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Chapter 1

Path Planning Algorithms

1.1 Introduction

A path planning algorithm’s goal is to find an efficient, collision-free path
for a robot from a start position to a target position in an environment with
objects, whenever one exists, or to determine that no solution exists if so. The
path planning problem is known to be PSPACE hard [1], which means that
its complexity grows exponentially with the dimension of the configuration
space.

The configuration space C is the space of all possible configurations, the
complete specifications of the position of every point [2]. The configuration
space usually has n dimensions if the robot has n degrees of freedom [3], but
in our case the configuration is defined by the position and the orientation of
the main body of the robot and by the angle that the body is steered. The
configuration-free space (C'gree O Qfrec) is defined as the set of collision-free
configurations and the obstacle space (Cups or Qops) as the set of configura-
tions, for which the robot collides with an obstacle [3].

We have chosen to use the Ant Colony Optimization method to solve
the path planning problem. Ant Colony Optimization (ACO), which was
introduced by Marco Dorigo [23] in his PhD. thesis, is a class of algorithms,
whose main idea is inspired by the behavior of real ants. ACO was initially
applied to the travelling salesman problem, and to the quadratic assignment
problem. Since then, a lot of extended versions have been developed, which
have been applied to different combination optimization problems [24]. In
section 1.4 ACO will be analyzed in detail. Some other algorithms, which
have been used for solving the path planning problem , will be also presented.
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Here is an attempt of classification of the path planning algorithms based on
S.LaValle [3].

e Grid-based algorithms: A grid resolution is required for these algo-
rithms, the configuration space is decompressed into squares forming a
grid and every grid point represents a configuration. The robot moves
from a point to an adjacent point, if the two squares are in the Cye.
space. Search algorithms (e.g. ACO) are used to find the desired path.

e Potential-fields algorithms. According to this approach, originally pro-
posed by Khatib[4], the robot is treated as a point robot in the con-
figuration space under the influence of an artificial potential field U.
Path planning needs little computation, but it is not always efficient
and these algorithms are easily trapped in local minima. Potential-
fields algorithms performance and hard cases are more analyzed in the
section 1.2.

e Sampling-based algorithms: Sampling-based algorithms avoid the ex-
plicit construction of Cs space, they perform a probing of C-space and
they represent it with a sampling schema. In order this probing to be
constructed, a collision detection feature is necessary. Such sampling-
based algorithms are the Probabilistic Roadmap Methods, proposed by
Kavraki [8], the Rapidly Exploring Random Tree, proposed by LaValle
[20], and the Ariadne’s clew algorithm, proposed by Mazer [22].

e Bio-inspired algorithms: Apart from the ACO algorithm, to which we
referred at the beginning of this section, genetic algorithms have been
also used to solve the path planning problem[31, 32, 33]. Genetic Algo-
rithms (GAs) were invented by John Holland in 1975 [30] and they are a
particular class of evolutionary algorithms that use techniques inspired
by evolutionary biology' such as inheritance, mutation, selection, and
crossover. A genetic algorithm is started with a set of solutions, called
population. Solutions from one population are selected with a probabil-
ity according to a fitness function and used to form a new population.
This is repeated until some condition (for example number of popu-
lations or improvement of the best solution) is satisfied. More details
about the genetic algorithms will be given in section 1.5.

!Evolutionary biology is a sub-field of biology concerned with the origin of species from
a common descent.



1.2 Potential-fields algorithms

Description of the algorithm

As mentioned in the previous section an artificial potential field U is used
in order the robot to be attracted to the final configuration q;. In fact, the
potential field U is consisted of one attractive component that attracts the
robot to q; and a repulsive component that repels the robot from C,s. Thus,
the artificial potential field can be expressed by the following formulation:

U(q) = Uatt(q) + Urep(q),

where Upy(q) is the attractive component of the potential field and U,.p(q)
is the repulsive component.

The objective of the algorithm now is to find the global minimum in U(q)
starting from the initial configuration q,. The artificial force, F, defined as
the negative gradient of U(q), is computed at the current configuration.

F(g) = -VU(q)

A small step to the direction of this force is made and the whole process
is repeated until the goal configuration is reached or the new configuration
is sufficiently near to the final configuration. The step size should be small
enough, so that to avoid collisions with obstacles and overshooting of the
goal.A schema for this algorithm follows:

L. q(0) =qi;i=0;
2. while VU (q(7)) # 0 do
3. q(i+1) = q(i) + VU(q(2))
4. i=i+1
It is very difficult to generate a potential field directly on the configuration
space. Some simple attractive fields according to Spong [2] are the following.
Uatti(q) = ||0i(q) — 0i(qy)|| conic well potential

1

Uatt,z‘(Q) = §i||0i(Q) - Oi(Qf)HQ

parabolic well potential



Repulsive potential field’s objective is to prevent the robot from colliding
with the obstacles, but its influence to the robot’s motion should minimize as
the distance between the robot and an obstacle grows. One suitable potential
function for the repulsive field ([2]) is the following:

1 1 1\2
Urep,i(q) = o'l (p(oi(q)) N %) ;0 (0i(2)) < po
0 ;0 (0i (q)) > po

Hard cases

Potential fields algorithms’s biggest problem, according to Koren and Boren-
stein [5] , is that they may get trapped in local minima. Randomized methods
[3] have been developed to cope with this problem. One simple such method
combines the gradient descent with randomization. A heuristic is used to de-
termine when the robot is stuck in a local minimum and then a random walk
is used in order to escape. Other search methods apart from the gradient
descent that can deal with local minima are Best-First Search and Numerical
Navigation Functions[6].

In Best-First Search, a grid is placed over C space and a heuristic is used
to search the grid. A tree T of configurations in grid configuration space
(GC) is constructed iteratively, in which ¢ is the root. At each iteration, the
neighbors of leaf with the lowest potential value are examined and the most
“promising” (lowest potential) unvisited neighbors are added as children of
the leaf to the tree. The iteration stops when gy is reached or there no more
unexplored nodes. A global navigation function is a potential function that
has one local minimum at qy, but unfortunately according to Koditschek
[7] it is not possible to design a function like that. A numerical navigation
function, which is defined at point on a grid is an alternate design technique

6].

There are also some other problems that PFMs face [5]. A mobile robot
may not manage to pass through a narrow passage between two obstacles.
Another characteristic of PFMs is that they tend to cause oscillations in the
presence of obstacles and in narrow passages. One last problem of PFMs
is the GRON problem [10], Goals Non-Reachable with Obstacles Nearby, in
which a robot is not able to reach its goal because an obstacle is nearby to the
goal and the repulsive field will repel it. New repulsive potential functions
[10] have been proposed to cope with the GRON problem.
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1.3 Sampling Based Algorithms

1.3.1 Probabilistic roadmap methods
Description of the algorithm

Path planning with the use of roadmap methods consists of three parts,
construction of the roadmap, connection of the initial and the goal config-
urations of the robot to the roadmap and find of a path from the initial
to the goal configuration. The main idea of sampling based algorithms is to
avoid constructing explicitly the C,s space by sampling Cgqce. In the Prob-
abilistic Roadmap Methods (PRM), random samples from the configuration
space of the robot are collected, checked if they exist in the Cy,¢., and these
configurations that exist in C,.. are tried to be connected to other nearby
configurations.A roadmap (graph) is then constructed that connects two con-
figurations P and Q if the line segment PQ is completely in Cy,e.. To explore
a path from the start configuration to the end configuration, the existence
of the relative path in the roadmap is checked. If this exists, then the plan-
ner succeeds and returns the path. Otherwise, there is no way to determine
if the path does not exist or if the planner did not take enough samples.
The probabilistic roadmap methods (PRM) have been applied to a variety
of problems in path planning [11].

The construction of the roadmap is performed by finding candidate neigh-
bors of the already found random configurations and connecting them to the
roadmap by simple paths if these paths lie completely in the Ce.. Candi-
date neighbors are found by using a distance function, such as the 2-norm,
in the configuration space. This process continues until the time is up or the
roadmap is good enough. The construction of the roadmap is performed by
the following algorithm:

Initially the roadmap (graph) R(N,E) is empty, where N are the nodes and
E the edges.

1. N0, E<0
2. loop
3. c«— a randomly chosen free configuration

4. N, « a set of candidate neighbors of ¢ chosen from N

5. N — NU{c}



6. for all n € N, in order of increasing D(c,n) do

7. if = same_connected_component(c,n) ANA(c,n) then
8. E—FEuU{(e,n)}
9. update R’s connected components

where A is a function, which returns whether the local planner can compute
a path between the two configurations given as arguments.

In case that Cy,. consists of several big regions connected by narrow pas-
sages, the produced roadmap will consist of multiple components, that may
be not connected each other or may be sparsely connected. There is an en-
hancement step, which goal is to connect as many of these components as
possible. A simple way to achieve this is by choosing a more sophisticated
planner for the construction of the PRM. There are some other approaches
also, like identifying the largest connected component and trying to connect
smaller components to it. A path smoothing process may also be added after
the construction of PRM. [2][8]

Performance

Basic PRM works well if C-space is not cluttered and long, narrow pas-
sages are hard to be represented at the roadmap. Heuristics usage help for
‘enhancing’ roadmap in cluttered areas but to a limited extend.[13] PRM
has proven very successful in practice, but it is admittedly very hard to char-
acterize its average performance. The dependence of the algorithm on the
number of nodes of the probabilistic roadmap is exponential.[12]

PRM Variants

There are a lot of PRM variants proposed:
e Biased-Sampling Methods (OBPRM[14], MAPRM[15], Bridge Test PRM[16])
e Methods for Highly Constrained Problems
e Lazy Evaluation Methods (Lazy PRM[17], Fuzzy PRM[18], C-PRM]19])

e Cooperative User/Planner Systems



1.3.2 Rapidly - Exploring Random Trees

Rapidly-exploring Random Trees (RRT) method is ideal for path planning
problems that involve obstacles and differential constraints (nonholonomic?
or kinodynamic?®). As it was mentioned in section 1.1 a rapidly - exploring
random tree (RRT) is a data structure designed for path planning in high
dimensional spaces[20]. The main idea of this method is to construct incre-
mentally a tree of samples of the configurations space by adding the closest
sample to the existing nodes of the tree. The primary advantage of this
method is that RRTs can be directly applied to nonholonomic and kinody-
namic planning. As roadmaps, they are designed with as few heuristics and
arbitrary parameters as possible. What makes RRT's ideal for nonholonomic
and kinodynamic problems is the fact that they don’t need any connections
to be made between pairs of configurations, since one structure is constructed
incrementally and at each iteration a new node is added to the tree. RRT's
might also be more efficient than standard probabilistic roadmap methods
for holonomic path planning [20].

Description of the algorithm

An RRT, T, with K vertices can be constructed by the following algorithm:
1. T.init(Xini);

2. for k=1 to K do

3. Xrand < RANDOM _STATE();

4. Xpear < NEAREST NEIGHBOR(%an4,T);
D. uw— SELECT_INPUT (Trand; Tnear);

6. Xpew — NEW _STATE(zpeqr, u, At);

7. T.add_vertex(Tpey);

8. T.add_edge(Tpear, Mnew,1);

9. Return T;

2 A nonholonomic system is a system in which a return to the original internal config-
uration does not guarantee return to the original system position.

3Donald et al. [9] defined kinodynamic planning as a class of problems for which
velocity and acceleration bounds must be satisfied
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In the previous algorithm, X is a state space and is used to express in
greater generality what in path planning problems is considered as configu-
ration space. For standard problems, X = C, where C is the configuration
space of a rigid body or system of bodies in a 2D or 3D environment. In
kinodynamic problems, X = T(C), where T is a state that combines both
configuration and velocity [9].

The construction begins from an initial state, x;,;;, and in each iteration a
random state, X,qnq, is selected. The closest neighbor to x,4,q is found and
a u , that minimazes the distance from X,cq; t0 Xrqnd, is selected. Collision
detection is performed to ensure that X,.q, stays in Xy and then a new
state, X,eqar, 18 constructed by applying u and an edge is added to the tree.

RRT’s properties

RRTs have some very interesting properties, that can turn into strong
advantages for particular problems.

e RRTs expand mainly toward unexplored portions of the state space

e RRTs’ vertices distribution approaches the sampling distribution

RRTs are probabilistically complete

the RRT algorithm is simple

an RRT always remains connected

RRTs can be a solution for path planning problems without configuring
of the system between two prescribed states being required.

[20]

1.3.3 Ariadne’s Clew Algorithm

In Ariadne’s Clew algorithm, a search tree is constructed in order to explore
as much new territory as possible in each iteration. It is the combination of
two routines, SEARCH and EXPLORE. The SEARCH routine’s goal is to
find a configuration that minimizes the distance of the current position from
the final position. The EXPLORE routine is trying to create an approxima-
tion of the CY,.. space by setting landmark points, to which the path has
been already explored. This approach, spends some of the time exploring
the space, as opposed to focusing on finding the solution. This algorithm,
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which was introduced by Mazer [22], is designed for path planning in high-
dimensional continuous spaces and for robots with many degrees of freedom
in static or dynamic environments.

Description of the algorithm

The main idea of the algorithm is that while searching for a path from
initial state to target state the algorithm collects information about the free
space and about the set of possible paths in the free space.

SEARCH algorithm assumes that the trajectory of the robot with k DOF
of length 1 is parameterized as a sequence of n=k*l successive movements.
The EXPLORE algorithm works as follows. Its objective is to compute
an approximation of the space accessible from the initial state. It places
landmarks in the searched space, so that a path from the initial state to the
landmark is known. The landmarks are placed as far as possible from one to
another by maximizing the distances between them. The searched space is
the set of all paths starting from one of the previously placed landmarks.

The Ariadne’s algorithm combines the SEARCH and the EXPLORE al-
gorithms:

1. Use the SEARCH algorithm to find if a path exists from initial to goal
state.

2. If a path from step 1 does not exist, continue until a path is found.

e Use EXPLORE to generate a new landmark point.

e Use SEARCH to look for a path to the goal from the landmark
point.

Performance

According to LaValle [3] one disadvantage of Ariadne’s Clew algorithm is
that it is very difficult to find an optional solution if a new vertex is placed
in the explore mode. Experiments by Mazer [22] showed that the algorithm
performs well in realistic dynamic environments.
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1.4 Bio-inspired Path Planning Algorithms

1.4.1 Ant Colony Optimization Algorithms

Recently, many researchers [25, 26, 27, 28| have implemented bio-inspired
methods and particularly the Ant Colony Optimization method to solve the
path planning problem. Ant Colony Optimization (ACO)[23, 24| algorithms
are part of swarm intelligence, which is a relatively new approach to prob-
lem solving based on the collective behavior of decentralized, self-organized
systems and takes inspiration from the social behaviors of insects and of
other animals. Ant Colony Optimization takes inspiration from the behav-
ior or real ant colonies and is used to find approximate solutions to difficult
optimization problems. ACO methods were initially applied to the travel-
ling salesman problem (TSP), but they are adaptable to any environment
and taking advantage of these several bio-inspired algorithms can be used to
optimize the path planning problem [25, 26, 27, 28|.

ACO’s main idea and algorithm

ACO is a metaheuristic?, in which a set of intelligent agents (artificial ants)
search for good solution to an optimization problem, that is the problem of
finding the optimal path on a weighted graph in the case of path planning.
The biological inspiration for ACO comes from the fact that many ant species
deposit on the ground a substance, called pheromone, when they are walk-
ing to and from food source. Other ants tend to follow the path, where the
concentration of pheromone is higher, the most effective path. While several
ants are able to select among different routes from their nest to the food
source, the first ants that will return from the food source will be these that
followed the shortest path, so that path will have the highest concentration
in pheromone and the ants will choose this path at their next traverses to
the food source. Considering the ant colony optimization for the traveling
salesman problem, the artificial ants can move on a graph, whose vertices
represent the cities and the edges the connection between cities, and read
or modify a variable (pheromone) for each edge. At each iteration of the
ACO algorithm , each ant builds a solution by walking on the edges of the
graph and visiting each vertex only once (travelling salesman problem’s con-
straints). The next vertex for each ant is selected stochastically depending
on the current vertex. When an iteration has finished, the pheromones values

“4a set of algorithmic concepts for solving a very general class of computational problems
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are updated, so that the best solutions are promoted and the future solutions
are similar to these.

In order to describe in more detail the ACO algorithms we should refer
to an adequate model P = (5,2, f) where S is a search space of a finite set
of discrete decision variables X;, €2 is a set of constraints and f is a function
f:S— R, which has to be minimized. A decision variable X;, a solution
component c¢;; and a pheromone trail value 7;; for each c;; are also defined.
The set of the solution components, C, can either be associated with the
vertices V or with the edges E of a graph. The ants deposit an amount A1
of pheromone on the components depending on the quality of the solution
found. ACO metaheuristic follows :

Set parameters, initialize pheromone trails
while termination condition not met do
ConstructAntSolutions
ApplyLocalSearch(optional)
UpdatePheromones
end while

Main ACO Algorithms

A variety of ACO algorithms have been introduced. A table, taken by a
tutorial by Dorigo[24], with the most important follows:

SUCCESSFUL ANT COLONY OPTIMIZATION ALGORITHMS
Algorithm Authors Year
Ant System(AS) Dorigo et al. 1991
Elitist AS Dorigo et. al. 1992
Ant-Q Gambarella & Dorigo | 1995
Ant Colony System | Dorigo & Gambarella | 1996
MAX-MIN AS Stiitzle & Hoos 1996
Rank-based AS Bullnheimer et. al. 1997
ANTS Maniezzo 1999
BWAS Cordon et al. 2000
Hyper-cube AS Blum et al. 2001

Model of ACO for robot path planning
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A model for robot path planning based on ACO can be introduced. We
assume that our working space is a 2-D grid of points, that can be free or
occupied by an obstacle. We define the following set of parameters:

e m:number of ants

tabooy:cities that the k¥ ant visited at the current route.
n,;:visibility of grid(i,j)

7;5:pheromone intensity of grid(i,j)

Ar;j:pheromone increment of k" ant at grid(i,j)
fi:objective function

Pé:transform probability of the k' ant

The amount of pheromone is updated with the following formula:

new

= (1 - o) - 79"+ Y A1) where g is called evaporation factor, expresses

the evaporation of pheromone and takes values between [0,1].

5.

6.

. loopcounter = 0, initialize 7;;,A7;;, m ants at start point.

add start node at tabooy, for each ant k move to next node j according
to PE. Put j in tabooy.

. compute fi, record best answer.

. update 7;;

for each grid(i,j) An; =0

loopcounter++. If loopcounterjmax goto 2

An elitist strategy can be used, in which an additional amount of pheromone
is given to the nodes(grid points) of the best tour.[26]

Performance of ACO algorithms
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It is obvious that if we deploy an elitist strategy to the ACO, pheromone
will mostly be distributed on the best path of the map while the other regions
on the map receive little or nothing. ACO will find a solution in any case
(any number and distribution of obstacles), provided that a solution exists,
as it takes a decision in every grid point. Gutjahr, in 2000, [29] has given
a theoretical proof of the convergence of the ACO algorithm to the optimal
solution with probability arbitrarily close to 1. The convergence probability
can be increased by either increasing the number of ants or by decreasing the
evaporation factor. However, trying to achieve better and better convergence
to the optimal solution will lead to extreme increase of the computation time.
Generally, the performance of the algorithm is better with a larger set of ants,
but it stabilizes as the amount of ants gets too large.[34]

1.5 Genetic Algorithms

Description of the algorithm

Genetic algorithms(GA) [30] are used for optimization and search prob-
lems. GA are stochastic search techniques analogous to natural evolution
based on the principle of survival the fittest. GA’s model consist of a pop-
ulation of potential solutions of the problem, called chromosomes. In each
generation (iteration), every individual of the population is evaluated by a fit-
ness function. The fitter ones are stochastically selected to be reproduced by
means of genetic transformations such as crossover or mutation. This process
is repeated until a maximum number of generations or a satisfactory solution
has been reached. The population converges to high quality solutions and
the fittest individual is more likely to be the optimal solution.Traditionally,
solutions are represented in binary as strings of 0s and 1s.

Pseudo-code algorithm

1. Choose initial population
2. Evaluate the fitness of each individual in the population

3. Repeat until termination

(a) Select best-ranking individuals to reproduce

16



(b) Breed new generation through crossover and/or mutation and give
birth to offspring

(c) Evaluate the individual fitnesses of the offspring
(d) Replace worst ranked part of population with offspring

The classical GAs, that use binary string and two basic genetic opera-
tors (crossover, mutation) are like “blind” and perform well with little prior
knowledge. In path planning, knowledge is renewed and requires incorpo-
ration and GAs do not have to perform “blind search”, so graphs are used
to represent the environment. The solutions can be encoded in a more ef-
fective way that the binary strings, such as variable-length chromosomes.
More specialized genetic operators may also be used in order to make the
path planning more efficient. GAs are effective in both static and dynamic
environments. [32]

Model of GA for robot path planning

At this point we can give a rough model of GA for robot path planning,
proposed by Wang [33] and Han [34].
Chromosome: a possible solution in our problem is given by a chromosome.
That means, that a chromosome contains the set of the grid points of the
trajectory from the start point to the end point.
Via points: via points are the genes of a chromosome or in other words the
intermidiate grid points from the start point to the end point.
Fitness: this is the value of the evaluation function for each chromosome.
In path planning the fitness function may be the distance between the start
point and the end point.
Selection: survival of the best fit chromosome in this generation(iteration).
This is called also elitism.
Crossover: a genetic operator that express the exchange of bits(genes) be-
tween parents.
Mutation: a genetic operator that express the random change of one or more
bits(genes) in the chromosome.
Obstacle Avoidance: a line that is created by two via points(grid points) is
checked if it is passing through an obstacle. The chromosomes that pass
through obstacles are eliminated.

Performance of GA
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It is true that as the number and the distribution of the obstacles increase,
more generations(iterations) as well as more bits(genes) in each chromosome
are needed in order the best solution to be found. Another factor that influ-
ence GA’s performance is the number of the via points. The more the via
points of each chromosome the more optimal(shortest path) solution will be
found but also the more generations the algorithm needs to converge. [34]

1.6 Comparison in performance

One of the problems of the Potential-fields algorithms, that would affect in
a major degree our implementation is the GRON problem [10], as mentioned
in the section 1.2. A robot is not able to reach its goal because of the
existence of an obstacle nearby to the goal. In this case, the repulsive field
will prevent the robot to approach the goal position. As mentioned in the
section 1.3.1 the probabilistic roadmap methods face difficulties when there
are cluttered, long, narrow passages in the C-space, because these are hard
to be represented at the roadmap. A robot may need to pass through narrow
passages in order to reach its goal, so PRM will not be a proper solution to
our problem. According to LaValle [20] the Ariadnes Clew algorithm will
find rarely an optional solution in dynamic environments and it would be a
great disadvantage of our implementation if we chose this algorithm.

There are some references in the literature [34][35], in which comparison of
the performance between the ACO algorithm and the genetic algorithms in
the robot path planning problem was accomplished. According to Han [34],
GAs are usually better in performance in terms of the distance of the path
that they will find in comparison with ACO algorithms. However, when the
number of the obstacles is increasing, the GAs may face difficulties to find a
solution or even they may not find one. That depends mostly on the number
of via points that they will use (the more via points are used the more time
consuming is the algorithm). In the case of ACO algorithms, the algorithms
will find a solution in any case, even if there are many obstacles or if there are
narrow passages in the world. Although the GAs seem to find a shortest path
than ACO algorithms, GAs may need more computation time[34]. There are
some methods proposed at the literature, that combine ACO algorithms and
GAs. For example, a genetic algorithm can be used to optimize the search
of the shortest path in an ACO algorithm.[27]

Considering the above points and our desire to use a bio-insired algorithm,
we have chosen to implement the Ant Colony Optimization algorithm.
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Chapter 2

ACO implementation

In this chapter the details of the implementation of the ACO algorithm
will be given. Placing the path planning problem at a grid of squares, the
selection criteria of a path will be analyzed in the first section. In sections 2.2
and 2.3 the heuristic function and the pheromone update policy will be pre-
sented. When implementing the ACO algorithm several design parameters
need to be defined (section 2.4). Several simulation were performed in differ-
ent environments in order to explore the characteristics of the algorithm and
to take some decisions over the selection of the parameters. The description
of these simulations and their results will be given at the final section (2.5).

2.1 Path nodes generation

As we mentioned before, the model of the world, which we had considered
for the path planning problem, is a grid of squares. There is a square of the
grid considered as start position and another one considered as end position.
The agents must find a path from the start to the end position. Each agent
has a current position in the grid, can move by one square and has to make
a decision about its new position. This decision is based on the amount of
the pheromone in the grid square and on the value of a heuristic function.
The next grid square is selected according to a pseudo-random distribution
based on the following probability function.

B
TN, .
—3 1 >
Eiramﬁ fq < 4o

P(Si) = 1 ifq<qo and i=argmax(ten’)

0 ifg<qo and 1i# argmax(n“nf)

where « is the pheromone factor, # the heuristic factor, 7; is the amount of
the pheromone in the grid square i and n; is the value of the heuristic function

(2.1)
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computed for the grid square i. The pheromone factor, o, and the heuristic
factor, 3, indicate in which degree the amount of pheromone or the heuristic
function value, respectively, influences the selection of the next position.

If a uniformly random value , 0 < ¢ < 1, is less than the selection parameter
¢o (see which value is chosen in section 2.4) the next position of the agent
will be the position that appears to be the best one according to the heuristic
function and the existing amount of pheromone of this position. Otherwise
the next position will be randomly selected based on the weighted probability
distribution P(.S;), where S; is a grid square. When the next position is
selected, it will be appended at the end of the current trajectory of the given
agent.

The set of the possible next positions of an agent are the adjacent grid
squares of its current position considering that it can move diagonally, so
there are 7 possible new positions. Each agent must check if any of its
possible next positions are occupied by an obstacle and exclude them from
the set of the possible next positions. Moreover, each agent can select a grid
square as its new position only if this square does not exist already to its
trajectory.

2.2 Heuristic

ACO algorithm is able to take advantage of the specific characteristics
of a problem by using a well defined heuristic function. As we notice from
(2.1), the probability distribution of the next position of an agent takes into
account both pheromone, 7, and heuristic, 7, information. Thus, a good
heuristic function can lead to promising solutions. The heuristic function
used in this implementation of the ACO algorithm is the Euclidean distance
of the end position to the current position, as it has been proposed by many
researchers that tried to implement ACO algorithm on the path planning
problem [2; 3, 4].

hi = \/(Tena — Teurr)® + (Yend — Yeurr)?  (2.2) The heuristic value at each

1
grid square is computed by: n; = 7

7
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2.3 Pheromone update policy

Pheromone is lied at the end of each generation at paths found by agents
and which can lead to the end position. Pheromone is the way that agents can
communicate and can learn solutions that have already found by other agents.
The pheromone update policy consists of two steps, pheromone deposit and
pheromone evaporation.

The goal of the pheromone deposit step is to make information known from
one generation to the next ones. At the end of each generation, pheromone
is thrown to the best paths that have been found by the agents. The method
of pheromone deposit used in this project is the elitist approach, proposed
by Dorigo [1], according to which only the generation-best solution and the
overall-best solution contribute to the pheromone update at the end of each
generation. The amount of pheromone that will be deposited to a path is
proportional to 1/J(x;), where J(x;) is an objective function that is desired to
be minimized. The objective function used is the length of a path, measured
as the number of the grid squares members of the path.

After the end of each generation, an amount of the existing pheromone
at the grid is evaporated. By this way, the agents are allowed to “forget”
previous solutions and so, stagnation can be prevented. The approach used
at our implementation of ACO algorithm is that pheromone, 7, is reduced in
every grid square by a constant factor g, 7,41 = 7;(1 — o).

2.4 Parameters

ACQO algorithm is a very flexible and configurable algorithm, as there are
a lot of design parameters need to be selected at the implementation stage
and which are affecting the performance of the algorithm.

e number of ants (agents)

e number of generations (iterations)
e «, the pheromone factor

e (3, the heuristic factor

e Ty, the initial pheromone value

® (o, the selection parameter
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e o, evaporation factor

The effect of the first four factors, number of ants, number of generations,
a and (3, to the algorithm’s performance will be analyzed in the simulation
section 2.6.

The initial pheromone value 7y is the amount of pheromone that initially
is thrown to each square in the grid and this was set to 10. The selection
parameter gy was selected based on the results of Dorigo [1] and was set to
0.5. Large values of ¢y mean that the algorithm will mostly focus on already
known solutions while small values mean that it will try to explore in bigger
depth the search space. Dorigo’s results were taken into account again to set
the evaporation factor, g, to 0.1.

2.5 Termination conditions

A proof of the convergence of the ACO algorithm to the optimal solution
is given by Gutjahr [6] and Dorigo [1], but it is not possible to make an
estimation on the time of convergence. Thus, a termination condition needs

to be defined.

One approach would be to set a time limit for the run of the algorithm,
such that it gives the best solution found after a specific time range. One
possible problem of the ACO algorithm is stagnation, in which the algorithm
finds a local minimum and throws pheromone to it for continuous generations
making it increasingly impossible to move to a better solution. A restart of
the algorithm in the case of stagnation detection or running the algorithm
for instance 5 times and choosing the best execution may solve this problem.

In the simulations of the next section, we simply run the algorithm for
a given number of generations in order to detect the effect of the different
parameters to the performance of the algorithm.

2.6 Simulation model

Simulations were performed for 3 different environments (18x18 square
grid) and for different values of the number of ants, number of generations,
a and ( in order to detect the behavior of the algorithm with different pa-
rameters. The start position is the top left square and the end position is
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the down right square. In Figure 2.1, Figure 2.7 and Figure 2.12 we see
a visual representation of the 3 environments. The black squares are oc-
cupied by obstacles, whereas the white ones are free. The environment 1
has the fewest obstacles and the environment 3 the most. For each set of
parameters values we performed 10 different runs of the algorithm and we
extracted the average length of the solutions. The aim of these simulations
is to find the most appropriate values from the above mentioned parameters,
such that the algorithm converges to a satisfying solution for all three tested
environments. Another concern that must be addressed is the variance of the
solutions found by the different executions of the algorithm for the same set
of parameters. The variance of the solutions needs to be minimized, because
it is not acceptable to have totally different solutions for the same values of
the parameters for different executions.

2.6.1 Environment 1

The first environment (Figure 2.1) is a rather simple environment, in which
the shortest path from the start position to the end position is 21 steps.
Using 50 generations and setting a and 3 equal to 1, we examined the effect
of the number of ants at the performance of the ACO algorithm. As we
see in Figure 2.2 the algorithm has a rapid improvement, but after some
iterations it fails to make significant improvement possibly due to stagnation
and it nearly stabilizes to 28 steps. In Figure 2.3 we see that there is a
very small improvement (it stabilizes at almost 30 steps) when we increase
the number of generations and while we have used 20 ants and set « and 3
equal to 1. Another possible reason why the algorithm fails to present bigger
improvement with the increase of the number of ants and generations is that
the first environment is a very simple one but with a great variety of good
solutions, so the algorithm easily falls into a local minimum.

However it is interesting to identify the variance of the solutions that ACO
finds in different executions for the same parameters. As mentioned above,
we have made 10 executions for every set of parameters, so it is easy to check
the variance of the solutions of the algorithm by examining the standard
deviation of the 10 executions for each set of parameters. Figure 2.4 shows
the distribution of the standard deviation for the simulation of Figure 2.2,
where we had some fixed values for the number of generations, a, § and
increasing values for the ants. The variance of the found solutions decreases
as the number of ants increase. This figure indicates that a good value for
the number of ants would be above 100, as it seems that the algorithm’s
behavior stabilizes for large number of ants.
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In Figure 2.5 and Figure 2.6 the influence of the pheromone factor, «, and
the heuristic factor, (3, is demonstrated for the simple environment 1. For
large values of a (bigger than 1), the algorithm is expected to stagnate to
the first good solution found, whereas large 3 (bigger than 1) would lead the
agents to choose among solutions with high heuristic value. Since environ-
ment 1 is a simple environment and the Euclidean distance, used as heuristic
function, is a good heuristic for such a simple problem it is logical that the
algorithm performs better with a bigger 5 than «. A high value for a leads
the algorithm to stagnate to the first good solution found. Both tests have
been done for fixed values of ants and generations(with 20 ants and for 100
generations).

2.6.2 Environment 2

The second environment is a more complicated environment (Figure 2.7)
with optimal solution of 32 steps, where we expect the algorithm will need
more generations to converge to a good solution. Indeed, in Figure 2.8 we
see that as the generations increase the results of the algorithm improve,
but the improvement is getting smaller and smaller after approximately 80
generations have occurred and it stabilizes at about 47 steps. This test was
made with 20 ants, but if 100 ants are used, as proposed in the previous
paragraph, the algorithm converges in less generations to a better solution
of almost 41 steps (Figure 2.9). In both tests, with 20 and 100 ants, o and
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(8 were set to 1.

ACQO algorithm’s performance greatly depends on the quality of the heuristic[24].
If the used heuristic function exploits well the specifications of the problem,
then the solutions found by ACO will be of high quality. At the case of envi-
ronment 2, the Euclidean distance cannot describe with high faithfulness the
characteristics of the problem, since it can lead to areas blocked by obstacles.
In Figure 2.10 and in Figure 2.11 we see the effect of @ and /3 in the quality
of the found solutions for fixed values of ants (20) and generations (50) at the
second environment. Increasing the influence of the heuristic (bigger values

Figure 2.7: Environment 2
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of 3) leads to worse solutions, which informs us that we may need a better
heuristic function for this kind of environments. Increasing the influence of «
leads again to stagnation to the first good solution found. Some researchers
have proposed heuristics that take into account the distribution of the ob-
stacles in the environment, as for example Wen Ye et. al [5] that have used a
heuristic,which computes the distance between the current position and the
nearest obstacle besides to the distance from the goal position.

2.6.3 Environment 3

The third environment is a slightly more complicated environment than
the second one. There are a couple of points at the grid, where the agents
have to decide which direction to follow in order to find a good solution. The
optimal solutions here consists of 34 steps. We used 100 ants for the test of
increasing generations (Figure 2.13) at this environment, since the problem
is more complicated and this number of ants was proposed from the previous
simulations. In Figure 2.13, we see that the algorithm converges rather fast,
after about 60 generations, to a relatively good solution (around 40 steps),
since the shortest path for this environment is 34 steps.

We used 4 different plots (Figure 2.14) to explore the influence of the
pheromone («) and the heuristic () factors at the third environment. The
combinations of a and 3, 1 < «, 8 < 4, were examined for increasing number
of generations and with 20 ants. The Figure 2.14 shows the average solution
length found of 10 executions from the above combinations of o and 3. We
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Figure 2.12: Environment 3
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conclude that all the combinations converge eventually at solutions of ap-
proximately the same quality, but the number of generations needed for the
convergence is different. For a rather complicated environment like the third
one, it is necessary that the influence of the pheromone factor is bigger than
the influence of the heuristic factor. The pair of a = 2,3 = 1, for example,
has one of the best behaviors, since it converges rather fast in about 20 gen-
erations. We should note that the quality of the solutions would be far more
better if we have used 100 ants instead of 20 for these tests, as indicated
by Figure 2.13. The results may be different if we used a more appropriate
heuristic, that would take advantage degree the characteristics of the envi-
ronment. In this case, possibly it would be better to set a bigger value for j.
However, in a partially-known and dynamically changed environment, we do
not want a heuristic that depends on the environment to have a big influence
at the search of the path.

As we see at the diagrams from the three simulations, the solutions are
improved by smaller rate as the number of the generations increases, which
means that after a big number of iterations the result of the algorithm stabi-
lizes and there is no need to perform any more iterations. This is the reason
why in our simulations, we have stopped the execution of the algorithm after
200 iterations. As mentioned in 1.4.1, Gutjahr [6] have shown that the con-
vergence probability of the ACO algorithm can be increased by increasing the
number of ants. In Figure 2.15, the improvement of the solutions found for
the third environment as the number of ants increases are shown. We have
extracted the best solutions from each set of executions (10 executions) for
the same number of ants. There is an improvement at the solutions found,
but the rate of improvement is getting smaller and smaller as the number of
ants increases.

2.6.4 Simulation results - Parameters selection

During the simulations at the three environments, we tried to decide which
values would make ACO algorithm to perform well for the path planning
problem. As mentioned before, we have set the number of ants to 100 in order
to eliminate the variance of the found solutions. An increased number of ants
leads also to higher quality solutions as we concluded from the comparison
of Figure 2.8 and Figure 2.9.
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As the number of generations is concerned, two different methods can be
implemented. As it was mentioned in section 2.5, one approach would be
the algorithm to do the most generations possible in a specific time range
and then select the best solution found. Another approach would be to set
a fixed number of generations and stop the execution of the algorithm when
this has been reached. In this case, we would propose a relatively big number
of generations in order to ensure that a good solution will be found. As we
see in Figure 2.13.a value of 100 generations can lead to good solutions.

The selection of the o and 3 factors depend on the quality of the heuristic
function. If a very good heuristic is available we should use bigger values for
[ in order to take advantage of it. In our case, where the distribution of the
obstacles in the environment is rather random, it is difficult to find a very
good heuristic for every kind of problem. We would choose a bigger influence
of the pheromone factor and set a =2, =1 .

ACO algorithm was originally developed and applied at the Traveling
Salesman Problem (TSP) and even in this case a good heuristic was needed
to be competitive with existing methods [24].
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Chapter 3

1Cub infant-like robot

3.1 iCub crawling architecture

The iCub is an infant-like robot developed as part of the RobotCUB
project[1]. It has the size of a 2 years-old child and the ability to crawl.
We used a simulation of this robot at the ODE-based software Webots™ in
order to perform some tests of the implementation of the ACO algorithm. In
this section we will make a brief summarization of the architecture used for
the locomotion of this robot.

An architecture of 3 layers (planner, manager, generator) has been devel-
oped [2]. The planner represents the mental aspect of the task, the man-
ager’s responsibilities are the selection, the timing and the coordination of
different behaviors and the generator uses central pattern generators (CPGs)
3],[4] in order to produce trajectories. Generator’s implementation allows
the generation of discrete (i.e. short-term) and rhythmic movements and the
combination of them.

The discrete movements are modeled as solutions of a dynamical system
with a globally fixed point :

y; = hiv; (3.2)
. —b?
v; = p4T(yi —g;) —bv; (3.3)

This is a critically damped dynamical system, so that a discrete trajectory
is generated. The output y; converges asymptotically and monotically to
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a goal g; and the speed v; converges to zero. The speed of convergence is
controlled by b. The values of p and d are chosen so to ensure a bell-shaped
velocity profile.

The rhythmic movements are modeled as solutions of a limit cycle dynam-
ical system :

;= a(m; — rf)(:vl —Yi) — Wiz (3.4)
Zi = a(m; — 7))z + wile; — yi) + Skiz +u; (3.5)
u.)' o Wstance Wswing

e~fr4 1 efs41

where r; = \/ (z; — yi)? + 22, w is the frequency of oscillations in rad- s™*,

Wewing aNd Wgance are the frequencies of the swing and stance phases respec-
tively and « is a positive constant that controls the speed of convergence to
the limit cycle. When m; > 0 Hopf oscillations are performed with ampli-
tude /m;, frequency w; and an offset g;. These oscillations can be turned off
via Hopf bifurcation when m; < 0. The term k;; represents the gain of the
coupling between the rhythmic unit generators i and j. Feedback information
is added to the system by the term wu;.

The coupling of the different unit generators in one network constructs
a central pattern generator (CPG) [5], which guarantees fixed time rela-
tionships between different rhythmic outputs. In order to produce complex
movements, superimposition of discrete and rhythmic unit generators is per-
formed by injecting the discrete movement into the rhythmic one. A network
of coupled oscillators has been developed by Righetti and Ijspeert [6] with
the abilities of walk, trot, pace and bound. In Figure 3.1, the couplings of
the constructed network for different types of gaits are shown.

In addition, feedback information from load sensors at the hands and the
knees of the robot is included in the rhythmic PG in order to modulate the
onset of swing and stance phases. According to Righetti and Ijspeert [6], the
following formula is used:

—sign(y;)- F fast transitions
U; = —w;x; — Lkijy; stop transitions

0 otherwise

where F controls the speed of the transition. There are fast transitions during
stance when the weight under the foot reduces and during swing when the
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Figure 3.1: 4 cell networks for different types of gait.Same coupling between
cells is shown by arrows of the same type. Figure taken by Righetti and
Ijspeert [6]

foot touches the ground. Stop transitions conditions exist from swing to
stance when the limb is not yet in contact with the ground and from stance
to swing when the limb still supports significant body weight.

3.2 Steering

The steering ability of the iCub robot was not previously modeled, but
that was essential for this project as long as the robot has to walk among
obstacles in order to reach a goal position starting from an initial position.
We have built an implementation for the steering of the iCub on the ODE-
based software Webots™

The iCub has 3 degrees of freedom at the middle of its torso. The second
half of the robot’s body (this is the part where the legs belong) can rotate
against the first part (where the arms and the head belong) around the 3
axises according to the Figure 3.2. In order to steer the robot, we rotate the
leg part of iCub around the axis y and the axis x. If the robot for example
has to turn right, the upper part of its torso has to turn a bit right, so the
leg part of the body has to rotate a bit around the y axis anti-clockwise as
we see in Figure 3.3. But in this case, the right leg will not touch the ground
as Figure 3.4 indicates, so we have to rotate the leg part around the x-axis,
too.
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(a) Rotation around the x- (b) Rotation around the y- (c) Rotation around the z-
axis axis axis

Figure 3.2: Possible rotations of the second half of the iCub’s body against
the first half.

Figure 3.3: iCub turns right by rotating around the y-axis.
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(a) Steering without rotating (b) Steering with rotating around
around the x-axis the x-axis

Figure 3.4: We need also to rotate the leg part of the body around the x-axis,
otherwise the inner leg does not touch the ground.

After tests with the simulation platform we concluded that the robot would
turn easier if the outer limbs were making a bigger step than the inner ones.
Taking that into account, when the iCub turns right, the amplitude of the
CPGs that control the left arm and the left leg increases a bit, whereas the
amplitude of the CPGs for the right limbs decreases a bit. The opposite
happens when the robot turns left.

To sum up, all the previous actions, which take part in case of steering,
must happen in a very small degree at each step, so that the motion will be
as smooth as possible. After tests in Webots? | we have concluded at the
following schema in case of right turn:

if the angle of the y-axis is less than 0.43 do
angle of the y-axis += 0.05
angle of the x-axis += 0.012
leftFactor += 0.025

rightFactor += -0.025

amplitude of left limbs = leftFactor*amplitude of left limbs
amplitude of right limbs = rightFactor*amplitude of right limbs
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The angles are measured in radians. The robot can steer up to a certain
angle, because if it tries to steer more it loses its stability and falls. In case
of left turn an analogous schema is performed, while if the robot has to crawl
straight the angles are reset to zero and the leftFactor and rightFactor to
one.
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Chapter 4

Simulation - Results

4.1 Simulation setup

As mentioned in the previous chapter, we have integrated the ACO al-
gorithm in a simulation of the robot iCub using the ODE-based software
Webots™ . We have constructed a simulation world represented by a chess-
like board of 8x8 squares surrounded by a wall and with 5 square obstacles
inside (Figure 4.1). The start position of the robot is the lower left square
and the end position is the upper right square. The goal of the simulation
is the robot to crawl from the start position to the end position through the
result path of the ACO algorithm without colliding with an obstacle or the
wall, which is the boundary of the board.

We have made 4 kinds of optimizations on the output of the ACO algo-
rithm. Firstly, considering that the robot is not able to steer in a very big
angle, we have modified the ACO algorithm in order not to take into account
at the computation of the path the positions 1,7 and 8 of the Figure 4.2 as
possible new positions. If the robot is at the center square, it cannot steer
enough to reach one of these squares. Secondly, although the robot can move
diagonally as we see from the possible movements in Figure 4.1, a diagonal
movement must not be valid in the case of Figure 4.3, in which there are two
obstacles adjacent to the robot’s movement.

The last two improvements on the output path are shown in Figure 4.4.
In Figure 4.4 a) the squares with the red spots are part of the path that the
algorithm has generated. Considering that the robot gets into the picture
by the left side, it has to steer twice consecutively, once right and once left,
in order to reach the most right red-spotted square. In this case, we replace
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Figure 4.1: The simulation world. 8x8 chess board with 5 square obstacles.

Figure 4.2: Possible next positions of the robot. The iCub cannot steer
enough to go to the positions 1,8,7, so they are excluded from the computa-
tion of the path.
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Figure 4.3: Although the robot is able to move diagonally, the squares with
the red spot must not be part of the output path of the ACO algorithm,
because of the existence of the adjacent obstacles.

the middle red-spotted square with the square with the green spot, provided
that there is not any obstacle in this position, and so the robot keeps its
straight trajectory. In Figure 4.4 b), we suppose that the robot gets into
the image from the red-spotted square at the bottom and goes out from the
red-spotted square at the left part. In this case, there is no need for the
robot to make a 90° degrees turn if there is no obstacle that would disturb
a diagonal movement. So, in Figure 4.4 b) the middle square with the red
spot will be eliminated.

4.2 Simulation results

We have tested the algorithm’s performance and the iCub’s locomotion for
various obstacle distributions (Figure 4.5) and in the majority of the cases
the robot had reached its goal. In Figure 4.6 and in Figure 4.7, we can find
out that the paths, which the robot had followed in two different cases, were
the shortest possible.

Another feature of the simulation is the ability to change the obstacles’
positions dynamically. When the robot detects a change in the obstacles’
positions, it stops and recomputes a plan with start position its current
position and the same end position and it continues its crawling from this
position to the end. The robot may be trapped among obstacles as long as
they change their positions dynamically and in this case it will not have a
possibility to escape (Figure 4.8).
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(a) The square with the green (b) The robot does not have to

spot replaces the middle square make 90° degrees turn, so the

with the red spot. middle square with the red spot
is eliminated.

Figure 4.4: Optimizations to the result path of the ACO algorithm.

Figure 4.5: Examples of boards, in which the iCub crawled successfully
among the obstacles to the end position.

In the case of the dynamically changed environment, the robot may fail to
steer enough in order to follow a change to its path. For example in Figure
4.9 the blue obstacle appeared at a square to which the robot was going to.
After the recomputation of the path the iCub had to steer right, but it didn’t
manage to steer enough to get in the next square and as a result it could not
continue its trajectory.

4.3 Future Improvements

The performance of the ACO algorithm can be improved by two easy to
implement ways.
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Figure 4.6: In this case the iCub followed the shortest possible path.
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Figure 4.7: In this case the iCub followed the shortest possible path.

Figure 4.8: As long as the obstacles can change their positions dynamically,
the iCub may be trapped.
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Figure 4.9: The iCub could not steer enough and it lost its path.

e Recomputation of the robot’s path to the goal position during the sim-
ulation, for instance after every 5 steps, assuming as start position the
robot’s current position.

e Multiple executions of the ACO algorithm (e.g. 10 executions) and
selection of the shortest path of all the outputs.

It would be also useful if the robot had the ability to detect if it is following
a wrong route, for example in the case of dynamically changed environment
that we described above, and try to find again its path. Finally, the in-
tegration of the ACO algorithm to the real iCub robot and testing of its
performance in real environment conditions would be a challenging work.
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