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Abstract

This semester project focus on the problem of locomotion in Modular Robotics.
This project is a continuation of the work of several former Biologically Inspired
Robotic Group (BIRG) students on this topic. Since modular robots are made
of several identical modules, that can assemble each other in almost an infinite
number of configurations, these works give priority applying a Central Pattern
Generator (CPG) approach, rather than a more classical one, where a fine model
of the robot kinematics and dynamics is needed.

The Central Pattern Generators models are well known in Biologicaly field,
to be responsible of the generation of rythmics mouvement in vertebrate. Most
of them can modulate the pattern created just by acting on a few parameter,
and therefore, they are powerful tool to encode the movements.

Former works has lead to methods were, given a certain modular robot, we
manually design a CPG for it, and then run online optimization algorithm, in
order to make the robot learn an optimal gait.

Most of the former work was made on the YaMoR modular plateform, and
have to be updated on a new one, currently develloped at BIRG : the Roombots
modules. Indeed, this module add new possibility, as self-reconfiguration, and
therefore we want the Roombots robots to be able to automatically determine
their CPG. Making this task to still be computed online is a challenging problem.

In this document, we will first describe some software tools we made for
manipulating Central Pattern Generators, Optimization Algorithms, and make
the Roombots simulation more accurate, in enhancing the collision detection in
the Webots simulation software. Then we present a study of the locomotion of a
specific Roombots robots, and then we propose an algorithm for automatically
design CPG model for modular robot.
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Chapter 1

State of the Art

1.1 Modular Robot that adapt themself to their
environnement.

Nowaday most of the existant robots (especially industrial robot), only operates
in fully controlled environnement, in order to avoid unexpected interaction with
unknown agents. Such a strategy is no longer feasible when we want robot
that can interact with human, in our daily environnement. So the design of
polyvalent and adaptive robots is one of the main challenges in Robotic field. In
order to adress this problem, one approach would be to imitate human behavior.
As humans have continually transform their environnement to fit better their
capacity, Humanoïd robot will then have more capacity to evolve with humans.

Another way is to go further the most adaptability and polyvalent form. One
idea is to have a modular, self-reconfigurable approach. Like cells in animal
organism, a whole robot will be made of several small identical parts, called
module. Each module will not be able to do much own his own, but when
inderacting with other modules, can do some desired tasks.

This approach has put the adaptibility on top of their priority, as the module
are self-reconfigurable, i.e. they can dissasemble and reassemble to form new
morphology, that are better suited for a certain task. For example a legged
robot, blocked by wall with a small hole on it, can reconfigure as a snake-like
robot, go through the hole, and then reassemble as a legged robot afterwards.

This approach will also lead to economical benefit. They will be able to
adress a lot of different tasks, by using the same hardware, leading to scale
effect reducing cost in production.

1.1.1 An historic of modular robot.
The first modular robot is believed to be CEBOT (handling for CEllular roBOT),
created by Fukuda et al [FBHK91]. Since, over more 30 system have been
made ([Wik]),as M-TRAN[ST08], Polybot [Cen97], Molecube [ZCL07], and
YaMoR, previously develloped at BIRG ([Yer07] [May07]). According to [Wik],
the Modular robots can at least be classified by two properties : their geomet-
rical architecture (Lattice/Chain), and the way they reconfigure (determinis-
tic/stochastic) :
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(a) the ATRON modules : a Lattice architecture

(b) the YaMoR modules : a chain architecture

Figure 1.1: The two type of geometrical architecture in Robotics

- Lattice architectures have units that are arranged and connected in some
regular, space-filling three-dimensional pattern, such as a cubical or hexag-
onal grid. Control and motion are executed in parallel. Lattice architec-
tures usually offer simpler computational representation that can be more
easily scaled to complex systems.

- Chain architectures have units organized and connected on a tree or graph
topology. Control and motion are often supervised and centralized. These
architecture is more versatile, but is harder to compute and analyse.

- Deterministic reconfiguration, when the position of each unit is known at
each time and modules are moving directly to their target during recon-
figuration.

- Stochastic reconfiguration, where the movement of module follow a stochas-
tic process. Therefore the reconfiguration is only statistically guaranted.

One can notice, as more and more Modular robots have hybrids capacity,
the distinction between chain and lattice has become less and less important.
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Figure 1.2: Design of one Roombots module.

1.1.2 Introducing the Roombots.
The Biologically Inspired Robotic Group (BIRG) is currently designing a new
Modular Robot, called Roombots. This project is the sucessor of the two for-
mer project YaMoR and DoF Box. These two projects were pure chain-type
modulars robots, that can only be manually configured. One of the key feature
that add Roombots to these two projects is the capacity of the module to
dynamically connect them [SABI08], and lets the Roombots module to perform
self-reconfiguration. The main goal of this robot is to make intelligent domestic
furnitures, which explains its name, as it will stay inside a domestic area. This
module is bigger than the previous on made at BIRG, and have three degrees of
freedom, allowing with two modules put in chain, to reach any arbitrary position
[May09].

1.1.3 The locomotion problem in Modular Robotics.
In order to evolve in a non controlled environnement, a key characteristic of
robots is the ability to move. In modular robotics this problem is adressed in
two way, according the fact we prefer an lattice architecture or a chain/tree
architecture.

Lattice modular robot will mainly move by continously reconfigure them.
Each module will move on the structure, and then create a displacement of the
whole structure (see figure 1.3). Making controller able to perform this task,
and that are scalables, is a challengic topic in Modular Robotic. You can see
work on this topic in [VKR08].

Chain type robot ,on the other hand, have a fixed structure and then the
problem is much closer from classic robot Locomotion, since we want to find
the best way to use our actuators, in order to get an desired displacement. On
classical robot, this work is often done by inverse Kinematics/Dynamics, and
performing optimization (see [CMLA07] for an example of such a controller).
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Figure 1.3: An example of locomotion for lattice type modular robot taken from
[VKR08]. Each red square represent a module.

But here, in modular robotics, as the avalaible configurations for a robot are
close of infinity, it is better to find a systematical way to perform locomotion.

There is several former work done at BIRG on Locomotion in modular
robotics, the oldest one begins on the YaMoR project. All of them, have
mainly the same apporach : the use of an Central Pattern Generator (CPG)
model, as a way to encode and to control the movement of the structure. Then
an optimization is performed on the parameter of this model, in order to make
our Modular Robot learn its gaits.

As a learning process, this optimization can be either computed offline, i.e.
by running all the test in a computer, in an simulated physic environnement. By
this way, we can run the test faster, as they can be computed faster than real
time, and some distribuable algorithm let us repartize the computation time
among computers. Once the optimum reached, the value are just brought back
to the real system

On the other hand, this optimization can be run online, i.e. by testing
directly on the hardware, at a real time. This methods let us to do some longlife
learning : the system doesn’t stop the optimization step. This approach is more
robust, as it able the robot to adapt to environnemental condition changes. For
example, a change of friction coefficient with the floor, can move dramastically
the optimal gait. A robot performing longlife learning will be able to learn this
nw gait. Furthermore, lifelong learning accord well with modular robotics, as
the robots can reconfigure them.

1.2 Previous work done at BIRG on locomotion.
Before to go further, we want to introduce some key concept that use the former
BIRG project to adress the problem of modular robots locomotion.

1.2.1 A brief review on Central Pattern generators.1

Central Pattern Generators is now a well diffused assumptions in biologically
fields, as mentionned in [Ijs08a], that movement in animals are centrally gener-
ated through block of neurons, that does not require sensory-feedback informa-
tion from the perephirical neural system. Both discrete and rythmic moves are
created in an open-loop process.

Here, as our study is on the locomotion, we will only talk here about rythmic
Central Pattern Generator models. There are some experiment that have shown

1This section provides a really quick review on CPG, mainly inspired by [Ijs08a], for further
details, please refers to the main paper.
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that CPG are made from several coupled oscillatory neuron centers. Then a
rythmic CPG, could be modeled as a network of coupled Oscillator.

CPG is a big field in bilogically research. The experiment made, have
brought to etablish several Neurobiological models, at different levels. All these
model are good tools for describing the movements, and there is more and more
research over the past few year, that try to use this model in order to control the
locomotion of robots. [Ijs08a] propose up to five reasons for prefering the use of
CPG instead of classical methods such as inverse kinematics/dynamics or the
control of criterion like ZMP ([KKK+03],[Wie06]) or Capture Point [PCDG06]
:

1. The purpose of CPG models is to exhibit limit cycle behavior, therefore
they are more robust to perturbation.

2. They are well suited for distributed implementation, and that is very in-
tresting for modular robots.

3. CPG models have only few parameters to drive speed, direction or even
the type of gait. Therefore, at higher level, the command is simplified, as
command just have to provide anly a small number of variable.

4. CPG are ideally suited for sensory feedback, that able us to control finelly
the mutual interaction between the CPG and the body dynamics.

5. CPG are a really good substrate for learning and optimization algorithm.

Now we will present more formally two types of oscillator, that can be taken
to design a CPG model. Note, as an anology with biological study, we will also
name the oscillators neurons, as in biological fields, these oscillators are just a
mathemical macroscopic model of how a group of neurons act.

Amplitude driven oscillators with direct phase coupling

These oscillators are almost the simplest oscilattors we can use for a CPG.
Such a network could be made of n oscillators, defined by the above differential
equations :

φ̇i = ωi +
∑
j

ωi,j .rj . sin(φj − φi − ψi,j) (1.1)

r̈i = ar

(ar
4

(Ri − ri)− ṙi
)

(1.2)

ẍi = ax

(ax
4

(Xi − xi)− ẋi
)

(1.3)

Θi = xi + ri. cos(φi) (1.4)

where Θi is the output of the oscillator, φi its phase, ri its amplitude, xi its
offset. Equations 1.2 and 1.3. are to let the amplitu and the offset value, only
have smooth changes. ωi is the intern frequency of the oscillator. It will be the
frequency of its output when the oscillator is not coupled. Equation 1.1 show
some coupling termes, between neuron j and i, where wi,j is the weight, and
ψi,j is the phase bias of the directed coupling from neuron j to neuron i.

According to [Ijs08b] such an isolated oscillator have lot of interesting be-
havior. First of all, if we put on some special case, such as all the oscillator to
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have the same inner frequency, and that all bi-directional coupling are choosen
to be opposite, then in most case, our network will phase lock. In some case,
such in the case of a chain of ascillator, a criteria for such a behavior can be
found.

Hopf oscillator

Another interesant CPG model proposed in [RI08], is one made of coupled Hopf
oscillators. Such ocillators are driven by the following differential equations.

ẋi = α
(
µ− r2i

)
.xi − ωi.yi (1.5)

ẏi = β
(
µ− r2i

)
.yi + ωi.xi +

∑
j

kijyj (1.6)

ωi =
ωistance
e−by + 1

+
ωiswing
eby + 1

(1.7)

According to [RI08], this oscillators exhibit a limit cycle, such as both vari-
able xi and yi will have oscillations of amplitude √µ. But what another feature
that is bring with this model is the possibility to choose independantly the
swing and stance frequency, i.e. we want the oscillation not to be symmetric,
and faster while increasing than when decreasing. [RI08] also explain how to
design a CPG for a quadruped robot with this model, and how we can put some
sensory feedback in the oscillators.

1.2.2 A review on the former locomotion project.
There has been several former projects, over the past few years, on the loco-
motion in modular robotics at BIRG. We present here Some key results of this
studies.

First of all, all this project point up the utility of the Central Pattern Gen-
erators. Their main idea for almost of them ([May07], [Wie08] [Lé08], [Yer07],
[Bou04] [Mar05], ....) to manually design a Central Pattern Generator, for some
given assembly of modular robots, and then to run on optimization algorithm,
in order to determine the parameter that best fit one fixed criterion, which most
of time is the covered distance by the robot during a fixed amount of time.

Some one key results that appears of this work, is that for most cases, this
criterion is multimodal. Then our optimization algorithm should be enough
robust, not to fall in local extrema.

One of the key ideas devellop by all authors, were to put online optimiza-
tion as a goal, for the study which were limited to simulation ([Wie08], [Lé08],
[Bou04], [Mar05], ...), or as a fact when acting on real robot. In order to do this,
they classified several optimization algorithms, in order to determine which one
will be the best suited for this task ([Bou04], [May07]), and its appears that
for YaMor modules, the most performant algorithm is the Powell’s methods
[May07].

Most of this study was made on YaMoR robots, which modules have only
one degree of freedom, and were not able to self-reconfigure them. The passage
to the new Roombots modules, which have this capacity and own three degrees
of freedom (DoF) brings new problems :
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- A problem of scale, since the size of the CPG network increase significantly
with the new added DoF. Then the CPG has to be more carefully design,
if we still want to be able to perform online Optimization. One relevant
idea brought by [Wie08], is to use the symmetries in order to reduce the
search space.

- As the Roombots robots can self-reconfigure, the manual design of the
CPG network is no more a solution. We have to automatize as much as
possible the CPG design processus.

- Strangly, the Powell’s Methods seems to be less robust with the Room-
bots modules than with YaMoR one, and the optimization process pro-
cess often fall into local extrema according to [Wie08]. Then we have to
look for new optimization algorithms.

1.2.3 Goals of our project.
Then it appears that our main goal in this study are :

1. An extensive literature research about Modular Robots, Self-Reconfiguration
Modular Robots, symmetries, and (online) optimization methods.

2. Implement several RB robot configurations in Webots, and find ways (au-
tomated if possible) to check for morphological symmetries (e.g. graph
representation of the mechanical structure [ASB+08]). Use those symme-
tries to distribute CPG parameters while applying the optimization.

3. Test and select different CPG models, e.g. [IC07], [RI08]. Come up with
a method for this (evualuation matrix etc. . . ).

4. Test and select different optimization methods and their corresponding
cost functions.

5. Optional: life-long-learning. Including sensor feedback from the Room-
bots modules into the CPG.
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Chapter 2

Tool Creation

One of the major part of my work was the creation of the tool for manipulating
Roombots in Webots. Although there was previous works on simular sub-
jects ([Yer07] [Lé08] [Wie08] ), there was no generalized framework provided,
including works done on different languages (C, C++ C#). Therefor the whole
software has been redone from scratch. C++ language has been choosen, for its
modularity possibilities as Object-Oriented Language and for its cross-platform
capacity, being available on major platforms (Windows, Linux and Mac OS X).
For some very specific task, like XML parsing and Network capacity, Qt Li-
braries were used, well-knowed as good Open Source Cross Platform libraries
for making complex applications. All the code were successfully compiled and
executed on both Linux (Ubuntu 8.04) and Mac OS X (10.4 and 10.5), transition
to Windows plateform could be easily made through the use of Qt tools.

As the first goal of our study we wanted to test several Central Pattern
Generators (CPG) on several Roombots Structures, all the controllers have
been designed to be configured by an XML configuration file. This file describes
:

- The way the Roombots are assembled and initially positionned in the
simulation.

- The way the CPG is designed and the way Neurons drive the structure.

- Which parameters of the Network are open for optimization, and which
are fixed.

- the parameters and the choice of an Optimization Algorithm, to train the
Neuron Network, if wanted.

The Syntax of this file is described in Appendix A. All the low-level docu-
mentation as been written inline in the source code in Doxygen format. Here,
we will just see the libraries at a global Scope.
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2.1 libCPG : a library to manipulate Central Pat-
tern Generator.

Since the first goal was to test different Central Pattern Generators on several
Roombots Structure, we decided to make a general library to create rythmic
Central Pattern Generator (CPG), as a network of coupled non-linear oscillators.
This library has been made to help the develloper to separate the inner way of
how a CPG works, and how we can use it to drive a structure. It allows to change
the type of CPG used to drive our robots without having to recompile the code,
just by parsing an XML file. Allthough the main purpose of this library is to
provide several CPG model to the user, only one has been implemented. This
model is a network of amplitude-driven, phase oscillators, with direct phase
coupling [IC07].

2.1.1 General Organization of the classes
A rythmic CPG can globaly be seen as Network of coupled oscillators. Since we
want the libCPG to be able to be distributed in several program, we don’t choose
the simpliest way to represent the graph by vector and coupling matrix, but with
4 main objects CPG::Neuron, CPG::State, CPG::Link, and CPG::Param:

- the CPG::Neuron is the main object of the network. They compute at each
time step the differential equation of the oscillators, and share CPG::State
throught CPG::Link.

- the CPG::State represents the state of a Neuron, i.e. it stores the Neuron
inner variables, which must be shared with other.

- the CPG::Link describes how two neurons are connected. There are only
directed Links, from a parent to a child. This object exists only because
some CPG types (as Phase-based network ) need several variables for one
Link and other only one (as Hopf oscillators).

- the CPG::Param describes the parameter of a Neuron.

The way these classes work together is summed up in the figure 2.1.

Figure 2.1: General Organization of the libCPG main classes

11



Serialization capacity.

Since we want to distribute the network among several programs, CPG::Link,
CPG::State, and CPG::Param classes are able to serialize them in an array of
char, in order to be sent through Webots Emitter / Receiver that simulate a
serial radio connection. All this work has been done with the help of the Mikaël
Mayer’s library libMessage (see [May09]).

Managing the CPG::State

In order to work, the Neurons have to share their states at each time step.
But since we use inheritance mechanism to write generic controllers, wich only
use abstract classes, we can only use pointer and manage carefully the mem-
ory. For CPG::State, wich must be created and destroyed at each timestep, it
is very difficult to achieve this task. Two classes, CPG::LocalStateStorer and
CPG::StateStorer have been created in order to manage, respectively, CPG::State
wich are shared between Neuron on the same program, and CPG::State received
from another program through Message.

2.1.2 Implementation in a Webots controller
This library was implemented in two Webots controllers : CPGController and
CPGSupervisor.

The role of CPGController, is to drive a Roombots module, and share with
other CPGController the CPG::State of his interns neurons. The CPGSupervi-
sor, is a more complex program, that parses the XML file, and drive the other
CPGController :

- It sets up the CPG among the module, send them order to start or stop
their neurons, change the parameters of the network...

- It can either run the simulation indefinitly, using the parameters provided
by the XML file, or run an optimization algorithm to train the CPG, or
either run as a client for a OptimizerServer see section 2.3.

The figure 2.2that sum up this organization :

2.2 Enhancement of the geometrical model of Room-
bots in Webots.

Another tool that has been made for manipulating Roombots in Webots, is
the enhancemend of the collision detection. Indeed, the Roombots have a
particular design made of four part, each can be seen as a half-sphere truncated
with three plane (see figure 2.3).

Open Dynamics Engine (ODE - the physic engine running behind Webots)
can only perform collision detection between primitive volumes (i.e. sphere,
box, cylinder, ...) and we can only make union of these primitives, in order to
make more complex shapes. Our main problem is that the particular shape of
Roombots can not be approximated by an union of primitives.

To fix this problem, the Roombots model in Webots only takes two Spheres
in order to approximate the shape of one Roombots module. This lead to some
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Figure 2.2: General organization of the Webots controllers.

limitations in the use of the Roombots module in simulation : one module can
not stand vertically on a flat surface, as it can only have a single point of contact
on it. Some simulations don’t have feasible motion, as modules can roll in case
they should not be able to (see the car simulation result of [Lé08])...

2.2.1 Creating a particular dGeomClass for Roombots
modules.

Figure 2.3: The dRoombot-
Shape the basic part of a
Roombots module.

The problem described above can be solved in two
way : Use the trimesh used by Webots for display-
ing the modules, and ask for Webots to use this
shape. Even if this solution is easy to put in place,
it is not envisageable, since it will lead to a huge
amount of computation in physics simulation, and
decrease significantly the Webots performances.

Another way is to provide to ODE a new prim-
itive ( a dGeomClass in Webots API), that wich
exactly the Roombots shape, and then provides
a collision detection function of this class with
each other ODE primitive classes. This leads to a
more precise approach, and don’t increase much
the computation time (as much as replacing the
sphere by a box). In our cases, for most of primitives, it is not an easy work,
but in the case of collision with an infinite plane, the solution is approachable.

This new dGeomClass, called dRoombotShape (see figure 2.3) has been cre-
ated, and only the detection with infinite plane has been provided, letting us to
make better gait simulation experiments, but disabling the capacity of webots :

- to detect collision between modules.

- to manage the interactions with other objects than the ground.
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2.2.2 Detection of the collision with a plane.
Here we present how we compute the collision detection for the dRoombotShape
with an infinte plane.

Functionnement of ODE detcetion collision

When calculating the interaction between two solids (contacts forces), ODE
need to know where it can apply these efforts on both Solids. The main goal
of the collision detection is to find these points, and their associated normals
of contacts, i.e. the direction in which he could apply these efforts (at a first
approximation, when there is no friction between the two solid, in other case,
there could be an tangential effort). ODE, also needs to know the depth of the
contact points, i.e. the algebric distance of interpenetration, along the normal
axis of the contacts, beeing positive if solids collide.

In order not to hugely increase the computation time of the physics constraint
resolution (the step after the computation), we have to keep this number of
contact as low as possible.

Description of the algorithm

In order to determine this contact points, ODE let all the solids slightly inter-
penetrate each other. Then the point(s) returned must be the deepest point(s)
of the dRoombotShape volume, which is on the other side of the plane. We can
easily determine this point, by computing the projected P of the center of the
half sphere C on the plane. then the direction of the best candidate is given by
the vector ~CP .

(a) best candidate lying on a spherical part (b) best candidate lying on a flat part

Figure 2.4: Representation of the two major cases hapening while determining
the best potential contact point on a dRoombotShape.

Then two cases could happen :

- The best candidate lies on a spherical part of the shape(see figure 2.4a).
Then, we just found the potentially point of contact (we must then verify
that this point interpenetatre the half space defined by the plane).
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- The best candidate lies on a flat part (see figure 2.4b). Then another
computation is needed to determine whether the shape has to lie on the
whole flat part (and then we send back only 4 contact points that are
already precomputed) or if the contact is made on the frontier between
flat and spherical part, which is a circle.

To determine this last case, we compute the depth of the deepest and the
least deep point on the circle :

Figure 2.5: Description of the methods to find the deepest point on one flat part
of the dRoombotShape, and variables definitions.

We can express the depth D(Eθ) of a point Eθ on the circle, knowing the
depth of the center of the circle (see figure 2.5 for geometric definition):

D(Eθ) = D(E0)− (cos(θ)~e1 + sin(θ)~e2) .~n (2.1)

were θ, E0, ~e1, ~e2 and Eθ are parameters defined in the figure 2.5. These
parameters are precomputed values for each of the flat part of the shape. ~n is
the normal of the plane we test for collision.

by deriving the expression 2.1 among θ, we found the expression of θmin and
θmax : 

θmin = arctan(
~n.~e2
~n.~e1

) ,θmax = θmin +
π

2
or

θmax = arctan(
~n.~e2
~n.~e1

) ,θmin = θmax +
π

2

(2.2)

Then if both D(Eθmin
) and D(Eθmax

) are positive, the Roombots shape
must lie on the whole surface. if only D(Eθmax

) is positive, it means that we
have only one contact point, Eθmax .

In all cases, the normals returned for the contact points are the normal of
the plane we test.
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2.2.3 Implementation and result.
The harder work on this part was to make Webots able to use this new dGe-
omClass in simulation. We use an physics plugins in order to replace the dGe-
omSphere by our new dRoombotShape. As webots was not fully designed to
do this, there are still some bugs that cannot be easily corrected without hav-
ing access to the main Webots source code. But we still succeed launching a
simulation of one Roombots module, standing vertically on the floor.

But the simulation is very unstable. Indeed, when we want the module to
lie horizontally, it cannot succeed staying on two flat surface, and undamped
oscillations appears. This is not surprising since unilateral physics constraint
resolution (in our case contact detection) is an hard problem in simulation [ISI].

So, for further experiment, we cannot use this, until we correct this compu-
tation instability. In the other experiment described in this report, this work
was not used.

2.3 libOptimizer : an object oriented optimiza-
tion library.

Another part of our objective was to test several optimization algorithms. Then
ss for the Central Pattern Generator, we created a Library that let us test several
algorithms without having to recompile our main program, and by setting the
parameter through the XML configuration file. For this libray, we make an
original choice of design in order to help us parallelize the simulation when the
optimization algorithm permit it. Indeed, most of the optimization libraries like
COOOL [DG] and libGA [lib] use trackback function to compute the Objective
function of the algorithm. Here we present another design, that is particularly
helpful to repartize the computation among several computer for distribuable
optimization algorithms, like Particule Swarm Optimization (PSO) and Genetic
algorithms (GA).

2.3.1 General organization.
The library lies on two main classes Optimizer and OFCalculator:

- Optimizer : This class contains the main parameter of the choosen opti-
mization algorithm, and runs its inner computation.

- OFCalculator (standing for Objective Function Calculator) : who is just
an abstract class, who must be implemented by the user to adress his
problem, and that must provide the computation of the objective function
of the problem.

The two classes work together like this :

1. Optimizer runs some internal optimization computation, and then asks
OFCalculator to estimate one or several time the objective function, then
it give the hand to OFCalculator.

2. OFCalculator have to compute the Estimation. Here the user can paral-
lelize the computation if the Optimizer asks for several estimation at one
time. Then it sends back the value of the estimation to the Optimizer.
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3. Each time the Optimizer get back an estimation of te objective functiun,
he looks if he need to do more optimization. If not it stops, else we go
back to step 2.

As for the libCPG, a factory has been provided for creating and setting up
the parameter from a configuration file.

At the moment, only PSO has been programmed in this library. This li-
brary has been used to make a program OptimizerServer, that just run the
optimization for a CPG defined by an XML configuration file, on paralize the
code between several computers.

2.4 worldMaker, a tool for fast Roombots de-
sign.

The last tool which was made for this project, in collaboration with Mikaël
Mayer, has been worldMaker. This program takes the XML configuration file
that defines an assembly of Roombots modules as input, and then give back
the corresponding .wbt file for running in Webots. This tools helps the user
to rapidly design a Roombots assembly, avoiding the user to manually com-
pute and enter the translation and rotation fields in Webots to positionate the
modules.
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Chapter 3

Study of a specific case : the
quadruped Roombots.

Before to work on undetermined Roombots robots, a specific robot has been
created and carefully studied. The goal, was to get more skilled about manipu-
lating Roombots, but also try to understand how we can generate displacement.
In chapter 4 we tried to put the result of this study in an automated way to
design Central Pattern Generator. We put on the section above, the way of
thinking we use to design such a robot

3.1 Experimental set up.

3.1.1 Structural description of the robot.

Figure 3.1: Representation in Webots of
our quadruped robot, and joint nomen-
clature.

We choose to first design a quadruped
like robot. Indeed quadruped locomo-
tion has been well studied for a long
time ([Hil65]), works has been done
at BIRG on generic CPG that cover
most of the possible quadruped gait
[RI08], and this robot was also used in
former project [Lé08], letting us com-
pare results. The robot is made of
five Roombots modules, and orga-
nized as seen in figure 3.1.

The main idea when designing this
robot, was to have Legs able to make
a symmetric motion. As descibed in
[Wie08], this will help us to reduce
significantly the search space of the optimization algorithm, as each Neuron
driving one leg actuators will share its parameters with the neurons at corre-
sponding legs.

But when as we get a symmetrical motion for the leg, if we do nothing else,
most of the time, the 4 leg will touch the floor. Then the effect of one leg getting
backward in order to push the robot forward, will be reduce by the movement
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of other leg getting forward to prepare for next step. We need to reduce the leg
friction with ground. Therefore we want the robots to be able to select which
leg will support its weight. Then we positionned the central module, such a way
he was able to do this by acting on his "Thorax joint" (see figure 3.1).

3.1.2 Design of the Central Pattern Generator.
The next step was to imagine a Central Pattern Generator that can make this
structure able to move. Way of locomotion can be found, as a car style loco-
motion [Lé08], or more bio-inspired gait. We choose the first one has the more
scalable, since it depends less on the structure (for the first one, legs have to be
able to align their "wheels"), and has Roombots servo cannot exceed a low ve-
locity 25 turn per minute, leading to maximal velocity (according the diameter
of the wheel) of 2π.0, 061. 2560 = 0, 160m.s−1.

Then we choose to use a amplitude-controlled phase oscillator network as a
Central Pattern Generator for our robots. This type of CPG has been choosen
as one of the simplest one [Ijs08b]. Indeed, we can directly specify the phase
difference between the neuron, on the contrary of Hopf oscillators, where the
difference phase depend from both the Amplitude and the coupling weight of
the oscillators.

This network is parametrized in two ways : the parameter of each neuron,
and the topology and value of coupling (see section 1.2.1). For each neuron,
we cant set their amplitude,frequency and offset. Determining the topology of
the network, lead to choose whether two neurons are connected or not, leading
to N(N − 1) discrete parameter to determine (where N is the total number of
neuron), and each link is defined by two continous parameter (the weight and
the phase bias).

In our case, it will lead to a huge amount of parameters, and that is not
feasible to train such a network if we don’t fix some of the parameter, as we
can’t exceed 10 parameter if we don’t want our optimization to exceed a few
hours.

Reducing the number of parameters.

We tried to find a good trade off between the number of open parameters of
the network (parameter to optimize), and not limiting too much the movement
of the robot. Our idea is to give a guess of one solution, and optimize some
parameters of this solution.

First we don’t put neuron that drive the two low end joint of each leg seg-
ment. Indeed, the movement of this joint has only insignificant effect on the
motion of the structure, so we just drop this neuron.

Then we choose our gait to be a symetrical trot. Indeed, our robot is only
able to choose on which pair of diametrically opposed leg it wants to stand,
when acting on his hip joint. This is typically the behavior of a trot motion,
as diametrically opposed leg are in phase in their moves. This choice lead to
completely determine the network among leg joint neurons.

Then we choose tho implement the network described in figure 3.2. In this
network, we choose to fix some of the parameters :

- the phase bias between legs and hip joints. its value was choosen in order to
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Figure 3.2: Topology of the coupled oscillators network we use as CPG. All the
weight of the link are fixed to one, and the biais used figure on the graph edges.
a5 is one open parameter for the optimization.

act synchronousliy with leg joint neuron, to have a maximal displacement
of the leg.

- the offset of hip and thorax joint, in order to have a symmetric structure
when all output is zero.

- the phase bias between leg joints, in order to systematically have a sym-
metric trot.

Another parameters will be determined by the optimization :

- The amplitude and the offset of the leg joints. Since all legs are symmetric,
this value is the same for the 4 neurons.

- The amplitude of hip and thorax joints. As hip are symmetrical, we just
use the same value.

- the phase bias between hips and thorax joints.

Another problem we discovered of the design, is how the neuron must act
on servomotors. By convention, we want for example, that when the value of a
neuron is increasing, the movement of his leg. To do this, we have to "reverse"
the output of the leg neurons of one side ,i.e. make the servo of one side to
follow the opposite of the value of the neuron . This help us to clearly separate
the synchronisation of the network, and how he act on the structure.

Optimization processus.

In order to train the network, we have to use an optimization algorithm, that
tries to maximize the distance made by the robot in a certain amount of time.
As proposed by [Wie08] [May07] [Mar05], we have to keep this simulation high
( 30 seconde in our case) to avoid the robot take an advantage of his strating
position (by first make a big jump and falling down).

In order to have a smooth objective function, we change slightly the problem
and make the optimizer minimize the value 1

1+D whereD is the covered distance.
This help to smooth the objective function, and keep it the [0; 1] interval.
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(a) with frequency fixed at 0, 25Hz

(b) with frequency found by optimization (0, 8113Hz)

Figure 3.3: The two optimized gait.

Another key result of the former project, on both Roombots and YaMoR
locomotion, is the fact that this objective function is multi-modal. Then the
use of the Powell’s method like in [May07] and [Wie08] often ends in a local
minima. Then we choose to use an Particule Swarm Optimization [PSO], an
evolutionnary algorithm, that is more robust not falling in local minima.

3.2 Results.

3.2.1 Optimization of the frequency.
We ran the optimization twice, first by setting the frequency value of the network
at an arbitrary value of 0, 25Hz, and a second time, by letting the frequency
be optimized. Surprisingly the two motions differs a lot (see figure 3.3). This
could be explain as, the global speed doesn’t depends linearly from the speed,
as proposed by [Wie08]. The best motion at higher frequency is not just the
acceleration of the best low-frequency motion, there are lot of dynamical (in
a physical sense) effects we need to take in account. This assumption is also
verified by the fact that the optimal frequency found in the second experiment,
is not the maximal frequency : even if the optimizer was told not to go further
than 1Hz, the optimal gait that was found has frequency of 0, 8113Hz.

3.2.2 Control of the servomotors.
This two experiments point out a new problem in the control of the servomotors.
Indeed, at high frequency, the servo failed to follow the motion ordered by his
neuron, as seen in figure 3.4. This could be explain as a physical limitation of
the Roombots servomotors. Their speed cannot exceed 25 turn per minute
(2, 618rad.s−1) which is a quite low. Then we need not to ask for motion that
will overflow this value like in figure 3.4 (you can see the difference between
the slope of the servo curve, and the maximal slope required by the neuron).
Another reason is because Webots use a simple P-conntroller for driving the
servo. The use of a PID-controller should gave much more results.

One can remark that we could just count for the optimization process to
handle this problem. Sure the optimization process will learn the default of the
servo controller. But here, we are in simulation, but in real case, this lack on
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consistancy in the control, lead to tremendous effect, as we not correctly drive
the servo, we are not sure that the gait will periodically reproduce. We will fail
in controlling the displacement of the robot.

One first solution is to limit the amplitude by adding a constraint in the
optimization algorithm. In our case, the maximal speed a neuron will is given
by the expression 2π.f.A were A is the amplitude of the neuron and f his
frequency. But we think it is not the best solution, since :

- it is not scalable to other CPG, like the Righetti’s one [RI08], as there is
no simple expresion of this maximal speed, especially when using a duty
ratio different of 1.

- even if the command of the servo , don’t ask to overflow this max speed,
there is cases, as in figure 3.5, were some neuron fail to reach the neuron
trajectory. Further more, servos that have the same trajectory to follow
(as neuron 5 and 7 in figure 3.5), could both succeed or failed to track
their neuron trajectory, depending on their place in the neuron structure.
Even if we use PID-controller, they will need to be tuned, depending on
the position of the servos in the structure, and the whole motion of the
robots.

Then it appears that one correct slution to adress this problem, is to add
some control feedback in the CPG, to, at least, have servos and neurons trajec-
tories synchronized.
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Figure 3.4: Servos error in tracking neurons output at high
frequency(0, 8113Hz) .
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Figure 3.5: Servos error in tracking neurons output at low frequency (0, 25Hz
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Chapter 4

Towards an automatical way
to design Central Pattern
Generators.

In this chapter, we will discuss a way of automatically design a Central Pattern
Generator for a CPG. Our a problem is, given any Roombots robot with any
morphologicval structure, how can we best design a CPG that will lead to a
good locomotion controller for this specific structure ? It is sure that there will
be structure better suited for locomotion than other, and the quality of the gait
is highly determined by the quality of the structure, but we want to automatize
the design process for the CPG. Even if this topic was one of our main goal,
due to a lack of time, the solution proposed hasn’t been tested yet. Therefore
we just expose our reflexion and justify some ideas, that we hope, will lead to
such a behavior in modular robotic.

4.1 Context.
First and foremost, we want to remind some graph theory results. Indeed,
since we study chain type robot, we can fully characterize the way the modules
are assembled each other by a graph. In this graph each vertex represents a
module, and each edge represents a mechanical connection, and owns a label that
described how this connection was made (see [Lot09] for more details). Then
this representation could be useful in order to find morphological symmetries. In
further section, we will name the graph the structural graph or the hierarchical
graph.

4.1.1 Symmetries in graph theory.
The following line are part of the bliss package documentation [JK08], a tool
for finding symmetries in graph

A coloured graph G (V,E, c) is defined by a set of vertice indexed by integers
V = {1, ..., n}, a set of edges,E ⊂ {(v1, v2) ∈ V × V }, and a colour map c : V →
N+, a function that to each vertex associate a color as a postive integer.
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(a) Original graph (b) An non automorphism
permutation

(c) An automorphism

Figure 4.1: Example of an automorphism and a non-automorphism permutation
of a given graph.

Let γ : V → V be a permutation of V. We defined the permuted coloured

graph γ(G) = G (γ(V ), {(γ(v1), γ(v2))|(v1, v2) ∈ E} , cγ) where
cγ : V →N

v 7→c(γ−1(v))
. the permuted graph is then obtained by permuting vertice and edges according
to gamma, but vertice keep their color.

The equivalent of a symmetry for a graph is called an automorphism, a
permutation γ as γ(G) = G (see figure 4.1).

One important result is, that the set of automorphisms of a given graph is
an finite group for the composition operator, i.e., given two automorphism γ1

and gamma2, γ1 ◦ γ2 is also an automorphism.
As a finite group, the set of automorphism auto(G) of an graph, owns a set

of automorphism generarators gen(G), following this proporty :

∀γ ∈ auto(G),∃n ∈ N / ∃(γ1, γ2, ..., γn) ∈ gen(G) / γ = γ1 ◦ γ2 ◦ ... ◦ γn (4.1)

Then the set of generator of G, contains all the information about symmetries
in the graph. The main purpose of the bliss package, is to determine the set
of automorphism generator of a given graph, and an approximation of the total
number of isomorphism in graph. The generators can also be seen as the smallest
automorphisms of G.

Another interesting general result of graph theory, is that all the assymetrical
graphs (i.e. the first graph which only have the identity map as automorphism),
have more than six vertices. Therefore, small graph, as the ones we manipulate
with Roombots , are more likelly to have lot of symmetries.

4.1.2 Expression of our problem.
As we expose in chapter 3 to fully parametrize a Central Pattern Generator lead
to a huge optimization problem in term of dimensionnality.

We need to :
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- set up the topology of the oscillator network. This give us N(N − 1)
discrete parameters to otpimize.

- set up all the continous parameters of the network.

For example, for an network of four neurons (the minimum for a quadruped),
each neuron requiring three parameters, and each link one, we need to run
24.3 = 4096 continous optimization algorithm, each one having between 15 and
35 parameters. As we want to perform online optimization, such a naïve solution
is not approachable.

Therefore an idea exposed by [Wie08] is to use morphological symmetries in
order to reduce this number, according to some rules exposed in section 4.1.2.
First, our main goal was therefore to define an algorithm that will look for such
symmetries. Here, according to some observation we made when studying the
quadruped robot case, we propose to go a little further, and make more choice
to decrease the number of parameter even more.

About symmetries in coupled oscillator network.

The principle exposed by [Wie08] , are founded by the H/K theorem, as ex-
plained in [RI08], and more detailled in [GS06]. The main idea is, that if the
network has some topological symmetries in the sense of graph theory, then the
same spatio-temporal symmetries can be found in the resulting output of the
network. Then [RI08], use this property backward, in order to determine, for a
desired gait, which are the required topology of the network.

This bring us an important result : we don’t need to test all the possible
topologies for a network. If our algorithm is able to classify, whether our struc-
ture is a tripod, a quadruped or a hexapod, then we can reduce our search
by testing among a small amount of type of locomotion. For example for a
quadruped, we can test if the structure is better suited for a trotting gait or a
bounce gait, by training a CPG for both gait, and choose the best one.

Implicit choices we made when designing our quadruped CPG.

First we want to come back to the study of the quadruped Roombots . Our
way of thinking was to make the most symmetrical structure possible, and then
let the CPG play with this symmetry in order in the most profitable way. In
order to maximize the number of symetries in the structure, we choose some
specific value for the Hips and Thorax servos respectively ±60◦ and 180◦. This
leads to two big conclusion :

- Hierarchical symmetry of two modules (i.e. the fact that two modules are
symmetrics in the representation graph of our structure) is only a prereq-
uisite for morphological symmetry (spatial symmetry). Some positions of
the servo must be fixed, in order to ensure spacial symmetries.

- We must classify the joints between two typs :

- these which must have their offset fixed, making the structure to work
around a symmetrical posture.

- these which have their offset totally free.
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(a) Structure with only hierarchical sym-
metries.

(b) Structure with morphological symme-
tries.

Figure 4.2: Distinction between morphological and hierarchical symmetries in
a Roombots structure(the previous quadruped robot) : the two robots only
differs by the position of the "body" servomotors (the previous hips and thorax
joints, see section 3.1.1.

This second conclusion is linked with another remark we can make when we
designed our CPG. We implicitly make a distinction between modules : we
choose these which will be use as effector, and these which will be part of the
body.

Then we want our algorithm to be able to make the distinction between
effector and body part, and then find the value of the body servo motor that
leads to the more symmetrical structure.

4.2 Presentation of our solution.
We propose an algorithm that can lead to an automatic design of the CPG.
This algorithm act on four step :

1. Classify the modules, between those which are body parts, and those which
are effectors.

2. determine the hierarchical symmetries of the structure, by obtaining the
hierarchical graph automorphism generators.

3. Find the best symmetrical structures we could obtain by acting on the
body part position. The "symmetricality" of the structure is determined
with the help of the hierarchical symmetry we found.

4. Set up a Central Pattern Generator, according to some heuristic rules.

In order to simplify our problem, we make an assumption : we assume that
our hierarchical graph has no cycle. This is not a so strong assumption, since
if the Roombots modules are assembled in a closed loop, there will be a lot
of kinematics contraints, that will make our problem much more harder, even
if we try to design a CPG model by hand. Then if the graph has no cycle, we
could see it as a tree.

28



4.2.1 Modules classification.
A classification of the module between body part and effector could be easily
made from the structural graph. Indeed we choose to classify whether a module
is an effector according the two following rules :

- A module that has no children in the graph is an "effector".

- A module that has only one child, and, if this child is an "effector", then,
then this module is an "effector".

All other modules are classified as "body" module.

Algorithm 1 Post fixed, depth-first search for handling module classification.
function explore_node( node N )
if N .children is empty then

Mark N as "effector"
return

end if
for M ∈ N .children do

explore_node(M)
end for
if size(N .children) is 1 then
if N .firstChild is marked as "effector" then

Mark N as "effector"
else

Mark N as "body"
end if

else
Mark N as "body"

end if
end function

explore_node(root_node)

Such a classification, could easily be made by a post-fixed depth first search
in the tree (see algorithm 1). But such an algorithm is not robust to degenerated
cases, while for example, an effector module is taken for the root of the tree.
Then prior to do the depth first search, we must elect a root module, such as
the tree has a minimal depth.

4.2.2 Finding the most symmetrical structure as an opti-
mization result.

This step is the main step of the algorithm. the main idea is to run an opti-
mization algorithm, that will act on the servo position of the "body" module,
in order to obtain the best symmetrical structure. The problem, as for all op-
timization algorithm, is to find a way to characterize how much a solution is
symmetric, i.e. how we compute our objective function.
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Determining the objective function.

Here we can be helped in this computation by the determination of the auto-
morphism generator of the hierarchical map :

- to be hierarchically symmetric is a pre-requisite for being morphologically
symmetric. Then our goal is to see if the hierarchical symmetries found
can be transformed in morphological symmetries.

- the set of generators is the smallest subset of the automorphism group
that "summarize" the hierarchically symmetries. Then we only have to
test symmetries among the one given by the generators.

- the generators are the "smallest" elements of the set of automorphisms of
the hierarchical graph. Therefore, we remark, empirically, that in most of
the cases, the permutation will only swaps a small part of the modules.

Then the generator can provide us, pairs of module, we want to test their
symmetry. And thanks to the kinematics model provided in [May09], it is a
problem we can handle. If we provide all the servo positions, this model let
us compute the homogenous transformation matrix that goes from one module
referential to the other. Then a well-know result of linear algebra gives us a
condition on the rotational part of this matrix R ∈ R3×2, for the two modules
to be symmetric :

R2 = Id (4.2)

Then we can qualify how much two module are close to be symmetric, simply
by computing the distance of R2 to the identity matrix. As for the rigid-motion
problem (see [Kum96]), the expression of this distance could be more consis-
tant, when computed in a particular space. For example, one can use of the
exponential map, as proposed by [Kum96].

Then the expression of our objective function is the sum of all this distances,
for all potential pair of module found by our symmetries finder.

Summary of the main optimization algorithm.

Then for finding the most symmetrical structure, we can act like this :

1. set all the position of the servo of the "effectors" modules to be at zero.

2. optimize the position of all the servos of "body" module, in order to obtain
the most symmetrical structure, in the sense of the objective function
described higher.

This step could provide us, as well as the best the solution, the pairs of
modules that actually are morphologically symmetric.

4.2.3 Setting up the whole Central Pattern Generators.
In this section we describe some heuristic rules for setting the whole CPG. There
could be three steps when performing this last part of the main algorithm :

- Determine which joints must be driven by a neuron.
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(a) Correspondance between
schematic and module

(b) Summary

Figure 4.3: Summary of the heuristic rules for determining which joints should
be actuated or not.

- Setting up the topology for the "effector" neurons.

- Setting up the topology for the "body" neurons.

Determining which joints should be actuated.

This task is more doing some cleaning, by avoiding to drive a joint that will not
act on the global motion of the structure. There are two rules for determining
these joints :

- The joints that are flanked by two other modules should be actuated.

- For end-effector module, i.e. module that have no child in the hierarchical
graph, only extremal servo could be actuated, and only if the correspond-
ing extremal part is connected to the parent.

These two rules are illustrated in the figure 4.3.

Determining the topology for the "effector" neurons.

For these neurons, there are two things that must be done :

- Determine the topolgy between neurons on the same leg. We choose to
simply follow the topology of the hierarchical graph, in order to put neu-
rons in series, the neuron that is nearest to body part, is taken as the
master neuron of the leg. Then the other oscillators, synchronize to its
phase. We left open for optimization all parameters, for both link and
amplitude.

- Determine the topology between legs. This could be done by just setting
a precomputed sub graph for master neurons defined higher. For example,
when we are facing a quadruped robot, and using Hopf oscillator as CPG
model, we can take on of the coupling matrix proposed by [RI08].

Then we must only predefine by hand, some network topology for each num-
ber of legs possible. For this purpose, we can directly take inspiration from
nature, as there are example for lot of possible configuration in, snakes (for one-
leged robots), mammals (most of them quadruped), insects (hexapode), spiders
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(octopode), and for a huge number of legs, one can take inspiration on the cen-
tipede, were some work about the modelisation of this locomotion is currently
done at BIRG [Ijs08b].

We can remark, that we can reduce the number of open parameters of this
part of the network, by taking the same value for neurons and links parameters
of legs, that actually share a morphological symmetries. Such pairs were found
at the previous step of the main algorithm (see section 4.2.2).

Setting the topology for the "body" neurons.

Here we don’t find any clever way than to reduce the amounts of parameters by
making the topology as simple as possible, by putting the oscillators in a chain.
the this chain is connected to one of the legs master neuron. We can notice
that for CPG models based on phase oscillators, the addition of this part will
not disturb the main synchronization of the legs, but for other oscillators type
as Hopf oscillators, further work must be done, to see if it is not the case. This
work may be done, by using the result of the H/K theorem [RI08], [GS06]. But
as the concept of the groupoïd are tough, this he a work we were not able to
do.

Remark :We must recall that the offset of this neurons ouput is fixed, since
we want the structure to operate around the most symmetrical case. Then
the offset of "body" neurons are fixed to the value found in the optimization
processus.

4.3 Necessary Implementation steps.
Due to a lack of time, we were not able to start the implementation of this
ideas. So, again, we must notice, that it is just theorical reflexion, that need
to be better mathematically formed. But we wanted to provide our reflexion in
order to help further work on the subject. We can also notice that there is still
dark points about the processus, we must resolve :

- how could we, from when we got the automorphism generator, determine
the couple of module we have to test for morphological symmetry. Indeed,
as seen in the figure 4.1, there could be more than two module that are
involved in a generator. Then some work has to be done to handle these
cases.

- Again, we must find a way to graft the "body" part of the network to the
"effector" one, without disturbing the synchronization we have predefined
for the "effector" part of the network.

- some points we forgot, since we haven’t really try this solution, even if we
try to formalize it as well as possible.
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Chapter 5

Conclusion

This project, as a further step of former BIRG projects on modular robotics
locomotion, tried to find out some solutions to problem that appear when pass-
ing from the YaMoR modules to the Roombots one. After having presented
some software tools we made to manipulate Central Pattern Generator, Op-
timization Algorithm, and improve the quality of Roombots simulation, we
exposed how we have design a CPG models for a specific Roombots robots.
Then we proposed an algorithm that automatically find symmetries in a Room-
bots structures. This step was a pre-requisite for setting heuristic rules that
let us automatically determine a CPG for a given Roombots robot, and let
us reducing the optimization search space, which is a pre-requisite for online
learning.

The study of the quadruped Roombots motion, have let us observe a lim-
itation of their servomotors as their speed cannot exceed a given value. We
remark that we can solve this problem by both putting some constraints in
the research space, and add control feedback between servomotors and CPG
neurons. We also make a distinction between hierarchical and morphological
symmetries. This last idea was presented has one of the main concept for the
symmetries finding algorithm, that can be seen as an optimization algorithm
that take as input parameters, the position of the servomotor of parts of room-
bots module. These modules are determine by classifying which module will
be use as leg parts, and other as body parts, and we provide an algorithm to
handle this problem. The the optimization algorithm is told to find the most
symmetrical structure in a spatial sense.

Due to a lack of time, this algorithm is only a reflexion, that must be better
mathematically formalized, and tested, in order to see if, indeed, he is a good
solution that can lead to an automatization of the CPG design process.
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Appendix A

Syntax of the XML Roombots
configuration file.

All the programs created in this project can be configured by one central con-
figuration file. This file, contains all morphological informations about :

- the Roombots assembly structure,

- the Central Pattern Generator that drive the robot,

- the Optimizer we want to use.

The language retained for this file is XML, since it is a well-diffused standart,
and their exist a lot of libraries that allow us to create/parse this file. This
Appendix details the structure of this file. There is also a DTD file, defining the
syntax we used in this document, and let parser automatically verify whether
the syntax of the parsed file is comformed or not.

The root node of the XML document is called "<roombot_config>" and he
can have three children (see figure A.1):

- "<module_tree>" a node containing all the hierarchical information, and
Central Pattern Generator definition.

- "<parameter>" a node that contains some global information to provide
to Webots.

- "<optimizer>" that contains information defining the optimization algo-
rithm we should use.

A.1 Description of "<module_tree>" node
The <module_tree> node contains all the information of the hierarchical struc-
ture. The module description are hierarchized in a tree of <module> node. The
root of the tree is directly a child of the <module_tree> node. One can point
out that we must only to define the position of the root node, positions of the
child are given by
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Figure A.1: Hierarchy of the XML file at a global scope (<module_tree> node
sub hierarchy is missing, see figure A.2).

2



Figure A.2: Sub hierarchy of the <module_tree> (<neuron_list> node sub
hierarchy is missing, see figure A.3).
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Figure A.3: Sub hierarchy of the <neuron_list>.
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