Optimization Framework Conceptual Overview

February 26, 2014

Contents

1 Conceptual Overview 3
1.1 User Layer. e 3

1.2 Server Layer e e 4
1.3 Workstation Layer 5

2 Implementation 6
2.1 Communication e e 6

2.2 Software L e 6
2.3 Security e 7

3 Applications and Tools 8
3.1 optimaster Lo e 8
3.2 optiworker e e 9
3.3 optirunnero e e 9
3.3.1 XML description e 10

3.4 Optimization Algorithms 14
3.4.1 PSO . . e e 15

3.4.2 ADPSO . . . e 16

344 GA . L e 19

3.4.5 Systematic Search L 19

3.0 optirootero L e e e 20
3.6 optiextractor L e 20
3.7 opticommando L e e 21
3.8 Dispatchers e 21
3.8.1 Webots 21
3.8.2 External 22
3.83 Blender e 23

4 Practical Information and Examples 25
4.1 Practical Information. oL 25
4.2 Distributing Jobs Lo 25
4.2.1 Becoming a Member Lo e 26
422 Tokens e e 26
4.2.3 Running on the biorob servers L oo 26
4.2.4 Use of custom libraries e 26
4.2.5 Specifying the master L 27
426 Localstorage L 27
4.2.7 Common pitfallso 27

4.3 Exampleso e e e 28
4.4 Monitoring Progress Lo e 28
References 29

Chapter 1

Conceptual Overview

Figure 1.1 shows a schematic overview of the optimization framework. There are three distinct layers (user,
server and workstation) in the system. The user layer runs the actual optimization process which will
produce tasks that have to be evaluated. These tasks are passed to the server layer which queues them in a
task queue. The server acts as a central hub to distribute any tasks it receives to the available workstations.
A workstation in turn receives a single task from the server and executes it. When the task has been
evaluated, the result is sent back to the user through the server layer. The different layers can run on a
single PC, but can also be placed on different networked PCs. See section 2 for more information on the

implementation of the different layers and communication protocols.

The overall concept of the framework is such that no specific restrictions are placed on the type of optimization
algorithm or the manner in which a task has to be evaluated. Therefore, the framework can easily be used

for many different and concurrent tasks.

1.1 User Layer

The user layer represents the front-end layer which is run by a user of the system. This layer is responsible
for running the optimization algorithm. The algorithm produces tasks to be evaluated. As can be seen in
figure 1.1, each optimization, run at the user layer, is encapsulated in a Job process. The job drives the

optimization, sends tasks to the server layer, and feeds retrieved results back into the optimizer.

The optimizer consists of a population (of tasks) that need to be executed, an optional function which

combines a multi-objective fitness evaluation into a single fitness value, and a data storage to store the

Users
A |

| Optimizer

Population
Data Storage

Result

| Workers |

Workstations

mmmg. Worker
—

| Dispatcher |

Result

<

<€

Figure 1.1: Schematic overview of the optimization framework architecture

results of the optimization. The optimizer population is a set of tasks that can be executed independently.

For example, in Genetic Algorithms this would be a single generation of individuals. These represent the set

of tasks that can be distributed at the server layer. The fitness function represents a mathematical expression

that can be used to transform multiple objectives into a single fitness value, used by the optimizer.

A description of the task that is sent to the server layer is given in table 1.1. Once a task is executed, a

result message as described in table 1.2 is sent back to the user layer.

Table 1.1: Task Message

Name Description

Id A unique task identifier

Dispatcher The dispatcher with which to evaluate the ask

Parameters A {name — wvalue} dictionary of parameters to be evaluated
Settings A {name — walue} dictionary of settings to be passed to the

dispatcher

1.2 Server Layer

The server layer consists of a single process which acts as a distribution center for tasks to be evaluated.

This layer is used to allow multiple optimization processes to be run, while sharing the workstation resources

that are currently available. The tasks are scheduled fairly with respect to the estimated execution time and

Table 1.2: Result Message

Name Description

Id The unique task identifier

Status Whether the execution was successful or not

Fitness A {name — value} dictionary of fitness values

Data A {name — wvalue} dictionary of additional, custom data to be

stored with this task/solution

a task priority. The server automatically discovers new workstations as they come online through a simple
discovery protocol. When new tasks are received from the user layer, it schedules these tasks (according
to their priority) onto a task queue. Whenever a workstation becomes available, the task is sent to this
workstation to be executed. The workstation then sends the result back to the server, which in turn relays
it back to the user layer. Details of the implementation and the used communication protocols will be

discussed in section 2.

1.3 Workstation Layer

The workstation layer is responsible for executing a single task, and sending the result back to the server
layer. Each task is received from the server layer with the task information as specified in table 1.1. The
worker process then resolves a dispatcher process from the task description that is to be used to evaluate
the task. When the correct dispatcher is located, this dispatcher will be executed with the task that has to
be evaluated. From the dispatcher, the worker will receive a result in terms of fitness, which it then relays

back to the server layer.

Chapter 2

Implementation

This section will give a short overview of the implementation of various parts of the framework. For more

detailed information, see the API documentation.

2.1 Communication

All communication in the framework is implemented using google protobuf. This is a small, strictly typed,
object serialization/deserialization library developed and released under the BSD open source license by
Google. This library was chosen because it is fast, object oriented, strictly typed and well maintained.

Messages in the framework are mainly sent over TCP/IP, but UNIX domain sockets are also supported.

2.2 Software

There are two major parts of software developed for the framework. The first part is the lower level backbone
of the framework consisting of the server and workstation layers. These layers are implemented in C++.
Common functionality reused in the different components of these layers is provided in a separate C++

library. The developed applications are:

e master (server layer): the master distribution process which distributes task to workstations

e worker (workstation layer): the process that accepts tasks and executes the appropriate dispatcher

o dispatcher (workstation layer): the dispatchers that evaluate a specific task

The user layer on the other hand has been implemented in C# (using “mono” the open source version of
the .NET framework). It consists of a .NET library containing classes with which optimizers can be easily
implemented, and an application which can run jobs specified using XML. The C# language was chosen
for this layer because it is easy to learn, modern, powerful, cross-platform and reduces the time needed to

implement new optimization algorithms.

2.3 Security

To support a multi-user environment, the framework can be configured such that dispatcher processes will be
executed under user privileges. When this functionality is enabled, the worker will execute a separate process
that authenticates the task, and if authenticated, executes the dispatcher with the privileges of the owner
of the task. The authentication is based on a challenge/response mechanisms such that the authentication
key of the user is always send encoded over the network. After successful authentication, the credentials are
confirmed with the permissions to execute the dispatcher process in question, before dropping to the user
credentials. As such, even if the key would be retrieved, only executables that belong to the user to whom

the key was given can be executed.

Chapter 3

Applications and Tools

The following section will describe the applications and tools distributed with the optimization framework.

3.1 optimaster

The optimaster application represents the server layer of the framework. It acts as a distribution cen-
ter for optimization process. You can specify some options for the optimaster using a configuration file in
/etc/optimaster.conf. An example configuration file is present in /usr/share/optimaster/optimaster.conf.ex.

The available configuration settings are listed in table 3.1.

Table 3.1: optimaster Configuration

Name Description

discovery namespace the discovery namespace identifies to which discovery namespace
the optimaster belongs. You can use this namespace to separate
different optimaster and optiworker processes. By default, the
optimaster will set the namespace to the user name of the current
user.

discovery address the address (IP:port) on which to broadcast and listen for discov-
ery messages (usually a multicast address).

listen address the address (IP:port) on which to listen for incoming optimizer

connections.

3.2 optiworker

The optiworker application represents the workstation layer of the framework. It receives single tasks from
the optimaster and executes them according to the task description. The optiworker can run in two
modes, normal mode and token mode. In normal mode, the optiworker will launch dispatcher processes
directly and under the same privileges as the optiworker process. In token mode, a token system will be
used to securely identify users to which a certain task belongs. In this mode, the optirooter application

will be used to launch the dispatcher process. See section 3.5 for more information.

You can specify some options for the optiworker using a configuration file in /etc/optiworker.conf.
An example configuration file is present in /usr/share/optiworker/optiworker.conf.ex. The available

configuration settings are listed in table 3.2.

Table 3.2: optiworker Configuration

Name Description

discovery mamespace the discovery namespace identifies to which discovery namespace
the optiworker belongs.

discovery address the address (IP:port) on which to broadcast and listen for discov-
ery messages (usually a multicast address).

use tokens whether or not to use the token security system.

dispatcher priority the linux priority level at which to run the dispatcher processes

(see the ‘nice’ command for more information).

3.3 optirunner

The optirunner application is the most important application for the end user. This application will run
the actual optimization process and will be started by the user. It is possible to use the optimization API
to write your own application that communicates directly with the optimaster, but this should be rarely

needed.

The default usage of optirunner is by specifying a description of your job in XML and calling optirunner
to execute this job. A description of this XML job representation is given in the next section. Thereafter, a

short explanation of how you can use your own custom optimization algorithms with optirunner is given.

3.3.1 XML description

The XML description of a job consists of a few distinct sections. The basic element is job:

<?xml version="1.0" encoding="UTF-8" 7>

<job name="{NAME}">
<priority>{PRIORITY}</priority>
<timeout>{TIMEOUT}</timeout>
<token>{TOKEN}</token>
<asynchronous -storage/>
<!-- Rest -->

</job>

A job should always have a name. The name is used to generate the file name in which results are written.

The priority, timeout, token and asynchronous-storage elements are all optional and specify:

e priority: the priority level at which you want to run the job. This value defaults to 1 if unspecified.

Higher priority jobs get proportionally more time on the cluster (on average).

e timeout: timeout indicating the maximum allowed time for a task to run. Note that this is measuring
real time and is only used as a safety mechanism for badly behaving dispatchers. You almost never

have to specify this and is used mostly as a hack to not get jobs stuck in never ending tasks.

e token: an authentication token for the job. See also section 4.2.2 for more information on authentica-

tion tokens.

e asynchronous-storage: when specified, the SQLite database is written to disk in asynchronous mode.
This can result in significantly faster optimizations for tasks that are very shortlived. Note however
that using asynchronous storage can lead to data loss in case of unexpected failures (power outage).

The default is to use synchronous storage.

The remainder of the job description consists of the optimizer, boundaries, parameters and dispatcher

elements defined inside the job element.

The optimizer element describes the type of optimization algorithm to use and any settings that correspond

to that particular optimization algorithm. For example:

10

<optimizer name="{NAME}">
<setting name="{SETTING 1}">{VAL}</setting>
<setting name="{SETTING 2}">{VAL}</setting>

</optimizer>

The name attribute identifies the optimization algorithm (for example ’pso’). The settings set settings
specific to the optimization algorithm. When you for example use PSO, these settings include the maximum
allowed particle velocity and different coefficients used in the algorithm. There are some settings available

for all optimization algorithms, for more information see section 3.4.

The boundaries element specifies a set of boundary definitions (minimum and maximum values) which are
used in the parameters element. An example boundaries definition:
<optimizer>
<lb-- ... ==
<boundaries>
<boundary name="{BOUND 1}" min="{VAL}" max="{VAL}" min-initial="{VAL}" max-initial="{VAL}"/>
<boundary name="{BOUND 2}" min="{VAL}" max="{VAL}" min-initial="{VAL}" max-initial="{VAL}"/>
</boundaries>
<Kl-- ... ==

</optimizer>

Each boundary is named, and has a minimum and a maximum value. The name is used in the parameter
definition to reference a specific boundary. The min-initial and max-initial attributes are optional and
specify respectively the minimum and maximum value to which the initial population should be initialized

(for population based algorithms).

The parameters element specifies the set of open parameters to be optimized. An example definition:

<optimizer>
<Kl-- ... =-=>
<parameters>
<parameter name="{PARAMETER 1}" boundary="{BOUNDARY NAME}"/>
<parameter name="{PARAMETER 2}" boundary="{BOUNDARY NAME}"/>
</parameters>
Klb-—- ... ==>

</optimizer>

Each parameter is named, and specifies by which boundary its value is bound.

In addition to specifying boundaries in a separate section so that they can be reused, you can also write

11

boundary values in a more concise and simpler format directly in the parameter specification:

<optimizer>
<Klb-— ... ==>
<parameters>
<parameter name="{PARAM 1}" min="{VAL}" max="{VAL}" min-initial="{VAL}" max-initial="{VAL}"/>
<parameter name="{PARAM 2}" min="{VAL}" max="{VAL}" min-initial="{VAL}" max-initial="{VAL}"/>
</parameters>
<t-- ... ==

</optimizer>

The optimization framework currently does not support the concept of vectors or arrays for parameters.
Some tasks however are more easily defined using these concepts (for example, think of weights for a neural
network). To somewhat ease the specification of such repeated parameters, the following syntax (note the
repeat attribute) can be used:

<optimizer>
Klb-— ... ==>
<parameters>
<parameter name="p" repeat="1-10"/>
</parameters>
<l-- ... ==

</optimizer>

This will generate 10 parameters with the names pl to pl0. The specified range can only contain simple
integers (min and max) and these numbers are simply appended to the specified name. All other attributes

(min, max, etc.) can still be used.

The last element in the optimizer node is the fitness element. This can be used if you have multiple
objectives in your fitness function. By default, if you do not specify this element, the first fitness value the
dispatcher returns is used. Dispatchers can return multiple fitness values if there are multiple objectives
to be used for optimization. In this case, it can be useful to be able to define a mathematical expression
combining these different values in a single fitness value. As such, you can adjust the way you combine these

different objectives without having to modify the dispatcher. An example fitness description:

12

<optimizer>
<Kl-- ... =-=>
<fitness>

<expression>{EXPRESSION}</expression>

<variable name="{VARIABLE 1}">{EXPRESSION}</variable>
<variable name="{VARIABLE 2}">{EXPRESSION}</variable>
</fitness>
<Kl-- ... ==>

</optimizer>

The expression element in the fitness element describes the main fitness expression to be evaluated. This
expression can be a mathematical expression consistent with most programming languages syntax (operators
and a small set of functions such as log, sin, etc.). The dispatcher will return a dictionary (name — fitness)

of fitness values, and you can refer to such a value by using the name in the expression.

Additionally, you can add any number of variables in the fitness description containing a mathematical
expression. You can refer to these variables from any expression as well. This can be convenient to specify

some weights or constants which you can later modify easily.

The dispatcher element describes the dispatcher and dispatcher settings to be used to evaluate a solution
generated by the optimization algorithm. The specific settings depend on the type of dispatcher used. An
example definition:

<dispatcher name="{NAME}">
<setting name="{SETTING 1}">{VALUE}</setting>
<setting name="{SETTING 2}">{VALUE}</setting>

</dispatcher>

The dispatcher name can be either a simple name, in which case it will be looked up in the system directory
for optimization dispatchers (this is where system dispatchers such as the webots dispatcher are installed).

On the other hand, you can also specify an absolute path to a dispatcher executable here.

The settings are specific per dispatcher, and are documented separately. Note that any number of additional
settings can be specified here, custom to your specific job. For instance, using the webots dispatcher, you
can retrieve any additional settings in your webots controller, and configure the simulation environment

accordingly.

13

A full XML job description example:

<?xml version="1.0" encoding="utf-8"7>

<job name="example">
<optimizer name="pso">
<setting name="population-size">20</setting>
<setting name="max-iterations">60</setting>
<setting name="max-velocity">0.6</setting>
<boundaries>
<!-- The mazimum speed of the e-puck is 1000 -->
<boundary name="speed" min="100" max="1000"/>
</boundaries>
<parameters>
<parameter name="left" boundary="speed"/>
<parameter name="right" boundary="speed"/>
</parameters>
<fitness>
<expression>radius - from_origin</expression>
</fitness>
</optimizer>
<dispatcher name="webots">
<setting name="world">YOUR_PATH/webots/worlds/example.wbt</setting>
<setting name="mode">batch</setting>
<setting name="max-time">10</setting>
</dispatcher>

</job>

3.4 Optimization Algorithms

The optimization algorithms currently implemented are: Particle Swarm Optimization (PSO), Adaptive
Diversity Particle Swarm Optimization (ADPSO), Genetic Algorithms (GA), Simultaneous Perturbation

Stochastic Approximation (SPSA) and Systematic Search (Systematic).

These are available from the optimizers2-sharp library. When using optirunner, you can list the available
optimization algorithms and their settings using the --1ist command line option. There are a few settings
common to all optimization algorithms (although some might not apply to all algorithms). Table 3.3 lists

these settings.

Each of the available algorithms and their settings will be briefly described.

14

Table 3.3: Optimization Settings

Name

Description

population-size

maz-iterations

convergence-threshold

convergence-window

min-iterations

The population size (applies to population based methods and has a special
meaning for the SPSA and Systematic algorithms).

The maximum number of iterations to run the optimization (does not apply to
Systematic).

If specified, adds an additional stopping criterion which is based on measure-
ment of convergence. If the convergence is below the threshold, the optimiza-

tion will be stopped. Convergence is measured by:
| max fi(x) — min f;(x)|

Where W is the set of the last convergence-window iterations and f;(x) is the
best fitness in iteration .

The window (iterations) over which to measure convergence.

The minimum number of iterations to run before the convergence stopping

criterion is used.

3.4.1 PSO

The particle swarm optimization is a very elegant, simple and fairly recent optimization algorithm (Kennedy

& Eberhart, 1995; Clerc & Kennedy, 2002). It is loosely based on the notion of swarm/flocking behavior.

The basic algorithm behind the optimization can be described by:

Uij (t + 1)

= x(vi(t) + Rip1(Pyj — (1)) + Rowpa (P — wij(t)))
2k

12— — V¢? — 4y

P14+ @2 >4

It performs particularly well on real-valued problems with single single objectives. Table 3.4 lists the settings

available for this optimization algorithm.

15

Table 3.4: PSO Settings

Name Description

maz-velocity The maximum particle velocity as a fraction of the parameter space
cognitive-factor The PSO cognitive factor as described in the literature (1)

social-factor The PSO social factor as described in the literature (¢2)

constriction The velocity update constriction as described in the literature ().
boundary-condition The action to take when particles reach the parameter boundaries (None, Stick

or Bounce). The default is Bounce.

boundary-damping A velocity damping factor when the boundary condition is Bounce.

3.4.2 ADPSO

Adaptive Diversity Particle Swarm Optimization is a variant of the standard PSO algorithm that introduces
collision detection and particle dispersion using adaptive, per particle collision radi and adaptive collision
reaction forces (Monson & Seppi, 2006). It is a fairly elegant solution for resolving some of the deficits of
the standard PSO such as premature convergence. It performs better on multi modal functions than the

standard PSO.

The collision radius ¢, is defined by:

Cr = Vbi' + ,ybjr

With v an adaptation constant, b; and b; the respective number of times particles 7 and j have collided until
now and 7 a basic collision radius. As can easily seen, the collision radius per particle decreases the more it

collides.

When two particles collide, their velocity is reflected and their new position is calculated by:

Tpoy = = (T — 1)

Thus reflecting the current position around the old position, weighted by ~v~°.

Thus, as the adaptive
radius decreases with increased number of collisions, the bounce distance increases. This allows both good

convergence and escaping of local minima.

16

Table 3.5 lists the settings available for this optimizer. ADPSO is an extension of the standard PSO and the
PSO settings defined in table 3.4 also apply to this optimization algorithm. For more information on the

available settings, see Monson and Seppi (2006).

Table 3.5: ADPSO Settings

Name Description

adaptation-constant The adaptation constant () with regard to the number of times a particle has
collided (0 - 1)

collision-radius The basic collision radius (1) as a fraction of the parameter space

17

3.4.3 SPSA

Simultaneous Perturbation Stochastic Approximation is an efficient, popular, stochastic gradient descend

method (Spall, 1992). It can be defined by:

01 = Op —argn(by)

A O, + cpAy) — é,ch
ally) = y(Or + c k)26ky(k K A)

With 6}, the solution estimation at iteration k, aj, a learning rate, gx(f)) the estimation of the gradient at

ék, y the objective function, ¢, a perturbation rate and A the randomized perturbation vector.

The current implementation performs this two-sided perturbation to estimate the gradient with the pertur-

bation vector Ay drawn from a Bernoulli + distribution to satisfy convergence conditions.

Table 3.6 lists the settings available for this optimizer.

Table 3.6: SPSA Settings

Name

Description

learning-rate

perturbation-rate

epsilon

boundary-condition

The learning rate aj used to update the new solution according to the current
gradient estimation. You can use a mathematical expression for this setting
and use the variable k to indicate the current iteration number

The rate ¢, with which to perturbate the solution to estimate the gradient.
You can use a mathematical expression for this setting and use the variable k
to indicate the current iteration number

The normalized maximum parameter step size. You can use a mathematical
expression for this setting and use the variable k to indicate the current iteration
number

Indicates how parameter boundaries should be handled. There are three possi-
ble settings: None (does not contrain the parameter space), StickResult (only
constrains the actual solution to be within the parameter boundaries) and
StickAll (constrains both the actual position and the perturbed solutions to be

within the parameter boundaries).

18

3.44 GA

This optimizer implements the well known standard implementation of Genetic Algorithms. Table 3.7 lists

the settings available for this optimizer.

Table 3.7: GA Settings

Name

Description

selection

tournament-size

tournament-probability

mutation-probability

mutation-rate

crossover-probability

The type of selection mechanism to use to make new populations. Available
are “Tournament” and “RouletteWheel”. Tournament selection is the default
The number of individuals to use for tournament selection. Applies only when
selection is “Tournament”

Probability with which an individual is selected from a tournament: p(1 — p)°
with ¢ the individual order. You can use a mathematical expression for this
setting and use the variable k to indicate the current iteration number. Applies
only when selection is “Tournament”

The probability with which to mutate an individual. You can use a mathemat-
ical expression for this setting and use the variable k to indicate the current
iteration number

The maximum amount of mutation as a fraction of the parameter space. You
can use a mathematical expression for this setting and use the variable k to
indicate the current iteration number

The probability with which to use cross-over to create a new individual from
two selected parent individuals. You can use a mathematical expression for

this setting and use the variable k£ to indicate the current iteration number

The GA implementation supports both real valued as discrete valued parameters.

3.4.5 Systematic Search

The systematic search optimizer is not an optimization algorithm, but instead performs a systematic param-

eter search on a range of parameters. This is an example of how the distribution of tasks by the framework

can be used for purposes other than strictly optimizations.

This optimizer extends the job XML description so that you can specify the range for each parameter

to explore systematically instead of just the upper and lower boundary as done normally. An example

19

description:

<optimizer>
<Kl-- ... ==>
<parameters>
<parameter name="{NAME 1}" min="{MIN}" max="{MAX}" step="{STEP}"/>
<parameter name="{NAME 2}" min="{MIN}" max="{MAX}" steps="{STEPS}"/>
</parameters>

</optimizer>

You can specify ranges in two different ways, either by specifying the step size explicitly (first parameter
in the example) or by specifying the number of steps that should be explored (second parameter in the

example). In the second case the step size will be automatically calculated.

There are no additional settings for the systematic search. The default population-size setting determines
the batch size in which solutions are sent to the optimaster. You should set this to a sensible value (around

200/300 or something).

3.5 optirooter

The optirooter application can be used by the optiworker to execute dispatcher process under the privi-
leges of the user owning the actual task being executed. This application will use the token server to identify
which user the current task belongs to. When used, the optirooter will receive a challenge key from the
token server, which is relays back to the optiworker, optimaster and finally optirunner application. The
optirunner will then encrypt this challenge with a unique token generated by the token server before starting
the job. This is send back to the optirooter which verifies to which user this encrypted token belongs. On
success, it will drop privileges to this user, and execute the dispatcher process. Before dropping privileges,
the dispatcher is verified to be either a system installed dispatcher, or a dispatcher owned by the user (and
located in the users’ home directory) to which it will drop privileges. Note that the optirooter application

has to be setuid and owned by root.

3.6 optiextractor

The optiextractor application can be used to inspect a results database. You can use it to view the settings,
parameters and boundaries of a specific job. It also features the possibility to automatically replay a specific

solution found during optimization. This is particularly useful in conjunction with for instance webots, to

20

quickly view a particular solution.

You can export the database to a matlab file which can be directly loaded into matlab. Either use the Ezport

command from the menu, or use the -—export command line argument.

3.7 opticommand

The opticommand application can be used to inspect the optimaster, displaying which jobs it is running,
and how far along the jobs are. To use it, simply launch opticommand from the command line. For a list of

commands, type help. If you want to connect to a remote master, use opticommand -m <hostname>[:port].

3.8 Dispatchers

There are a few dispatchers available by default. This section will shortly describe these dispatchers.

3.8.1 Webots

The webots dispatcher can be used to evaluate solutions in webots. The dispatcher will launch a webots
process for each task it receives and runs the world file specified in the dispatcher settings. In your con-
troller, you can make use of the optimization::Webots class (see liboptimization API documentation for more
information) to extract the task description and setup your controller accordingly. The specific dispatcher

settings for the webots dispatcher are listed in table 3.8.

Sometimes it might be necessary to change the world file according to your task description. To this end,
a special setting is available (worldBuilderPath) which specifies an executable that will dynamically build
the webots world file to use instead of specifying it in the world setting. The world builder executable will
be executed before the webots process is executed and will receive the task description on standard in
(just as for the dispatcher). It should then generate the world file and write the path to this world file on
standard out. It can be useful to use the optimization::Dispatcher class (see liboptimization API documen-
tation) to extract the task description. Note that if you use several worker processes, you should take care
to generate unique world file names. The world files will be automatically removed after the task has been

run.

21

Table 3.8: Webots Dispatcher Settings

Name

Description

mode

world

webotsPath

webots Version

environment

worldBuilderPath

The mode in which to run webots (defaults to run):
e run: start webots graphically and start running simulation
e stop: start webots graphically but do not start running simulation
e batch: start webots in batch mode (< 6.1.6)

e minimize: start webots in minimize mode (>= 6.1.6)

Absolute path to the webots world to run (required unless worldBuilderPath
is used). In secure mode, the world must be owned by the user and must be in
the users’ home directory

Path to the webots executable to use (optional)

The specific webots version to use. By default, the latest available webots
version installed on the cluster is used. This version is occasionally updated
(announced on the biorob mailing list). Currently available versions are: 6.1.5,
6.3.1, 6.3.3, 6.3.4 and 6.4.1 (this list can be out of date) (optional)

Comma separated list of key=value environment variables to set in the envi-
ronment in which to execute webots (optional)

Path to the world builder to use to build to world before executing webots

(optional)

3.8.2 External

The external dispatcher can be used to launch external processes that will handle the dispatch request. This

can be seen as a very general dispatcher that abstract some parts of the optimization framework so that it

becomes easier to write custom dispatchers. One example of using the external dispatcher is to evaluate a

job in MATLAB. See table 3.9 for the dispatcher settings.

22

Table 3.9: External Dispatcher Settings

Name Description
path Path to the executable to use for evaluating the task
arguments Arguments to provide to the executable

working-directory

mode

environment

persistent

startup-delay

The working directory in which to execute the external process

The mode in which to describe and receive the task description. Can be either
protobuf or text. The protobuf mode will send protobuf encoded messages,
just as through the rest of the framework. The text mode will send tasks
encoded in a simple text format. The default is protobuf (optional)

Comma separated list of key=value environment variables to set in the envi-
ronment in which to execute webots (optional)

Optional argument indicating the TCP port number to connect to to
dispatch the task. You can use this if starting the environment in
which you evaluate a task is expensive. If this is specified, the exe-
cutable will be started the first time, and given the environment variable
OPTIMIZATION_EXTERNAL_PERSISTENT, which contains the port number on
which the external process should listen for tasks.

Specifies the number of seconds after which a connection should be established
when the persistent executable is first launched (only relevant for persistent

mode, optional)

3.8.3 Blender

The blender dispatcher can be used to distribute blender animation tasks. Each blender process will render
a single frame and write it somewhere to disk. You can then later assemble all the single frames in a movie.
Settings for this dispatcher are displayed in table 3.10. The dispatcher requires one parameter named “frame”

which indicates the frame number to be rendered. Use the “systematic search“ optimizer to generate the

frame numbers (using a step of 1).

23

Table 3.10: Blender Dispatcher Settings

Name Description

blender-file The blender file to render a frame of

scene The scene name to render a frame from (optional)

output-path The output directory where frames will be rendered to. By default, the output direc-

tory is set to the directory of the blender file. You can start the output-path with //

to indicate “relative to the blender file directory“ (optional)

format The frame output format. Defaults to PNG (optional)

arqguments Additional arguments that will be appended to the generated arguments for blender.
(optional)

environment Comma separated list of key=value environment variables to set in the environment

in which to execute webots (optional)

24

Chapter 4

Practical Information and Examples

4.1 Practical Information

If you start running some optimizations, always first test it locally by launching an optimaster and one or
more optiworker processes. Then use optirunner to run your job (it should automatically connect to the

local optimaster).

If things are not working as they should, try to see if the optiworker is correctly connecting to the
optimaster. To do this, run both the optimaster and the optiworker with the environment variable
DEBUG_WORKER=1 (for example: DEBUG_WORKER=1 optimaster). You should see in the output generated by

optimaster if the optiworker is connecting correctly.

If things are still not working, try looking at the debug output of the optiworker. Any problems caused by
the dispatcher should be displayed here.

4.2 Distributing Jobs

There are several small steps involved in running your job distributed on the system.

25

4.2.1 Becoming a Member

You will need to be a member of the group cnusers. If you are not, please contact the biorob system

administrator to request group membership.

4.2.2 Tokens

You will need to generate a token so that the system can authenticate your job. Tokens can be generated on
http://eniac.epfl.ch/token.php. Once you have a token, you should specify it in the <token>. . .</token>

element of the job specification.

4.2.3 Running on the biorob servers

You will need to make sure that your job can run on the distributed systems. If you want to run a job on the
biorob servers, you will need to make sure that your code is compiled for 64 bits, Ubuntu Precise LTS (12.04).
If needed, you can compile your code on biorobcn-gw which should have all the required development files
installed. If you need additional development files, please ask the biorob systems administrator to install

these as per required.

4.2.4 Use of custom libraries

If you have custom libraries, make sure that they are either system wide installed on the distributed systems,
or to specify LD_LIBRARY_PATH in the environment settings of the dispatcher. Note: The dispatchers will
not be executing under your normal login environment! This means that if you do anything special in your

~/.bashrc (or similar) you will not have the same environment for the job.

It is possible that LD_LIBRARY_PATH does not get set properly when specified in the environment settings of
the dispatcher due to security reasons. If this is the case, a simple workaround is to create a wrapper script
which sets LD_LIBRARY_PATH and then executes the actual dispatcher. For example, to do this for webots,

create a script at “/bin/webots-runner:

#!/bin/bash

Add $HOME/.local/lib to LD_LIBRARY_PATH
export LD_LIBRARY_PATH="$HOME/.local/lib:$LD_LIBRARY_PATH"

26

http://eniac.epfl.ch/token.php

Execute rTeal webots

exec /usr/local/bin/webots "$@"

And specify $HOME/bin/webots-runner in the webotsPath dispatcher setting of the webots dispatcher (in
the job file).

4.2.5 Specifying the master

Lastly, you need to specify the correct master to run the job on. When running the job on the biorob servers,

specify biorobcn-gw as the master (you can specify which master to use for optirunner using the -m option).

4.2.6 Local storage

When running jobs on the biorob servers, you can make use of local storage on each of the server nodes.
This local storage is located at /data/cnusers and is writable for every user in the cnusers group. Local
storage is useful to write result databases when running optirunner from biorobcn-gw. You can use the
-d flag of optirunner to indicate where to write result databases. Note that the /data/cnusers directory
is not shared between the nodes. If you want to make files available to all nodes, it’s therefore necessary to

copy files to each individual node!

4.2.7 Common pitfalls

A common pitfall is wrong versions or architectures of binaries and shared libraries, or the unavailability of
a shared library. Be sure to check the architecture for which your binaries are compiled (32 bits or 64 bits).
You can do this by issueing the command file on your binaries (or shared libraries). Furthermore, always
check if all the linked libraries can be found on the target systems. You can do this using the command 1dd.
This command will list all the shared libraries a binary links against, and should tell you whether some of
them could not be found. You can login to biorobcn-gw to test whether or not everything can be found
correctly. Be aware though, your login environment might not be the same as the environment in which the

job is executed (be sure to check for custom libraries that they can also be found when running the job!).

Note for Webots jobs: be sure to check all your controllers and your possible plugin. 1dd will always
report libController.so and libCppController.so to not be found, but this is normal since they will be linked

correctly by webots.

27

4.3 Examples

You can find a simple optimization example on the biorob website: http://biorob2.epfl.ch/users/

jvanden/docs/example/

4.4 Monitoring Progress

You can track job progress of jobs running on the biorob servers at: http://biorobcn-gw.epfl.ch/. This
website is only available from inside EPFL. To access the website outside of EPFL you can use the EPFL

VPN. Alternatively, you can use opticommand to view the progress of a job.

28

http://biorob2.epfl.ch/users/jvanden/docs/example/
http://biorob2.epfl.ch/users/jvanden/docs/example/
http://biorobcn-gw.epfl.ch/

References

Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidi-
mensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1), 58-73. Retrieved
from http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=985692

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In (Vol. 4, pp. 1942-1948 vol.4). Retrieved
from http://ieeexplore.ieee.org/xpls/abs_all. jspTarnumber=488968

Monson, C. K., & Seppi, K. D. (2006). Adaptive diversity in pso. In (pp. 59-66). Seattle, Washington,
USA: ACM. Retrieved from http://portal.acm.org/citation.cfm?id=1144006

Spall, J. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approx-

imation. IEEE Transactions on Automatic Control, 37(3), 332-341. doi: 10.1109/9.119632

29

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=985692
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=488968
http://portal.acm.org/citation.cfm?id=1144006

	Conceptual Overview
	User Layer
	Server Layer
	Workstation Layer

	Implementation
	Communication
	Software
	Security

	Applications and Tools
	optimaster
	optiworker
	optirunner
	XML description

	Optimization Algorithms
	PSO
	ADPSO
	SPSA
	GA
	Systematic Search

	optirooter
	optiextractor
	opticommand
	Dispatchers
	Webots
	External
	Blender

	Practical Information and Examples
	Practical Information
	Distributing Jobs
	Becoming a Member
	Tokens
	Running on the biorob servers
	Use of custom libraries
	Specifying the master
	Local storage
	Common pitfalls

	Examples
	Monitoring Progress

	References

