MODELING THE ICUB WITH A KINEMATIC AND DYNAMIC LIBRARY

Semester project intermediary presentation

Julia Jesse

November 2008

INTRODUCTION

- The iCub robot :
- small sized humanoid robot
- European project among several universities, which aims to study cognition

http://robotcub.org

INTRODUCTION

- Goal of the project : biped gait stability.
- Need:
 - Model of the robot
 - Denavit-Hartenberg's parameters
 - Description of the movements
 - Forward vs. Inverse kinematic
 - KDL (Kinematic and Dynamic Library)

MODELING

FLOATING BASE

GEOMETRIC MODEL

• Idea : most common joint types can be characterized by a line in space

• Need only four parameters to locate a line:

- a_i : link (body) length
- α_i : link twist
- d_i : link offset
- θ_i : joint angle

 Usually for revolute joints a_i, α_i, d_i are constants, θ_i is the only variable

• Main features :

- a base coordinate frame
- n joint axes
- an end-effector frame, embedded in the final body

• Rules to place the DH coordinate frames:

 align z₀ and z_{n+1} with the z axis of the base and end-effector frame

- align z_i with joint axis i (revolut joint : rotation axis)
- axis x_i intersects z_i and z_{i+1} and is perpendicular to them
- y_i is derived from x_i and z_i, right-handed coordinate frame

- a_i : link (body) length
- α_i : link twist
- d_i : link offset
- θ_i : joint angle

FORWARD VS. INVERSE KINEMTATIC

• Forward kinematic :

 Determine the position of the end-effector knowing the joint angles -> unique solution

• Inverse kinematic :

 Determine the joint angles knowing the position of the end-effector -> multiple solutions.

• Used in this project

KDL

- KDL = Kinematic and Dynamic Library
- Part of the Open Robot Control Project (Orocos)
- Goal : develop a free software and framework for robot and machine control
- KDL : Modeling and computing of kinematic chains such as robots

KDL AND THE ICUB

- Model arms and legs with kinematic chains using DH parameters (<u>http://eris.liralab.it/wiki/</u> <u>ICubForwardKinematics</u>)
 - API : Chains, made of Segments which contain a Joint to define rotation axis and a coordinate Frame expressed with DH parameters
- Forward kinematic

• API : recursive algorithm to calculate the position from joint space to cartesian space.

KDL AND THE ICUB

Inverse kinematic

- API : iterative algorithm based on Newton-Raphson iterations.
- Idea: begin with an estimate a' of joint angles.
- Calculate forward position p' and compare with input position p.
- If the difference is very small : stop. Else calculate new estimate and continue.

SOME RESULTS

• Comparing forward kinematic found by KDL with matrix multiplication of transformation matrices defined with DH parameters.

➡ Same results.

• Applying forward, inverse, forward kinematic.

Get the same end-effector position.

Get different joint angles (multiplicity of solutions).

