Biorobotics Laboratory BioRob

Project Database

Detail view for project 729. Show all projects


Miscellaneous

729 – Robotic paleontology: tail strike defense
Category:master project (full-time)
Keywords:3D, Biomimicry, Embedded Systems, Experiments, Mechanical Construction, Programming
Type:20% theory, 60% hardware, 20% software
Responsible: (MED 1 1226, phone: 32658)
Description:

We offer an exciting opportunity for a highly motivated graduate student in Mechanical Engineering to undertake a thesis project focusing on designing and constructing a robotic apparatus to test and validate the impact force of a dinosaur tail strike. This project spans approximately 6 months and requires a combination of mechanical design expertise, force plate measurements, innovation in biomimetic structures, and proficiency in data analysis.

Project Description

The thesis project revolves around designing, building, and controlling a life-sized robotic tail capable of replicating the striking force of a dinosaur’s club-shaped tail. The aim is to accurately measure impact force and velocity using a bone-like material reproduction sourced from fossils we have at the Palaeontological Institute and Museum of the University of Zurich. This endeavor will involve close collaboration with a multidisciplinary team and conducting experiments at our facilities at Empa Dübendorf by Zurich.

Responsibilities

  • Utilize mechanical design skills (3D modeling) and motion control (microcontroller designing and programming) to create a functional life-sized Glyptodont's tail.
  • Conduct tests to measure impact force and velocity, meticulously documenting experimental procedures and results.
  • Employ data analysis techniques, including statistical tools or software, to interpret experimental findings.
  • Demonstrate creativity in problem-solving, proposing enhancements to the biomimetic tail design where necessary.
  • Collaborate effectively within a team, communicating ideas and contributing to the project's success.

Requirements

  • Background in mechanical designing with proficiency in 3D modeling.
  • Expertise in motion control, including microcontroller designing and programming.
  • Ability to collect, analyze, and interpret experimental data using statistical tools or software.
  • Strong problem-solving skills with a demonstrated ability to innovate in design and testing.
  • Excellent communication skills to collaborate within a team and articulate ideas effectively.
  • Expected Outcomes

  • Successful creation of a fully functional life-sized Glyptodont's tail within the thesis duration.
  • Execution of tests to accurately measure impact force and velocity.
  • Comprehensive documentation of experiments and results.
  • Recommendations for potential enhancements or modifications based on findings.
  • If you are a Master's student passionate about pushing the boundaries of robotics, biomimicry, and mechanical engineering and are looking for an engaging thesis project, we encourage you to apply. Please submit your resume/CV along with a cover letter detailing your relevant experience and why you are excited about this exceptional thesis opportunity to Auke Ijspeert as well as Ardian Jusufi.



    Last edited: 22/12/2023

    One project found.