It was computed as followed,
assuming that the edges are sorted according to their label, out-edges in
descending order and in-edges in ascending order. The vertex shown as start
point is indexed with 1. The out-edge e1 is traversed first. The newly visited
vertex is indexed with 2 and [1, e1, 2] is added to the signature. Then vertex
3 is visited via e2. From vertex 3, vertex 2 is reached via e3. Vertex 2 was

10

already visited, so we back-track to 3. From vertex 3 we have no other edges
to traverse. We have to back-track to 2, and then to 1. In vertex 1 the
next edge i.e. e4 is followed. Similar steps are repeated until vertex 6. It
has two in-edges, e6 and e7, and no out-edge. As this node was reached by
going though e6, the next unvisited edge would be e7. Since we are traversing
e7 in reverse order, [6,−e7, 1] is added to the signature. The procedure is
continued until all vertices and edges are visited once and only once.

2.3 Distance metric

The third point is the distance metric chosen. This metric is based on the
graph edit distance between two graphs. It is the minimal number of ad-
ditions or removals of nodes and/or edges necessary to go from a certain
graph to another. It’s mathematically proved to be related to the Maximum
Common Sub-graph (MCS) between two graphs by

δ(I, F) = 1− |MCS(I, F)|
max(|I|, |F |)

where I and F represent respectively the initial and final graph and |MCS(I, F)|
is the number of edges in the Maximum Common Sub-graph between I and
F . |I| and |F | are respectively the number of edges in the initial and final
graph. The problem comes from the fact that |MCS(I, F)| is not computable
in reasonable time so an upper-bound approximation is used instead. This
approximation, proposed by Asadpour[1], is

σUB(I, F) =

∑lmax
l=0 min(C1

l , C
2
l)

max(|I|, |F |)

where C1
l and C2

l are respectively the number of edges in the initial or final
graph that have the label l.

2.4 Search strategy

The last thing is how the search is done. First, each graph, once computed,
is pushed in a pile sorted by distance to the final graph. It means that we

11

always check first the graph that is the closest to the final configuration. It
doesn’t guarantee to find the optimal solution but it ensures the progression
to the goal. Ensuring to have found the optimal solution would require to go
through the whole search tree, which is impossible as it grows exponentially.
Randomness comes when two or more graphs have the same distance to the
final graph, in which case the next graph to examine is chosen completely
randomly among them, this can happen quite often especially with small
graphs.

2.5 Full algorithm

The full algorithm is given in Fig. 2.5. First, the signature of the initial and
final graph are computed. If they are the same nothing happen, otherwise
the initial graph is pushed in the priority queue sorted by distance to the
final graph. For each graph popped from the queue which is not equal to the
final graph, the algorithm searches all feasible actions. For each action, a
new configuration is constructed and the signature of this new configuration
is computed. The algorithm checks if the signature is in the database. If
it is the case, the action and subsequent graph are discarded, otherwise the
signature is saved in the database and the new graph is pushed in the queue.
This loop is done until a graph is found to be equal to the final graph. The
algorithm finishes when a solution is found or all different reachable graphs
are visited without finding a solution.

12

Figure 2.5: a representation of the full algorithm used by the team of Asad-
pour, taken from Asadpour’s[1]

13

Chapter 3

Improvements

This chapter contains the different improvements that was added to the code
done by Masoud Asadpour. Firstly, the code was adapted for the roombot
modules, secondly “Move Action” was introduced (section 3.2).

3.1 Adaptation for Roombots

The task of this master project was to adapt Asadpour’s code to the current
roombot modules. This mainly concerned two parts of the code: the model
and the symmetries.

A model is simply the representation of the hierarchy of parts (servos or
connectors) and their relative positions, given as transformation matrices,
from the center of the module or from their parent part (if they have one)
to themselves. The model is mainly used to detect the position of the dif-
ferent modules in space and helps on vital parts of the code (next possible
movement, checking of collision, possibility of connection, etc.)

In the signature process, the symmetries of the module were changed to
fit the current roombot module. The previous code was based on YaMoR
modules which have a different shape (and less symmetries) than the room-
bots. This part brought to increase the computation time of the signature
process for roombots as a signature is recomputed for every node and every
possible starting position for the first module, which double, passing from 4

14

Figure 3.1: different configurations that would have the same graph

in the YaMoR module to 8 for the roombots.

3.2 Move Action

We introduced an additional step: “Move Action”. As it is explained before
in this report, the algorithm of Masoud Asadpour is based on the Edit Action
Distance and servo moves are not taken into consideration.

With roombot modules that have three degree of freedom we can move
in a 3D space a lot and still being considered as in the same configuration.
For example, the four picture shown in Fig. 3.1 have the same graph and are
considered the same and this is only with two roombots. The main difference
between the old YaMoR module and a group of roombots is the possibility
for the last one to move in 3D space without having to attach or detach. The
YaMoR module having only one servo, meaning one degree of freedom, was
able to move only in a 2D space.

The goal would be to consider configurations with distinct position in
space as different. This will increase the number of possible configurations
compared to [1]. For that, another way to label edges between modules
is introduced. We don’t consider anymore the connector itself but more

15

Figure 3.2: labelling of roombot’s positions

the position in which this connector is placed and the label is computed
depending on between which positions modules are connected and no more
between which connectors. Fig. 3.2 gives an example of position labelling
on a roombot, it looks like Fig. 2.2 but the big difference is in the meaning
of digits, we are no more considering the connector itself but the position
in which it is. Due to architecture of a roombot, connectors can move from
one face to another without changing the shape of the module, this was
not possible with YaMoR where connectors were linked directly to the main
body of the module. It means that when a connector moves from one face
to another face of the robots, the position in which it is changes and so the
label between both roombots also.

Fig. 3.3 gives an example of such a movement that implies a change
in edge label. In the first picture the roombots are connected between an
end position to a side position and when the left servo of the right roombot
moves, we obtain the second picture on which roombots are connected by
the same connectors but by both end positions. Exact computation of the
label in the current implementation is given in the chapter 4.

This representation increases the number of configurations and so the
precision of the result without violating the underling rule on which this
representation is built. In fact, a Move Action, which is basically a change of
label on an edge, can be considered as a detach action followed by an attach
action between the same nodes. It is important because it permits us to
re-use the distance metric of Edit Distance previously described.

16

Figure 3.3: graph representation of a configuration

17

The efficiency or usefulness of such a method was not proved here, but
only being empirically tested, with the following theoretical background.

One issue that arises is that it produces more signatures than the prece-
dent version. A configuration will have a number of move actions propor-
tional to the number of movable servos. The signature process is one of the
most time consuming process of the code right now. It should also increase
the number of graphs that have to be examined by the algorithm. On the
other hand, the current implementation of the code checks a lot of possible
servo movements before applying an attach action, but without calculating
the signature.

Increasing the number of possible configurations will also increase the
size of the search tree as there are new actions and more possible graphs
considered, but most of them will be redundant and thus will not dramati-
cally increase the total number of graphs for which children graphs would be
searched.

It is also interesting to notice that it will not consider the servo position in
the signature but only the labels and the positions of the different modules
to get the biggest ever possible signature. This means that we don’t care
which part of the modules are connected, which actual connector are there,
but only the shape in space. Once a certain shape in space is assessed to
find next possible graphs, this configuration will not be anymore looked at,
even with different servo position that could bring to different next possible
graphs. We are cutting ourselves from a possible way to get to the goal. This
can prevent us to find some solutions.

18

Chapter 4

Implementation issues

This chapter explains the main parts of the implementations, it aims at
explaining to the next user how the code is implemented for a future work
on the subject.

4.1 Architecture

The code was written in C++. We use the C++ library boost[26] for two
main things, the representation of graph via the Graph library and the shared
pointers that are pointers which are garbage collected and don’t need to be
explicitly deleted.

The main class is the Planner class. The method Reconfigure contains
the main loop of the algorithm with a priority queue sorted by distance to the
final graph. It examines the current graph on the top of the queue, computes
all possible single actions from it, puts them in the queue and tests if the
loop is finished. It outputs also results in files for statistics and debugging
purposes. The initial and final graphs are written under the .dot format in
.graph files, a .model file can be also given to the planner but it is not used
for roombots as its model is hard-coded. The class Main is here to parse
input files and gives them to the planner.

Graphs are represented as objects of the class ConfigGraph. This class
implements the boost generic template so as to represent an oriented weight

19

graph as needed in the algorithm. It has a subclass ConfigGraph3D which
adds to it a certain number of fields related to a graph in the algorithm like the
signature of the graph, the depth in the search tree, the distance, the model of
the module and some other fields needed to compute the signature. This class
contain the computation of the distance in the method MCSUpperBound and
the computation of the signature via the method UpdateSingature2 (the 2 is
here as it is the second version of it).

The Model class contains the model of the module. The model is here to
express the physical reality of the module. For that, it contains a list of Part
which can be either Servo or Connector and physical quantities as the width
of the module, the rotation tolerance, the step size of servos and connectors
and the number of rotation possible plus a map, called label position map,
that links connectors’ positions and a certain label. For the roombots, there
is a method CreateModelDices that constructs the model. Some conventions
where followed when creating this model:

• the rotation axis of every servos is the y axis

• the rotation axis of every connectors is the z axis, with out-going direc-
tion. Figure 4.1 shows the coordinate system used both for the center
of the module (which is the same as the central servo) and for a specific
connector.

• the order of position is: left-back, left-end, left-up, left-down, left-front,
right-front, right-down, right-end, right-up and right-back, and corre-
spond to x1, y1, z1, y2, z2, x3, z3, x4, y4, z4 in the webots tree model
in the default position. Fig. 4.2 illustrate that. The order is important
for the computation of the label.

A Label is simply a short int and the method IndexOfSource, IndexOf-
Target, IndexOfRotation are here to retrieve respectively the source position
index, target position index or rotation index from the label. Position in-
dexes run from 0 to 9 depending on the order stated above, rotation goes
from 0 (same rotation) to 3 and each unit represents a π/2 rotation be-
tween axes of both positions. Labels are created by a simple loop on all
possible source, target and rotation. The label in computed as followed:
40 ∗ source + 4 ∗ target + rotation. The number 40 and 4 comes from the
fact that we have for each source 10 possible target connectors that have

20

Figure 4.1: coordinate system used

Figure 4.2: convention on the naming of positions

21

themselves 4 possible rotations. In Fig. 3.3, the label of the left picture
is computed as followed: it goes from the left-up connector (the connector
labelled 2 of the roombot on the floor) to the right-end connector (the con-
nector labelled 7 of the roombot above) with a rotation of 2 (a half-turn) so
we have: 40 ∗ 2 + 4 ∗ 7 + 2 = 110.

Every Part (Servo or Connector) has an index related to it but also two
transformation matrices to represent its position compared to the center of
mass of the module (called tactual) and to its father part (called tdefault).
Each Part has a step size and a father part that can be null (if the part is
static compared to the module’s center of mass). The Connector has three
more fields, num rotations which in the case of the roombot is always four,
gender which is not used for roombots as they are genderless connectors,
and position of type Position which is simply a char representing one of
the tenth possible connector’s position on a roombot. Connector has also a
pos trans map that maps each Position to a Transformation form the center
of mass to the connector’s position it represents. It’s initialized with indexes
and transformations of connectors in the default state, i.e. the Connector
with index 3 that has a Transformation tactual t at the beginning, will be
in the position 3 and the position 3 will have as transformation t. The
pos trans map is constant once initialized.

The code is done to have only one set of Servo and Connector objects
even if the current graph contains many nodes. So whenever a computation
has to be done on a specific module, the method UpdateModel from the class
ConfigGraph3D has to be called to update the different transformations to
fit the current servo position of this specific module.

Each action is represented by the class EditAction which contains four
fields, the type of the action (attach, detach or move), the source vertex, the
target vertex and the label. The class EditActionFinder contains all methods
to compute all possible actions from a graph and the resulting graph after
an action is done. The key method is Find which called respectively Build-
KinematicGraph, FindMoveCandidate, FindAttachCandidate and FindDe-
tachCandidate.

The kinematic graph is where each module, servo and connector is rep-
resented by a node and permits to compute a load factor to know if the
roombot will be able to lift or not the parts. A load map is computed from
it, giving a minimal load number for each edges of the kinematic graph.

22

The detach candidates are found by searching loops in the kinematic
graphs, i.e. which edge in the load map have an infinite weight and create a
detach action for each case.

The attach candidates are found by checking if two connectors are on the
same position in space and if they are not connected, we can do an attach
action.

The move candidates are more difficult to find as we have to compute a
full model of the current structure in space, called vertex trans that contains
a list of matrix representing the transformation between the center of mass of
a module (not always the first one) to all others after moving a servo. From
this point we check for collisions, simply by testing that two dices doesn’t
occupy the same space, and if not, we get the new label(s) from new position
of connectors after the move.

Signature objects are a list of SignatureItem that records the source,
the target, a direction and the label. It is computed recursively from ev-
ery node in the method Calculate2 in the inner-class SignatureCalculator
of ConfigGraph3D. The Depth First Search is in fact done in the method
Visit2 from the same class. The signature is computed many times, once per
node and for each node once per symmetries of the module, and roombot
modules have eight symmetries. It’s the Canonizer class that handles this
by changing labels in the graph depending on the new position of a mod-
ule once turned around a symmetry axis. For roombots it is contained in
three methods DiceRotatePiHalfAroundY, DiceRotatePiHalfBackAruondY,
DiceRotatePiAroundZ, combining those methods permits to create all possi-
ble symmetries.

In this architecture, the main contributions of this project are on the
creation of move candidates which includes a radical change in the attach
candidates computation, the creation of a new model specific to roombots
which leads also to change radically the Canonizer class and the addition of
Position which includes the field in the Connector class but also the compu-
tation of labels from positions and no more from connectors which brings to
numerous changes everywhere this was used.

23

4.2 Webots

To test and confirm the quality of the solutions we used Webots[25], a robot
simulation software, to see how the roombots would behave with the solutions
found. The architecture proposed by Mikaël Mayer[21] was used, it consists
of having a central supervisor that sends messages to roombot modules and
each module has an identical controller that basically does only one thing,
waiting for message and execute the order associated once received. In our
case, we use three type of messages, lock, unlock and setPosition. These
controllers are called sup and dice. Mikaël Mayer also proposed a way to
check if a move is possible in Webots in both directions in case an obstacle
is on the road. For more details see his semester project[21].

Moreover, the algorithm outputs a .sol file for each solution found that
contains a list of actions stating the type of action (M, A or D) the index
of the roombot involved, and the connector for Attach or Detach actions or
the servo positions for a Move action. This file is afterward parsed by the
supervisor.

The algorithm outputs also two other files per run a .stat that contains
some statistics like the number of graph visited, the size of the queue and
many others, one line being creating per graph examined and a .summary
that presents the number of actions in each solution found and the list of
distances to the goal for each graph in each solution.

M. Asadpour gives us also another C++ code called “Configurer” that
takes an xml file containing information on how modules are connected to
each other and creates a .wbt(Webots file), .graph and .model for the specific
connectivity stated in the xml file. This tool is really useful to create easily
simulation situations and test them.

This method permits us to see in “reality” what would happen and make
sure the solutions found are correct and doable.

24

Chapter 5

Results

This chapter covers the results obtained with the new version of the code.
The first section includes what was done and which metric are used and
why. The second section contains general comments on the performance and
results obtained. And the last one make a comparison to the previous work
of Masoud Asadpour.

5.1 What was done

To test our algorithm, different configurations were chosen, a line, a loop and
a shape with corners all of them are represented in Fig. 5.1. A quadruped
shape was also chosen to be compared with the results obtained by Masoud
Asadpour[1].

Four situations were chosen : form a line to a loop, from a loop to a
cornered shape, from an cornered shape back to a line and finally from a
quadruped to a line.

To measure the efficiency of the algorithm four measurements where done,
the number of graphs visited before a solution is found, the number of graphs
visited before the best solution is found, the number of actions in the first
solution and the number of actions in the best solution. These measurements
shows three main things:

• the quality of the solutions with the number of actions found

25

Figure 5.1: the three different configurations used in tests

• the time consumed with the number of graphs visited, it is preferred
to a raw time measurement to free the result from a specific hardware

• the necessity to continue after the first solution found, wondering if we
likely to find a better solution if we continue to run the algorithm or
not

Every tests was run 50 times to have an average count of graphs and
actions in both first and best solutions. All situations are run until the
algorithm has check all possible shapes in space and has no new graph in the
waiting queue. These experiments where done once with 3 modules (meaning
9 degree of freedom) and once with 4 modules (12 degree of freedom). Some
result were obtained with a 5 modules configuration but the computation
time to get to the end is too long to have 50 different runs completed.

5.2 Generalities

The Fig. 5.2, 5.3, 5.4 and 5.5 are the graphs representing the results ob-
tained after running the algorithm in the different situations described in the

26

previous section with four modules. The results are similar with three and
five modules. The number of graphs visited before finding the first solution
is in the left-up corner, the number of graphs visited before finding the best
solution is in the right-up corner, the number of actions in the first solution
is in the left-down corner and the number of actions in the best solution is
in the right-down corner.

Remarks can be divided in different sections.

5.2.1 Difference between first and best solution

Most of the time the first solution is the best found. This is due, for a
certain part, to the good distance metric that is used to direct the search
but mainly to the fact that once a certain graph is checked and reached with
a particular path, this path cannot be improved by further search. It is due
to servo movements that need to be taken into account in this new version
of the code and a graph doesn’t say anything on how servos are oriented.
Let us imagine we find a configuration c, we will compute the children nodes
of c, derived from the different servo movements possible from c and find a
solution that contain c and c′ one of the children of c. Let’s call a the action
that brings c to c′. If we found a shorter path to c but with different servo
positions we have no guarantee that we will be able to reach the configuration
c′ with these new servo positions and the action a will not more bring c to
c′ but to c′′ a configuration that was not previously in the set of children of
c and it will result in a unacceptable solution.

5.2.2 Difference between solutions in the same run

It is to notice that, in the results, most of the solutions found during one run
are close one to the other. This is due to the fact that a graph cannot be
seen more than once which cuts ways to perhaps find another solution to the
same shape in space with a complete different list of actions. Such a solution
would probably have to pass by a configuration that was already seen.

27

Figure 5.2: results given by running the reconfiguration algorithm from a
line to a loop 50 times

28

Figure 5.3: results obtained by running the reconfiguration algorithm from
a loop to a cornered shape 50 times

29

Figure 5.4: results obtained by running the reconfiguration algorithm from
a cornered shape to a line 50 times

30

Figure 5.5: results obtained by running the reconfiguration algorithm from
a quadruped to a snake 50 times

31

5.2.3 Time to reach a solution

The first solution is also found in very short time compares to full search
done. If we look at the scale of the graphs we can see that the first solutions
are found after looking at 10’000 graphs or even less than 1’000 in the case
of the loop transforming in a line when more than 150’000 are checked in all
cases. This shows the efficiency of the metric used as we have to visit less
than 1/10th of the configurations to find a solution.

5.2.4 Quality of the solutions

But what can we say about the quality of the solution found? Is it close to an
optimal or not? Well, the optimal cannot be computed due to the far to large
search space, but the solutions found by hands are close to the one found by
the algorithm. In the case of the quadruped to snake, the best solution by
hands is exactly the same as the one found by the algorithm. In the case of
the line that transform itself into a loop, the best solution by hand is 6, the
algorithm found only a solution in 14 steps. These are both extremes, but it
shows that the algorithm behaves as expected, not optimal but close to it in
most of the cases.

5.2.5 Randomness

Another remark concerns the randomness factor, which is what changes the
solutions found from one run to the next one. The only factor that change
radically the kind of solution found is the randomness factor. Even with
that, the quality of the solutions are quite similar from one run to the next
one. This is basically a surprise but the solutions found are often similar one
to the other and can be classified in two or three categories of solution easily
recognizable. All solutions have also a quite similar number of actions in
every case. This comes from two factors. First, the randomness is selective
and happens only if there are identical distance between graphs, at a certain
point when this is not the case, the algorithm chooses always the same way
and cuts itself from a lot of possibilities even if the random choice rate always
falls around 50% to 60% of all choices made. Second, we cannot find a shorter
sub-problem and use it in the solution as explained before.

32

Figure 5.6: comparison between the current situation, on the left and the
situation with more randomization on the right, the graphs are the number
of graphs visited before the first solution is found

To see to which point changing the randomness factor could permit a
wider number of solutions, we ran the algorithm with two new situations, the
current one and a situation where the comparison function called to place
every new graph in the queue return an incorrect result with a probability
of 1/3. Fig. 5.6 gives the difference between both on the number of graphs
visited before finding a first solution from a loop to a line with three modules.

It’s clear that having a bigger randomization can influence the variety
of solutions a lot and in the same time we can still notice, even the high
probability chosen, that a large part of first solutions are in the left part of
the graph, meaning it still give good enough solutions. A thorough search in
this direction was not done in this project due to lack of time.

5.2.6 Running time

The last thing to say is that the running time is exponential to the number of
degree of freedom and running a configuration with 3 roombots takes around

33

10-15 second, with 4 roombots it finishes in 10-15 minutes. With 5 roombots
it’s much more longer due to the fact that we begin to be a the limit of the
RAM and working with virtual memory slow down incredibly the process.

5.3 Comparison to Asadpour’s algorithm

The comparison with the work of M. Asadpour is not so easy because our
results contains two mayor changes, the adaptation to roombots modules
with their three degees of freedom and the addition of the Move Action. We
can anyway say a certain number of things.

This work is based on the code given by M. Asadpour and the statistics
collected are exactly the same, so comparison between quantities can be
relevant if we keep in mind the transformations that was done and that can
influence greatly these quantities.

First, the number of graphs looked at before finding a solution is far less
than in the previous work. If we take the example of the quadruped to snake
given in the paper[1], it’s interesting to see that the scale is 100’000, and
on the other hand, in our case, a solution is found in general around 10’000
and we search up to 150’000 with four roombots. Our algorithm is basically
finding a solution in a shorter time which permits us to go up to 12 degree (4
roombot modules) of freedom where M. Asadpour stopped at 8 (8 YaMoR
modules).

We don’t know if this comes from:

• the fact that there is less robots meaning less nodes in the graphs

• the fact that a smaller number of actions are needed to reach the solu-
tion due to the new freedom given by the roombots

• the configuration space chosen.

Any further comparison would be difficult, due to the big change in the code.

34

Chapter 6

Future Works

This chapter contains some possible future works that would improve or use
with more efficiency the current program. These include the improvement
of the collision detection which is really simple for the moment, a possible
division of the structure in small problems that could be compute in less
time and an improvement of the search strategy to have more differentiate
solutions.

6.1 Improvement of Collision Detection

The collision detection is, for the moment, done by checking that the final
position in which a modules try to reach is empty. There is no check to see
is the movement is effectively doable and that there is no obstacle between
the start and end positions.

This small problem brings solutions that basically are not doable in prac-
tice. Fig. 6.1 gives a simple example of a situation where the roombot cannot
move due to the fact that on both directions there are obstacles (the other
roombots) but the place where it goes is free.

There would be several ways to handle it. The problem comes from
the fact that the computation of collision is done many time during the
computation of possible movements. We chose to let it simple to not over
complicate the algorithm but as we know precisely where each module is we

35

Figure 6.1: example of a collision between roombots during the execution of
a found solution

36

can use a known algorithm for this kind of problem.

This situation could be also handled when the solution is running, as
obstacles are also roombots, we could try to remove them from the way and
put them back after. In the Fig. 6.1 this could include to lift the left roombot,
so the movement in progress can be finished and put it back afterward.

Another problem that arises in simulations was the fact there is a ground
and gravity. The code computes the different possible movements as if there
is no obstacles nor gravity, it checks if the number of roombots lifted is not
too large, nothing more. The ground can be an obstacle for some movements
which is never taken into account.

6.2 Division of structure

One possible way to improve the time of computation is to divide the current
structure in smaller problems. It will take less time to compute two groups
of three roombots than a group of six. The problem becomes where to cut
and how to be sure that the structure will be attached correctly to the rest
of the modules.

In the code, this means that we should consider that a certain connector
in not available, because it is attached to the second part of the structure. In
the same time we have to be sure that the structure will be oriented correctly
compare to the other part. One possibility would be to add a node in the
graph that represents the structure to clearly say where is the link between
both parts. Fig. 6.2 shows the representation of the graph and structure in
reality.

It would be interesting to adapt the current code to take that into account
but also to see how a structure can be cut into parts automatically and if
this method effectively permits to find a solution and at which cost.

6.3 Improvement of search strategy

A third possible improvement will be to change the current search strategy.
For the moment, as describe in the first part of this report, the search strategy

37

Figure 6.2: On the left, the roombots in a certain configuration in space and
on the right, two graphs representing a way to cut this into two part

38

consists of taking the closest possible graph to the goal as next one and use
randomness when there are more than one possible choice.

The results given in the previous chapter shows that even with different
random seeds, we got similar results in a certain number of cases, but that a
simple change in the randomness can widely change the range of solutions.

One way to follow would be to change the search strategy and include
some stochastic method like Simulated Annealing or Genetic Algorithm to
get more randomness and search part of the tree that could be discard other
way, without completely destroying the current quality of the solutions.

39

Chapter 7

Conclusion

This work shows a method adapted for roombot modules an existing ap-
proach to reconfigure a group of modules by two major changes. This ap-
proach is a centralized approach, still based on graph edit distance but trying
to take into account specific positioning in space. This brought to redefine
what was a configuration.

Empirical results show that our adapted algorithm can cope up to 12
dof/4 modules in reasonable time (x hours). Different remarks where done,
especially the closeness between first and best solutions and between solu-
tions of different runs due mainly to the randomization chosen. The quality
of the solutions was also discussed and shows that we get near optimal solu-
tions in many cases. Our adaptation is also able to handle more dofs than
Asadpour[1](12 dof/4 modules against 8 dof/8 modules).

Possible future works could concern a more efficient collision detection,
different search strategy or a way to break a structure in different parts that
could be computed separately to get faster results.

This work is another step in the direction of a bigger project/aim: having
“intelligent” pieces of furniture that are able to reconfigure autonomously.

40

Chapter 8

Acknowledgements

I thank the BIRG and especially my supervisor Alexander Spröwitz for the
support and help given during this work and of course Masoud Asadpour and
his team for giving me the opportunity to work on their project. I would like
also to thank Mikaël Mayer and Alexandre Tuleu for their help and support
through all this work.

41

List of Figures

1.1 a roombot module . 4

2.1 graph representation of a configuration, taken from Asadpour’s[1] 8

2.2 labelling of an YaMoR module, taken from Asadpour’s[1] . . . 8

2.3 different configuration in space for the same graph, taken from
Asadpour’s[1] . 9

2.4 a graph and its signature, taken from Asadpour’s[1] 10

2.5 a representation of the full algorithm used by the team of
Asadpour, taken from Asadpour’s[1] 13

3.1 different configurations that would have the same graph 15

3.2 labelling of roombot’s positions 16

3.3 graph representation of a configuration 17

4.1 coordinate system used . 21

4.2 convention on the naming of positions 21

5.1 the three different configurations used in tests 26

5.2 results given by running the reconfiguration algorithm from a
line to a loop 50 times . 28

5.3 results obtained by running the reconfiguration algorithm from
a loop to a cornered shape 50 times 29

42

5.4 results obtained by running the reconfiguration algorithm from
a cornered shape to a line 50 times 30

5.5 results obtained by running the reconfiguration algorithm from
a quadruped to a snake 50 times 31

5.6 comparison between the current situation, on the left and the
situation with more randomization on the right, the graphs
are the number of graphs visited before the first solution is
found . 33

6.1 example of a collision between roombots during the execution
of a found solution . 36

6.2 On the left, the roombots in a certain configuration in space
and on the right, two graphs representing a way to cut this
into two part . 38

43

Bibliography

[1] M. Asadpour, A. Spröwitz, A. Billard, P. Dillenbourg and A. J. Ijspeert,
“graph signature for self-Reconfiguration Planning”, 2008.

[2] M. Weiser, ”The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 66-75, Sep 1991.

[3] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A.
Ijspeert, “Exploring adaptive locomotion with YaMoR, a novel au-
tonomous nodular robot with Bluetooth interface,” Industrial Robot, vol.
33, no. 4, pp. 285-290, 2006.

[4] H. Kurokawa, K. Tomita, A. Kamimura, S. Murata, Y. Terada, and S.
Kokaji, “Distributed metamorphosis control of a modular robotic system
m-tran”, in Distributed Autonomous Robotic Systems(DARS) 7, Springer,
2006.

[5] D. Rus and M. Vona, “A physical implementation of the selfreconfigur-
ing crystalline robot.” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2000, pp. 17261733.

[6] E. Klavins, S. Burden, and N. Napp, “Optimal rules for programmed
stochastic self-assembly” in Proc. Robotics: Science Systems 06, Aug.
2006.

[7] E. H. Ostergaard and H. H. Lund, “Evolving control for modular robotic
units,” in Proceedings of CIRA03, IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Kobe, Japan,
16-20 July 2003, pp. 886892.

44

[8] Preethi Srinivas Bhat, James Kuffner, Seth Copen Goldstein, and
Siddhartha S. Srinivasa, “Hierarchical Motion Planning for Self-
reconfigurable Modular Robots,” In IEEE/RSJ International Confernce
on Intelligent Robots and Systems (IROS), October 2006

[9] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, “A 3-d
self-reconfigurable structure” in Proc. of the IEEE Int. Conf. on Robotics
and Automation

[10] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, “Useful metrics for
modular robot motion planning” IEEE Trans. on Robotics and Automa-
tion, vol. 13, no. 4, pp. 531545, 1997 (ICRA), 1998, pp. 432439.

[11] R. Fitch, Z. Butler, D. Rus, “Reconfiguration planning for heterogeneous
self-reconfiguring robots”, in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2003 (IROS 2003), pp. 2460- 2467
vol.3, Oct. 2003

[12] B. Salemi, M. Moll, and W.-M. Shen, “SUPERBOT: A deployable,
multi-functional, and modular self-reconfigurable robotic system,” in
Proc. 2006 IEEE/RSJ Intl. Conf. Intelligent Robots Systems, Oct. 2006,
pp. 36363641.

[13] A. Spröwitz, A. Billard, P. Dillenbourg and A. J. Ijspeert, “Room-
botsMechanical Design of Self-Reconfiguring Modular Robots for Adap-
tive Furniture”, 2008.

[14] D. Dewey, M. Ashley-Rollman, M. De Rosa, S. Goldstein, T. Mowry,
S. Srinivasa, P. Pillai, J. Campbell,“Generalizing metamodules to sim-
plify planning in modular robotic systems”, in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp.
1338-1345, Sep. 2008

[15] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, “Useful metrics for
modular robot motion planning,” IEEE Trans. on Robotics and Automa-
tion, vol. 13, no. 4, pp. 531-545, 1997.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theroy of NP-Completeness. San Francisco, W. H. Freeman, 1979.

45

[17] P. Bhat, J. Kuffner, S. Goldstein, S. Srinivasa, “Hierarchical Motion
Planning for Self-reconfigurable Modular Robots”, 2006.

[18] V. Zykov and P Williams, Computation Synthesis Lab, Cornell Univer-
sity, http://www.molecubes.org, 2008

[19] D. Duff, M. Yim, and K. Roufas, “Evolution of polybot: A modular
reconfigurable robot,” in Proc. of the Harmonic Drive Intl. Symposium
and Proc. of COE/Super-Mechano systems Workshop, Japan, Nov 2001.

[20] Norbert Streitz and Peter Tandler and Christian Mller-Tomfelde and
Shińıchi Konomi, “Roomware: Towards the next generation of human-
computer interaction based on an integrated design of real and virtual
worlds,” in Human-Computer Interaction in the New Millenium, J. Car-
roll, Ed. Addison-Wesley, 2001.

[21] M. Mayer. “Roombot modules - Kinematic Considerations for Moving
Optimisation”, 2009.

[22] X. Jiang and H. Bunke, “Optimal quadratic-time isomorphism of or-
dered graphs.” Pattern Recognition, vol. 32, no. 7, pp. 12731283, 1999.

[23] A. Tuleu. “Cpg locomotion for roombots”, 2009.

[24] Biologically Inspired Robotic Group, EPFL, http://birg.epfl.ch.

[25] Webots. Commercial Mobile Robot Simulation Software, commercial-
ized by Cyberbotics, http://www.cyberbotics.com.

[26] Boost C++ Libraries. http://www.boost.org.

46

