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Abstract

Biped locomotion has proven to be a very hard problem to solve. At current date, there

exists no humanoid robot that can move as dynamic and robust as humans do. Even

though there has been much research and certainly some interesting progress in biped

locomotion, there is certainly no single solution that provides robots with the same ca-

pabilities as humans. What seems to be especially lacking is a quantitative method for

comparing different solutions. In this work a general method for designing a locomotion

controller, independent of the type of robot, is presented. Three distinct stages are iden-

tified: Designing the nominal gait, finding a proper encoding of the nominal gait and

augmenting the nominal gait to provide stabilization. A nominal gait was successfully

evolved using Particle Swarm Optimization algorithms. The nominal gait was encoded

into a CPG Network which represents the controller as a dynamical system. Furthermore,

a general framework of measuring stability, independent of robot and controller is defined.

This allows quantitative comparison of controllers, feedback integration and gaits. Within

this framework, stability of the nominal gait was compared with integration of feedback

into the CPG. A significant improvement of stability under external perturbation was

achieved using simple feedback.
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Chapter 1

Introduction

Locomotion has been an active research topic in many different research disciplines for

many years. Mobile robots are usually realized using wheels which are easy to control,

low in maintenance and readily available. The problem with wheeled locomotion is that

it only works reliably on flat or easy terrains. Although this is often the case in controlled

environments, in the real world this is less often so. For instance, stairs and elevations

such as curbs or large doorsteps are difficult obstacles for wheeled robots. Looking at

biological “solutions” for locomotion on land, we can see that legs, rather than wheels,

are very able to deal with the kind of difficulties our environment imposes on moving

around in it. Be it hexapod, quadruped or biped organisms, they all are very dynamic and

flexible systems which can take one many different environments and conditions. They

are versatile and robust and as such represent very interesting alternatives to wheeled

locomotion in robotics.

Although a significant amount of progress in understanding what the underlying mech-

anisms are for legged locomotion, the question how these mechanisms are used to provide

a dynamic, stable gait on varying terrains for bipeds remains largely unanswered. It is

exactly this problem of stability which prevents current solutions for biped, robotic loco-

motion to be used in practical applications. In other words, they are simply not robust,

or capable enough. It is therefore not only interesting to better understand biped loco-

motion in real-world circumstances from a theoretical point of view, but also from a very

practical and social one.

Legged locomotion as a research topic is of course not a new field of research in robotics.

There exist a number of humanoid robotic platforms from which Honda’s ASIMO is proba-
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bly the most well known. Others include the HOAP from Fujitsu and more recently Sony’s

QRIO and the NAO from Aldebaran Robotics. Besides real robotic platforms, much work

has been done in simulations, in both 2D as well as in realistic 3D environments. Fur-

thermore, biped locomotion as a research topic is actively, and publicly promoted and

utilized by the RoboCup robot soccer games.

With regard to existing platforms, the problem to be solved is often taken to be the

problem of control. In humans as well as in vertebrate animals, rhythmic motor patterns

in terms of muscle activation are known the be the result of structures better known

as Central Pattern Generators (Grillner & Wallen, 1985; Dimitrijevic, Gerasimenko, &

Pinter, 1998; Hooper, 2000). This mechanism characterizes itself as a mechanism that is

able generate rhythmic patterns (in this case motor patterns) without the need for specific

rhythmic input. Although the use of artificial CPGs is probably not the most widely used

method of control at current date, they do present a number of interesting properties

(such as stable limit cycles) that are very useful for control. This is even more so the

case when multiple CPGs are coupled together to compose a network of oscillators. Once

such a network exists, manipulating its state and controlling it with higher level inputs

can result in successful control methods (Dickinson, Farley, et al., 2000; Aoi & Tsuchiya,

2005; Kimura, Akiyama, & Sakurama, 1999; J. J. Collins & Richmond, 1994). This

combined with integration of sensor information can entrain the controller to the robot

and the environment, providing stabilizing properties to the controller in an automatic

sense (Taga, 1998; Ito, Yuasa, Luo, Ito, & Yanagihara, 1998).

Conventionally, a robot is first designed mechanically and its control is considered

usually at a later and independent stage. More recently, focus is shifting towards more

and more co-design of the mechanics and control. In this sense, the mechanics inherently

solve part of the control problem intrinsically. Passive-Dynamic walkers (S. Collins, Ruina,

Tedrake, & Wisse, 2005) can be considered an extreme case of taking advantage of the

interaction of the mechanics of the robot and the environment. These are specifically

designed to be needing as little energy and active control as possible, while still being

able to move (for example walking down a slope). This is a perfect example of how the

environment and the mechanics of the body are incorporated into the design of a robot.

Biological systems are extremely well “designed” in terms of mechanics and control.

There is no need for high level control for dealing with many small disturbances while
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performing certain tasks involving movement. Muscle systems are perfectly capable to

deal with these perturbations by themselves and suddenly active, or conscious control

becomes much easier. The fact is that our natural environment puts any system operating

in it on a high demand of flexibility and robustness, and artificial systems need to be able

to handle small disturbances and uncertainty in general (Taga, Yamaguchi, & Shimizu,

1991; Buchli, Righetti, & Ijspeert, 2005; Buchli, Iida, & Ijspeert, 2006; Kimura & Fukuoka,

2004).

It should be clear that if we want the same abilities as natural systems for our arti-

ficial systems, they should be inspired on the same principles. Some of these principles

include modulation of generated motor signals depending on either intrinsic or extrin-

sic sensory information, the ability to control the dynamic range of intrinsic sensors (γ

motor neurons), reflexes, anticipatory muscle activation and the way sensory information

is integrated in all levels of motor control in both a feed forward and a feed backward

fashion (Riemann & Lephart, 2002b, 2002a; Thach, Goodkin, & Keating, 1992; J. Collins

& Luca, 1993; Mochizuki, Sibley, Esposito, Camilleri, & McIlroy, 2008).

1.1 Overview

One of the issues with current research on biped locomotion for humanoid robots is that

there exist no quantitative method for measuring and comparing the quality of a certain

system. It is therefore very hard to say whether a certain solution is performing better or

worse than existing other solutions. Results of existing research often states that a certain

solution works for a certain set of conditions or a certain task, but this a qualitative

measurement. Another issue is the lack of a general method for developing a controller

for biped locomotion. Such a method should be robot independent and therefore to some

extend automatic.

The purpose of this work is twofold. First, a general approach for designing controllers

for biped locomotion in a robot independent way is described. The following three distinct

stages in designing such a controller are identified and discussed in this order:

1. Designing the nominal gait

2. Finding a proper encoding of the nominal gait
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3. Augmenting the nominal gait to provide stabilization

Second, a general framework for evaluating biped locomotion in a quantitative and

robot, controller independent manner is developed. This allows for objective comparisons

between different solutions independent of the type of robot or controller.

1.2 Environment

All work described in this thesis is being done using the Webots (Michel, 2004) simulation

and a model of Fujitsu’s HOAP-2 robot. The HOAP-2 (see figure 1.1) is a 25 DOF,

rigid humanoid robot which was accurately modeled by Pascal Cominoli for the Webots

simulation environment. The choice for this particular environment and robot is based

on the experience and availability of real HOAP-2 robot and an accurate model of the

robot in simulation at BIRG.

Figure 1.1: Schematic view of the 25 DOF HOAP-2 humanoid robot
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Chapter 2

Evolving a Nominal Gait

There are several ways to design a stable nominal bipedal gait. Methods include solving

the equations of motion under certain constraints (Zero Moment Point, keeping the foot

parallel to the ground), inverse kinematics or manual design by trial and error. These

methods either require perfect knowledge and behavior of the model and environment or

can require much manual work. Apart from this, solutions are often very model specific

and not easily transfered to different robots.

This work takes a different approach than most conventional research in biped loco-

motion. Instead of designing a specific model of equations to fit the robot, a multi body,

professional simulation software is used in which any robot can be easily modeled. Fur-

thermore, an optimization algorithm is used to search for stable open-loop controllers.

Combined, this results in a very convenient, practical and easy to use (and extend)

framework for developing nominal gaits. The following sections will explain the used

optimization algorithm, design of the robot controller and resulting gait.

2.1 Particle Swarm Optimization

The optimization algorithm used to evolve and optimize the locomotion controller is PSO

(Particle Swarm Optimization) (Kennedy & Eberhart, 1995). Although the use of Genetic

Algorithms is more commonly used for these kind of optimization problems, the PSO

algorithm has a very simple and attractive design. It has very few parameters, performs a

more directed search than GA and has been shown to converge to (sub)optimal solutions

over a wide range of problems and parameter settings. It is also better suited to deal with
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continuous values than most conventional Genetic Algorithms.

The algorithm is based on the analogy of particles moving in a N-dimensional param-

eter space. The location of a particle is given as the parameter vector for that particle,

the same way as a gene represents the parameter values for an individual in Genetic

Algorithms. The difference is that in PSO, particles/individuals do not generate new

generations of particles, but each particle is evolved individually during the optimization

process. Apart from a position vector, each particle has a velocity vector whith which it

moves in the N-dimensional parameter space (it defines the search direction of the parti-

cle). At each “timestep” the particles’ position is updated using its current velocity. The

velocity, or search direction, of the particle is updated using the following equation:

vt+1 = ω · vt + c1 · r1 · (p1 − xt) + c2 · r2 · (p2 − xt) (2.1)

ẋt = vt

where xt is the position vector at time t, vt is the velocity vector at time t, ω is a

weight called inertia, c1 and c2 are two positive constants called the cognitive and social

factor respectively, r1 and r2 two random values in the range [0, 1] and p1, p2 are positions

of respectively the local best and global best solutions so far.

The inertia weight ω is used to implement a form of friction that can “slow down”

the particle and influence the exploration versus convergence properties of the process.

Although in its original form, the inertia weight is a constant, the inertia used here is a

function of time (ωt) to allow for larger exploration in the first stages of the optimization,

and better convergence properties in the later stages. The update rule for the velocity can

be described as searching towards the current best solution of the particle and the global

best solution of all the particles. The cognitive and social factors are used to weight the

importance of local and global solutions and control to some degree the diversity of the

group of particles.

As a consequence of the PSO algorithm, each particle will always keep its best solution

in memory and ensures to converge to at least this solution if it does not find any better

solution. This differs from Genetic Algorithms where a possible good solution can be lost

due to mutation and as such can take longer to converge to good solutions than PSO.
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2.2 Controller

Under normal circumstances, the joint angle patterns of a nominal human gait are shown

in figure 2.1.
M. P. MURRAY, A. B. DROUGHT, AND R. C. KORY
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Figure 2.1: Nominal gait patterns (Murray et al., 1964, 1984)

To simplify the problem of finding an optimal solution, the evolved controller uses a

single sine wave for each actuated joint to control the joint angle of that joint by position

control. Even though actual human joint angle patterns are more complex than a single
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sine, it has been shown in previous research that biped controllers can be successfully

designed using simple sines for similar robots (Morimoto et al., 2006). Another important

consideration that was taken into account in choosing the drive signal is the minimization

of search space. Since viable open-loop biped gaits are very likely to cover only a very

small part of the parameter space and the number of different solutions are likely to be

very small also, it is important to minimize the parameter space as much as possible.

Thus, for each actuated joint the following equation is used to drive the joint angle:

αi = Ai · sin (t · ω + φi) + ci (2.2)

where αi is the joint angle of the ith joint, Ai is the amplitude of the ith joint, ω is

the frequency of the oscillator, which is the same for all joints, φi is the phase of the sine

and ci is a constant offset.

The joints evolved in this experiments are the frontal and lateral hip joints, the knee

joint and the frontal and lateral ankle joints (for reference, see figure 1.1). The movement

of the lateral ankle joint is fixed to be the same as the contra-lateral hip joint (e.g. the left

lateral ankle joint has the same sine wave pattern as the right lateral hip joint) and the

legs are fixed in anti-phase. Also, the phase φi and offset ci of the lateral hip joints (and

consequently also for the lateral ankle joints) are fixed at respectively π
2

and 0. The fixed

phase ensures that the sequence starts with the load of the robot on one leg to create a

situation where the locomotion can be “safely” initiated. The fixed offset is set since the

gait should be laterally symmetric and it would not make sense to allow an offset other

than 0. The offset of the frontal hip joint is also fixed to 0 since at the start the robot is

in a standing position. For the other joints (knee and frontal ankle), all three parameters

are evolved.

A last parameter specifies a period of time at the beginning of the locomotion to

linearly scale all the joint positions to their respective start positions as given by evaluating

the associated sine at t = 0. This would allow the robot to have a somewhat smooth

transient between the starting upright position and the starting position of all the sine

waves. After this startup period, the sine controllers are turned on and periodic motion

begins. Lastly, to ensure forward motion the upper body joint is set at a fixed 20◦

angle shifting the center of mass of the robot a little forward. Table 2.1 summarizes the

parameter boundaries for each of the actuated joints. The experiment is run for four

different settings of the sine wave frequency (0.50, 0.75, 1.00 and 1.25 Hz). For each of
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these frequencies the startup period has an upper boundary set to the respective period

T = 1
f
.

Table 2.1: Parameter Boundaries

A φ c

Lateral Hip [0, 20] −π 0

Frontal Hip [0, 60] [−π
2
, π

2
] 0

Knee [0, 60] [−π, π] [ 0, 30 ]

Frontal Ankle [0, 30] [−π, π] [-30, 30 ]

Body 20

Frequency [0.50, 0.75, 1.00, 1.25] Hz

Startup [0, T ]

2.3 Experiment

The experimental environment used is the Webots simulator with the HOAP-2 model

robot. The initial position of the robot is an upright position at the origin of the webots

world. The world consists of the robot and an infinite, flat ground surface. The fitness

function used for the PSO algorithm is the euclidean distance from the origin of the world

to the position of the robot. The fitness function is very simple and naive, but nevertheless

rewards important properties of the gait such as walking straight rather than in a curve

and walking speed.

All the experiments are run with 100 particles and 400 iterations. The inertia ωt of the

PSO is set to 1.2·0.998t which results in the behavior of the inertia as a function of time as

displayed in figure 2.2. This function for the inertia was determined experimentally and

ensures strong exploration in the early stages and better convergence in the later stages.

It should be noted that for approximately the first 100 iterations, the inertia value is

larger than one. This essentially means particles will “overshoot” and this is deliberately

chosen as to increase the coverage of the search space. For the behavior at the boundary

of the PSO (when particles hit the parameter boundaries) a damped reflective wall is

used: vt+1 = −0.6 · vt. The cognitive and social factors of the PSO are both set to the
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commonly used value of 2.0. The robot is allowed to walk for a maximum of 60 seconds,

and the run is preliminary terminated if the robot falls over (marking the distance up

until that point as the fitness of the run).

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

t

w

1.2 · 0.998t

Figure 2.2: The inertia value w as a function of the iteration t

For each of the frequencies, the experiment was repeated 10 times, which results in a

total of 40 runs.

2.4 Results

A typical progress of the optimization process can be seen in figure 2.3. It takes a long

time before any solution is found that can walk any distance. Furthermore, from the 10

performed runs for each frequency, on average only 2 runs result in a usable gait. As can

be seen in figure 2.3, once a particle finds a solution in the right direction, the process is

able to converge to a (sub)optimal solution.

2.4.1 Obtained gaits

For each of the four frequencies a comparable gait is found. The fitness value of the

best solutions are displayed in table 2.2. A video of the obtained gaits can be found at

http://birg2.epfl.ch/~jvanden/videos/thesis/optimized_gaits.avi.

The obtained joint angle patterns are shown in figures 2.4 to 2.7. In these figures

the solid line indicates the control pattern while the dashed pattern is the actual servo

position.
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Figure 2.3: Example of optimization process for f = 0.75 Hz

Table 2.2: Best solutions

Frequency Fitness Speed

0.50 14.36 m 0.24 m/s

0.75 21.06 m 0.35 m/s

1.00 27.49 m 0.46 m/s

1.25 30.56 m 0.51 m/s
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0.50 Hz 0.75 Hz
1.00 Hz 1.25 Hz

Figure 2.4: Lateral hip trajectories
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Figure 2.5: Frontal hip trajectories
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Figure 2.6: Knee trajectories
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Figure 2.7: Frontal ankle trajectories

2.5 Discussion

The evolved patterns are similar between the different frequencies with the exception of

the 1.25 Hz gait which has a very large ankle amplitude with respect to the other gaits.

Furthermore, the lateral amplitude of the hip and consequently the ankle joint increases

with lower frequencies. This can be explained by the fact that the lower the frequency,

the larger the step size and the more lateral compensation is needed to stabilize the gait.

It can also be seen that the actual servo position follows the controller pattern closely in

general. The exception is the knee joint which cannot be negatively bent, thus resulting

in actual servo position differing from the controller pattern. Since the gaits are optimized

for distance, they are quite fast, and consequently, higher frequency gaits are faster than

the lower frequency gaits.

Due to the fitness function, the obtained gaits are very explosive and very much tuned

to the simulation environment. This caused the transfer to a real HOAP-2 robot to be

impossible in a straight-forward way.

Even though the solution space for open-loop biped locomotion with simple sine con-

trollers is very small, the PSO algorithm is able to find open-loop stable gaits for each

of the frequencies. This can be attributed to the use of top-down knowledge to provide

appropriate parameter boundaries to decrease the search space.
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Chapter 3

Central Pattern Generators

Several different research groups have taken the Central Pattern Generator approach to

implement controllers for biped locomotion especially with regard to stabilization. It has

been shown that humans have structures in the spinal cord that enable the generation

of rhythmic motor patterns without the need for any rhythmic input. The concept of a

artificial Central Pattern Generator is a simplification of such a structure while retaining

similar properties and generating rhythmic patterns. The concept of a CPG as a generator

of motion patterns is very general and the concept alone does not provide a straightforward

method of designing a CPG. Considerations such as the type of oscillator, implementing

a nominal locomotion trajectory, incorporating feedback and the structure of the CPG

network are all important design decisions. Here a number of different approaches taken

by research groups in the field of biped locomotion are reviewed.

3.1 Oscillator Type

The type of oscillator is one of the most important design choices to be made. Probably

the most basic and most well defined oscillator is the Hopf oscillator. It is defined as a

dynamical system (a system of differential equations) of a perfect sine (when on the limit

cycle) in Cartesian space:

ẋ = γ(µ2 − r2)x− ωy (3.1)

ẏ = γ(µ2 − r2)y + ωx
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With r =
√
x2 + y2, µ the amplitude of the oscillator, γ a parameter which deter-

mines the speed of convergence to the amplitude and ω the frequency of oscillation. This

oscillator has several advantages. It is well defined in terms of amplitude and frequency

which makes it easy to control and it has strong stable limit cycle properties. If therefore

additional components like feedback information are introduced in the equations, the os-

cillator will smoothly incorporate this “perturbation” and once it is gone, converge back

to its original configuration. Due to its simplicity, it is also easy to extend to more com-

plex oscillators which can adapt intrinsic frequencies, have different speeds of convergence

for both state variables and because they can represent perfect sinusoidal functions, can

be coupled to output any periodic function (Righetti & Ijspeert, 2006, 2008).

A disadvantage of this oscillator is that it is not straightforward to design phase

coupling of two oscillators without disturbing the amplitude of the oscillator (why this

is will be explained in the next chapter). To avoid this problem the oscillator can be

expressed in phase space, rather than in Cartesian space. A simple derivation will show

that the same oscillator can be defined in phase space as:

ṙ = γr(µ
2 − r2)r (3.2)

φ̇ = ω

Since phase φ and amplitude r are now fully decoupled, phase coupling of two oscilla-

tors can now be easily implemented without affecting the oscillator amplitude. However,

the disadvantage of this respresentation is that is not straightforward how to integrate

feedback (whereas in Cartesian space it is easy to add terms to x or y).

Two other approaches take inspiration from artificial neural networks to built oscilla-

tors to generate walking patterns. The first is the well known Matsuoka oscillator which

is defined as (Matsuoka, 1985, 1987):

τ u̇1 = −u1 − wy2 − βv1 + u0 (3.3)

τ u̇2 = −u2 − wy1 − βv2 + u0

τ ′v̇1 = −v1 + y1

τ ′v̇2 = −v2 + y2

yi = f(ui) = max(0, ui), (i = 1, 2) (3.4)

where ui is the inner state (representing the membrane potential) of the ith neuron,

yi is the output of the ith neuron, vi represents the self-inhibition effect of the ith neuron,
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u0 is an external input, w is a connecting weight and τ , τ ′ are time constants of inner

state and adaptivity respectively (τ specifies the rise time when given the step input and

τ ′ the time-lag of the adaptation effect).

One oscillator is defined by two neurons which through their inhibitory connections

alternate in their output (y1 and y2) and model flexor and extensor forces. By using

y = y2 − y1, a periodic signal can be produced for which the frequency depends on τ and

τ ′ (proportional to 1/τ) and the amplitude depends on u0.

The model is interesting due to its biological inspiration by using a neuronal model

to implement the oscillator. The complexity of the model does however make it difficult

to design arbitrary patterns. The shape and stability of the pattern depends heavily on

the choice of the open parameters and in extension also makes the coupling of multiple

oscillators a non trivial process. Nevertheless, it has been shown (Taga et al., 1991) that

it can be applied successfully to biped locomotion where the oscillator is entrained with

the mechanics of the biped in an automatic sense. It should be noted that here the

biped model was simplified since it could move in the sagittal plane only, was accurately

parametrized and used only in numerical simulations.

A comparable, but different neuronal approach is taken recently by (Zaier & Na-

gashima, 2006; Zaier & Kanda, 2007). In this work a Recurrent Neural Network is used

to generate piecewise-linear patterns for locomotion. Here a single neuron i is modeled

as:

εi
dyi
dt

+ yi =
∑
j

cijyj (3.5)

where yi is the output of neuron i which gets inputs from other neuron’s outputs yj

through connections with weights cij. εi is a timing constant of neuron i. This provides

an interesting approach to pattern generators as piecewise-linear functions are simple to

define and the neuronal model ensures smooth output of the linear functions. Initial

parameter settings for εi have to be made appropriately for the model to function at all,

and have to be tuned by hand. It is unclear what the exact convergence properties of the

system are and how feedback can be integrated.

Considering the short review of used oscillators, the Hopf oscillator seems to be the

most attractive. Its simplicity and mathematically derived definition makes it easy to

understand and analyze. It can be easily controlled through well defined parameters such
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as amplitude, frequency and phase, and has a stable, harmonic limit cycle. Therefore,

feedback can be incorporated without loss of the intrinsic pattern. Moreover, it has been

successfully used to entrain and learn arbitrary rhythmic signals and phase couplings

(Righetti & Ijspeert, 2006, 2008; Righetti, Buchli, & Ijspeert, 2006; Buchli, Righetti, &

Ijspeert, 2006).

3.2 Oscillator Output

Once an appropriate oscillator is chosen, it has to be defined how the oscillator will drive

the robot. Most approaches use either force/torque or position control. A decision has also

to be made on how many oscillators drive how many joints. Depending on the complexity

of the generated pattern, it might be needed to have multiple oscillators drive a single

joint. On the other hand, a single oscillator might also be able to drive multiple joints

simultaneously, or a single oscillator might drive the robot by driving a single joint and

drive all the other joints using inverse kinematics.

Torque control is often used in numerical simulations where the model and the envi-

ronment are well defined and constraints for locomotion are given by equations of motion

(Taga et al., 1991; Aoi & Tsuchiya, 2005). Although it might be easier or better to

implement more compliant systems with torque control, the reality is often that robots

are designed with high gear ratio servos and are therefore rigidly controlled by position

control instead of providing certain force moments to each of the joints.

3.3 Oscillator Coupling

When considering the symmetry and periodicity of a human gait, the joint angle position

patterns, of the joints that are active during locomotion, are strongly phase-coupled. The

hip joints that move the leg in the sagittal plane for instance, are moving in anti-phase

to provide swing and stance phases alternatively. Similarly, the lateral hip and ankle

joints have the exact same phase to keep the body in an upright position. Such phase

couplings can be implemented by linking oscillators together. A simple phase locking
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coupling scheme for the Phase Oscillator is the following (Morimoto et al., 2006):

φ̇i = ωi +Ki sin (φj − φi) (3.6)

φ̇j = ω2 +Kj sin (φi − φj)

where ω1 and ω2 are the frequencies of the oscillators, and the phase difference obtained

through the coupling is given by φj − φi =
ωj−ω1

Ki+Kj
.

The same method can be used for the Hopf oscillator defined in phase space. When

defined in Cartesian space, phase coupling behavior for fixed phase relations can be im-

plemented by taking inspiration from the theory of symmetric coupled cells (Righetti &

Ijspeert, 2008):

ẋi = γ(µ− r2
i )xi − ωiyi (3.7)

ẏi = γ(µ− r2
i )yi + ωixi +

∑
kijyj

where kij is a coupling constant for coupling of oscillator i with oscillator j. It is shown

that given different coupling matrices, the same network of oscillators can provide the four

basic walking patterns of a quadruped gait. The same methodology can be applied to

biped locomotion. Since this approach can only generate very specific phase couplings

(such as π or 0.5π), a more generic coupling scheme, using a 2D rotation matrix, can be

used to implement any arbitrary phase coupling (see also section 4.2).

The described coupling schemes provide automatic phase coupling between oscillators

such that when perturbed they will converge back to the specified phase relation. This is

of course a very welcome property because it is ensured that the couplings are well encoded

into the network. For the Matsuoka oscillator similar couplings between oscillators can

be defined as is shown in (Taga et al., 1991), although it is not explicitly stated how the

exact phase relations are obtained. (Aoi & Tsuchiya, 2005) uses a similar approach, but

here specific inter oscillators are defined which provide the phase coupling of the different

joints.

It is of course also possible to explicitly define oscillator phase differences without

coupling the oscillators together (Zaier & Kanda, 2007), but without coupling, additional

control structures have to be defined to ensure correct phase differences when dealing with

stabilization of the gait.
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3.4 Nominal Trajectory

The definition of the nominal trajectory is also very important when designing CPG based

locomotion. The nominal trajectory defines for each joint its periodic pattern which pro-

vides an approximate stable gait under ideal circumstances. Here inverse kinematics is a

commonly used method to derive the nominal trajectory from a certain set of constraints

(for example the trajectory of the foot) (Aoi & Tsuchiya, 2005; Taga et al., 1991). This

does however require an accurate model of the robot. Other approaches often simply

analyze the trajectories for human locomotion and manually tune the nominal trajectory

to be approximately correct. Although this method does not provide strong stability

properties, the use of feedback control for stabilization and the ability to adapt the loco-

motion patterns using this feedback, provides the possibility to entrain a stable walking

gait. Even if the exact model is given and a derived nominal gait is stable in numerical

simulations, in real world environments these gaits also need stabilization control due to

imperfections in the robot and perturbations from the environment. It is thus essential

to be able to stabilize the nominal trajectories using feedback.

3.5 Feedback

It is well known that stable locomotion is almost impossible with an open-loop controller.

It has been shown that when passive dynamic elements are incorporated in the design

of the robot and extensive optimization functions are used, open-loop controllers can be

designed which provide self stabilizing properties (Mombaur, Bock, & Longman, 2000;

Mombaur, Longman, Bock, & Schlöder, 2005). It is however essential that the model is

accurate and well known. Furthermore, it is only stable for small perturbations and in real

world situations there is often the need for active stabilization strategies. CPGs provide

for excellent integration of feedback because they can be easily modulated through their

phase, frequency and amplitude parameters. For oscillators which have stable limit cycle

properties this is even more so the case, because these oscillators are able to converge

back to their original trajectory after perturbation.

One of the most extensively used methods for stabilization is based on the ZMP (zero

moment point) (Sugihara, Nakamura, & Inoue, 2002). The ZMP is a point on the ground

where the resultant of the ground reaction force acts. As such, stable locomotion can
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be achieved when the ZMP stays with in the foot support area of the robot. Although

the ZMP criterion is often used in path planning to generate motion trajectories that

are stable, the ZMP can also be used in direct feedback control. Deviations of the ZMP

towards the edges of the foot support area can be fed back into the CPG.

One important method of stabilization which is easily applied to CPGs is “Phase

Resetting”. With phase resetting, the interaction between the robot and the environment

is entrained in the CPG. The idea here is that one step in a bipedal gait consists of

two phases, the stance phase and the swing phase. In order to provide a more stable

locomotion, the switch from swing to stance and stance to swing phase is initiated by

feedback from sensors in the foot. This way when a leg is in swing phase and load on

the sole of the foot is detected, a phase reset ensures that the leg will quickly go to

the stance phase to be able to support the load of the body. Phase resetting can be

achieved simply by resetting the phases of the oscillators externally using feedback. An

interesting alternative is to incorporate the ability to switch between phases into the

oscillator themselves as is shown in (Righetti & Ijspeert, 2008).

Other additional methods for stabilization include adjusting to body roll and pitch

information (Righetti & Ijspeert, 2006; Zaier & Nagashima, 2006; Aoi & Tsuchiya, 2005)

and reflexes such as the stretch reflex (based on reflexes found in vertebrates) (Taga et al.,

1991). Although extensive research exists on the role of muscle reflexes in stabilization

of human walking (Duysens, Trippel, Horstmann, & Dietz, 1990; Yang & Stein, 1990;

Bastiaanse, Duysens, & Dietz, 2000; Zehr & Stein, 1999; Pearson, 1993; Schillings, Wezel,

Mulder, & Duysens, 2000) in response to cutaneous and load sensory feedback, these

findings, though they serve as a great starting point, are not applied as much to robot

bipedal locomotion.

A last interesting approach to stability is the concept of entrainment of the mechanics

of the robot and the environment. Through the use of feedback and adjustment of the

CPG controller, natural frequencies of the mechanics of the robot can be found and

entrained to provide stability (Morimoto et al., 2006; Taga et al., 1991).

The combination of adaptable CPG frameworks and methods to entrain frequencies

and phases which are automatically derived from the gait dynamics of the robot shows to

be a very promising approach to stabilization of locomotion, especially when designing a

generic control framework capable of dealing with different robot morphologies.
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In summary, the most common types of feedback are body posture, body acceleration

and load measurements on the feet. Body posture information is used to provide stability

of body roll and pitch, and forces detected at the feet are used to measure load distribution

and phase transitions.

3.6 Discussion

It has been discussed that pattern generators exist in vertebrates and that the motor pat-

terns are modulated by sensory feedback. Using CPGs for a biped locomotion controller

provides many interesting and useful properties to encode motor patterns and integrate

feedback. The types of feedback used in most of todays solutions for gait stabilization

are simple, and although they do provide for a more stable gait, there is much room

for improvement. For a generic framework, strict assumptions on the morphology of the

robot cannot be essential for stabilization. An autonomous stable locomotion controller

should be able to deal with uneven terrain (such as small objects, slopes) and perturbing

forces such as wind, or pushes, without the need for higher control strategies. Once such a

system exists, higher level strategies could be implement to adjust for larger perturbations

or path planning. Inspiration can be taken from the extensive research on reflex systems

in biological systems such as humans, which are designed to deal with uncertainties in

the environment.
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Chapter 4

CPG for Biped Locomotion

The sine controller has shown to be capable of generating joint angle patterns that provide

a stable solution to biped locomotion for the HOAP-2 in open-loop. A problem with

this controller is that it is very rigid, in the sense that the output driving each of the

joints is a direct function of time. Any behavior other than this direct output signal has

to be designed, for instance by appropriately warping time, amplitude modulation and

frequency modulation. To move away from the direct relation to time, the system can

be modeled as a set of differential equations (a dynamical system) and as such is able to

provide intrinsic properties such as smooth transitions and easier integration of feedback.

By moving from the sine controller to a CPG based controller, decisions have to be

made on the type of oscillator and the structure of the oscillator network. To benefit from

the evolved sine controller, there should exist an exact representation of the sine wave

patterns in the CPG network so that the same pattern as was evolved before can be used.

4.1 Base Oscillator

The base oscillator should be able to generate a sine wave given a well defined parameter-

ization in terms of amplitude and frequency. It should also allow for any arbitrary phase

difference between two or more oscillators (to ensure the correct phase relationships). The

Hopf oscillator satisfies the above properties and is used as a basis.

The oscillator can be either represented in Cartesian space, or in phase space. In

24



Cartesian space, its general form is defined as:

ẋ = γx(µ
2 − r2)x− ωy (4.1)

ẏ = γy(µ
2 − r2)y + ωx

r =
√
x2 + y2

With γx, γy constants which determine speed of convergence to the limit cycle of the

oscillator, amplitude µ and frequency ω. Here y (or x by shifting the sine oscillator phase

with 1
2
π) can be used to drive the joint.

In phase space, the oscillator is defined as:

ṙ = γr(µ
2 − r2)r (4.2)

φ̇ = ω

(4.3)

Here the constant γr determines the speed of convergence to the desired amplitude µ

and the frequency is defined as ω. To match the sine controller, the driving signal can be

defined as r · sin (φ).

To include the desired sine wave offset C in the oscillator, an additional state variable

is introduced to the dynamical system:

ċ = γc(C − c) (4.4)

In Cartesian space, the oscillator needs to be modified by substituting x by x − c.

For the oscillator in phase space, c can simply be added to the drive signal resulting

in: r sin (ω) + c. Implementing the offset as a part of the dynamical system has the

advantage that it has converges back to the original offset when perturbed and provides

smooth transitions if the desired offset is changed.

4.2 CPG Network

Each joint of the robot is driven by an individual Hopf oscillator. These oscillators need to

be coupled together to be able to define the correct phase differences needed to generate

the correct drive for each of the joints.
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4.2.1 Phase Coupling

An arbitrary phase coupling between oscillators (i and j) in Cartesian space can be defined

as a rotation matrix on x and y:

ẋi
′ = ẋi +

∑
j

Rxij
(4.5)

ẏi
′ = ẏi +

∑
j

Ryij

Rxij
= xj cos (ψij) + yj sin (ψij)

Ryij
= −xj sin (ψij) + yj cos (ψij)

This provides an arbitrary phase coupling with a relative desired phase difference

between oscillators i, j of ψij.

For the phase space representation of the oscillator, the phase coupling is much simpler

and more elegant. Since in phase space the amplitude and phase are cleanly separated,

the coupling can be defined as:

φ̇i = ωi +
∑
j

Rij (4.6)

Rij = βij sin (φj − φi − ψij)

With coupling strength βij, phases φi, φj and desired relative phase difference ψij.

4.2.2 Improved Phase Coupling in Cartesian Space

Since phase coupling in Cartesian space with a rotation matrix, as defined in equation

4.5, changes the effective amplitude of the oscillator, it is harder to design such oscillators

to output a certain amplitude, as well as it makes it hard to translate the sine controller

to this type of oscillator. In order to have phase coupling in Cartesian space without

influencing the amplitude of the oscillation, a new oscillator is designed starting from the

coupled phase space oscillator as defined in equation 4.6.
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We start from the definition of the oscillator and its phase coupling in phase space:

ṙi = γri(µ
2
i − r2

i )ri (4.7)

φ̇i = ωi +
∑
j

βijRij

Rij = sin (φj − φi − ψij)

ċi = γci(C − c)

To rewrite the phase space equations to Cartesian space we use:

x = r cosφ+ c (4.8)

y = r sinφ

ẋ = ṙ cosφ+ r cos′ φ+ ċ (4.9)

ẏ = ṙ sinφ+ r sin′ φ

Substituting ṙ and ċ we get:

ẋ = γr(µ
2 − r2)r cosφ− r sinφ · φ̇+ ċ (4.10)

ẏ = γr(µ
2 − r2)r sinφ+ r cosφ · φ̇

ẋ = γr(µ
2 − r2)(x− c)− yφ̇+ γc(C − c)

ẏ = γr(µ
2 − r2)y + (x− c)φ̇

Now we rewrite the coupling part Rij of φ̇i as defined in equation 4.7 to Cartesian

space. Here x′ = x− c is used for better readability.

Rij = sin (φj − φi − ψij) (4.11)

= [sin (φj) cos (φi)− cos (φj) sin (φi)] · cos (ψij) −
[cos (φj) cos (φi) + sin (φj) sin (φi)] · sin (ψij)

=

(
yj
rj

x′i
ri
− x′j
rj

yi
ri

)
· cos (ψij)−

(
x′j
rj

x′i
ri

+
yj
rj

yi
ri

)
· sin (ψij)

=
1

rjri
· [(yjx′i − x′jyi

) · cosψij −
(
x′jx

′
i + yjyi

) · sinψij]
This results in the an arbitrary phase coupled oscillator in Cartesian space which only

influences the phase of the oscillator and not the amplitude. This allows to have both easy
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phase coupling (as with the oscillator in phase space), and the advantage of integrating

feedback directly on x and/or y.

4.2.3 Network Structure

The network can now be constructed using the oscillators and coupling terms as described

before. It is common practice to structure the network to match the physical structure

of the robot. Figure 4.1 shows a schematic of the structure of the CPG network used

for the HOAP-2. The two legs are coupled at the frontal hip oscillators. Furthermore,

there is a direct coupling between the lateral hip and ankle oscillators since they should

be strongly coupled to keep the body in an upright posture when one of the oscillators

would be perturbed (the other would quickly synchronize).

Knee

Ankle

Hip

Lateral LateralFrontal Frontal

Left Right

Figure 4.1: CPG network structure

The coupling of the oscillators is arbitrary in the case where a perfect sine is encoded in

the system and all oscillators are on the limit cycle (e.g. all oscillators are already phase-

locked). However, when feedback is introduced into the network, the phase couplings and

their coupling strengths determine how quickly oscillators phase-lock. To illustrate this,

the two lateral ankle oscillators are coupled through 4 other oscillators, and a shift in

phase in the left lateral ankle oscillator will take some time to synchronize to the right

lateral ankle oscillator.
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4.3 Driving the Robot

The parameters µi, ωi and phase difference ψij can be directly taken from the evolved

sine controller parameterization. To get the exact same behavior as the sine controller,

the initial values of the state variables of the oscillator should be set so that the oscillator

is exactly on the limit cycle. In the phase space representation, the initial values of ri and

φi are simply set to µi and ψij. In Cartesian space, the following initial values for xi and

yi put the oscillator on the limit cycle:

xi = µi sin (φi) + Ci (4.12)

yi = µi sin (φi +
π

2
)

Because each oscillator is already on the limit cycle, the coupling between the oscilla-

tors is effectively of no influence. Therefore, in this case, the coupling weight βij can be set

to any arbitrary value when trying to get the exact same behavior as the sine controller.

In this case it is set to 1. The parameters that determine the speed of convergence (γx,

γy or γr) are set to 15. This value was experimentally determined to have the oscillators

match the sine controller well with an integration step of the dynamical system of 1ms.

All oscillators are integrated using Euler integration.

4.4 Using the CPG’s Intrinsic Properties

The start of the walk sequence, in open-loop, is very influential for a certain gait to be

stable. Although a gait might be stable in open-loop in itself, given a specific set of initial

conditions the robot might never reach the stable region of locomotion if the oscillators

are simply turned on as with the sine controller. The robot is likely to not be able to walk

at all under different starting conditions, even more so since the initial upright starting

posture is not actually part of the normal gait cycle. This means that when you would

initialize the oscillators on the initial robot joint positions, they would not be on the limit

cycle.

To illustrate the advantages of the CPG as a controller methodology, an experiment is

deviced that uses the intrinsic properties of the oscillator network to provide the necessary

smooth transition from the initial posture of the robot to the stable gait. Given that it is

not clear how parameters should be chosen to acquire the correct behavior, an evolutionary
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algorithm is used to search for solutions in the parameter space of the CPG.

4.4.1 Optimizing Start of Locomotion

Due to its simple definition, and since there is no need for feedback integration for this

experiment, the oscillator definition in phase space is used. The first issue is how to put

the current state of the oscillator for each joint at the initial posture, such that x = x0.

An intuitive way to solve this issue is to set r = 0, and use c = x0. This means that the

initial amplitude of each oscillator is set to 0 and is then scaled up (with a rate related

to γr) to the final amplitude. Similarly, the offset of each oscillator will converge towards

the encoded offset of the gait with a rate related to γc. The two gain parameters γr and

γc are open and subject to the optimization process. Since the gait is symmetric, it is

sensible to limit the search area to evolve the γr and γc gains for the following groups of

joints (resulting in a total of 8 parameters):

• Lateral hip and ankle joints

• Frontal hip joints

• Frontal ankle joints

• Knee joints

The initial values of the oscillator phases are set so that the oscillators within each of

the legs are initially phase-locked with respect to the phase of the leg (as defined by the

front hip oscillator of each leg). The phase difference of the left and right leg is considered

an open parameter with the constraint that the phase is set such that the robot will

always start with the left leg being the first leg in stance phase. This means that the left

leg always starts in a backward motion (φ = [−π
2
, π

2
]).

The coupling weight of the coupling between the legs is also considered an open pa-

rameter to be optimized (to allow for different speeds of convergence to phase-lock the

legs). The coupling between the oscillators within each leg (βinter) is set fixed to 50 to

ensure fast convergence to any change in phase caused by the synchronization of the two

legs.

A summary of the open parameters can be found in table 4.1, with βinter the coupling

weight of all oscillator connections except for the connections between the left and right
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frontal hip joints. The total number of open parameters is 10.

Table 4.1: Phase Space Optimization Parameters

Par. Boundaries

ψlr = −ψrl [0, π]

βlr = βrl [0, 50]

γr [0, 50]

γc [0, 50]

For this experiment a set of six initial postures are chosen such that the postures

vary significantly in terms of the position of the center of mass of the robot and initial

joint angles. The postures were determined experimentally. The initial upright posture is

included in the six postures. The experiment was run with the optimized sine controllers,

translated to the CPG network, for all four frequency gaits. The robot was brought to

its initial position in the first 2 seconds of the experiment, whereafter the CPG network

was activated. The same PSO algorithm with the same settings as was used for the

optimization of the nominal gait is used. Each run lasted 30 seconds and the fitness

function is the mean walked distance over the six runs.

Results

The progress of the PSO algorithm is similar to that of the nominal gait optimization

as can be seen in figure 4.2. The process shows good convergence to the (sub)optimal

solution.

The optimized values for the open parameters are displayed in table 4.2. The resulting

wave patterns for the 0.75 Hz gait are shown in figures 4.3 to 4.6 (here the lateral ankle

patterns are omitted since they are in exact anti-phase of the lateral hip joints). The

wave patterns for the other frequencies can be found in the appendix (figures A-1 to A-8)

for reference. Videos showing the optimized behaviors can be found at:

http://birg2.epfl.ch/~jvanden/videos/thesis/start_walk/.
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Figure 4.2: Progress of optimization process

Table 4.2: Evolved parameter values for startup experiment

Lat. Hip Front Hip Knee Front Ankle

Freq. ψlr βlr γr γc γr γc γr γc γr γc

0.50 Hz 3.16 41.03 49.96 24.89 10.24 47.71 15.11 48.20 0.00 45.02

0.75 Hz 3.14 0.31 49.97 34.46 14.41 35.11 45.23 28.56 45.97 47.25

1.00 Hz 3.09 16.96 50.00 50.00 3.71 34.62 4.66 29.32 8.12 37.77

1.25 Hz 3.14 34.48 41.19 34.82 17.24 45.42 25.46 50.00 36.45 50.00
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Figure 4.3: Lateral Hip

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

t

x

Figure 4.4: Frontal Hip

Discussion

The resulting wave patterns for the four different frequency gaits show similar charac-

teristics. The knee and the front ankle joints show fast convergence in the offset. This
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Figure 4.5: Knee
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Figure 4.6: Frontal Ankle

means that the robot will first move towards a more crouched, stable position. Hereafter,

the lateral joints will start to move towards one side to shift the load of the body to one

leg. Finally, when there is enough load on one leg, the other oscillators will start (with

increasing amplitude). The 1.00 Hz gait shows a longer period to start the oscillation due

to a small gain of the amplitude. This results in a more gentle start of the gait than the

other frequencies.

These findings are reflected in the optimized values directly. It can be seen that indeed,

the gains for convergence to the desired amplitude is fairly small for the frontal hip joints,

causing the robot to “wait” before actual forward motion is started. It can also be seen

that it is favoured for both legs to be phase-locked (difference of π) from the beginning.

The resulting network is able to go towards a stable gait for the six different initial

conditions, as well as generalize beyond these conditions. It should be noted that the

best solutions can show small unstable situations in start of the walk while less optimized

solutions might show a more stable start, but are not able to generalize as well. These

issues can be solved with the use of sensor information to provide better balance of the

robot during this task.

The results as outlined show that even in open-loop the intrinsic properties of the

CPG can provide very useful characteristics. Here it is shown that without feedback and

with proper settings of the CPG parameters, a smooth start of the locomotion can be

achieved. The result of the optimization process matches very well the most important

requirement of starting to walk, namely shifting the weight of the body to one leg to safely

start the swing phase with the other leg.
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Chapter 5

Stability

In the previous chapters a general method for designing a nominal gait for a humanoid

robot was described. Furthermore, it was shown that CPGs provide a very interesting,

flexible and dynamic model for designing a controller for which intrinsic properties can

be used to provide stabilizing properties to the gait without feedback. This last chapter

will discuss the types of sensor information used by humans and current biped robots.

After this brief discussion, a framework will be defined and validated to measure stability

or instability in a quantative way.

5.1 Stability

Since the physical structure of the robot is modeled after the human body, a good starting

point for analyzing how information from sensors is used, combined and integrated, is to

look at the biological mechanisms in humans that accomplish this. Although on a low

level, the physical properties of the human body are very different from the properties of

the robot, some mechanisms could still apply to both.

One interesting mechanism is that of the alpha/gamma motor system. Here infor-

mation on muscle stretch/length originating from muscle spindles is influenced by the

activity of gamma motor neurons. This activity includes information from cutaneous,

muscle and articular tissues. This shows that the information resulting from the muscle

spindles is not only dependent on the actual muscle length, but also actively modulated

(Riemann & Lephart, 2002b, 2002a).

One of the extensively researched mechanisms for stabilization are reflexes (Duysens
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et al., 1990; Yang & Stein, 1990; Zehr & Stein, 1999). In short, reflexes can be grossly

divided into cutaneous and muscle (stretch and load) reflexes based on their function for

stabilization during locomotion. Furthermore, different reflexes are found to be active

during different parts of the gait cycle. Four different conditions can be defined:

1. Swing phase

In the swing phase, the contact of the foot with an object produces a stumble

correction by facilitating complex reflexes in both the stance and swing leg. The

reaction decreases the stiffness of the swing leg so that the swing leg can continue its

normal trajectory to foot contact. For non cutaneous perturbations, muscle stretch

reflexes acting on the knee are produced to maintain the swing motion.

2. Swing to stance phase

Both cutaneous and muscle reflexes are important in placing reactions to ready the

stance limb for weight support during the transition. Sensation of the ground plays

an important role in placing the foot.

3. Stance phase

Load receptor reflexes act to control the step cycle timing and contribute to force

production needed for forward propulsion during the stance phase. Cutaneous re-

flexes help to stabilize the stance phase on an uneven surface by altering the ankle

trajectories. Muscle reflexes act in weight support and stabilization and load recep-

tor reflexes affect cycle timing and support.

4. Stance to swing phase

Muscle and load receptor reflexes sense unloading of the leg and affect cycle timing.

If there is a slip, stance leg ankle muscles are stretched and ground contact will

be prolonged. Stance termination is signaled by muscle and load receptor reflexes.

Cutaneous reflexes will act to withdraw the leg from the ground.

5.1.1 Bipedal Robots

In robotics there are a few mechanisms that are very widely used in stabilizing biped

locomotion. The first and probably most well known method is manipulation of the ZMP
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(Zero Moment Point) (Vukobratovic & Juricic, 1969). The ZMP is a point on the ground

where the resultant of the ground reaction force acts. Stable locomotion can be achieved

when the ZMP is within the convex hull of the support base of the robot. The ZMP criteria

is often used in path planning to ensure a certain motor pattern is ensured to result in a

stable gait. This method requires the full model of the robot and the environment to be

known.

The concept of the ZMP can also be used without having explicit knowledge of the

model. By simply using load sensors at the sole of the foot, instability criteria can be

produced, similar to the ZMP criteria. Although one of the major problems with the ZMP

is that it does not work on surfaces that are not flat, work has been done to overcome this

problem by introducing virtual surfaces (Sugihara et al., 2002). For a humanoid robot,

direct manipulation of the ZMP point is not possible. Therefore, control laws have to be

found which indirectly influence the ZMP so that it stays within the stable region. Both

the upper body as well as the hip and ankle joints can be used to accomplish this.

A different kind of criterion for instability was introduced in (Goswami, 1999). Here

a different point, called the Foot Rotation Point (FRI), is used from which the rotational

force on the foot can be determined. Consequentially, appropriate action can be taken

when rotation of the foot is detected. The advantage of this approach is that unlike the

ZMP, the FRI can be outside the foot support area and when it does so, the distance to

the support area indicates the severity of instability.

CPG based approaches often also adopt a strategy which is inspired on reflexes found

in the human locomotion system (as described earlier) to stabilize the gait using the

phase of the gait (Kun & Miller III, 1999; Aoi & Tsuchiya, 2005; Righetti & Ijspeert,

2006; Nakanishi et al., 2004). Here both cutaneous and load sensors can be used to detect

whether a phase transition should occur and modulate the oscillator appropriately. For

instance, when there is still load on the stance leg, it should not go into swing phase.

Similarly, when ground contact is detected on the leg which is in swing phase, a fast

transition to stance phase should occur.

In force/torque controlled robot systems, it has been shown that a model of the stretch

reflex can be used to entrain locomotion to the mechanical properties of the robot (Taga,

1998; Taga et al., 1991). Also, simple feedback mechanisms using load sensors on the sole

of the foot can be used to entrain natural locomotion frequency resulting from the robot
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mechanics (Morimoto et al., 2006; Nakanishi et al., 2004).

In (Park & Kwon, 2001), reflex like mechanisms are used to stabilize a robot when it

encounters a slippery surface by ad-hoc strategies including lifting of the hip to increase

the force of the robot acting on the ground (effectively increasing the friction of the foot

with the ground) and moving the foot of the swing leg towards the stance leg to prepare

for taking over the load of the body.

5.1.2 Summary

A stable solution for biped locomotion should be able to walk in an unpredictable environ-

ment including slopes, small objects, surfaces with varying friction properties, unstable

starting conditions and perturbations by external forces such as wind or somebody push-

ing the robot. To accomplish this for a rigid robot with no compliant elements, using a

CPG based controller, inspiration should be taken from biological systems where possi-

ble. Reflexes play an important role in providing mechanisms for stabilization resulting

in phase correction, ZMP manipulation, recovering from hitting small obstacles, etc. En-

trainment to mechanical properties and learning capabilities in general are important to

be able to generalize stabilization properties over a large range of parameter settings and

even different robots.

5.2 Measuring Stability

Being able to measure the quality of a gait in terms of stability in an objective, quantitative

and standardized way is important. Such a method could be used as a fitness criteria for

optimization algorithms, feedback control and is also important to make quantitative

comparisons with other research possible. This section describes a newly developed,

practical framework in which stability of a biped gait can be quantitatively measured

in a simulation environment such as Webots. The method is independent of the type of

robot or controller and as such is not limited to the HOAP-2 humanoid robot as used

throughout this thesis.

The following sections will shortly introduce common concepts in multi-body systems,

and in particular bipedal systems, such as the Foot Support Area, Center of Mass, Ground

Projection of the Center Of Mass and Center of Pressure. Thereafter, several well known

37



and widely used criteria/methods for stabilization will be discussed: the Zero Moment

Point, Foot Rotation Indicator, Centroidal Moment Pivot and Poincaré maps. Finally a

general method for measuring stability will be described that combines beforementioned

criteria for stability in a general way. In the remainder of this section, the ground surface

is assumed to be planar.

5.2.1 Foot Support Area

The foot support area of a bipedal robot, on planar ground, is defined as the convex hull

of the contact points of the robots feet. Stability indicators are commonly defined as

points on the ground which ensure the robot stability as long as they are inside the foot

support area.

5.2.2 Center of Mass

The center of mass OG (defined in coordinate system O) of a robot, composed of n

segments denoted by i, is defined as:

M =
n∑
i=0

mi (5.1)

OG =
1

M

n∑
i=0

OGi ·mi

where OGi and mi are the center of mass (defined in coordinate system O) and the

mass of the ith segment respectively. Furthermore, the ground projection of the center of

mass, or GCoM, is defined as the projection along the gravity axis of the center of mass

onto the ground. The position of the GCoM can be used as a static stability criterion

(e.g. posture control) where the robot is said to be stable as long as the GCoM is within

the convex hull of the foot support area. It can be easily seen however that this does not

extend to a dynamic criteria. Indeed, when walking, the GCoM will have to leave the

support area for the robot to move forward.

5.2.3 Center of Pressure

The Center of Pressure is defined as the point on the ground where the force, resultant

from the field of pressure forces normal to the foot, is exerted and the resultant moment
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is zero. The Center of Pressure and the Ground Projection of the Center of Mass coincide

when the robot is stationary or has uniform linear and angular velocities in all joints. It

can be defined as:

OP =

∑
i qi · Fni∑
i Fni

(5.2)

Where OP is the Center of Pressure defined in coordinate system O, qi is the vector

to the point where force Fni acts in the direction of the surface normal.

5.2.4 Zero Moment Point

The Zero Moment Point (Vukobratovic & Juricic, 1969), or ZMP, is a widely used criteria

(both implicitly and explicitly) for dynamic stability in biped locomotion. The Zero

Moment Point is defined as the point on the ground at which the moment generated by

the reaction forces and torques equals zero. It is stated that this point must lie within

the convex hull of the foot support area to ensure stability. The ZMP in its general form

is most widely used for trajectory generation and is defined as:

PZ =
n×M gi

P

F gi · n (5.3)

Here, P is point on the sole of the foot following the normal projection of the ankle,

Z is the ZMP, n is the normal vector from the surface, M gi
P is the moment about point

P and F gi is the resultant of gravity plus inertia forces.

Even though the most common use of the ZMP is in trajectory planning, the general

idea of the ZMP is often also used in on-line, reactive stability control. As shown in

(Goswami, 1999; Sardain & Bessonnet, 2004), the Center of Pressure is equal to the

ZMP. Due to the definition of the ZMP, it can never leave the foot support area. This

means that it cannot distinguish between a marginally stable equilibrium and a unstable

situation since both states are located at the boundary of the support polygon. In other

words, it can be used as a criteria for stability, but not for instability. The Foot Rotation

Indicator tries to overcome this problem.

5.2.5 Foot Rotation Indicator

The Foot Rotation Indicator, or FRI, is an indication of postural instability measured as

the the point on the foot/ground where the net ground forces would have to act to keep the
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foot stationary (Goswami, 1999). Stability with regard to foot rotation is ensured when

the FRI point remains within the convex hull of the foot support area. The difference

with the ZMP as described above is that the Center of Pressure represents the point on

the foot/ground where the net ground reaction force actually acts and may never leave

the convex hull of the foot support. The FRI point on the other hand is defined as the

resultant moment of force/torque impressed on the foot is normal to the surface and can

leave the convex hull of the foot support. The distance from the area of support indicates

of the severity of unbalanced torque causing the foot to rotate.

The Foot Rotation Indicator can be calculated by using equation 5.4 (Goswami, 1999).

Here the FRI (F ) is calculated in coordinate system O. In this equation N is the total

number of segments in the multi-body robot (excluding the foot), mi is the mass of segment

i, ai is the linear acceleration of segment i and ḢOGi
is the angular momentum about the

center of mass OGi, defined in coordinate system O, of segment i.

OFx =
m1OG1yg +

∑N
i=2miOGiy(aiz + g)−∑N

i=2miOGizaiy +
∑N

i=2 ḢGix

m1g +
∑N

i=2mi(aiz + g)
(5.4)

OFy =
m1OG1xg +

∑N
i=2miOGix(aiz + g)−∑N

i=2miOGizaix −
∑N

i=2 ḢGiy

m1g +
∑N

i=2mi(aiz + g)

5.2.6 Centroidal Moment Pivot

One of the problems with the FRI is that it is only defined during the single support

phase since it is defined in terms of rotation of the foot. The Centroidal Moment Pivot

overcomes this problem (Popovic, Goswami, & Herr, 2005). The CMP is based on the

finding that the body’s angular momentum about its center of mass remains very small

throughout the gait cycle. As such, the angular momentum can be used to determine

robot instability.

Given that the ground is planar, the CMP is defined as the point where a line parallel

to the ground reaction force, passing through the center of mass of the robot, intersects

with the ground. As such, it provides information on body rotation. The CMP can be
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written in terms of the center of mass and the ground reaction force as:

Cx = CoMx −
FGRx

FGRz

CoMz (5.5)

Cy = CoMy −
FGRy

FGRz

CoMz

where C is the CMP position, CoM is the center of mass and FGR is the ground

reaction force.

5.2.7 Poincaré maps

Poincaré maps are often used in analyzing continuous, periodic dynamical systems. A

Poincaré map of an N dimensional state space defines a mapping from the N-1 dimensional

state space at a Poincaré section onto itself. Here a Poincaré section is a hyperplane in

the state space which is traverse to the flow of the dynamical system. In stability analysis

the periodic motion is defined as stable when the eigenvalues of the linearized Poincaré

map (the Jacobian matrix) are within the unit cycle (e.g. the system will converge to a

fixed point on the Poincaré section).

In biped locomotion, this method is often used to quantify the stability of a dynam-

ical system controlling the different joints. However, to be able to derive the stability

properties, one has to know or approximate the Poincaré map and the Jacobian matrix

of the full dynamical system. It is therefore often used when the exact model of the robot

and the environment is known (usually expressed as equations of motion) (Morimoto et

al., 2005), or to derive the stability of only the controller, but not in interaction with the

environment.

5.2.8 Measuring General Stability

Although the Poincaré map method is often not applicable in practical situations where

there are unknowns about the environment and the model of the robot, the concept can

still be applied to measure stability. For any given bipedal periodic gait, a Poincaré section

can be defined as a certain point in the gait cycle. Given any state variable of the biped

robot, it being a state variable of the controller, or a measured quantity such as center

of pressure, the assumption can be made that stability is directly related to the variance
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of the distribution of state variables intersecting the Poincaré section during locomotion.

The more unstable the gait is, the larger the variance in certain state variables will be.

This results in a very simple method to evaluate stability of any measurable quantity

that can be evaluated in simulation while walking given any controller. Examples of mea-

surable quantities are the amplitude and phase of a coupled oscillator network, the load

distribution of the robot as measured with load sensors in the feet, body posture mea-

sured by a gyroscope or body acceleration measured by an accelerometer. Furthermore,

the approximate ZMP, FRI and CMP can also be used in the same way. It should be

noted that this method gives an objective measurement of stability independent of the

type of controller, and as such can be applied to compare for example different feedback

control loops in terms of stability of the gait.

Other notions of stability can also be taken into account here. It might be preferable

that the upper body of the robot remains in an upright posture. To this extend, a criterion

can be defined that uses the posture of the upper body directly and defines instability as

the deviation of the upright position of the body. A similar measurement of stability can

be taken from body acceleration. In a ideal forward bipedal gait, the acceleration of the

upper-body should be 0 (e.g. walking with a constant speed). Deviation from this can be

directly used as an instability measurement.

It should be noted that depending on the information available to the robot, these mea-

surements of stability or instability, might only by used to evaluate a certain gait/controller,

but not for active stabilization. An example of this is the FRI which the robot might

not have direct access to or be able to calculate. The CoP on the other hand can often

be easily calculated when the robot has force sensors at its feet. Thus, there is a clear

distinction between measurements that can be used as feedback into the controller, and

measurements that can be only used for evaluating a certain gait or controller.

5.2.9 Practical Framework

The sections above have described different existing stability criterion and have put forth

a general method of combining any of these criteria in a general measure. This section

describes how to use the Webots simulator to implement all the mentioned criteria for

any given robot modeled in the Webots environment. The measurements described below

are implemented in Webots as a physics plugin instead of in the robot controller. The
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reason for this is that many of the calculations require information that is not available

from the controller (such as iterating over all the bodies of the robot and acquiring force

measurements). A physics plugin has direct access to the physics simulation as done by

ODE (the Open Dynamics Engine) which is used internally by Webots. Note that we use

the convention of defining the z axis as the up-axis whereas in ODE terms, the y axis is

the up-axis. Where appropriate, the HOAP-2 robot will be used as an example.

Center of Mass

Calculating the center of mass of the robot is straightforward from equation 5.1. The

position of the center of mass of each body, and the mass of each body can be obtained

from ODE. The coordinate system O is defined as the global world coordinate system.

The Ground Projection of the Center of Mass can furthermore be obtained by pro-

jecting the previously calculated Center of Mass along the gravity axis. Since we assume

a planar ground, the projection on the ground is the intersection of the Center of Mass

at z = 0.

Center of Pressure

To be able to calculate the Center of Pressure, or ZMP, we need access to the forces as

applied to the contact points of the feet of the robot. We therefore need to manually apply

the collision detection and store contact points resulting from this collision detection for

later use. ODE allows force/torque measurements to be taken from these contact points

in a later stage of the simulation.

The real HOAP-2 robot has four force sensors at each foot as depicted in figure 5.1.

The actual sensors si are located away from the edges on the real robot. However, the

contact model of ODE will generate contact points on the edges of the feet shown ci for

a planar ground surface. To roughly approximate the measurements that would be made

on the real robot, the following equation is used:

Fsi
=

CN∑
j=0

(
1

δ(sixy , cjxy) · Tj · Fcj
)

(5.6)

Tj =

SN∑
i=0

1

δ(sixy , cjxy)
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Here CN is the number of contact points, SN is the number of sensors (e.g. four in

this model), δ is the euclidean distance and Fcj is the force measured at contact point cj.

s3 s4

s2s1

c3 c4

c2c1

d

d

Figure 5.1: Schematic view of the feet of the HOAP-2 robot

The Center of Pressure can now be calculated from the forces as approximately mea-

sured by the sensors on the sole of the foot in the direction of the surface normal (e.g. [0,

0, 1]) as defined previously in equation 5.2.

Foot Rotation Indicator

The Foot Rotation Indicator as defined in equation 5.4 can be directly calculated from

information present in the physics model. For each of the segments of the multi-body

robot, the center of mass and the mass itself can be directly accessed. The linear accel-

eration of the CoM (ai) can be either estimated by reversing the Euler Integration done

by ODE on the current and previous velocities of the body, or by measuring all forces

acting on the body and dividing it by the body mass. Finally, the angular momentum

ḢOGi
about the center of mass is defined as:

ḢOGi
= IOGi

· ωi (5.7)

Here IOGi
is the Inertia tensor matrix as defined in ODE for body i and ωi is the

angular velocity of body i which can be accessed from ODE.
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Centroidal Moment Pivot

The Centroidal Moment Pivot can be estimated easily from previously determined quan-

tities. Recall that from equation 5.5 that the CMP can be determined directly from the

robots center of mass and the ground reaction force. The ground reaction force can be

calculated by the sum of the forces generated at the contact points of the feet.

Readily Available Measurements

Some measurements can be retrieved from the Webots environment directly without re-

sorting to accessing the physics simulation directly. These measurements include body

posture (as exposed by the Gyroscope device) and body acceleration (as exposed by the

Accelerometer).

5.2.10 Summary

In summary, the following measurements now can be used as state variables in the stability

measuring framework:

• Center of Mass

• Center of Pressure (ZMP)

• Foot Rotation Indicator (FRI)

• Centroidal Moment Pivot (CMP)

• Body Posture (Gyroscope)

• Body Acceleration (Accelerometer)

Not all of these measurements can also directly be used to use for stabilizing the

robot by feedback control. The FRI for instance requires information that might not

be available on the real robot. Information that is readily available on most robots is

CoP (ZMP), Body Posture and Body Acceleration. Any control laws resulting from

these measurements can be quantitatively compared in simulation using the described

framework.
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5.3 Stability under Perturbation

To validate the described framework with regard to detecting instability due to external

perturbations and general stability of a gait, an experimental setting is designed. In this

setting an external force is applied at the middle of the torso of the robot while it is

walking. The force is applied for a uniformly distributed random duration between 0.25

and 0.75 seconds, with uniformly distributed random pauses between 0 and 2 seconds.

This results on average in the robot being perturbed one third of the time. The direction

of the force is perpendicular to the torso in the up direction, with a uniformly randomly

distributed angle (see figure 5.2).

Ft0
Ft1

Ft2
Ft3

Figure 5.2: Schematic view of applying random external forces F at times t0, t1, t2 and

t3.

By increasing the applied external force and measuring at each force level the measure-

ments in the framework as previously described, we can measure how well the framework

of measuring instability follows the increasing force. Here we expect the variance of good

instability indicators to increase with increasing forces. The experiment is designed to:

1. Validate the instability measuring framework

2. Evaluate how well the different indicators measure instability

3. Evaluate how stable the evolved open-loop controllers are with regard to external

perturbation
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5.4 Experiment

For this experiment the evolved sine controllers are converted to a CPG network (see

figure 4.1) using the Cartesian space Hopf oscillator as described in equations 4.10 and

4.11. The oscillators are all put on the limit cycle using equation 4.12. Since all oscillators

are already on the limit cycle, and thus phase-locked, the phase coupling weights can be

set arbitrarily (in this case they are set to 1). Choosing γr = 15 for each oscillator, it is

ensured that the exact same sine wave is produced by the network.

Each run consists of 5 seconds startup time, enabling the gait to stabilize from starting

the locomotion. Hereafter the perturbation at a certain force level is started and the robot

is allowed to walk a maximum of 20 steps (where a step is defined as one half of a full gait

cycle). Measurements are taken at 3 equally spaced intervals during each step (for each

leg). If the full gait cycle is defined from 0 to 1, measurements are taken at 0.125, 0.25,

0.375, 0.625, 0.75 and 0.875. When the robot falls down or has made the 20 steps, the run

is ended. For each force level, 100 runs are performed. This results in 1000 measurements

for each interval and each measurement if all runs for a certain force level are successful.

The applied external forces range from 0 to 5 Newton with a step size of 0.1 Newton.

The indicators used in this experiment are: four load sensors measuring ground reac-

tion force at each feet, torso acceleration on x, y, z axis, angular velocity on x, y, z axis,

center of mass in x, y, z and center of pressure, foot rotation indicator and centroidal

moment pivot in x and y.

All of the position indicators (such as the COM, COP, FRI etc.) need a reference

point from which to measure the distance. In this experiment, the method for taking a

reference point at a certain time ti is depicted in figure 5.3. At each point in time when a

leg is half-way in stance phase, the center of the position of the foot is recorded. For both

legs, a path can then be constructed by interpolating at each time interval these recorded

positions. The reference point, Refti at time t = ti is then defined as the center of the

interpolated positions Lti and Rti . Each of the indicators can then be decomposed in its

individual components (x, y and when applicable z) relative to the coordinate system as

defined by Lti , Rti .

The experiment is run for the 0.50, 0.75 and 1.00 Hz gaits.
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Lti

Rti
Refti

mti mxti

myti

Figure 5.3: Schematic view of measuring distance at t = ti from reference point Refti to

measurement mti .

5.4.1 Results

Table 5.1 displays at what external force perturbation each frequency gait is able to walk

a certain percentage (0.99, 0.9, ..., 0.25) of the time. This means that at for instance the

0.9 level, the robot on average is able to walk 18 steps before falling over. The forces are

measured in Newton.

Table 5.1: Performance per Gait

Frequency 0.99 0.95 0.9 0.8 0.5 0.25

0.50 0.3 0.5 0.5 0.6 0.9 1.4

0.75 1.2 1.4 1.6 1.9 2.6 3.3

1.00 0.8 1.3 1.3 1.7 2.4 3.5

Figures 5.4 and 5.5 show the results of the stability measuring framework for the right
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foot sensors of the 0.50 and the 0.75 Hz gaits. The distance to the foot support area for

the CoP, FRI and CMP are shown in figures 5.6 and 5.7.
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Figure 5.4: Force sensors of the right foot at 0.25 of the gait cycle (0.50 Hz)
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Figure 5.5: Force sensors of the right foot at 0.25 of the gait cycle (0.75 Hz)

Gait Quality

Table 5.1 shows that the 0.50 Hz gait performs the worst of all gaits, only able to walk for

0.95 of the time at maximum perturbation of 0.5 Newton. The 0.75 Hz gait proves to be

the most stable, withstanding 1.4 Newton at the 0.95 level. Figures 5.4 and 5.5 display a

clear difference in the behavior of the load sensors. For the 0.50 Hz the measured variance

is larger and increases faster than for the 0.75 Hz gait. Similar results are found for the

1.00 Hz gait which also performs a little worse than the 0.75 Hz gait.
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Figure 5.6: Support distance at 0.25 of the gait cycle (0.50 Hz)
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Figure 5.7: Support distance at 0.25 of the gait cycle (0.75 Hz)

Indicator Quality

The measurements at 0.125 and 0.385 of the gait cycle are noisier than the measurements

at 0.250 of the gait cycle for the load sensors, angular velocity and acceleration. The

center of mass, center of pressure, foot rotation indicator and centroidal moment pivot

are less influenced by the stage of the gait cycle in which they are measured. There is a

high correlation between the level of external force and the standard deviation for all of

the measured quantities.

In general, the CoM, CoP, FRI and CMP stability indicators all perform quite equally.

There are significant differences between the performance of each indicator type (with

regard to how well it reflects the performance of the robot) between the different gaits.

50



For the 0.50 Hz gait, the foot load, acceleration and angular velocity measurements are

much more descriptive than the CoM, CoP, FRI and CMP indicators. For the 0.75 Hz

gait, this is less so the case. Here the acceleration and angular velocity reflect the change

in performance much better. There is no single indicator that shows very clearly that at

some force level the performance drops significantly.

5.4.2 Discussion

The experiment shows that the stability measuring framework performs as expected.

Larger perturbations correlate with larger standard deviations in all measurements (e.g.

the more perturbed the measurements become). On a global level, the experiment shows

that stability can be expressed through this framework. It also shows that in a very

practical sense, the framework can characterize the stability of a certain gait. What

is not very clear is how this information could be utilized to prevent instability during

locomotion. There is no single indicator which performs equally well for different types of

gaits. Up to this point, each measurement is independent of the time at which it was taken

during the 20 steps. This means that there is no information present on how a stability

indicator may evolve during locomotion. Under perturbation, it can be expected that

during locomotion the robot will become more unstable and this information with regard

to the development of the stability indicator measurements could be used in feedback

control.

Only one type of perburtation is currently tested, external perturbing forces. Other

perturbations such as small obstacles, slopes or slippery surfaces could extend the frame-

work to more ways of measuring the stability of a certain gait.

5.5 Active Stabilization

Now that there is a framework to measure gait stability in a quantitative way, the influence

on the gait of introducing sensor information in the controller can be easily measured.

To explore the increase in performance on the stabilization under perturbation, a simple

feedback control loop is designed.
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Figure 5.9: Frontal feedback

εl =
1

W
· ((s1 + s3)− (s2 + s4))

εf =
1

W
· ((s1 + s2)− (s3 + s4)) (5.8)

Figures 5.8, 5.9 and equation 5.8 show how the foot sensors are used to provide in-

formation on respectively lateral and frontal load. εl and εf are respectively the lateral

and frontal errors and W is the weight of the robot in Newton with which the measured

sensor load is normalized. The result of this is that when there is more load on the left

side of the foot, εl will be positive, and when there is more load on the right side of the

foot, εl will be negative. The same holds for εf but with regard to load on the front and

the back of the foot.

The errors εl and εf are used to adjust the ankle in order to move the load of the

robot to the center of the foot. The feedback is applied to the ankle oscillator offset. This

allows modification of the way load is distributed on the foot without altering the actual

amplitude or phase of the oscillator. In order to facilitate simple learning capabilities of

the oscillator, and allow entrainment with the environment, a small modification to the

ankle oscillators is made. Recall the oscillator offset differential equation:

ċ = γc(C − c)

If feedback would be applied on this equation, the offset would always try to go back

to the original desired offset, whereas we would like to keep the newly learned offset
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to stay encoded. In order to do this we make C part of the dynamical system and

apply feedback on Ċ. Instead of using simple proportional feedback integration, we apply

proportional-derivative feedback (as in a PD-controller). This introduces a damping factor

in the system which prevents exponentially increasing oscillations. The equations for Ċ

therefore become:

Ċl = γl · (εl +
εl
dt

) (5.9)

Ċf = γf · (εf +
εf
dt

)

Here Cl and Cf are the lateral and frontal desired offset of the ankle oscillators re-

spectively. γl and γf are two gain parameters which determine how quickly the desired

offset is changed. The initial value of C is the desired offset as defined for the nominal

gait. The feedback loop was tested in static conditions to see how well it would stabilize

the load of the robot. The robot was put into a posture where the load was unevenly

distributed and when the feedback was enabled, the load was quickly redistributed to the

center of the support area.

The value of the gains is systematically explored in the same experimental setting as

was used in the gait stability experiment. The experiment is run for the best open-loop

gait as was measured before to be the 0.75 Hz gait. Values for the gains range from 0.001

to 0.01 with a step size of 0.0025 for the lateral offset, and 0.001 to 0.02 with a step size

of 0.0025 for the frontal offset.

5.5.1 Results

Figures 5.10, 5.11 and 5.12 show the performance of the 0.75 Hz gait in the experimental

setting as described above for respectively the 0.99, 0.95 and 0.90 success level. The

performance is on average best with γl = 0 and γf = 0.01.

5.5.2 Discussion

The figures clearly show a significant increase in stability. The robot is able to reach

performance levels under more perturbation. Although the lateral feedback can improve

the stability of the gait, it seems the control of the frontal ankle joint is more influential

in stabilizing this particular gait.
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Figure 5.10: Maximum perturbation force for 0.99 success level
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Figure 5.11: Maximum perturbation force for 0.95 success level
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Figure 5.12: Maximum perturbation force for 0.90 success level

The results indicate that a simple feedback loop can be used to stabilize the gait, but

it seems the type of feedback is too naive to result in large improvements. Although it

confirms that feedback, though simple, can improve the gait stability, further work on

different types of feedback integration such as reflexes and phase resetting as described in

the beginning of this chapter is clearly needed.
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Chapter 6

Conclusion

A PSO algorithm was successfully used to find stable open-loop nominal gaits for the

humanoid HOAP-2 robot. Although a very simple sine controller was used to generate

the joint angle patterns, the gaits looked very natural. Due to the fitness function being

the walked distance, the gaits were optimized for maximum speed which made them very

sensitive to parameter and environment changes. This also meant that low frequency

gaits made very large steps, which also contributed to them only being on the limit of

stable. In a sense it pushed the maximum speed an open-loop controller can achieve to

the limit. This made it impossible to transfer the gaits to the real robot. The success

of the method can be attributed to minimizing the parameter space by making informed

decisions on the parameter constraints.

A network of oscillators was designed which encoded the evolved sine controller ac-

curately. The Hopf oscillator defined in Cartesian space was extended to allow arbitrary

and independent phase coupling. This allows easier integration of possible feedback than

using the phase space Hopf oscillator without the disadvantage of influencing the ampli-

tude of the oscillator. Furthermore it was shown that using the intrinsic properties and

characteristics of the CPG, the stability of starting to walk could be improved without

any feedback. This confirms that CPGs can be very useful for encoding behaviors im-

plicitly without the need of specific rules or states. The produced behavior is also very

natural and resembles very well the way load needs to be transfered to the stance leg

before walking should begin.

Finally, a framework was developed in which stability of gaits could be quantified

in a very practical and robot/controller independent manner. The stability measuring
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framework proved to be successful in identifying which of the evolved gaits was the most

stable. This provides a very generic and easy to use paradigm to quantify, compare

and evaluate gait stability, and feedback control rules. The method is not limited to a

specific robot or controller and as such can be used in a very general sense. Well known

stability indicators such as ZMP, FRI and CMP were evaluated within this framework and

no significant differences in these indicators with regard to gait stability under external

perturbation were found.

6.1 Future work

There are many interesting questions and issues still to be explored. One in particular

is the fitness function of the optimized nominal gait. Since the nominal gait is used

as a basis for all other work, such as measuring and improving stability, it is a critical

stage of designing a locomotion controller. In this thesis, a very simple and naive fitness

function was used: walked distance. Although the PSO algorithm worked very well, and

was able to find solutions that looked very natural, the solutions were highly optimized

on speed. This means that they were very explosive and on the border of being stable.

Any slight alteration or perturbation would make the gait unstable. This proved it to be

impossible to transfer the gait to the real robot. A more sophisticated fitness function

could address this issue and evolve a more robust and stable gait. This allows easier

transfer to the real robot and ease the development of stability control mechanisms.

Punishments and rewards incorporated in the fitness function could be desired stride

length, speed restriction or stability measurements. Apart from changing the fitness

function it could also be interesting to explore more complex joint angle patterns.

With regard to the CPG, more work can be done on the influence of different coupling

schemes and oscillator parameter settings for coupling and convergence after perturbation.

It has been shown that with proper parameter settings the CPG can encode a natural

startup behavior. Further investigation on how to go from a nominal gait encoded in the

CPG to more complex behaviors such as a start-walk-stop and making turns is needed.

Finally more work is needed on exploring integration of feedback into the CPG. A

very simple feedback loop was shown to improve the stability of the gait, but there

are many more possibilities to stabilize the gait further. Here inspiration should be
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taken from mechanisms found in humans (such as reflexes and feedback dependent phase

switching). The stability measuring framework could be extended to incorporate more

types of perturbation such as obstacles, slopes and slippery surfaces.
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Appendix

A.1 Start of Locomotion Optimization

Resulting wave patterns for the four frequency gaits for the start of locomotion opti-

mization experiment. The lateral ankle patterns are not included since they are in exact

anti-phase of the lateral hip joints.
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