
A kinematic model for
the icub

Semester project final presentation

January 2009Julia Jesse

Introduction

Goal of the project :
kinematic model for the iCub
using KDL

1.Model under Webots

2.Forward position kinematics

3.Inverse position kinematics

4.Results and future work

5.Conclusion
http://robotcub.org

http://robotcub.org
http://robotcub.org

model under webots

Model not the same as the official
model on http://eris.liralab.it/icubfowardkinematics

Updates :
length of the limbs
order of the torso joints
eyes
ankle roll
new origin : middle of the torso

old v.s. new

http://eris.liralab.it/icub
http://eris.liralab.it/icub

FoRward position
kinematics

base framex0

y0

z0x1

y1

z1

x2

y2

z2

A1

A2

F0

F1

F2

end-effector Finding the position
of the end-effector
knowing the joint
values

Unique solution

Ai = transformation
matrix from Fi-1 to Fi

Tij = Ai+1 Ai+2 ... Aj =
transformation
matrix from Fi to Fj

Transformation
matrix

KDL’s Forward position
kinematics

Segment 0

F1

F2

F3

F0(q0)

F1(q1)

F2(q2)

F7(q7)

F8(q8)

F3(q3)

F4(q)

F6(q6)
F5(q5)Chain Tree

Chain Forward
kinematics : Results

http://eris.liralab.it/icubfowardkinematics

Chapter 6

Results

This chapter presents the results found by testing KDL’s capabilities to model the iCub and
to use it for controlling Webots’ new model presented on chapter 5.

6.1 Forward position kinematics for a chain

The results for the chain including the torso and the right arm chain show that the forward
kinematics for a chain works correctly. Indeed, given some initial joint values, we obtain
the same end-effector for the calculations made under KDL and under Matlab, using the
“official” code as explained in 5.2. When we give the joint values to the Webots model, we
can see that it reaches the calculated position. Figure 6.1 shows one of the results made for
the forward kinematics for a chain.

Torso
pitch

Torso
roll

Torso
yaw

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0 0 0 1.85 0 0 0
(a) Initial joint values for the right arm chain





6.71−17 2.96−16 −1 0.0941161
0.27559 −0.961275 −2.4−16 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(b) KDL’s end-effector frame





0.0 0.0 −1.0 0.09411608
0.27559 −0.96128 −0.0 0.06366380
−0.96128 −0.27559 −0.0 −0.20151324

0 0 0 1





(c) Matlab’s end-effector frame

(d) Webots cube position:
(0.0941161, 0.0636638,
-0.201513)

Figure 6.1: Chain forward kinematic

25

http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub
http://eris.liralab.it/icub

Tree forward
kinematics: results

Same results as with the chain

Results for the left arm elbow joint set to 1.85

7.2 Forward position kinematics for a tree

We compute the forward kinematics for a tree with a given end-effector and for a chain
containing the same end-effector. We see that in both cases we have the same result, and
that the Webots models goes to the desired position. This shows that the forward position
for a tree works. Here are some results obtained for the left arm.

Torso
pitch

Torso
roll

Torso
yaw

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0 0 0 1.85 0 0 0
(a) Initial joint values for the left arm chain

Torso Torso
pitch

Torso
roll

Torso
yaw

θ 0 0 0
Right
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0.1 0 0 0
Left
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 1.85 0 0 0
Right
leg

Hip
pitch

Hip roll Hip
yaw

Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0

Left
leg

Hip
pitch

Hip roll Hip
yaw

Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0
(b) Initial joint values for the tree





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(c) KDL’s chain end-effector frame





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(d) KDL’s tree end-effector frame

7.3 Inverse position kinematics for a chain

The first idea was to make the iCub draw a circle in space using its right arm. To do that, we
need to give an end-effector frame to the program which will compute the inverse position.
We have to be careful here, because if we build a new end-effector frame with only the x, y, z
position coordinates, the algorithm will not work properly as it needs also the rotational part
of the frame. So besides the desired cartesian position, we need also to choose an orientation.

The first result was done by calculating some points of a circle and pass these points
as argument to the KDL::ChainIkSolverPos NR JL using the KDL::ChainIkSolverVel wdls

27

7.2 Forward position kinematics for a tree

We compute the forward kinematics for a tree with a given end-effector and for a chain
containing the same end-effector. We see that in both cases we have the same result, and
that the Webots models goes to the desired position. This shows that the forward position
for a tree works. Here are some results obtained for the left arm.

Torso
pitch

Torso
roll

Torso
yaw

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0 0 0 1.85 0 0 0
(a) Initial joint values for the left arm chain

Torso Torso
pitch

Torso
roll

Torso
yaw

θ 0 0 0
Right
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0.1 0 0 0
Left
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 1.85 0 0 0
Right
leg

Hip
pitch

Hip roll Hip
yaw

Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0

Left
leg

Hip
pitch

Hip roll Hip
yaw

Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0
(b) Initial joint values for the tree





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(c) KDL’s chain end-effector frame




1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(d) KDL’s tree end-effector frame

7.3 Inverse position kinematics for a chain

The first idea was to make the iCub draw a circle in space using its right arm. To do that, we
need to give an end-effector frame to the program which will compute the inverse position.

26

6.2 Forward position kinematics for a tree

We compute the forward kinematics for a tree with a given end-effector and for a chain
containing the same end-effector. We see that in both cases we have the same result, and
that the Webots models goes to the desired position. This shows that the forward position
for a tree works. Here are some results obtained for the left arm.

Torso
pitch

Torso
roll

Torso
yaw

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0 0 0 1.85 0 0 0
(a) Initial joint values for the left arm chain

Torso Torso
pitch

Torso
roll

Torso
yaw

θ 0 0 0
Right
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0.1 0 0 0
Left
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 1.85 0 0 0
Right
leg

Hip
pitch

Hip roll Hip yaw Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0

Left leg Hip
pitch

Hip roll Hip yaw Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0
(b) Initial joint values for the tree





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(c) KDL’s chain end-effector frame





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(d) KDL’s tree end-effector frame

(e) Webots cube position:
(−0.0941161, 0.0636638,−0.201513)

Figure 6.2: Tree forward kinematic

26

6.2 Forward position kinematics for a tree

We compute the forward kinematics for a tree with a given end-effector and for a chain
containing the same end-effector. We see that in both cases we have the same result, and
that the Webots models goes to the desired position. This shows that the forward position
for a tree works. Here are some results obtained for the left arm.

Torso
pitch

Torso
roll

Torso
yaw

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0 0 0 1.85 0 0 0
(a) Initial joint values for the left arm chain

Torso Torso
pitch

Torso
roll

Torso
yaw

θ 0 0 0
Right
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 0.1 0 0 0
Left
arm

Shoulder
pitch

Shoulder
roll

Shoulder
yaw

Elbow Forearm Wrist
pitch

Wrist
yaw

θ 0 0 0 1.85 0 0 0
Right
leg

Hip
pitch

Hip roll Hip yaw Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0

Left leg Hip
pitch

Hip roll Hip yaw Knee Ankle
pitch

Ankle
roll

θ 0 0 0 0 0 0
(b) Initial joint values for the tree





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(c) KDL’s chain end-effector frame





1.25−16 6.87−17 −1 −0.0941161
0.27559 −0.961275 −3.17−17 0.0636638
−0.961275 −0.27559 −1.39−16 −0.201513

0 0 0 1





(d) KDL’s tree end-effector frame

(e) Webots cube position:
(−0.0941161, 0.0636638,−0.201513)

Figure 6.2: Tree forward kinematic

26

Inverse postion
kinematics

Finding the joint angles knowing the position
and the orientation of the end-effector.

Multiple solutions = redundant system
If we have more than 6 DoFs, i.e more
DoF than constraints.

Algorithm for a chain:
Based on the Newton-Raphson iteration
Takes the joint limits into account
Needs inverse velocity kinematics

KDL’s inverse kinematic
for a chain

Algorithm based on the Newton-
Raphson iterations, with Joint
Limits

q1

q2

q1,est
q2,est

Chapter 5

Inverse position kinematics

The aim of the inverse position kinematics is to determine the joint values knowing the end-
effector. As seen in chapter 3, the solution for the joint values is not unique, and it depends
on the choice of the algorithm. In this chapter we will see how KDL calculates the inverse
kinematics for a chain and for a tree.

5.1 KDL’s inverse position kinematics for a chain

To calculate the inverse kinematics, KDL uses an algorithm based on what is called the
Newton-Raphson iterations. This algorithm is provided by the classes KDL::ChainIkSolverPos NR
and KDL::ChainIkSolverPos NR JL, where NR stands for Newton-Raphson and JL for Joint
Limits. As we are interested to take the joint limits into account, we will use the second
class.

The idea of the algorithm is the following: we start with an estimate −→qest = (q1,est...q2,est)T

of the joint angles and compute the forward kinematics to get the frame of the end-effector,
using the forward kinematic solver KDL::ChainFkSolverPos recursive introduced in 4.1.1.
Let’s call this frame F(−→qest) (Figure 5.1). We then want to know the velocity to go from
the estimated end-effector frame to the real end-effector frame F(−→q). This velocity is called
∆Twist, and represents the translational and rotational velocity of the end-effector. If this
velocity is zero, we have reached the solution. If not, we calculate the inverse joint velocity
with the algorithm provided by ChainIkSolverVel pinv, which will be explained in section

5.1.1. We then add this joint velocity to the estimate −→qest to get a new estimate
−→
q′
est. We finally

verify that the new estimate respects the joint limits and we restart again the procedure, until
we find a solution or until we have reached the maximum number of iteration specified.

5.1.1 Inverse velocity kinematics for a chain

As seen previously our inverse position algorithm needs an inverse velocity solver. KDL pro-
vides three algorithm. We will focus on the ChainIkSolverVel pinv and ChainIkSolverVel wdls
algorithms, where “wdls” stands for “weighted damped least square”. Before we discuss how
the algorithm works, lets introduce the notions of Jacobian, pseudo-inverse and Singular
Value Decomposition (SVD).

Jacobian

Let’s take to rigid bodies body i and body i-1, linked together through joint i which rotates
around axis

−→
si :

15

Chapter 5

Inverse position kinematics

The aim of the inverse position kinematics is to determine the joint values knowing the end-
effector. As seen in chapter 3, the solution for the joint values is not unique, and it depends
on the choice of the algorithm. In this chapter we will see how KDL calculates the inverse
kinematics for a chain and for a tree.

5.1 KDL’s inverse position kinematics for a chain

To calculate the inverse kinematics, KDL uses an algorithm based on what is called the
Newton-Raphson iterations. This algorithm is provided by the classes KDL::ChainIkSolverPos NR
and KDL::ChainIkSolverPos NR JL, where NR stands for Newton-Raphson and JL for Joint
Limits. As we are interested to take the joint limits into account, we will use the second
class.

The idea of the algorithm is the following: we start with an estimate −→qest = (q1,est...q2,est)T

of the joint angles and compute the forward kinematics to get the frame of the end-effector,
using the forward kinematic solver KDL::ChainFkSolverPos recursive introduced in 4.1.1.
Let’s call this frame F(−→qest) (Figure 5.1). We then want to know the velocity to go from
the estimated end-effector frame to the real end-effector frame F(−→q). This velocity is called
∆Twist, and represents the translational and rotational velocity of the end-effector. If this
velocity is zero, we have reached the solution. If not, we calculate the inverse joint velocity
with the algorithm provided by ChainIkSolverVel pinv, which will be explained in section

5.1.1. We then add this joint velocity to the estimate −→qest to get a new estimate
−→
q′
est. We finally

verify that the new estimate respects the joint limits and we restart again the procedure, until
we find a solution or until we have reached the maximum number of iteration specified.

5.1.1 Inverse velocity kinematics for a chain

As seen previously our inverse position algorithm needs an inverse velocity solver. KDL pro-
vides three algorithm. We will focus on the ChainIkSolverVel pinv and ChainIkSolverVel wdls
algorithms, where “wdls” stands for “weighted damped least square”. Before we discuss how
the algorithm works, lets introduce the notions of Jacobian, pseudo-inverse and Singular
Value Decomposition (SVD).

Jacobian

Let’s take to rigid bodies body i and body i-1, linked together through joint i which rotates
around axis

−→
si :

15

Chapter 6

Modelling the iCub

−−−→
Twist

The european RobotCub project aims to study cognition through a humanoid robot. This
robot is called iCub and looks like a 2 years old child, as it is 94 cm tall. It has 53 degree of
freedom and its head and eyes are completly articulated. Besides this it has several sensory
capabilities: it can see, hear, and feel with it’s fingers. It even has a vestibular capability,
which alows it to have a sense of balance and distinguish what is up and what is down.
Thanks to all these features, the iCub can crawl, sit up, and manipulate many things with
dexterity [6].

Figure 6.1: The iCub robot [http://www.robotcub.org]

In this chapter we will see how to model the ICub with Matlab, KDL and how to use
this model under Webots, a commercial mobile robot simulation software developed by Cy-
berbotics Ltd [7].

6.1 Modelling the iCub with KDL

To model the iCub with KDL, I created a KDL::Chain for each limb (the right and left arm,
the right and left leg and the torso) using the Denavit-Hartenberg coordinates defined on the

21

kdl’s inverse velocity
kinematics for a chain

KDL implements a “weighted damped least
square” algorithm

Need notions of :

Jacobian

Pseudo-inverse

Singular Value Decomposition (SVD)

Jacobian
Twist = end-effector velocity :

where is the position of the end-
effector calculated with the forward
kinematics

Jacobian : =>

relation between the joint velocities and
the cartesian space velocity

linear relationship between and .

−→vi =
∑i

j=1
−→si q̇i = [−→s1

−→s2 · · · −→si · · · 0 0][q̇i · · · q̇n]T =
−→
Ji
−→̇
q (5.4)

where
−→
Ji is the Jacobian for body i.

Recall that in section 5.1 we introduced the notion of velocity of the the end-effector,
called twist. We can express the twist

−→
T with the following equation :

−→
T = d−→x

dt = ∂A(−→q)

∂−→q
d−→q
dt (5.5)

where A(−→q) = −→x is the position of the end-effector found with the forward kinematics.

In robotics, the term ∂A(−→q)

∂−→q is called the Jacobian J.

So we can rewrite the equation as :

−→
T =

−→̇
x = J

−→̇
q (5.6)

From this equation we can see that the Jacobian tells us how to transform the joint
velocities into the Cartesian velocity of the end-effector. As

J =





∂A1
∂q1

· · · ∂A1
∂qm

· · · · · · · · ·
∂An
∂q1

· · · ∂An
∂qm



 (5.7)

if we have small twist changes
−→̇
x , we have small joint velocity changes, and thus the

Jacobian J is constant and the relation 5.6 becomes linear. It means that, in this case, if
given some joint velocities, we double the speed of the joints, the end-effector’s velocity will
double too.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is a nxn matrix, we can rewrite equation 5.6 as :

−→̇
q = J−1−→T (5.8)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can’t invert it. As we
will see it in chapter 6, this is the case for the iCub. For example, it has 7 degrees of freedom
for each arm, and even 9 if we consider the chain from the torso to the arm. So in this case
we will use the technique of the singular value decomposition to find the pseudo-inverse in
order to calculate the joint velocities with respect to the end-effector’s velocity.

The idea of the SVD is the following. Let’s take a matrix M ∈ $nxm. Recall from the
linear algebra that σ is an eigenvalue of M if and only if there exists a vector −→x ∈ $m such
that M−→x = σ−→x . If M has eigenvalues σ1 · · · σn, then we can decompose it in

17

−→vi =
∑i

j=1
−→si q̇i = [−→s1

−→s2 · · · −→si · · · 0 0][q̇i · · · q̇n]T =
−→
Ji
−→̇
q (5.4)

where
−→
Ji is the Jacobian for body i.

Recall that in section 5.1 we introduced the notion of velocity of the the end-effector,
called twist. We can express the twist

−→
T with the following equation :

−→
T = d−→x

dt = ∂A(−→q)

∂−→q
d−→q
dt (5.5)

where A(−→q) = −→x is the position of the end-effector found with the forward kinematics.

In robotics, the term ∂A(−→q)

∂−→q is called the Jacobian J.

So we can rewrite the equation as :

−→
T =

−→̇
x = J

−→̇
q (5.6)

From this equation we can see that the Jacobian tells us how to transform the joint
velocities into the Cartesian velocity of the end-effector. As

J =





∂A1
∂q1

· · · ∂A1
∂qm

· · · · · · · · ·
∂An
∂q1

· · · ∂An
∂qm



 (5.7)

if we have small twist changes
−→̇
x , we have small joint velocity changes, and thus the

Jacobian J is constant and the relation 5.6 becomes linear. It means that, in this case, if
given some joint velocities, we double the speed of the joints, the end-effector’s velocity will
double too.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is a nxn matrix, we can rewrite equation 5.6 as :

−→̇
q = J−1−→T (5.8)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can’t invert it. As we
will see it in chapter 6, this is the case for the iCub. For example, it has 7 degrees of freedom
for each arm, and even 9 if we consider the chain from the torso to the arm. So in this case
we will use the technique of the singular value decomposition to find the pseudo-inverse in
order to calculate the joint velocities with respect to the end-effector’s velocity.

The idea of the SVD is the following. Let’s take a matrix M ∈ $nxm. Recall from the
linear algebra that σ is an eigenvalue of M if and only if there exists a vector −→x ∈ $m such
that M−→x = σ−→x . If M has eigenvalues σ1 · · · σn, then we can decompose it in

17

−→vi =
∑i

j=1
−→si q̇i = [−→s1

−→s2 · · · −→si · · · 0 0][q̇i · · · q̇n]T =
−→
Ji
−→̇
q (5.4)

where
−→
Ji is the Jacobian for body i.

Recall that in section 5.1 we introduced the notion of velocity of the the end-effector,
called twist. We can express the twist

−→
T with the following equation :

−→
T = d−→x

dt = ∂A(−→q)

∂−→q
d−→q
dt (5.5)

where A(−→q) = −→x is the position of the end-effector found with the forward kinematics.

In robotics, the term ∂A(−→q)

∂−→q is called the Jacobian J.

So we can rewrite the equation as :

−→
T =

−→̇
x = J

−→̇
q (5.6)

From this equation we can see that the Jacobian tells us how to transform the joint
velocities into the Cartesian velocity of the end-effector. As

J =





∂A1
∂q1

· · · ∂A1
∂qm

· · · · · · · · ·
∂An
∂q1

· · · ∂An
∂qm



 (5.7)

if we have small twist changes
−→̇
x , we have small joint velocity changes, and thus the

Jacobian J is constant and the relation 5.6 becomes linear. It means that, in this case, if
given some joint velocities, we double the speed of the joints, the end-effector’s velocity will
double too.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is a nxn matrix, we can rewrite equation 5.6 as :

−→̇
q = J−1−→T (5.8)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can’t invert it. As we
will see it in chapter 6, this is the case for the iCub. For example, it has 7 degrees of freedom
for each arm, and even 9 if we consider the chain from the torso to the arm. So in this case
we will use the technique of the singular value decomposition to find the pseudo-inverse in
order to calculate the joint velocities with respect to the end-effector’s velocity.

The idea of the SVD is the following. Let’s take a matrix M ∈ $nxm. Recall from the
linear algebra that σ is an eigenvalue of M if and only if there exists a vector −→x ∈ $m such
that M−→x = σ−→x . If M has eigenvalues σ1 · · · σn, then we can decompose it in

17

So we can rewrite the equation as :

−→
T =

−→̇
x = J(−→q)

−→̇
q (4.2)

From this equation we can see that the Jacobian gives us a relation between the joint
velocities and the Cartesian velocity of the end-effector. The relation 4.2 is linear in

−→̇
q .

Moreover, if we have small joint position changes −→q , the Jacobian J(−→q) is constant and
the relation 4.2 becomes linear. It means that, in this case, if given some joint velocities,
we double the speed of the joints, the end-effector’s velocity will double too. This linearity
property make the inversion much more simpler, and it is why we use the inverse velocity
kinematics to solve the inverse position.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is an invertible n× n matrix, we can rewrite equation 4.2 as :

−→̇
q = J−1(−→q)

−→
T (4.3)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can not invert it. As
we will see it in chapter 5, this is the case for the iCub. For example, it has 7 degrees of
freedom for each arm, and even 10 if we consider the chain from the torso to the arm. So
in this case we will use the technique of the Singular Value Decomposition (SVD) to find
the pseudo-inverse in order to calculate the joint velocities with respect to the end-effector’s
velocity.

The idea of the SVD is the following. Let us take a matrix M ∈ %n×m. Recall from the
linear algebra that σ is a singular value2 of M if and only if there exists a vector −→u ∈ %m

and a vector −→v ∈ %n such that M−→u = σ−→v and Mt−→v = σ−→u . If M has singular values
σ1 · · · σn, then we can decompose it in

M = UΣV T (4.4)

where U ∈ %n×n, V ∈ %m×m and Σ ∈ %n×m, with U and V such that Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(4.5)

The pseudo-inverse M∗ of M is given by the following equation :

2If M ∈ %n×n, σ is called eigenvalue

16

So we can rewrite the equation as :

−→
T =

−→̇
x = J(−→q)

−→̇
q (4.2)

From this equation we can see that the Jacobian gives us a relation between the joint
velocities and the Cartesian velocity of the end-effector. The relation 4.2 is linear in

−→̇
q . It

means that, in this case, if given some joint velocities, we double the speed of the joints, the
end-effector’s velocity will double too. This linearity property make the inversion much more
simpler, and it is why we use the inverse velocity kinematics to solve the inverse position.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is an invertible n× n matrix, we can rewrite equation 4.2 as :

−→̇
q = J−1(−→q)

−→
T (4.3)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can not invert it. As
we will see it in chapter 5, this is the case for the iCub. For example, it has 7 degrees of
freedom for each arm, and even 10 if we consider the chain from the torso to the arm. So
in this case we will use the technique of the Singular Value Decomposition (SVD) to find
the pseudo-inverse in order to calculate the joint velocities with respect to the end-effector’s
velocity.

The idea of the SVD is the following. Let us take a matrix M ∈ %n×m. Recall from the
linear algebra that σ is a singular value2 of M if and only if there exists a vector −→u ∈ %m

and a vector −→v ∈ %n such that M−→u = σ−→v and Mt−→v = σ−→u . If M has singular values
σ1 · · · σn, then we can decompose it in

M = UΣV T (4.4)

where U ∈ %n×n, V ∈ %m×m and Σ ∈ %n×m, with U and V such that Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(4.5)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (4.6)

2If M ∈ %n×n, σ is called eigenvalue

16

Chapter 4

Inverse position kinematics

The aim of the inverse position kinematics is to determine the joint values knowing the end-
effector position. As seen in chapter 2, the solution for the joint values is not unique, and it
depends on the choice of the algorithm. In this chapter we will see how KDL calculates the
inverse kinematics for a chain and for a tree 1.

4.1 KDL’s inverse position kinematics for a chain

To calculate the inverse kinematics, KDL uses an algorithm based on what is called the
Newton-Raphson iterations. This algorithm is provided by the classes KDL::ChainIkSolverPos NR
and KDL::ChainIkSolverPos NR JL, where NR stands for Newton-Raphson and JL for Joint
Limits. As we are interested to take the joint limits into account, we will use the second
class. As the algorithm is based on inverse velocity kinematics, we will first present what it
is and then discuss the inverse position kinematics.

4.1.1 Inverse velocity kinematics for a chain

KDL provides three algorithms. We will focus on the ChainIkSolverVel wdls algorithms,
where “wdls” stands for “weighted damped least square”. Before we discuss how the algo-
rithm works, let us introduce the notions of Jacobian, pseudo-inverse and Singular Value
Decomposition (SVD).

Jacobian

When the end-effector moves, it has a certain velocity. This velocity, which is also called
twist

−→
T , has a translational and rotational component. We can express

−→
T with the following

equation :

−→
T = d−→x

dt = ∂A(−→q)

∂−→q
d−→q
dt (4.1)

where A(−→q) = −→x is the forward kinematics equation. The term ∂A(−→q)

∂−→q is called the

Jacobian J(−→q).

1For more references on inverse kinematics :
”A theory of generalized inverses applied to robotics”, by Doty et al
”Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Meth-
ods”, by Wampler

15

singular value
decomposition (SVD)

We want the inverse joint velocity, i.e

A necessary condition for the Jacobian to be
invertible :

square matrix
i.e. no redundancy

If Jacobian not invertible => pseudo-inverse

So we can rewrite the equation as :

−→
T =

−→̇
x = J(−→q)

−→̇
q (4.2)

From this equation we can see that the Jacobian gives us a relation between the joint
velocities and the Cartesian velocity of the end-effector. The relation 4.2 is linear in

−→̇
q . It

means that, in this case, if given some joint velocities, we double the speed of the joints, the
end-effector’s velocity will double too. This linearity property make the inversion much more
simpler, and it is why we use the inverse velocity kinematics to solve the inverse position.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is an invertible n× n matrix, we can rewrite equation 4.2 as :

−→̇
q = J−1(−→q)

−→
T (4.3)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can not invert it. As
we will see it in chapter 5, this is the case for the iCub. For example, it has 7 degrees of
freedom for each arm, and even 10 if we consider the chain from the torso to the arm. So
in this case we will use the technique of the Singular Value Decomposition (SVD) to find
the pseudo-inverse in order to calculate the joint velocities with respect to the end-effector’s
velocity.

The idea of the SVD is the following. Let us take a matrix M ∈ %n×m. Recall from the
linear algebra that σ is a singular value2 of M if and only if there exists a vector −→u ∈ %m

and a vector −→v ∈ %n such that M−→u = σ−→v and Mt−→v = σ−→u . If M has singular values
σ1 · · · σn, then we can decompose it in

M = UΣV T (4.4)

where U ∈ %n×n, V ∈ %m×m and Σ ∈ %n×m, with U and V such that Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(4.5)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (4.6)

2If M ∈ %n×n, σ is called eigenvalue

16

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(4.7)

As we can see with equation 4.5 and 4.7 it is quite easy to find the pseudo-inverse for Σ :
we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗(−→q)

−→
T (4.8)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes to

infinity and thus we can not define the pseudo inverse. In robotics, having σi equal to 0
means that we can not move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 4.2 that

−→̇
x = 0 for each

−→̇
q .

To avoid this problem, we introduce a parameter called λ and replace the 1
σi

terms seen
before by σi

σ2
i +λ . This solution is used in the “damped least square” method, where λ is also

called damping parameter. It works for λ << σ.
In order to properly choose the damping parameter, we need to take into account two

things. First, if λ increases, then the error for the approximation of the pseudo-inverse will
also increase. Secondly, if λ decreases, then the damping will also decrease, and thus we may
not avoid singular configurations.

The KDL::ChainIkSolverVel wdls algorithm

The class KDL::ChainIkSoverVel wdls, where “wdls” means “weighted damped least square”
computes inverse velocity kinematics for a given chain. Let us have a look how it works and
where the name “wdls” comes from.

First, if we want to specify that a given joint should not move, we use a method which
works as if we put an infinite “weight” to these joints. This can be useful, for example, if
we don’t want to use the joints of the torso in the computation of the inverse kinematics
for an arm. We can see from equation 4.3 that forbidding a joint to move means to set the
corresponding value of the Jacobian to 0. To achieve this, KDL provides two matrices called
the joint space weighting matrix and the task space weighting matrix, where task space is the
same as the cartesian space. These matrices have to be symmetric and their default value is
the identity matrix. One possibility is to take a diagonal matrix. Let us take the joint space
matrix for example. If we don’t want joint i to move, we set the diagonal value of row i to
0. On the other hand, we can also enable a joint to move more that others by increasing
its corresponding diagonal value. Similarly setting a 0 on the task space weighting matrix
means that we will not take into account the corresponding coordinate for the movement.

The algorithm begins by calculating the Jacobian J for a given chain according to some
joint values. It then calculates the weighted Jacobian WJ by multiplying the joint space

17

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(4.7)

As we can see with equation 4.5 and 4.7 it is quite easy to find the pseudo-inverse for Σ :
we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗(−→q)

−→
T (4.8)

where J∗(−→q) is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes to

infinity and thus we can not define the pseudo inverse. In robotics, having σi equal to 0
means that we can not move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 4.2 that

−→̇
x = 0 for each

−→̇
q .

To avoid this problem, we introduce a parameter called λ and replace the 1
σi

terms seen
before by σi

σ2
i +λ . This solution is used in the “damped least square” method, where λ is also

called damping parameter. It works for λ << σ.
In order to properly choose the damping parameter, we need to take into account two

things. First, if λ increases, then the error for the approximation of the pseudo-inverse will
also increase. Secondly, if λ decreases, then the damping will also decrease, and thus we may
not avoid singular configurations.

The KDL::ChainIkSolverVel wdls algorithm

The class KDL::ChainIkSoverVel wdls, where “wdls” means “weighted damped least square”
computes inverse velocity kinematics for a given chain. Let us have a look how it works and
where the name “wdls” comes from.

First, if we want to specify that a given joint should not move, we use a method which
works as if we put an infinite “weight” to these joints. This can be useful, for example, if
we don’t want to use the joints of the torso in the computation of the inverse kinematics
for an arm. We can see from equation 4.3 that forbidding a joint to move means to set the
corresponding value of the Jacobian to 0. To achieve this, KDL provides two matrices called
the joint space weighting matrix and the task space weighting matrix, where task space is the
same as the cartesian space. These matrices have to be symmetric and their default value is
the identity matrix. One possibility is to take a diagonal matrix. Let us take the joint space
matrix for example. If we don’t want joint i to move, we set the diagonal value of row i to
0. On the other hand, we can also enable a joint to move more that others by increasing
its corresponding diagonal value. Similarly setting a 0 on the task space weighting matrix
means that we will not take into account the corresponding coordinate for the movement.

The algorithm begins by calculating the Jacobian J for a given chain according to some
joint values. It then calculates the weighted Jacobian WJ by multiplying the joint space

17

SVD and pseudo-inverse
Singular Value
Decomposition (SVD) :

M is a nxm matrix
M has singular values
=> M can be decomposed in:

where

such that has the form

Pseudo-inverse of M:

where is the pseudo-inverse
of and has the form

if : can’t calculate the
pseudo-inverse => Singularity
problem.

−→vi =
∑i

j=1
−→si q̇i = [−→s1

−→s2 · · · −→si · · · 0 0][q̇i · · · q̇n]T =
−→
Ji
−→̇
q (5.4)

where
−→
Ji is the Jacobian for body i.

Recall that in section 5.1 we introduced the notion of velocity of the the end-effector,
called twist. We can express the twist

−→
T with the following equation :

−→
T = d−→x

dt = ∂A(−→q)

∂−→q
d−→q
dt (5.5)

where A(−→q) = −→x is the position of the end-effector found with the forward kinematics.

In robotics, the term ∂A(−→q)

∂−→q is called the Jacobian J.

So we can rewrite the equation as :

−→
T =

−→̇
x = J

−→̇
q (5.6)

From this equation we can see that the Jacobian tells us how to transform the joint
velocities into the Cartesian velocity of the end-effector. As

J =





∂A1
∂q1

· · · ∂A1
∂qm

· · · · · · · · ·
∂An
∂q1

· · · ∂An
∂qm



 (5.7)

if we have small twist changes
−→̇
x , we have small joint velocity changes, and thus the

Jacobian J is constant and the relation 5.6 becomes linear. It means that, in this case, if
given some joint velocities, we double the speed of the joints, the end-effector’s velocity will
double too.

The Singular Value Decomposition (SVD)

In the problem of inverse velocity kinematics, we are interested in finding the joint velocities.
If the Jacobian J is a nxn matrix, we can rewrite equation 5.6 as :

−→̇
q = J−1−→T (5.8)

But if we have more degrees of freedom than constraints (i.e. 3 constraints for position
and 3 for rotation), then the Jacobian is not a square matrix and we can’t invert it. As we
will see it in chapter 6, this is the case for the iCub. For example, it has 7 degrees of freedom
for each arm, and even 9 if we consider the chain from the torso to the arm. So in this case
we will use the technique of the singular value decomposition to find the pseudo-inverse in
order to calculate the joint velocities with respect to the end-effector’s velocity.

The idea of the SVD is the following. Let’s take a matrix M ∈ $nxm. Recall from the
linear algebra that σ is an eigenvalue of M if and only if there exists a vector −→x ∈ $m such
that M−→x = σ−→x . If M has eigenvalues σ1 · · · σn, then we can decompose it in

17
M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

M = UΣV T (5.9)

where U ∈ "nxn, V ∈ "mxm and Σ ∈ "nxm. Besides Σ has the form

Σ =





σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · σn 0 · · · 0




(5.10)

The pseudo-inverse M∗ of M is given by the following equation :

M∗ = V Σ∗UT (5.11)

where Σ∗ is the pseudo-inverse of Σ and has the form

Σ∗ =





1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σn

0 0 · · · 0
...

... · · · 0
0 0 · · · 0





(5.12)

As we can see with equation 5.10 and 5.12 it is quite easy to find the pseudo-inverse for
Σ : we just need to inverse each σi. Resolving the inverse velocity consists now in solving

−→̇
q = J∗−→T (5.13)

where J∗ is the pseudo-inverse of the Jacobian.
However, there is still an issue with this resolution. If σi is equal to 0, then 1

σi
goes

to infinity and thus we can’t define the pseudo inverse. In robotics, having σi equal to 0
means that we cannot move in a given direction anymore. Indeed, if σi = 0, we can say from
equation 5.6 that

−→̇
x = 0 for each

−→̇
q .We will see in the next paragraph how KDL manages

this problem called singularity problem.

18

Singularity problem

Robotics : can not move in a given direction anymore

Solution : damped least square

λ = damping parameter

replace by

λ increases => approximation error for the
pseudo-inverse increases

λ decreases => damping decreases and may not
avoid a singular configuration

The KDL::ChainIkSolverVel wdls algorithm

The class KDL::ChainIkSoverVel wdls, where “wdls” means “weighted damped least square”
computes inverse velocity kinematics for a given chain. Let’s have a look how it works and
where the name “wdls” comes from.

First, one must know that this class contains two matrices called the joint space weighting
matrix and the task space weighting matrix, where task space is the same as the cartesian
space. These matrices have to be symmetric and their default value is the identity matrix.
What do they represent? Let’s take a diagonal matrix for the joint space matrix. If there
is a 0 on the diagonal of row i it means that the corresponding joint wont move at all. It
is as if we put an infinite weight on the joint such that it is unable to move. This is why
the algorithm contains the term “weighted”. On the contrary, we can also enable a joint to
move more that others by increasing it’s corresponding diagonal value. Similarly setting a 0
on the task space weighting matrix means that we wont take into account the corresponding
coordinate for the movement.

The algorithm begins by calculating the Jacobian J for a given chain according to some
joint values. It then caluclates the weighted Jacobian WJ by multiplying the joint space
weighting matrix JS by the Jacobian, and by multiplying this result by the task space
weighting matrix TS, i.e.

WJ = TS ∗ J ∗ JS (5.14)

It then calculates the SVD for this weighted Jacobian, i.e. it computes the matrices U,
Σ and V we have defined before. Thanks to these matrices, the algorithm finally computes
the joint velocities.

Now remember that a few lines ago we have seen that if the eigenvalues are null, we can’t
calculate the pseudo-inverse. To avoid this problem, KDL introduces a parameter called λ
and replaces the 1

σi
terms seen before by σi

σ2
i +λ . This solution is called “damped least square”

where λ is also called damping parameter. It works for λ << σ.
In order to properly choose the damping parameter, we need to take into account two

things. First, if λ increases, then the error for the approximation of the pseudo-inverse will
also increase. Secondly, if λ decreases, then the damping will also decrease, and thus we may
not avoid singular configurations.

The KDL::ChainIkSolverVel pinv algorithm

This algorithm calculates the inverse velocity kinematics in the same way as the “wdls”
algorithm, except, that it does not contain the damping parameter, nor the joint and task
space weighting matrices. In this project, we will not use this algorithm because, as we will
see in chapter 7, the iCub can be in singular configurations, and thus we need an algorithm
to handle this issue.

5.2 KDL’s inverse position kinematics for a tree

At the time I began this project, there were no inverse position kinematics solvers for a tree.
Ruben Smits developed them when I was in Leuven. The class KDL::TreeIkSolverPos NR JL,
where again NR stands for Newton-Raphson and JL for Joint Limits, implements an inverse
position kinematics algorithm. It works as follows. We are given a list of end-effectors we are

19

The KDL::ChainIkSolverVel wdls algorithm

The class KDL::ChainIkSoverVel wdls, where “wdls” means “weighted damped least square”
computes inverse velocity kinematics for a given chain. Let’s have a look how it works and
where the name “wdls” comes from.

First, one must know that this class contains two matrices called the joint space weighting
matrix and the task space weighting matrix, where task space is the same as the cartesian
space. These matrices have to be symmetric and their default value is the identity matrix.
What do they represent? Let’s take a diagonal matrix for the joint space matrix. If there
is a 0 on the diagonal of row i it means that the corresponding joint wont move at all. It
is as if we put an infinite weight on the joint such that it is unable to move. This is why
the algorithm contains the term “weighted”. On the contrary, we can also enable a joint to
move more that others by increasing it’s corresponding diagonal value. Similarly setting a 0
on the task space weighting matrix means that we wont take into account the corresponding
coordinate for the movement.

The algorithm begins by calculating the Jacobian J for a given chain according to some
joint values. It then caluclates the weighted Jacobian WJ by multiplying the joint space
weighting matrix JS by the Jacobian, and by multiplying this result by the task space
weighting matrix TS, i.e.

WJ = TS ∗ J ∗ JS (5.14)

It then calculates the SVD for this weighted Jacobian, i.e. it computes the matrices U,
Σ and V we have defined before. Thanks to these matrices, the algorithm finally computes
the joint velocities.

Now remember that a few lines ago we have seen that if the eigenvalues are null, we can’t
calculate the pseudo-inverse. To avoid this problem, KDL introduces a parameter called λ
and replaces the 1

σi
terms seen before by σi

σ2
i +λ . This solution is called “damped least square”

where λ is also called damping parameter. It works for λ << σ.
In order to properly choose the damping parameter, we need to take into account two

things. First, if λ increases, then the error for the approximation of the pseudo-inverse will
also increase. Secondly, if λ decreases, then the damping will also decrease, and thus we may
not avoid singular configurations.

The KDL::ChainIkSolverVel pinv algorithm

This algorithm calculates the inverse velocity kinematics in the same way as the “wdls”
algorithm, except, that it does not contain the damping parameter, nor the joint and task
space weighting matrices. In this project, we will not use this algorithm because, as we will
see in chapter 7, the iCub can be in singular configurations, and thus we need an algorithm
to handle this issue.

5.2 KDL’s inverse position kinematics for a tree

At the time I began this project, there were no inverse position kinematics solvers for a tree.
Ruben Smits developed them when I was in Leuven. The class KDL::TreeIkSolverPos NR JL,
where again NR stands for Newton-Raphson and JL for Joint Limits, implements an inverse
position kinematics algorithm. It works as follows. We are given a list of end-effectors we are

19

Inverse velocity

Weighted damped least square algorithm
Weighted

put some weight on given joints such that they
don’t move

Damped least square
damping parameter λ
least square = minimizes the joint velocities such
that we get the nearest solution

Algorithm :
1. Weighted Jacobian
2. SVD
3. Joint velocities

Chain inverse
kinematics : results

λ = 0.2

θi,0 = 0

 no torso

problem due to :
local minima?
singularities?
joint limits?

different damping λ

λ = 0

θi,0 = 0

=> singular
configuration

λ = 0.2

θi,0 = 0

Different initial joint
values

λ = 0.1
θi,0 = 0

λ = 0.1
θi,0 = 0
θelbow,0 = 0.3

Influence of joint
limits

With joint limits
λ = 0.1
θi,0 = 0
θelbow,0 = 0.3

No joint limits
λ = 0.1
θi,0 = 0
θelbow,0 = 0.3

Chain inverse
kinematics

yellow = original circle
❏ = calculated input circle points

 ❍ = circle points calculated by KDL

with joint limits without joint limits

Improve Webots’ simulation

Inverse position with torso moving

Other way to test the joint limits

Other orientation for the end-effector

Test the inverse position kinematics for trees

Example of future applications:

Stability during locomotion

Kinematic constraints

Future work

Conclusion

iCub model under Webots updated

Forward position kinematics works well for
chains and trees

Inverse position kinematics works well for
chains:

iCub can reach a point

iCub can draw a circle

QUESTIONS ?

http://robotcub.org

http://robotcub.org
http://robotcub.org

