
Roombots
CPGs, Symmetries

and Online Learning

TULEU Alexandre Semester Project

How the problem was formerly
adressed.

(Jérome Maye)

How the problem was formerly
adressed.

(Jérome Maye)

How the problem was formerly
adressed.

(Jérome Maye)

Online Optimization
(POWELL’s method)

How the problem was formerly
adressed.

(Jérome Maye)

Online Optimization
(POWELL’s method)

• Manual design of the CPG is not scalable !

Problems encountered :

How the problem was formerly
adressed.

(Jérome Maye)

Online Optimization
(POWELL’s method)

• Manual design of the CPG is not scalable !
• Optimized search for the topology of the network neither !

Problems encountered :

How the problem was formerly
adressed.

(Jérome Maye)

Online Optimization
(POWELL’s method)

• Manual design of the CPG is not scalable !
• Optimized search for the topology of the network neither !
• Powell’s method less suited for Roombots (multi-modal objective
function)

Problems encountered :

Goals of the project.

Goals of the project.

• Continue the previous work, and test new CPG models
and optimization algorithms.

Goals of the project.

• Continue the previous work, and test new CPG models
and optimization algorithms.

• Find a way to automatically design CPG networks.

Goals of the project.

• Continue the previous work, and test new CPG models
and optimization algorithms.

• Find a way to automatically design CPG networks.

Goals of the project.

• Continue the previous work, and test new CPG models
and optimization algorithms.

• Find a way to automatically design CPG networks.

• Presentation of some software tools created.

Goals of the project.

• Continue the previous work, and test new CPG models
and optimization algorithms.

• Find a way to automatically design CPG networks.

• Presentation of some software tools created.

• Study of a special case : the quadruped Roombots

Goals of the project.

• Continue the previous work, and test new CPG models
and optimization algorithms.

• Find a way to automatically design CPG networks.

• Presentation of some software tools created.

• Study of a special case : the quadruped Roombots

• Presentation of an automatic processus for designing
CPG.

Making tools for
Roombots

Making tools for
Roombots

• libCPG : a library for manipulating CPG.

Making tools for
Roombots

• libCPG : a library for manipulating CPG.

• worldMaker

Making tools for
Roombots

• libCPG : a library for manipulating CPG.

• worldMaker

• Enhancing the collision detection for Roombots.

Making tools for
Roombots

• libCPG : a library for manipulating CPG.

• worldMaker

• Enhancing the collision detection for Roombots.

• The modules were previously modelised by
two spheres.

Results

Results

Study of a special case : the
quadruped Roombots.

Study of a special case : the
quadruped Roombots.

• Goal : get experienced with modular
robotic locomotion.

Study of a special case : the
quadruped Roombots.

• Goal : get experienced with modular
robotic locomotion.

• Analyse the choices we made, in order to
synthesize them in an automatic process .

Symmetries and
locomotion

Symmetries and
locomotion

• Symmetries are a generality in animals. The most efficient
morphologies for modular robots have a symmetry. (Daniel
Marbach)

Symmetries and
locomotion

• Symmetries are a generality in animals. The most efficient
morphologies for modular robots have a symmetry. (Daniel
Marbach)

• Symmetries in CPG help to determine the resulting
pattern (Ludovic Righetti, Golubitsky).

Symmetries and
locomotion

• Symmetries are a generality in animals. The most efficient
morphologies for modular robots have a symmetry. (Daniel
Marbach)

• Symmetries in CPG help to determine the resulting
pattern (Ludovic Righetti, Golubitsky).

• Then it helps us to reduce our search space, by adressing
the same value to symmetric peers. (Sandra Wieser)

Design of the robot.

• Try to find the most symmetric
structure.

• Make the legs to have the same
motion.

• Make the structure able to
assymetrize itself, in order to
select which leg to use (action
on the Thorax joint).

Design of the CPG

Design of the CPG

• Designed to provide a symmetrical trot.

Design of the CPG

• Designed to provide a symmetrical trot.

• Graft the central part of the neuron to synchronize with the leg part.

Design of the CPG

• Designed to provide a symmetrical trot.

• Graft the central part of the neuron to synchronize with the leg part.

• The central part offset is fixed to work around the starting posture,
and the synchronization is opened.

Design of the CPG

• Designed to provide a symmetrical trot.

• Graft the central part of the neuron to synchronize with the leg part.

• The central part offset is fixed to work around the starting posture,
and the synchronization is opened.

• The leg parts of the structure have a fixed synchronization, but a free
offset.

Results obtained.

With fixed
frequency

With optimized
frequency

Results obtained.

With fixed
frequency

With optimized
frequency

Problems : Servos limitation

• Have a limited (slow)
speed : 25 tr.min-1

• Should add some
constraints on the
search space.

• Should add some
“control feedback” in
the CPG.

Towards an automatic
designer for CPG

Choices we made for the quadruped :

Towards an automatic
designer for CPG

• Search for the most symmetrical robot.

Choices we made for the quadruped :

Towards an automatic
designer for CPG

• Search for the most symmetrical robot.

• Separate “leg” and “body” parts.

Choices we made for the quadruped :

Towards an automatic
designer for CPG

• Search for the most symmetrical robot.

• Separate “leg” and “body” parts.

• Set the central point of the body part neuron, in order to “play” with the
symmetry of the structure.

Choices we made for the quadruped :

Towards an automatic
designer for CPG

• Search for the most symmetrical robot.

• Separate “leg” and “body” parts.

• Set the central point of the body part neuron, in order to “play” with the
symmetry of the structure.

• Avoid to add neurons that command useless joints.

Choices we made for the quadruped :

Towards an automatic
designer for CPG

• Search for the most symmetrical robot.

• Separate “leg” and “body” parts.

• Set the central point of the body part neuron, in order to “play” with the
symmetry of the structure.

• Avoid to add neurons that command useless joints.

Choices we made for the quadruped :

Steps of our algorithm :

Towards an automatic
designer for CPG

• Search for the most symmetrical robot.

• Separate “leg” and “body” parts.

• Set the central point of the body part neuron, in order to “play” with the
symmetry of the structure.

• Avoid to add neurons that command useless joints.

Choices we made for the quadruped :

Steps of our algorithm :

• Classify the “leg” and “body” parts.

• Find the symmetries in the structure

• Set up the CPG, according to the symmetries, classification and heuristic rules.

Module Classification

• We forbid Cycles. The
Graph is a tree.

• We classify all the leaves
as “legs” part.

• “Legs” property is
propaged to parent, if it
has only one child.

Module Classification

• We forbid Cycles. The
Graph is a tree.

• We classify all the leaves
as “legs” part.

• “Legs” property is
propaged to parent, if it
has only one child.

Module Classification

• We forbid Cycles. The
Graph is a tree.

• We classify all the leaves
as “legs” part.

• “Legs” property is
propaged to parent, if it
has only one child.

Find the symmetries
Hierarchical vs Morphological

Hierarchical symmetries is a prerequisite for Morphological ones.

Morphological symmetries can be found as the result of an
Optimization Process on the servo position.

Estimating how much Morphologically
symmetric a structure is.

• For a given position of the servo, we have to check for all the
hierarchical symmetries, how much they are close to a spatial
symmetry between modules.

• As a result of Graph Theory, this problem can be reduced to test
symmetries among several pairs of modules.

• Thanks to the Roombots kinematics model provided by (Mikaël
Mayer), the expression of how much two modules are symmetric can
be adressed.

Therefore, we can provide an objective
function for our optimization algorithm.

Estimating how much two modules
are symmetric.

• Thanks to the given servo position and the kinematics
models, we can compute the Rotational Matrix R from
one module to another .

• The two modules are symmetric when : R2=Id. (axial
symmetry)

• “How much they are symmetric” is then the “distance”
from R2 to Id.

• Open questions : Which space to compute the distance
in; reflexive symmetries ?

Questions ?

